
Journal of the Operations Research 

Society of Japan 

Vol.21, No.2, June, 1978 

Abstract 

AN ADJACENT PAIRWISE APPROACH TO THE MEAN 

FLOW-TIME SCHEDULING PROBLEM. 

Shigeji Miyazaki, Noriyuki Nishiyama and Fumio Hashimoto 

University of Osaka Prefecture 

(Received December 10, 1977; Revised February 22, 1978) 

In this paper, sufficient conditions to decide the precedence relation between neighboring two jobs are 

presented by means of an adjacent pairwise interchage method for minimizing mean flow·time in flow-shop scheduling. 

On the bases of the sufficient conditions, a computational algorithm is proposed for an optimal or near optimal 

solution. The mean flow-time by this algorithm puts 90% of the optimal value as an average of over one hundred 

problems. The algorithm can be executed even by manual calculations within the time proportional to nxm2 , where 

n and m are the number of jobs and machines respectively. 

1. Introduction 

Ever so muc h research [I 'V 9] has been devoted to f low-shop scheduling, 

yet relatively few results exist for performance measures other than maximal 

flow-time. For instance, Nabeshima [5] presented an algorithm based on the 

sufficient conditions to minimize maximal flow-time in flow-shop scheduling 

where no passing is allowed. The same approach, however, has not been applied 

to the mean flow-time problem, which is as significant a performance measure 

as the maximal flow-time. 

In this paper, the sufficient conditions are given to decide the preced­

ence relation between neighboring two jobs to minimize the mean flow-time in 

flow-shop scheduling problem. An algorithm based on the sufficient conditions 

is also presented for an optimal or near optimal solution. 

The computational experience shows that the approximation ratio between 

obtained solutions and the optimal ones indicates 90 % as an average of over 

one hundred problems. Moreover, it shows that the algorithm can be executed 

even by manual calculations within the time proportional to (the number of 

jobs) x (the number of machines) 2 . 
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2. Definition of the Model 

The discussed model can be defined as follows: 

1) Let n be the number of jobs to be processed, and ith job in an arbi­

trary sequence S is denoted by J
i 

where i=1.2.···.n. All these jobs are 

available for processing at time zero. 

2) The manufacturing system consists of m different machines which are 

numbered according to the order of production stage. Let M. be the jth ma­
J 

chine in the system wher~~ j = 1. 2.···.m. Every machine is continuously avail-

able. 

3) Every job is completed through the same production stage that is M1 -+ 

M2 -+ ••••• -+Mm' 

4) Let p .. denote the processing time of J. on M .• Setup times for op-
1.-.J 1.- J 

erations are sequence-independent and are included in processing times. Han-

dling times are assumed to be so limited that they can be neglected. 

5) The same job sequence occurs on each machine; in other words, no pass­

ing is allowed in the shop. 

6) The other conditions on usual flow-shop problem are also assumed. 

3. Formulation of Mean Flow-Time 

Let T.(i) denote the partial flow-time of J. counted from the completion 
J 1.-

Machine 

M. 1 
J-

M. 
J 

M 
m 

Pl.l P2,l 

Pl.2 

- - .- --

Pi-l,1 Pi,l 

-- -- - -
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- - - - --I 
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J 

P{,..l,j Pi,j 

) 

- - - - - -.. 1-..... 1---.. 
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Fig. 1 Definition of T.(i). 
J 
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time of J
i 

on M1 to that 

rence relations (3.1) on 

not be ~arlier than both 

time of J. 1 on M - • 
1-- ,7 

Mean Flow-Time Scheduling 

of J. on M., referring to Fig. 1. 
1- J 

There exist recur--

T Ji), because 
J 

the completion 

the starting time of J
i 

on M
j 

should 

time of J. on M_ 1 and the completion 
1- J-

(3.1) T.(i)=p .. +m={TJi-V-P'l,T. ,,(i)}, i=1,2,···,n;j=2,3,···m, 
J l-,J J 1-, J-j 

where T/O) = 0, T1 (i) = 0. 

Let F. be the flow-time of J., that is, the whole elapsed time of J. 
1- 1- 1-

289 

counted from the starting time of J
1 

on M
1

, to the completion time of J
i 

on M . 
m 

Then Fi is given by: 

(3.2) F. 
1-

i 
L p + T (i), i 

t=l t,l m 
1,2,···,n. 

Hean flow-time F for n different jobs processed on m machines is: 

(3.3) 
1 n 

L F. 
n i=l 1-

n i 
1 L { L Pt 1 + T (i)l. 
n i=l t=l' m 

Therefore we have, from (3.3), 

(3.4) nE' 

n 

L F. 
i=l 1-

n i 

L { L Pt 1 + T (i)l, 
i=l t=l' m 

where nE' expresses the total flow-time of n jobs, nE' shall be used in place of 

P in the further analysis, since n is a constant independent of a sequence. 

In the sequence 5, let s be a subsequence consisting of the first q-1 

jobs, that is, J.,J
2
,···,J l' and in succession to s, J and J 1 ( these two 

.1 q- q q+ 
jobs are called adjacent two jobs hereafter ) are assumed to be processed in 

the order J J 1 
q q+. 

Now consider the sequence 5' in which J and J 1 are pair--
q q+ 

wise interchanged and are processed in the order J
q
+

1 

same for the first q-1 jobs and the last (n-q-V jobs 

as illustrated in Fig. 2. 

J . 
q 

The sequence is the 

under either 5 or 5' 

In order to distinguish the notation of partial flow-time under 5 from 8; 

let Tm(q), Tm(q,q+V, and T
m

(i)5 (i=q+2,q+3, ···,n) denote the partial flow­

time of J
q

, J
q

+r and J
i 

(i=q+2,q+3, ···,n) under 5 in turn, and let T
m

(q+1J, 

T
m

(q+1,q), and ~~(i)5' (i=q+2,q+3,···,n) denote the partial flow-time of J
q

+
1

, 

J , and J. (i=q+,2,q+3,·· ·,n) under 5' in turn, moreover let P' be the mean 
q 1-

flow-time under S'. Then the total flow-ti.me under 5 and 5' are formulized by 

(3.5) and (3.6) respectively, of which terms are divided into four parts that 
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S ::: J
1

, J
2

, , J
q

_
1

, J
q

, J
q

+
1

, 

X 
S'::: J

1
, J

2
, •••• ,J l' J l' J , 

q- q+ q 

'--~ 
Partial Sequence s 

Fig. 2 Sequence Sand So. 

, J 
n 

J 
n 

are the summation of the flow-times over all jobs belonging to s, the flow­

time of J , the flow-time of J and the summation of the flow-times over 
q q+1' 

all jobs following J 1 
q+ 

(3.5) nP 

(3.6) 

q-1 i q-1 q+1 

.I { I Pt 1 + Tm(i)} + I p 1 + p 1 + T (q) + I P 
1-=1 t=l ' t=l t, q, m t=l t,l 

+ T (q,q+l) + 
m 

q-l i q-1 q+1 

I { I P + T (i)} + I P + P + T (q+l) + I P 
i:::l t=l t"l m t=l t,l q+1,l m t=l t,l 

+ T (q+1,q) + 
m 

Eliminating the common terms between (3.5) and (3.6) from the each equa­

tion, and denoting the renlaining, <nP> and <nP'>, respectively, we have: 

(3.7) 

and 

(3.8) 

n 

<nF> ::: P 1 + T (q) + T (q,q+l) + I T (i)s ' 
q, m m . 2 m 

1.-=q+ 

n 

<nP'> = p 1 1 + T (q+1) + T (q+1,q) + I T (i)s, 
q+ ,m m i=q+2 m 

4. The Order of Adjacent Two Jobs 

If, 

(4.1) <nF> < <nP'> 

that is: 

(4.2) nF < nP' 
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holds, J 1 cannot direc tly precede J in the optimal sequence, because (3.7) 
q+ q 

and 0.8) exist independent of adjacent two jobs position in a sequence. Ei-

ther of J and J 1 can optimally precede the other, provided there exists 
q q~. 

equality in (4.1). Therefore, we shall investigate the sufficient conditions 

to satisfy (4.1) in the following: 

Comparing each term of (3.7) with the corresponding term of (3.8), we 

have: 

(4.3) P 1 + T (q) ~ P 1 1 + T (q+l) , 
q, m - q+, m 

(4.4) T (q,q+1) < T (q+l,q) , 
m = m 

and 

n n 

(4.5) 2 T (i)s ~ 2 T (i)s' 
i=q+2 m i=q+2 ~ 

which are to be sufficient conditions of (4.1). 

T (q) and T (q+1) in (4.3) are, from (3.1), given by: 
m m 

(4.6) T (q) = p + max{T (q-l) -p l' T 1(q)}, 
m q,m m q, m-

and 

(4.7) 

Working out recurrence relations (4.6) and (4.7), we have: 

2" 

(4.8) T (q; 
m 

max {T ( -1) 2 } 
2"=1~ m-2"+1 q + t=1Pq,m-t+1 - Pq,1 ' 

and 
l' 

(4.9) T ( 1) = max {T ( -1) + 
m q-1' 2"=1~ m-2"+1 q 2 Pq+1 m-t+1} - Pq+1,1 . 

t=1 ' 

Substituted into (4.3), (4.8) and (4.9) give 

l' l' 

(4.10) max {T ( -1) + I P } < max {T 1 (q-1) + I P 1 t 1}' 
1'=1~ m··1'+1 q t=1 q,m-t+1 = 2"=1~ m-1'+ t=1 q+ ,m- + 

Since T 1(q-V is common between both sides of (4.10), the comparison 
m-1'+ 

between each relative term of (4.10) gives the next m different inequalities: 

(4.11) 

l' 

I P -t 1 < 
t=:' q,m + 

l' 

I Pq+1 m-t+l' 
t=1 ' 

( 1'=1,2, ···,m) , 
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which are to be sufficient conditions of (4.10) that is equivalent to (4.3), 

as completely proved at the following theorem. 

Now, we shall investigate the sufficient conditions of (4.4) and (4.5). 

The partal flow-time of J
q

+
2 

under S is given as similar to (4.8), 

(4.12) 
max l' 

T .(q+2) S = l' { T ' 1 (q. q+ 1 ) + \' P 2 ' t 1} - P
q

+2. 1 . 
J r= 'cJ J-r+ - t~l q+ ,J- + _ -

which is the nondecreasing function of each j terms Tk(q,q+l) (k=1,2, "',j), 

The partial flow-time of J
q

+
2 

under S' is also given as similar to (4.9), 

r 
(4.13) ( 2) = max {T (1) \' } 

TJ' q+ S' 1'=:I'VJ' J'-r+l q+,q + L P +2 '-Hl - Pq+2. 1 ' 
t=l q , J -

which is the nondecreasing function of each j terms T
k

(q+l,q) (k=1,2,· ",j), 

So that, if: 

(4.14) 

then 

(4.15) 

Moreover, under 

from (3.1), and 

Therefore, 

(4.15), j"/q+3)S ~ T/q+3)S' holds for every j (j=1,2,···,m) 

similar inequalities as (4.15) hold for J 4,···,J in turn. 
q+ n 

(4.14) should be sufficient conditions of (4.5), by the reason 

that (4.5) is concerned ~lith the summations of the partial flow-time of J
q
+

2
, 

J 3,···,J on M, Inequality (4.4) is contained in (4.14), since (4,14) in 
q+ n m 

the case of j=m corresponds to (4.4). 

Nabeshima [5] proved that the next m(m-l)/2 inequalities: 

(4.16) min(pq,j,Pq+],j+l) ~min(pq+l,j'Pq,j+l)' (j=1,2,···,m-l), 

and 

v v+l v v+l 

(4.17) min LP, , l: P 1 ,) < min 
j=v. q,J j=u+l q+ ,J 

LP+l" L P ,),(l~u<v~m-l) 
j=v. q ,J j=v.+l q,J 

are the sufficient conditions of (4.14). 

The discussion above should lead to th~ following theorem: 

Theorem, If m(m+l)/2 inequalities: 

r r 

(4.11) L P 
t=l q,m-t+l 

< 
L Pq+l m-t+l ' 

t=l > 

(1'=1,2,···,m) , 
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(4.16) min {p .,p 1 . 1} .:::.min {p 1 .,p . 1} , {j=1,2,···,m-1 } , 
q,J q+ ,J+ - q+,J q,J+ 

and 

v v+1 v v+1 
(4.17) min{ LP ., L P+1 .}<min{ l:P+1" L P .},{1~u<v~m-1}, 

j=u q,J j=u+1 q ,J j='U q ,J j=u+1 q,J 

hold, then J
q

+
1 

cannot directly precede J
q 

to minimize the mean-flow time in 

flow-shop scheduling where no passing is allowed. If equality signs hold in 

all of (4.11), (4.16), and (4.17), each of v' and J 1 may directly precede 
q q+ 

the other. 

Proof: The demonstration here may be restricted to the statement that 

(4.11) is sufficient condition of (4.3) for any number of machines m over two, 

since Nabeshima [5] has proved that (4.16) and (4.17) are the sufficient con­

ditions of (4.4) and (4.5). The theorem can be demonstrated by mathematical 

induction as follows: 

Inequality (4.3) for m=2 is 

which is, from(3.1), rewritten by : 

(4.18) 

Sufficient conditions of (4.18) are simply given by: 

P q , 2 ~ P q+ 1, 2 ' 

and 

These inequalities coincide with (4.11) for m=2, consequently (4.11) should be 

the sufficient conditions of (4.3) for m=2. 

Now suppose that (4.11) is the sufficient condition of (4.3) for m=K, 

where K is an arbitrary integer greater or equal than 2. This assumption may 

be rewritten by the following statement that: 

r r 

(4.19) 'P < 'P , {r=1,2,···,K} 
L q K t+l = L q,"l K-t+1 

t=l ' - t=l ' 

are the sufficient conditions of 

(4.20) 
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For m=K+1, the partial flow-time under S and S~, T
K

+
1

(q) and T
K

+
1

(q+l}, 

are given as established in (3.1): 

(4.21) 

and 

(4.22) TX+1 (q+1) =p +1 X+1 +ma:x:{T
X

+
1
(q-l}-p 11,T

X
(q+1)} 

q , q+ , 

Therefore, each sidE~ of (4.3) for m=K+1 is respectively: 

(4.23) Pq 1 + TK+1 (q) =ma:x:{p K+1+ TX+1(q-l},P l+ P K+1+ Ti qJ }, , q, q, q, 

and 

From (4.23) and (4.24), the sufficient conditions of 

should be given by: 

(4.25 ) 

and 

(4.26) 

Since, from the preliminary assumption for m=K, the sufficient conditions 

of 

(4.20) 

are (4.19), and each sidE' of (4.20) is the first and third term of correspond­

ing side of (4.26), so that: 

r r 
(427) 'p +p < 'p +p (r=1,2,··'·,KJ. 

• t~l q,K-t+1 q,K+1 = t~l q+1,X-t+1 q+1,K+1' 

should be the sufficient conditions of (4.26). 

Rearranging (4.25) and (4.27), we have 

r r 
(4.28) LP';;' LP, (r = 1, 2, ••• ,K+1 ) • 

t=l q,X-t+2 t=l q+1,K-t+2 
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These inequalities (4.28) coincide with (4.11) for m=K+l. Therefore, (4.11) 

should be sufficient condition of (4.3) for rn=K+l, under the assumption that 

(4.11) is the sufficient condition of (4.3) Eor m=K. 

These statements above prove that (4.11) is the sufficient condition of 

(4.3) for any integer m greater or equal than 2. 

5. Algorithm 

We now propose an algorithm to find an optimal or near optimal solution 

that minimizes the mean flow-time using above theorem, since the theorem holds 

for any positions of the adjacent two jobs in the sequence. The algorithm 

will be explained by solving an example problem composed of four jobs and four 

machines. The processing times of each operation in the example are listed in 

Table 1. 

Step 1. Decide m kinds of temporary sequences which can lead from (4.11) as 

follows: compile a table of which the first, second and last mth row 

value correspond to P - , P, + p. l' and P - + ••• + P - 1 in 
1.-, m 1.-, m 1.-, m- 1.-, m 1.-, 

turn, as tabulated in Table 2. Make m kinds of temporary sequences 

consisting of n jobs in accordance with the nondecreasing order of 

each row value in Table 2. Assign an integer between 1 and n to each 

Table 1. Processing Times. Table 2. Sum of Processing Times. 

j P - . J
1 

J
2 J:3 J

4 1.-,J 
r I p .. J

1 
J

2 J:3 J
4 1.-, J 

1 Pi,1 5 5 3 6 1 
Pi,4 

4 3 6 5 

2 Pi,2 7 6 5 5 2 P' 4 +P':3 7 8 11 12 
1.-, 1.-, 

:3 Pi, :3 
3 5 5 7 :3 P'4+'''+ P'2 14 14 16 17 

1.-, 1.-, 

4 Pi,4 4 3 6 5 4 P'4+"'+ P'1 19 19 19 23 
1.-, 1.-, 

Table 3. Ordinal Table 4. Ordinal Table S. Ordinal 

Numbers by Step 3. Numbers by Step 1. Numbers by Step 2. 

r J
1 

J
2 J:3 J

4 
j J

1 
J

2 J:3 J
4 

u V J
1 

J
2 J:3 J

4 

1 2 1 4 3 1 2 2 1 4 2 4 2 1 2 

1 

2 1 2 3 4 2 4 3 1 1 :3 4 3 1 2 

:3 1 1 3 4 :3 1 4 2 3 2 :3 3 3 1 2 

4 1 1 1 4 
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job according to its ordinal number in the temporary sequence as 

shown in Table 3. In case more than two jobs have the same value in 

a row, essign the same integers to them. An example of this can be 

seen in the third and fourth rows of Table 3. 

Step 2. Make m-l kinds of temporary sequences, in terms of applying Johnson's 

Rule [4] to (4.16) for each value of j=1,2,···,m-1. Assign an inte­

ger between 1 and n to each job according to its ordinal number in 

this temporary sequence as shown in Table 4. Assign the same inte­

gers to the jobs which can occupy the same position in the temporary 

sequence by this step. 

Step 3. Apply Johnson's Rule to (4.17), regarding the serial machines from M 
u 

to Mv as the first machine and the serial machines from Mu+l to Mv+l 

as the second machine. Total number of temporary sequences made by 

this step becomes (m-l) (m-2)/2 which coincides with the total number 

of combinations between u and V under the restrictions on their range 

shown in (4.17). Assign an integer between 1 and n to each job ac­

cording to its ordinal number in this temporary sequence as shown in 

Table 5. 

Step 4. Calculate the sum of integers 

assigned to each job in the Step 

1, 2, and 3 as shown in Table 6. 

Arrange each job in the nonde­

creasing order of the total inte­

gers. Break a tie by placing jobs 

Table 6. Sum of Ordinal Numbers. 

Job 

Sum of Ordi­

nal Numbers 
23 22 18 29 

with lower original numbers first. 

The solution for this example becomes J
3 

-J
2 

-J
1 

-J
4

, which is the opti­

mum. In case all of the temporary sequences are equal, the solution inevita-

bly becomes the optimum. 

6. Efficiency of the Algorithm 

In order to verify the efficiency of the algorithm, 16 examples tabulated 

in Table 7 were solved. Obtained solutions were appraised by the approxima­

tion ratio defined by (6.1), and the results are summarized in Table 8. 

(6.1) n = 100 x (w-a)/(w-o) (%) 

Where n is the approximation ratio, W, a, and 0 are the maximal (worst), 

the obtained, and the optimal value of performance measure respectively. The 
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Table 7. Solved Flow-Shop Problems. Table 8. Approximation Ratio. 

~ 3 4 5 5 

Standard deviation ~ 3 4 5 6 

3 P
1 

P
2 

P
3 

D of processing times ,- 4 P : 
(Uniform random in-· 

3 83.3 92.9 81.8 84.8 

4 P
2 

P
1 

P
4 

D tegers with mean 5 
'3 4 100.0 85.7 96.6 98.if 

5 P
3 

P
4 

P
2 

D P
1 

=0.8, P
2

=1.4, 
,- 1 

6 P
4 

P
3 

P
1 

D 

P
3

=2.0, P
4 

=2.6. 

,- 2 

5 100.0 98.5 79.3 89.7 

6 100.0 88.2 73.3 97.9 

(%) 

Table 9. The Results of Analysis Table 10. The Required Times 

of Variance, F(3 ,6 : 0.05) =4.76. for Solutions by Hand. 

Factor S <P V FO ~ 3 4 5 6 

n 375.4 3 125.1 3.58 3 1.5 3.5 4 5 

m 188.5 3 62.8 1.80 4 6 7 7.5 11.5 

P 331.4 3 110.5 3.17 5 9 9.3 12.5 18 

E 209.5 6 34.9 6 9 15 19.5 24 

Sum 1104.8 15 
( minutes ) 

approxomation ratio defined by (6.1) contains the maximal and the optimal 

value of performance measure so as to reach 0% in case the obtained solution 

coincides with the maximal one, and 100% in case the obtained solution coin­

cide~ with the optimal one. 

The average of ratios in Table 8 is 90.7% and the analysis of variance 

shown in Table 9 indicates that none of the three factors, the number of jobs, 

the number of machines, and the standard deviation of processing times affect 

the approximation ratio. 

Another 90 different examples which have 2 to 6 jobs and 2 to 6 machines 

were solved, having shown 90.2% for the average approximation ratio. The algo-· 

rithm may be executed even by hand calculations which need the time propor­

tional to n xm2 , since the time is subject to the number of jobs and the number 

of inequalities. Table 10 is an example of the executed time by manual calcu-· 

lations. 

The step 4 of the proposed algorithm can be replaced by the similar pro­

cedure as the step 2, 3, and 4 in Nabeshima's. Although the replaced algo­

rithm may generate as high an approximation ratio as the proposed one, it 

takes two or three times as long to ececute the replaced one than to execute 

the original one. 
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7. Conclusions 

The summary of the results is as follows: 

1) The sufficient conditions were presented to minimize mean flow-time in 

flow-shop scheduling where no passing is allowed. It was proved by mathemati­

cal induction that the conditions should exist for any number of machines. 

2) The algorithm based on the sufficient conditions is proposed for an 

optimal or near optimal solution. 

3) More than one hundred examples were solved by the algorithm, having 

shown 90% for the approximation ratio on an average. None of the three fac­

tors, the number of jobs, the number of machines, and the standard deviation 

of processing times affected the value of approximation ratio. 

4) The algorithm may be executed even by hand calculations which need the 

time proportional to n x m2 • 
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