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An Admissible Heuristic to Improve Convergence

in Kinodynamic Planners Using Motion Primitives
Basak Sakcak, Luca Bascetta, Gianni Ferretti, and Maria Prandini

Abstract—This paper introduces a new heuristic function that
can be incorporated in any kinodynamic planner using motion
primitives, to the purpose of increasing its convergence rate. The
heuristic function is proven to be admissible and, hence, the
optimality properties of the planning algorithm are preserved.
Notably, it can be applied to planning problems with generic
agent motion models and cost criteria, since it depends only
on the database of motion primitives. The proposed heuristic
has been integrated into a randomized sampling-based and a
deterministic kinodynamic planner, and its effectiveness has been
shown in numerical examples with different agent motion models
and cost criteria.

Index Terms—Kinodynamic motion planning, motion primi-
tives, admissible heuristic function, mobile robots

I. INTRODUCTION

K INODYNAMIC motion planning, first introduced in [1],

refers to planning with differential constraints, i.e., deter-

mining a collision-free, possibly optimal, trajectory that drives

an agent from an initial position to a specified target region,

while satisfying constraints on the derivative of the agent

configuration that represent its motion model. In this way, the

planned trajectory is guaranteed to be feasible but the planning

problem becomes far more complex. Note that computing an

optimal trajectory subject to kinodynamic constraints can be

difficult, especially when considering arbitrary motion models.

Search-based planners (e.g., [2]–[4]) address this issue by

using a graph-representation of the state space where discrete

states are connected with pre-computed optimal trajectories –

the motion primitives – and then applying an optimal graph-

search. Optimal graph-search is a computationally intense

operation and both time and memory requirements grow

drastically in search-based approaches when increasing the

dimensionality or the number of adopted motion primitives.

Sampling-based planners determine a solution by randomly

sampling the continuous state space of the agent and creating

a graph, where nodes are sampled states and edges are

feasible trajectories connecting nodes generated by a steering

function. A class of these algorithms can guarantee asymptotic

optimality such that the probability of finding an optimal

solution converges to 1 as the tree cardinality grows to infinity.

Kinodynamic-RRT⋆ [5] and variants, can only be applied to a

limited class of systems, since asymptotic optimality requires

that two nodes are connected exactly and optimally by a

steering function. In order to consider arbitrary dynamics,

approaches such as sampling the control space [6] and iter-

atively running a feasible kinodynamic planning algorithm [7]
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have been introduced. More recently, motion primitives have

been adopted also for sampling-based planners, inspired by

the search-based approach [8].

The inclusion of an appropriate heuristic within graph-

search is typically used to improve computational perfor-

mance. This is indeed crucial for search-based planners to be

able to consider a larger number of motion primitives. To this

aim, suitable heuristic based algorithms, such as A
⋆ [9] and

variants (e.g. ARA⋆ [10]), have to be used. These algorithms

can return a resolution-optimal solution (i.e., an optimal solu-

tion among the ones that can be obtained with the given set

of motion primitives) while expanding a reduced number of

nodes if the adopted heuristic is admissible, i.e., if it always

underestimates the actual cost to reach the goal. Though it

is not so crucial as in search-based planning, also sampling-

based planners can significantly improve their convergence

while preserving their optimality properties, by incorporating

an admissible heuristic. Some recent works such as Informed-

RRT
⋆ [11], BIT⋆ [12], C-FOREST [13] use the length of the

shortest path discovered to analytically compute a reduced

sampling set and increase the convergence rate. Exploiting the

same idea, Anytime RRT [14] improves the solution at each

run of the algorithm but it lacks a theoretical guarantee on

convergence to the optimal solution. Furthermore, RRTX [15]

proposes a method for repairing the promising parts of the tree.

Similarly, assuming that an admissible heuristic exists, RRT#

[16] ensures that the tree contains the best possible branch, in

terms of a sequence of edges, with the current set of nodes.

All the mentioned heuristic based algorithms assume that

an admissible heuristic exists. Indeed, most of them solve

the shortest path planning problem where the path length

can be computed using its projection on a Euclidean position

space and the Euclidean distance is naturally an admissible

heuristic. In [17], the authors propose a heuristic look-up table

which carries the shortest path information from each cell of

a discretized search space to another. Their approach better

approximates the cost to goal for systems with differential

constraints, however the size of such a database tends to

become intractable as the size of the search space increases.

Note that, in principle, these results can be extended to

different cost criteria. However, this requires to define an

admissible heuristic which is often as challenging as solving

the original problem. Therefore, computing a generic heuristic

function still remains an open issue, which is addressed here.

This paper proposes a heuristic for a generic mobile robot

motion planner that is based on motion primitives. This heuris-

tic can be incorporated into any motion planning algorithm

that relies on a graph built by concatenating a set of motion

primitives, and it is shown to be admissible. It depends only on



the database of motion primitives and their associated costs,

and can be computed using the same strategy, independently

of the system dynamics, representing the agent motion model,

and the planning cost criterion. The heuristic is incorporated

in a sampling-based and a search-based planner using motion

primitives, RRT
⋆
MotionPrimitives (MP-RRT⋆) [8] and A

⋆

respectively, and resolution-optimality (asymptotic in the case

of MP-RRT⋆) is proven. The effectiveness of the proposed

heuristic in improving the convergence rate of these algorithms

is demonstrated in simulation using two motion planning

examples with different motion models and cost criteria.

II. MOTION PLANNING PROBLEM STATEMENT

Consider an agent with motion model given by the following

dynamical system, with state s ∈ R
d and input u ∈ R

m

ṡ(t) = f (s(t),u(t)) , s(0) = sstart, (1)

where f is continuously differentiable in both of its arguments

and sstart stands for the initial state. As system (1) represents a

motion model, its state s includes the agent position π ∈ R
dp ,

dp ≤ 3, with respect to a given absolute reference frame:

s =
[

π
T , . . .

]T
. For example, if the agent moves on a planar

surface, then dp = 2 and π corresponds to the x and y
coordinates of its position on the plane.

State and actuation constraints are also enforced, i.e., s ∈ S
and u ∈ U , where S ⊂ R

d and U ⊂ R
m are both compact

sets. An open subset Sgoal ⊂ S represents the goal region the

agent has to reach. Obstacles are represented by an open subset

Sobs ⊂ S, and the free space is defined as Sfree := S \ Sobs.

We assume sstart ∈ Sfree and Sgoal ⊂ Sfree.

Given s0 and sf in S, an agent trajectory connecting s0

to sf is a tuple z = (s(·),u(·), τ), where τ is the duration,

and s(·) : [0, τ ] → S satisfies the boundary conditions s(0) =
s0 and s(τ) = sf , and the differential equation (1) for t ∈
[0, τ ] when the control input u(·) : [0, τ ] → U is applied.

A trajectory z = (s(·),u(·), τ) is said to be collision free, if

s(t) ∈ Sfree, t ∈ [0, τ ]. A collision free trajectory connecting

s0 to sf is optimal if it minimizes the cost criterion

J(z) =

τ
∫

0

g (s(t),u(t)) dt, (2)

where g : Rd ×R
m → R≥0 is an instantaneous cost function.

We assume that optimal trajectories joining two different states

have a non zero cost. Given the previous definitions, an

optimal solution of the kinodynamic motion planning problem

is an optimal collision free trajectory z
⋆ = (s⋆(·),u⋆(·), τ⋆)

connecting s0 = sstart to sf ∈ Sgoal.

Planning using motion primitives, as in this paper, and the

proposed heuristic function apply only to those systems that

satisfy the translation invariance property with respect to the

position component π of the state s =
[

π
T , . . .

]T
. In order to

state this property formally in Definition 1, we need to define

the translation vector rδ =
[

δT ,01×(d−dp)

]T
associated with

the displacement δ ∈ R
dp : if we add rδ to the agent’s state

s =
[

π
T , . . .

]T
, then its position π is translated of δ, while

the remaining components of s are preserved.

Definition 1 (translation invariance property). A system with

motion model (1) and cost criterion (2) satisfies the translation

invariance property if when obstacles are neglected and an

optimal trajectory z
⋆ = (s⋆(·),u⋆(·), τ⋆) connecting s0 to

sf is considered, then, for every displacement δ ∈ R
dp , an

optimal trajectory connecting s0 + rδ to sf + rδ is given by

(s⋆(·) + rδ,u
⋆(·), τ⋆) and has the same cost of z⋆.

It is worth mentioning that this definition holds for a large

class of agent models common for mobile robots (terrestrial,

underwater or aerial vehicles) and it has been extensively used

in the literature (see e.g., [2]–[4], [8]).

III. HEURISTIC FUNCTION FOR MOTION PRIMITIVE

BASED PLANNING

In this section, we introduce a heuristic function that is

determined from a database of motion primitives and their

respective costs, irrespectively of the underlying motion model

and cost metric. Such a heuristic can be incorporated in any

planning algorithm that relies on such a database to guide the

search and the growth in a graph by favoring the nodes that

can contribute to finding the optimal solution.

In the following, we briefly explain the concept of mo-

tion primitives and planning using motion primitives. Con-

sequently, we introduce the proposed heuristic function.

A. Motion Primitives

In order to define the database of motion primitives, we need

to fix a finite set of state values that are used as initial and

final state pairs of the motion primitives. To this aim, we grid

(apply a uniform discretization at each dimension of the state

space) a box in the continuous state space set S, assuming,

without loss of generality, that the resulting (finite) set of

grid points includes states with position π̄0 = 0. The motion

primitives are then computed by neglecting obstacles and

solving a constrained boundary value optimization problem

(the problem defined in Section II) for each pair of initial and

final states (s̄i0, s̄
i
f ), such that s̄i0 and s̄

i
f belong to the selected

set of grid points and s̄
i
0 = [π̄0, . . . ], ∀i.

Fig. 1. A database of trajectories that share the same initial position π̄0 =
0 ∈ R

2 (marked with red cross). In particular, only the trajectories that reach
the frontier of the bounding box BB(π̄0) (represented using its projection
on R

2 with a red dashed line) are shown.

In the sequel, we shall denote as BB(π), the bounding

box at π given by the set of state values obtained by trans-

lating the grid points used for the database construction by

rπ =
[

π
T ,01×(d−dp)

]T
. Hence, BB(π̄0) is the bounding

box of the database. Figure 1 shows an illustrative example

of a bounding box BB(π̄0) and the associated database of

motion primitives for a 4 dimensional state space composed

of position, π, orientation, θ, and velocity v.



B. Motion Primitive Based Planning

The algorithms that use a database of motion primitives

rely on a uniform discretization of the state space set S with

the same grid size used for constructing BB(π̄0). Let S∆

and S∆
free := S∆ ∩ Sfree define the set of grid points that

represent the discretized state space and the free discrete state

space, respectively. We assume that sstart ∈ S∆
free and the

set of goal states S∆
goal := V ∆

free ∩Sgoal is nonempty. Thanks

to the translation invariance property, we can define a graph

G∆
free = (V ∆

free, E
∆
free) whose nodes, V ∆

free, correspond to

the set of grid points in S∆
free that can be reached from the

initial node, sstart, by concatenating a sequence of edges in

E∆
free, representing (translated) motion primitives that lie in

Sfree.

An optimal branch of G∆
free is composed of the ordered se-

quence of nodes, SQ⋆
sstart→sgoal

:= {sstart, s
⋆
1, s

⋆
2, . . . , sgoal},

which represents a resolution-optimal ∆-trajectory, a mini-

mum cost trajectory that starts at the initial state sstart and

ends in the goal region (sgoal ∈ S∆
goal), and is obtained by con-

catenating motion primitives in the database. The resolution-

optimal ∆-cost is the cost c⋆∆ of this optimal trajectory. A

motion primitive based algorithm is called resolution-optimal

if it provides a solution with cost equal to c⋆∆.

C. Database dependent heuristic

Consider a node s from which the agent can reach the

goal region via some branch represented in G∆
free. Let

SQ⋆
s→sgoal

:= {s, . . . , sgoal}, where sgoal ∈ S∆
goal, be an

optimal branch represented in G∆
free that connects the node

s to S∆
goal and c⋆

s→sgoal
the cost associated to that sequence.

If the optimal cost to reach the goal from node s, i.e.,

c⋆
s→sgoal

, is available, optimal graph search algorithms such as

A
⋆ can guarantee that the number of nodes that are expanded

to obtain the optimal solution is minimal [9], thus substantially

improving the search efficiency. Similarly, the same cost

can also be incorporated in an incremental sampling-based

algorithm to expand the tree only from promising nodes, or

to prune the unpromising ones. However, computing c⋆
s→sgoal

is an issue due to the combinatorial nature of the problem

of finding for each node s ∈ V ∆
free the minimum cost

trajectory represented in G∆
free. Therefore, many algorithms

use an approximation of this cost, i.e., a heuristic, in order

to improve the search efficiency. However, determining a

heuristic function is problem dependent and can be an issue

if the minimization objective and/or the agent motion model

are not simple. By exploiting the fact that we are considering

planners that use a database of motion primitives, we can

propose a unified approach to compute a heuristic function,

h(s), that approximates the cost, c⋆
s→sgoal

, ∀s ∈ S∆, and can

be computed using the same strategy independently of the

problem specificities.

The heuristic, h(s), is defined by exploiting the fact that

all trajectories represented in G∆
free are built by concatenat-

ing motion primitives extracted from the database. Let us

rewrite SQ⋆
s→sgoal

as an ordered sequence of nodes start-

ing from s0 = [πT
0 , . . . ]

T = s such that SQ⋆
s→sgoal

:=
{s0, . . . , sk−1, sk . . . , sKs

}, where sKs
= sgoal. Any node

sk should lie within the bounding box of sk−1, i.e., sk ∈
BB(πk−1). Then the optimal branch belongs to a space com-

prised of union of Ks bounding boxes at πk, i.e., {BB(πk)},

such that ∀k = 0, . . . ,Ks − 1 , sk ∈ SQ⋆
s→sgoal

. Thus, we

can approximate the cost of SQ⋆
s→sgoal

by computing a lower

bound on the number of bounding boxes and on the cost of

making a connection within each box. More precisely, the

heuristic function h(s) is computed as follows.

BB�

BB���

��

)

�

goal

Fig. 2. Procedure to compute the minimum number of bounding boxes: tile

the straight line between π0 π
′

goal
using the projection of the bounding box

on the position space (here shown as R
2).

We can neglect the feasibility of the solution, and compute a

lower bound, Ms+1, on the number of boxes that connect s to

sgoal, such that Ms+1 ≤ Ks, as follows. We first tile a straight

line s s
′
goal that connects s to s

′
goal (the node in S∆

goal closest

to s in terms of Euclidean distance with respect to π), and then

we build a sequence of bounding boxes {BB(π′
m)}Ms

m=0 such

that π′
0 = π0, π′

m corresponds to the intersection of s s
′
goal

and BB(π′
m−1), m = 1, . . . ,Ms−1, and BB(π′

Ms
) intersects

with the goal region. As better illustrated in Figure 2, this

corresponds to tiling the straight line between π0 and π
′
goal,

i.e., π0 π
′
goal, with the projection of BB(.) on the position

space R
dp . Note that, the straight line is used to compute a

lower bound on the number of boxes and it typically does not

correspond to either a feasible or an optimal solution.

Let cmin be the minimum among the costs of all the

trajectories that reach the frontier of BB(π̄0) (Figure 1).

Hence, cmin corresponds to the cost of the minimum cost

trajectory among the trajectories that start from any initial

state and have the final state on the box frontier. Thanks

to the translation invariance property, the cost of making a

connection within each box BB(π′
m) can be lower bounded

using the bounding box of the database, BB(π̄0). In particular,

cmin can be used as a lower bound on the cost of reaching

the frontier of BB(π′
m), m = 0, . . . ,Ms − 1. Since it cannot

be guaranteed that s′goal lies on the frontier of BB(π′
Ms

), the

cost of the last segment of s s′goal is lower bounded with 0. If

we then set

h(s) = Ms cmin, (3)

we have that h(s) = Ms cmin ≤ c⋆
s→sgoal

, which proves that

the following proposition holds.

Proposition 1. The heuristic function h(s) defined in (3) is

admissible.

This is a key property since optimality of the solution

returned by a planning algorithm that incorporates a heuristic

function is guaranteed only if the heuristic is admissible.



IV. HEURISTIC GUIDED MOTION PLANNING

In order to show its general applicability, this section

describes two classes of planning methods that use motion

primitives and that can benefit from the proposed heuristic

function. The first approach applies a deterministic graph-

search (A⋆) on the state lattice formed by the regular arrange-

ment of motion primitives, i.e., G∆
free = (V ∆

free, E
∆
free), the

second one (MP-RRT⋆) randomly samples the discrete state

space while building a tree of motion primitives.

Before briefly describing the two methods, we introduce

some common notation. Both algorithms build a tree, T =
(V,E), whose nodes, s ∈ V , are the states of the dynamic

system (1) and edges, e ∈ E, are optimal trajectories according

to (2), such that V ⊂ V ∆
free and E ⊂ E∆

free. Every node s ∈ V
is connected to sstart via a single sequence of intermediate

nodes sj ∈ V , j = 1, . . . , n − 1, n ≤ NP , where NP is

the tree cardinality, and associated edges ej = esj ,sj+1
∈ E,

j = 0, 1, . . . , n−1, with sn = s and s0 = sstart. We can then

associate to sn a cost C(→ sn) =
∑n−1

j=0 C(ej), where C(ej)
denotes the cost associated with edge ej ∈ E. Obviously,

C(→ sstart) = 0.

A. Graph-Search Using A
⋆

A
⋆ [9] is a widely used graph-search algorithm to address

the problem of finding the minimum-cost branch of a graph

connecting the source node, sstart, to a goal node, sgoal. It

builds on Dijkstra’s algorithm [18] with the inclusion of a

heuristic function in order to guide the search.

Dijkstra’s algorithm maintains two lists of nodes: OPEN and

CLOSED. OPEN initially contains only sstart and the CLOSED

list is empty. At each iteration, the algorithm selects the node

s in OPEN with the minimum cost C(→ s) and evaluates

its successors, s is then moved to the CLOSED list. For each

successor, the algorithm selects from three actions, which are:

(1) if the successor, ssucc, belongs to CLOSED it is ignored,

(2) if the successor, belongs to OPEN and the cost of reaching

it through s is smaller than its current cost, C(→ ssucc), then

the parent of ssucc is updated as s, (3) if it is the first time that

ssucc is considered, then it is added to OPEN. The algorithm

stops when sgoal is selected from OPEN (returning the branch

SQ⋆
sstart→sgoal

) or when the list OPEN is empty, i.e., the graph

does not contain a branch that reaches sgoal.

A
⋆ algorithm uses a heuristic function to order the node

selection from OPEN. To this end, at each iteration, it selects

the node s with the minimum cost p(s) = C(→ s) + h(s)
and evaluates its successors. Thus, Dijkstra’s algorithm can

be seen as a specific case of A
⋆ where h(s) is set to zero.

From Proposition 1 and from the theorems on the admissibility

(Theorem 1 in [9]) and optimality1 (Theorem 8 in [19]) of A⋆

the following holds.

1Note that, this requires h(s) to be consistent, such that the cost p(ssucc)
of a successor node should always be higher than its parent s, i.e., p(ssucc) ≥
p(s). The proposed heuristic is not consistent in general, however it can be
made consistent by applying the pathmax equation, i.e., setting p(ssucc)←
max{p(s), C(→ s) + h(ssucc)}.

Proposition 2. A
⋆ algorithm using the heuristic func-

tion defined in (3) returns the resolution-optimal solution,

SQ⋆
sstart→sgoal

, after expanding a minimal2 number of nodes.

B. Sampling-Based MP-RRT⋆Algorithm

In this section, we integrate the proposed heuristic within

the sampling-based MP-RRT⋆ algorithm [8], a variant of RRT⋆,

which relies on a discretized state space and a database of

motion primitives. We start by recalling the basic procedures

in the standard MP-RRT⋆ algorithm.

The MP-RRT⋆ algorithm builds a tree by randomly sampling

the set S∆
free. Each randomly selected state, s, is added to the

tree by selecting the best parent, sbest ∈ V , which minimizes

the cost C(→ s), such that a collision-free motion primitive

connecting the two states exists. At each iteration, the algo-

rithm also rewires the tree within the local neighborhood of s,

i.e., for each neighbor node of s, snear, the edge connecting

it to its parent is eliminated and a new edge connecting it to

s is added if that reduces the cost C(→ snear).
We include the proposed heuristic into MP-RRT⋆ by means

of a branch and bound technique. Let V i ⊂ V ∆
free denote

the nodes of the tree at i-th iteration of the algorithm,

correspondingly ci is the minimum cost among the costs of

all the branches of the tree that reach the goal region. If for a

node s ∈ V i

C(→ s) + c⋆
s→sgoal

> ci (4)

then, any branch that contains s will not contribute to a

solution with a cost lower than ci. Therefore, such a node

can be defined as not expandable such that the algorithm will

not consider s as a potential parent while adding a new node to

the tree. Due to the complexity of computing the cost c⋆
s→sgoal

,

we use the heuristic function h(s) given in (3) and define the

set of expandable nodes V i
expand at each iteration i as follows

V i
expand = {s ∈ V i | C(→ s) + h(s) ≤ ci} (5)

Since h(s) is admissible, then, the proposed definition of

V i
expand in (5) is not eliminating any node s ∈ V that could

contribute to finding a solution with a cost lower than ci.
In [8] we showed that, as the number of iterations goes

to infinity, MP-RRT⋆ returns the resolution-optimal solution,

SQ⋆
sstart→sgoal

, associated with the resolution-optimal ∆-cost

c⋆∆, with probability 1. In the following, we also show that

this guarantee is not hampered by using the proposed heuristic

guided approach.

Proposition 3. As the number of iterations goes to infinity,

the cost of the trajectory returned by the heuristic guided

MP-RRT⋆ , incorporating the heuristic function defined in (3),

converges to the resolution-optimal ∆-cost c⋆∆ with a proba-

bility equal to 1.

Proof. The proposed heuristic guided MP-RRT⋆ returns the

resolution-optimal solution once it discovers an optimal se-

quence SQ⋆
sstart→sgoal

:= {sstart, s
⋆
1, s

⋆
2, . . . , sgoal}.

2Compared with other informed best-first search algorithms adopting the
same heuristic and the tie-braking rule.



Assume that {sstart, s
⋆
1, . . . , s

⋆
j−1} is a branch in the tree,

and that s⋆j is sampled at iteration i. Then, it is added to the

tree if s⋆j−1 is expandable, i.e., s⋆j−1 ∈ V i
expand in (5).

Note that the resolution-optimal ∆-cost can be written as

c⋆∆ = C(→ s
⋆
j−1) + c⋆

s
⋆
j−1

→sgoal
,

where c⋆∆ is the minimum cost that can be obtained given a

particular discretization, and satisfies c⋆∆ ≤ ci. Then,

C(→ s
⋆
j−1) + c⋆

s
⋆
j−1

→sgoal
≤ ci. (6)

From Proposition 1 it follows that h(s⋆j−1) satisfies h(s⋆j−1) ≤
c⋆
s
⋆
j−1

→sgoal
. Rewriting (6) in view of this relation, we obtain

C(→ s
⋆
j−1) + h(s⋆j−1) ≤ ci, which states that s

⋆
j−1 is in

V i
expand, therefore once s

⋆
j is sampled it is added to the tree.

Then, as the number of iterations goes to infinity the optimal

sequence will be discovered with probability 1 [8].

V. NUMERICAL EXAMPLES

We present two numerical examples to show the effective-

ness of the proposed heuristic included in MP-RRT⋆ and A
⋆

algorithms, using different cost metrics and motion models.

A. Minimum-Time Minimum-Energy

A unicycle like robot with a 4D state space (x, y, θ, v)
moving on a planar surface is considered, with motion model

ẋ(t) = v(t) cos θ(t) θ̇(t) = ω(t)

ẏ(t) = v(t) sin θ(t) v̇(t) = a(t)
(7)

where (x, y) is the position of the robot and θ its orientation,

v and ω are the linear and angular velocity with respect to a

global reference frame, and a is the linear acceleration. The

control input is represented by u = [ω, a]T .

The 293,481 motion primitives in the database are computed

for each pair of initial and final states, s0 = [x0, y0, θ0, v0] and

sf = [xf , yf , θf , vf ], solving the TPBVP for the differential

constraints given in (7) and the cost function J(u, τ) =
τ
∫

0

[

1 + u(t)TRu(t)
]

dt that minimizes the total time of the

trajectory τ , penalizing the total actuation effort with a weight

R = 0.5I2. The control variables a and ω are bounded as

a ∈ [−3, 3]m/s2, ω ∈ [−5, 5] rad/s.

The initial position for all trajectories in the database is al-

ways (x0, y0) = (0, 0), the final positions, instead, are selected

from a square grid where (xf , yf ) ∈ [−2, 2]× [−2, 2] \ (0, 0),
and each square cell has a size of half a meter. The initial

and final orientations can take 24 equally spaced values in the

range [0, 2π) rad. The initial and final velocities are selected

among 5 equally spaced values in the range [0, 4]m/s.

B. Passenger Comfort

We consider a car-like vehicle with motion model

ẋ(t) = v(t) cos θ(t) θ̇(t) =
v(t)

l
tanφ(t)

ẏ(t) = v(t) sin θ(t) v̇(t) = a(t)

(8)

(a) (b) (c) (d)

Fig. 3. Trees corresponding to the best solution (projection on R
2) obtained

for the minimum-time minimum-energy (a-b) and passenger comfort (c-d)
problems using MP-RRT⋆ (a,c), and heuristic guided MP-RRT⋆ (b,d).

where (x, y) is the car position, θ its orientation, v and a are

the linear velocity and acceleration, φ is the steering angle,

and l is the vehicle length here assumed to be equal to 1m.

The ISO 2631-1 standard relates passenger comfort with the

overall r.m.s acceleration aw = 1.4
√

a2 + v2 θ̇2. In particular,

aw > 0.8m/s2 is perceived to be uncomfortable by passen-

gers. In order to maximize passenger comfort, 29,816 motion

primitives are generated according to the following objective

function J(aw, τ) =
τ
∫

0

(

1 + a2w(t)
)

dt which minimizes the

total time of the trajectory while penalizing the r.m.s accelera-

tion acting on the human body. Furthermore, the linear velocity

is bounded as v ∈ [0, 4]m/s, and the overall acceleration aw is

bounded as aw ∈ [0, 0.8]m/s2, in order to ensure that none of

the primitives exceeds the comfort zone. The primitives built in

this case share the same characteristics as the ones described in

Section V-A, except for the final positions which are selected

on a grid characterized by (xf , yf ) ∈ [−3, 3]× [−3, 3]\ (0, 0),
where each cell has a size of one meter.

C. Results

Simulations are performed on an IntelCore i7@2.40 GHz

personal computer with 8Gb RAM and all the algorithms are

implemented in MATLAB without any code optimization.

The proposed heuristic has been first tested using the

sampling-based approach MP-RRT⋆ described in Section IV-B.

For that purpose we considered the standard MP-RRT⋆ algo-

rithm and its heuristic guided version. For each example, both

algorithms are run for the same amount of time (600 s) for 10

independent simulations each. In all simulations the goal is

reached in less than 10 s. Figure 3 shows the tree obtained in

a representative run of the two algorithms, together with the

best solution, for the two different problems. It is clear that the

inclusion of the proposed heuristic channels the computational

capability to the areas of the search space that are more likely

to contain the optimal solution.

Figure 4 reports the averages of the costs associated to the

solution generated by each algorithm with respect to CPU

time. These plots clearly show that the inclusion of a heuristic

function avoids the expansion of the tree using unpromising

nodes and returns a better solution faster.

In order to further show the general applicability of the

proposed heuristic function we also used it in A
⋆ to search

the implicit graph built by concatenating the motion prim-

itives, i.e, G∆
free. In order to overcome the computational

difficulties introduced by branching and the size of the search

space, we selected a reduced number of primitives among the
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Fig. 4. The solution cost with respect to the computational time for MP-RRT⋆

(red solid line) and heuristic guided MP-RRT⋆ (blue dashed line).

database of trajectories. In particular, for the problem defined

in Section V-A the number of primitives in the reduced set

is 904 with an average branching factor of 36. Similarly,

for the passenger comfort problem (Section V-B) we used

276 primitives with an average branching factor of 12. To

support the theoretical results, we run Dijkstra’s algorithm and

A
⋆ to solve the same problem of finding the optimal branch

of G∆
free that connects sstart to sgoal. We generated 100

random pairs of initial and goal states for both problems and as

expected, in all instances A
⋆ incorporated with the proposed

heuristic returned the same solution as Dijkstra’s algorithm

(which corresponds to the resolution-optimal solution) while

expanding less number of nodes.

Fig. 5. Searching the implicit graph of motion primitives corresponding to
the minimum-time minimum-energy (top) and passenger comfort problems
(bottom). Nodes expanded by two different optimal graph-search algorithms:
Dijkstra’s algorithm (left) and A

⋆ using the proposed heuristic (middle), red
solid line represents the optimal solution, while green and red squares are the
initial and final positions respectively. Histogram of the nodes expanded by
A
⋆as percentage of the nodes expanded by Dijkstra’s algorithm (right)..

An example of an instance of both problems is shown in

Figure 5, together with the histogram of the nodes expanded

using A
⋆ with the proposed heuristic expressed as percentage

of the nodes expanded by Dijkstra’s algorithm. The computing

time is rescaled of the same percentage. In both cases the same

solution is obtained but on average in less than half of the

time for A⋆, which shows that the proposed heuristic function

is capable of efficiently estimating the cost-to-goal.

VI. CONCLUSION

In this paper a heuristic function that can be incorporated in

any planner using motion primitives is introduced to increase

the convergence rate. This heuristic is admissible, thus pre-

serving the optimality properties of the planning algorithm,

and it depends only on the database of motion primitives,

being applicable to general planning problems with generic

agent motion models and cost criteria.

The proposed heuristic has been integrated into a sampling-

based and a search-based planner, and the effectiveness of the

resulting optimal planner has been shown in simulation using

different motion models and cost criteria.
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