Annals of Biomedical Engineerinyjol. 26, pp. 278-292, 1998 0090-6964/98 $10.56- .00
Printed in the USA. All rights reserved. Copyright © 1998 Biomedical Engineering Society

An Admissible Solution Approach to Inverse Electrocardiography

GHANDI F. AHMAD,* DANA H. BRooks' and FOBERT S. MACLEOD*

*Electronics Engineering Department, College of Science and Technology Jerusalem, WesOBamkunications and Digital
Signal ProcessingCDSP Center, Electrical and Computer Engineering Department, Northeastern University, Boston, MA, and
*Cardiovascular Research and Training Instit@RTI), University of Utah, Salt Lake City, UT

(Received 8 July 1996; accepted 22 August 1997)

Abstract—The goal of the inverse problem of electrocardio- and disease state. Enhanced forms of the ECG permit a
graphy is noninvasive discrimination and characterization of mgre complete representation of the heart and can be
normal/abnormal cardiac electrical activity from measurements h - g - :

of body surface potentials. Smoothing and attenuation in the COUPI_ed with Vlsua“zatlor,]’ signal processing, and math-

torso volume conductor cause the problem to be ill posed. em_atlcal modgllng techn_lques to create powerful tools.

Standard regularized solutions employ apriori constraint to This manuscript deals with one such enhancement—the

achieve reliability and may be biased by the constraint chosen jnverse problem of electrocardiography—and describes a
as well as the regularization parameter used to weight it. In this novel solution method.

paper, we describe an approach that reformulates this inverse . N
problem as the search for a solution that is a member of an  Since the standard 3—10 ECG electrodes significantly

admissible solution sedmissibility is defined in terms of the ~ undersample the distribution of electrical potentials on
available constraints. In principle, this approach can utilize as the torso surface, the ECG provides only a limited view
many cor;]s'trrz;;ur&tS ast may,lbe ava|tlatt)r]le, U”“kef staada;rd tech- of underlying cardiac activity. Additionally, information
nigues which do not easily permit the use of multiple con- - : e
straints. No regularization parameter is required; instead, we f"lbOUt cardiac electrical activity is blurrecj and attenuated
need to choose the nature and size of the constraint sets. Conin the torso volume conductor, the medium betweelj the
straints described include several spatial constraints, weightedheart and the body surface. Researcharsl some cli-
constraints, and temporal constraints. We describe a solutionpiciang have used electrode arrays to achieve denser
approach based on iterative convex optimization, and the gp4iia| sampling, along with geometrical models of the
algorithm—the ellipsoid algorithm—which we have used. Ac- th ¢ t ,bI' h th tical lati hi ith
curacy and feasibility of the method are illustrated with simu- o-rax, S '§ ma ema s re_ . |ons.|ps Wi
lation results using dipole sources and measured epicardial po-Which one can estimate cardiac electrical activity from
tentials. © 1998 Biomedical Engineering Society. torso surface potentials. This approach—explicitly solv-
[S0090-69608)01002-9 ing for the underlying cardiac electrical activity of the
_ heart from body surface electric potentials—is known as
Keywords—Inverse problem of electrocardiography, Convex theinverse problem of electrocardiograph¥ successful
optimization, Multiple constraints, Set theoretic estimation, inverse solution would allow us to detect, quantify, and
Regularization. localize cardiac electrical activity from noninvasive torso
measurements. Contributions by many researckess,

for a sample, Refs. 17, 27, 31, and) 3Bave established
The ability to understand and characterize the heart's that inverse solutions posed in terms of reconstructing
electrical activity, and to discriminate normal from ab- epicardial potentialgthe electrical potential distribution
normal activity, is a goal of great interest to physicians ON the outer surface of the herdffer the advantages of
and researchers. The electrocardiogrédB€G) offers a a concise mathematical formulation, uniqueness, and di-
safe, cheap, noninvasive means of measuring this activity"®ct links to measurements. To obtain such an inverse
and is the basis of many diagnostic techniques. The stan-Solution, we must first solve the associatéatward
dard ECG permits only a relatively coarse description of Problem in which torso surface potentials are estimated
the spatial complexity of cardiac electrical activity—one Pased on epicardial potentials and a geometric model
result is that interpretation of the standard ECG cannot (including electric conductivity of thelér;graxl. _
be based on a rigorous biophysical model, but rather ~ The inverse problem is il posed;*®**meaning that

must depend on a heuristic match between waveformsSmall perturbations in the measured dédae to noise,
errors in the forward model, discretization effects, )etc.

Address correspondence to Robert S. MaclLeod, N.E. Harrision can .reSUIt In uanunded errors,m the |n\{erse SOIUtI_On‘
CVRTI, Building 500, University of Utah, Salt Lake City, Utah 84112. T he ill posedness is a mathematical reflection of physical
Electronic mail: macleod@cvrti.utah.edu phenomena that include the attenuation and smoothing
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effects of the volume conductor. Sharp spatial variations then the full activation sequenctst*2°solutions using
in the epicardial potentials are blurred or smoothed in the power spectrum techniqués,two-step postfiltering
body surface potentials. Thus, a small amount of noise in technique® (equivalent to temporally low-pass filtering
the body surface potential will tend to be magnified in the spatially regularized solutipnjoint temporal/spatial
epicardial potentials estimated through an inverse proce-multiple constraint solutions® and solutions based on
dure. Inverse solutions need to be stabilized by the in- Kalman filtering*?
corporation of additional physiological information; the In our own recent worR;® we found encouraging re-
best-known approach to this type of ill-posed inverse sults using two constraints simultaneously. In particular,
problem is known asegularization In regularized solu-  using two constraints rather than one increased robust-
tions, a compromise is sought between a solution that ness to error in the particular values of each regulariza-
matches the data but may be unrealistic and unstable, ontion parameter and preserved quantitative and qualitative
the one hand, and fidelity to a constraint basedaon accuracy in ways difficult to achieve with a single con-
priori knowledge (or assumptions about a realistic,  straint (e.g., preserving sharp gradients around wave
stable solution, on the other. We wish to estimate epi- fronts while suppressing noise in low-amplitude regions,
cardial potential distributions that, when put through the or combining temporal and spatial smoothnes$s gen-
forward model, generate body surface potentials similar eral, this approach increased both the reliability of the
to those we measure, and yet which also respect certainresult and our ability to impose physiologically reason-
reasonable constraints. Typical constraints include the able prior information on the solution. However, the
size (two-norm) of the solution or of its gradient or problem of selecting a regularization parameter became
Laplacian (for details and references, see Ref).38n more complicated as this approach requited regular-
important issue in regularized inverse solutions is the ization parameters. Although we solved this problem in
choice of a weight, called the regularization parameter, the two-constraint caSeby extending a well-known
which controls the tradeoff between the data fit and the single constraint techniqué, it is difficult to see how
constraint. The accuracy of the inverse solution is quite one could choose regularization parameters for more
sensitive to this parameter, and much research has beerthan two regularization constraints, even though addi-
devoted to developing good methods for determining ap- tional constraints might result in further improvements to
propriate valued®33 the inverse solution. It is in response to the potential
The main features of epicardial potential distributions advantage of employing a flexible combination of di-
can often be roughly reconstructed by regularization ap- verse constraints that we have adopted and tested the
proaches. However, due to the complex nature of epicar-admissible solutioomethod described in this paper.
dial potentials, the imposition of any single constraint This admissible solution method reflects a different
often fails to produce globally satisfactory solutions. For philosophy from the methods referred to so far, which all
instance, regularization with a two-norm amplitude con- feature the selection of one or two constraints and the
straint may capture areas of large gradients and accu-calculation of a unique minimum of an error measure
rately constrain regions of large amplitudgich as near  (such as the 2-normwhich is chosen as much for math-
activation wave frongsbut will tend to be noisy where  ematical convenience as physical reasonableness. In-
the signal level is low. On the other hand, derivative- stead, we start with the assumption that we have avail-
based constraints will be less noisy but may smear wave able a number of appropriate constraints on the solution.
fronts 624 These constraints can be based on physical/physiological
In response to the limited success of these standardprinciples or empirical results obtained from experimen-
methods, techniques which attempt to incorporate naore tal measurements. For instance, we may have reasonable
priori information into the solution have recently been bounds on spatial norms or maxima/minima of the solu-
investigated™ Spatially local regularizatio? orthogo- tion at each point in time, or temporal norms at each
nality constraints® combined truncated and weighted point in space, or spatial or temporal gradients, or tem-
singular value constrainfS,a constraint on the normal poral frequency content, or breakthrough locations and
component of current on the epicardial surfatsjmul- timing, etc., or combinations of these bounds. Moreover,
taneous imposition of two distinct spatial constramts, the forward model along with the measured data is itself
and constraints on individual solution elements based ona constraint on the solution, since any epicardial solution
over-regularized and under-regularized two-norm projected to the torso by the forward model should be
solutiong! have all been reported. In addition to these “similar enough” to the measured body surface poten-
spatial constraints, some researchers have recently retials (where “similar” can be defined in a number of
ported results achieved by usirtgmporal constraints.  ways; this is equivalent to the data fit term in the error
These constraints include on-off constraints in the form that is minimized in regularized solutions.
of activation source modet8, more recently restricted to We can interpret each constraint as defining a set of
the reconstruction of first the breakthrough events and possible solutions in the solution space. The intersection
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of these sets of constrained solutions then represents acomputational complexity. For instance, POCS is rela-
region of acceptability for a solution—the set of all so- tively simple to understand and implement, but requires
lutions which are feasible oadmissible that is, consis-  exact projection operators for each constraint, does not
tent with our knowledge about the problem as encoded converge as quickly as some other algorithms, and re-
by the constraints. The philosophy we have adopted is to quires a “stepsize-"type parameter. We have employed
search for a solution which meets this collection of con- an algorithm known as the ellipsoid algoritfhwyhich
straints. We can find such an admissible solution by offers a reasonable compromise to the tradeoffs men-
applying an iterative algorithm which locates one ele- tioned above.

ment within the intersection of the constraint get&This There have been a few previous attempts to incorpo-
is in clear contrast to the notion of a unique optimal rate constraints of this type into a regularization scenario
solution in standard regularization approaches, which lo- for the inverse problem of electrocardiography, most no-
cate a point in the solution space by minimizing an  tably in Refs. 21 and 27. However, only one or two

priori cost function. constraints were used and a global objective function
The main advantages of this approach are the follow- was minimized in a traditional fashion. Techniques simi-
ing: lar to our admissible solution method have been used in

(1) There is no need for regularization parameters as image restoration problems, which are formally related to
required in standard regularization techniques. The regu-the inverse problem of electrocardiography. For example,
larization parameters are replaced by direct bounds onadaptive regularized methods based on POCS have been
the solution, which may be easier to derive, test, and used to restore images in Refs. 30 and 37.
interpret based on biophysics and/or experimental mea- In the next section, we formulate the admissible so-
surements. Any bias imposed on the solution is applied lution approach as a convex optimization problem, de-
directly in terms of the bounds on the constraints rather scribe one algorithm which we have employed to solve
than indirectly in terms of regularization parameters. it, and discuss some aspects of implementation. We de-

(2) We can incorporate a large number and wide va- scribe our experimental procedures and present support-
riety of mixed constraints in a flexible manner, with no ing simulations in the section on results. We discuss our
essential change in the underlying solution method. results and conclusions and outline our future work in

(3) As the solution methods are iterative and employ the last section.

only one constraint at a time, we can monitor how th_e ADMISSIBLE SOLUTION APPROACH
constraints are employed and thus gain understanding

both of whether a particular constraint is effective in We use a standard discretized formulation of the for-
restricting the solution set, and if so, how it interacts \ard equation,
with other constraints.

We note that, in general, a single constraint will not y(k)=A-h(k)+e&Kk), k=1,2,..L, 1)
suffice—one needs two constraints at a minimum to hope
to achieve reasonable results. This is the dual to the needwherey is an M X1 vector of torso potentials at time
to regularize in standard approaches. Moreover, at leastinstantk, h(k) is the NX1 vector of epicardial poten-
one of the constraints must involve the data and the tials, A is the M XN matrix representing the forward
forward model. One disadvantage of the admissible so- solution,e is measurement noise of the same dimensions
lution approach is that there are no closed-form expres- as the body surface vector, akdand L are a discrete
sions for the solution. Another disadvantage is that there time index and the number of time samples, respectively.
is no guarantee that the resulting solution is optimal in Thus, we assume that we have a forward model, repre-
any sense, although there is no clear rationale that stan-sented by the matriXA, which expresses the potentials at
dard currently used optimality criteria are, in fact, opti- each body surface node as a linear combination of the
mal in any physiologicalsense. A third disadvantage is potentials at all the nodes of the epicardial surface at a
that the algorithms that are used to find an admissible given time instant. This implies, in turn, assumptions of
solution are computationally intensive and may have linearity and quasistatic propagation, both of which are
slow convergence rates, especially if the size of the fea- reasonable physical approximatioidn addition, we as-
sible set is small and the dimension of the space defining sume that we have songpriori bounds, or constraints,
the sets is large. However, if we restrict the constraint on the solution, each of which can be described as a
sets to the class of convex functions, we can employ one convex set in the solution space. Although the convexity
of several effective numerical convex optimization meth- condition is not necessary for the problem to be well
ods, of which projection onto convex seBOCS® s, formulated, it makes tractable solutions possible while
perhaps, the best known. These algorithms have tradeoffsretaining a very large class of potential constraints—for
in terms of prior knowledge required, flexibility of prob- instance, there is no requirement that the constraint func-
lem formulation, convergence speed, and algorithmic and tions be differentiable. Figure 1 shows a schematic illus-
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FIGURE 1. Three convex sets with their intersection.

tration of the approach. Each shaded shape represents 8

particular constraint. In the diagram, the ellipse marked
“Weighted Residual Constraint” would reflect a bound
on the noise poweKmore precisely, a weighted two-
norm of the residual between the measured torso poten-
tials and those predicted by a candidate solution together
with the forward modelA). The set labeled “Weighted
two-Norm Constraint” shows a bound on a weighted
two-norm of the solution, while the “Weighted One-
Norm Constraint” limits a weighted one-norm of the
solution. This constraint is nondifferentiable but convex.
The intersection of these constraint sets is the region of
admissible solutions.

In the rest of this section, we describe how the prob-
lem of finding an admissible solution with convex con-
straints can be posed as a convex optimization problem.
We then describe some examples of convex constraints
that might be useful in the electrocardiographic inverse
problem. Finally, we describe the ellipsoid algorithm we
have implemented to find admissible solutions.

Admissible Solutions and Convex Optimization

Initially, for simplicity, we will treat the problem at
only one time instant, and in the sequel, will expand our
formulation to include many time instants. The unknown
epicardial potentials at a given time instant are assumed
to be an element of an appropriate Hilbert spagé
After sampling in space and time, the desired solution
will be a vectorxe.7N, whereN is the number of nodes
in the model of the epicardial surface. We use each piece
of a priori information, i.e., each constraint, to restrict
the solution to a closed convex set.# (or equivalently
7¢Ny; for each constraint there is a corresponding func-
tion ¢(x): .2N—.7 and constraint bound, so that the
constraint can be written ag(x) — e<0. In addition, we
require that eachy satisfy the convexity condition
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Plax+(1-a)y)<adp(X)+(1-a)é(y), Vae [0,1(]2-)

Thus, withm such constraintsp;, i=1,2,...m, each
will correspond to a closed convex sét;(x)—¢)
e %, for i=1,2,..m. Since the region inZ\ enclosed
by the intersection of thep; is itself convex, we can
define a new convex functios as

p=max(¢—€). ()

Thus, the se{x: ¢(x) <0} represents the intersection
of all the constraints and a pointe. N such that
¢(X)=<0 is an admissible solution.

If we assume we have an iterative algorithm available
which can perform convex optimization, i.e., minimize a
convex function, then we might apply it tminimizeone
r more of the constraints. However, this would not be
appropriate here as none of the constraints is a traditional
objective to minimize—not even the residual error, since
forcing it to be too small implies an under-regularized
solution. The appropriate approach here, then, is to run
the convex optimization algorithm only until all the con-
straints are satisfied, i.e¢(x)<0, and then stop and
declare the resulting solution to be admissible. The
bounds on the constraints, tle, play an equivalent role
to regularization parameters. However, unlike regulariza-
tion parameters, they represent direct constraints on so-
lutions, and as such can be developed and tested based
on measured data, and generally are subject to direct
physiological interpretation.

To considerL time instants simultaneously, in order
to use temporal constraints or temporal frequency
constraints, one can consider an augmented problem in a
higher dimensional space?N-.® The vectors in Eq(1)

become block vectors  (for instance,
def

y =[y"(1),...y"(L)]"), and the fc?erfward matrix be-

comes a block diagonal matriA = diagA,A,...,A)

=] ®A,where® is the Kronecker product. As we will
see in the next section, constraints can be defined to
operate separately on any one time instant or spatial
node or globally on alL time instants and/oN nodes.
The obvious costs, to be weighed against the benefits,
are that

(1) the computational complexity will increase as the
dimensionality of the problem does;

(2) the algorithm will take longer to converge if con-
straints on each spatial node or time instant are in-
cluded, as it will have to find a solution satisfying all
such constraints.

Examples of Convex Constraints

In this section, we describe some examples of the
types of convex constraints one might employ to con-
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strain inverse solutions. To clarify the discussion, we these constraints, constraining, for example, the two-
have classified these examples into four categories; stannorm and Laplacian of the solution, the error in both
dard, weightedboth of which operate at each time in- corresponding Tikhonov solutions for several values of
stant separately spatiotemporal, and novel. The con- \, and the max norm of both the solution and its Lapla-
straint formulations are based on the measured datacian.

y(k), a candidate solutior(k), and the forward transfer
matrix A. As above, each constraint is specified by a
constraintfunction of the estimate, denoted agx), and

a constraintboounde, so that theith constraint is written

as ¢i(x)<g¢;. Determination of each constraint bound
requiresa priori knowledge or an estimate of some par-
ticular aspect of the desired solution, the measurement
noise, or the model error.

Weighted Constraints.In addition to constraints of the
type illustrated above, we can also use weighted norm
constraints, which will effectively be applied with differ-
ent strength in different regions of the epicardium. For
example, if we have prior knowledge of locations of
large amplitude and small amplitude regiofesg., from
preliminary over-regularized and under-regularized solu-
tions as suggested in Ref.)2ive may want to constrain
amplitudes and smoothness more stringently in small
Standard Constraints. Here we illustrate four types of  amplitude regions and less so in large amplitude regions.
standard constraints: residual constraints, regularizationif we have prior knowledge of regions of sharp spatial
constraints(i.e., 2-norms of solutions or of differentiated gradients(for instance, from preliminary solutions which
or filtered solutions Tikhonov-type error measure con- |ocate breakthroughs*®?°we may want to constrain
straints, and nondifferentiable constraints: gradients differently at different epicardial locations.

(1) Residual constraints: One can constrain the solu- Weighting the constraints may reduce bias to the noise in
tion to fit reasonably to the measurements and the for- the data[by effectively adjusting to a local signal to
ward model by using the functiog(x)=|Ax—y|5 and noise ratio(SNR)] and thus help sharpen the solution. To
the constraint¢<e, where € is related to the power accomplish this, one can write the spatial constraints
(variance of the measurement noise and any error in the above using weighted norms rather than standard norms.
forward modelA. The constraint on the weighting matrix for norm proper-

(2) Regularization constraints: One can easily employ ties to be preserved is that it be symmetric and positive
most of the constraints used in standard inverse electro-definite.
cardiography, as described in the introduction, using the
convex functiong(x)=|Rx||3 and the constrainp=<e,
whereR is, for instance, the identity matrix or a discrete
spatial differentiator, or the output of a discrete spatial
filter, and e is based on previous measurements, physi-
ological assumptions, or an initial solutidgfor instance,
using theL curve'®).

(3) Tikhonov-type error constraints: One can include
as a constraint a function similar to the error that is
minimized in Tikhonov regularization by using the func-

Spatiotemporal Constraints.If we use the augmented
model described earlier to include multiple time instants
in the problem formulation, we may wish to define con-
straints in the augmented solution space that operate
pointwise in space, pointwise in time, globally in space
or time, or jointly in space and time.

We can define global spatial constraints simply by
extending the single time instant formulations above. In
the case of derivative operators and weighting matrices,
it may be necessary to premultiply the block data vector

tion — ’ .
A E y or the block solution vectox by the appropriate block
d(X)= ‘( X— ) , diagonal matrix. For instance, to constrain the two-norm
VAR 0 2 of the Laplacian ovetL time instants, we would define
and the constrainip,<e,. We note that the unique ¢2,L(x_)=||L_§ﬂ§, (4

minimizer of ¢, (x) is the corresponding Tikhonov solu- o
tion with regularization parameter and Tikhonov error and the constrainté,, <e,, , where L is an (NL)
€y . Thus, we must use this constraint wigh> e} (for X (NL) block diagonal matrix, diad(L,...,L) with L
instance, €, =ke; for some reasonablé). This con- a Laplacian operator matrix as in the section on standard
straint can be used to ensure that the iterative solution constraints. Global temporal constraints such as temporal
comes close to the minimum error for some Tikhonov derivative approximators or high-pass filfsan be de-
solution. fined in a similar fashion except that the block constraint
(4) Nondifferentiable constraints: One example would matrix will have both diagonal and off-diagonal blocks,
be to constrain the maximum amplitude of the solution each a diagonal submatrix. Constraints on points over
or its spatial derivatives with the functiong(x) both space and time can be obtained by generalizations.
=||Rx||.. and the constraint boung=<e. We can form pointwise constraints in space and time by
We note that we can combine multiple instances of premultiplying the solution vectok either by a block
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diagonal matrix with only one nonzero block—selecting ¢= ¢(x). For example, in the diagram in Fig. 1, a sub-
all locations at a particular time—or by a block diagonal gradient of the functionp; at a corner(where it is not
matrix each of whose blocks is nonzero only at the same differentiable would be any vector pointingway from
diagonal location—selecting a particular point in space the polygon, whose normal hyperplane, the line normal
over all time instants. By using max norms over collec- to it through the corner point, did not intersect the inte-
tions of such localized constraints, we can also constrain rior. There may be an infinite number of subgradients for
the behavior of the worst time instant or spatial mode. nondifferentiable convex functions at a given point while
there is only one subgradient, the gradient, for differen-
Novel Constraints We give only a few examples of con- tiable ones. More discussion of the properties of convex
straints which would be difficult to employ in conven- optimization tools, along with other preliminaries, can be
tional approaches but would not cause any conceptualfound in Ref. 15.
difficulties here (although some might cause computa- In general, arellipsoid is defined to be a set of the
tional difficulties in practice We can, for example, con-  form
sider constraints on spatial norms such as Itheor 14
norm, or on the standard deviation of the potentials, over [xe /N:(x—0) B L(x—c)<1}, @)
the epicardium. Using the augmented model, we can
constrain not only temporal norms over electrograms,
similarly to the spatial norms, but also the temporal fre-
quency behavior of the solution electrograms. For in-

stance, we can constrain the location of the peak or o . L
S : > b the semiaxis andce %N is its center. Thus the ellipsoid
median frequency, or the size of the bandwidth, or a . .
s parameterized by the matrB& and the vector.

variation measure such as the standard deviation of peakI The ellipsoid alaorithm is initialized by choosing an
frequencies. We can also employ entropy meas ellipsoid thpat is Iarg e enough to containythe entirg fea-
as minimum relative entropy to constrain the multichan- . b . 9e gh « .

. 7 sible region. The initial ellipsoid, for instance, can be
nel temporal frequency behavior of the solutfoiwve . . ;

. . chosen with centec=0 and withB=aly, wherea is a
note that, as described in Ref. 11, we have begun to . N e
. . ; constant. Thus all pointse.72" satisfying

explore the elucidation of such constraints using record-
ings from isolated canine hearts suspended in a torso- .
shaped electrolytic tanksee the section on resylts X' Xsa, ()

whereB is an NX N symmetric positive definite matrix
that gives the “size” and orientation of the ellipsofthe
square roots of the eigenvalues Bfare the lengths of

The Ellipsoid Algorithm are contained in this initial ellipsoid.

The central idea of the ellipsoid algorithm is to itera-
tively eliminate regions inzN found to contain no fea-
sible points. We use the hyperplanes associated with
(subgradients to shrink the set that contains the points of
interest. This shrinking process can be used to arrive at a
feasible solution.

Geometrically, we can describe this key idea in the
following way: we treat the center of the ellipsaidas a
candidate solution and evaluate the convex constraint
¢(c). Either the constraint is satisfied, in which cases
a feasible solution, or it is not satisfied. In the latter case,
if we evaluate thgsubgradient of¢ at E, the associated
_ hyperplane described above divideg"™ into a set of

(=) + V(0 (y=x), Vye s (5 points for which the constraint is “less satisfied” than at
c and a set of points at which it is “at least as satisfied.”
In other words, the hyperplane tangent to the graph of The goal is to find a new ellipsoid that contains all the

In this subsection, we describe the ellipsoid algorithm
as we used it. In the description that follows, we will use
(subgradients, which define a supporting hyperplane.
The main idea here is to use the gradi&ht or subgra-
dient g, of the convex functionp at a pointx to define
a hyperplane normal to the gradient or subgradient. This
hyperplane divides”ZN into two parts, one of which is
“above” the level set of¢ at x. Formally, for convex
functionals of the form® : .7ZN—.7 that are differen-
tiable and satisfy the convexity condition in E@), we
have

¢ at x never lies below the level set @b at x. points in the original ellipsoid which are on the “at least
If ¢ is convex but not necessarily differentiable, then a5 satisfied” side of the hyperplane. Moreover, we want
ge %N is by definition a subgradient ap at x if to find such an ellipsoid in a manner that ensures that it
gets smaller. Finding this ellipsoid, in practice, means
d(Y)= () +g'(y—x), Vyez". (6) computing its associated matrix and center. Once the
new center has been computed, it becomes the new can-
Thus the subgradient, like the gradient, divide8 by didate solution and we then repeat the constraint evalu-

its normal hyperplane into two sets, on one of which ation and ellipsoid update steps.
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Subgradient
Direction

Normal hyperplane

FIGURE 2. lllustration of one iteration of the ellipsoid algo-
rithm. The solid ellipse E; represents the ellipsoid at one
iteration, with center C; as shown by the “ +.” The shaded
circle represents a constraint set. The hyperplane is normal

to the gradient at the ellipse center. The dashed ellipse Eizq
is the new ellipsoid, with center  C;,; the new candidate so-
lution for the next iteration.

This process is illustrated in Fig. 2. The solid ellipse
labeledE; is our original “ellipsoid,” and the “+" sign
labeled C; marks its center. The shaded circle is the
boundary of the constraint set, the arrows show the di-
rection of the subgradient of the associated function at
C;, and the normal hyperplane defines the undesirable
half-space. The dashed ellip&g,, is the new, smaller
ellipsoid, and the new candidate solution is its center
Ci+1. This process continues until the center of the el-
lipsoid enters the constraint set.

More precisely, for a convex functiog with x andy
as two of its elements, wit a (subgradient(g is also
used here folV, for simplicity), if ¢(y)<¢(x), then

g'(y—x)=0. 9
In particular, if a minimizerx* exists, then
g'(x*—x)<0, Vx. (10

By evaluatingg, we can construct a half-space that is
guaranteed to contain any minimizer. The new half-space
can be denoted as

{ye.7N:g"(y—x)=<0}. (11)

Now assume we have an initial ellipsoid with matrix

B and centerc. If the constrainte is not satisfied at,

we can then identify a half-space guaranteed to contain
the feasible points:

{xe.Z2N:(x—0)"B"Y(x—c)<1, g'(x—c)<0}.
(12
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Now we need to find a smaller volume ellipsoid,
represented by the matr& and the vector,
{xe.72N:(x—8) B Y(x-0) =<1}, (13

which covers_this half-space. It turns buhat an
appropriate pair B, ¢) can be computed as

~ Bg
C=C— m, (14)
and
~ N2 2
— _ T
B_NZ_l(B N+lngB ) (15)
with
~ g
g= (16)
Vg'Bg

being a normalized subgradient.

Thus the basic ellipsoid algorithm can be summarized
as the following.

Step (1), initialization:

(1) Set iteration countek=0.
(2) Choose the initial ellipsoid and center, suchB{8
=aly andc®=0.

Step(2), constraint evaluation: At iteratiok, evaluate
#(c®) andg™, any (subgradient of¢ at the centec®
of the k™ ellipsoid defined by matriB®. With multiple
constraints, this step involves finding thf that maxi-
mizes ¢.

Step(3), branch: Check for the termination condition
$<0. If met, then stop; otherwise go to stéf). Thus,
the process continues until an ellipsoid is found whose
center meets all the conditions summarizedgin

Step (4), update: Update the new ellipsoid by updat-
ing the matrixB**1) and the centec®* V) as

gk
~: —1 (17)
Vg B gk
B(k)’g“
C(k+1)zc(k)_ N+1’ (18)
2
Bk+1) = N BX — i BMggTB™ 19
NZ—1 N+ B 9B (19
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Step (5), loop: Incrementk and go to steg2).

This sequence of ellipsoids is guaranteed to have de-
creasing volume, so that the algorithm will converge as
long as the intersection of the constraint sétgj. The
volume of an ellipsoid defined in E47) depends on the
determinant oB and on the dimension of the spaege".
More precisely, we have

V(E)=\/detB-Vy,

where Vy is the volume of the unit ball inzN. Even
though the ellipsoicE**1) can be larger than the ellip-
soid EX in the sense of maximum semiaxis
[AmaxdB* ) >\ maBY) is possiblé, it is shown in
Ref. 15 that the volumes are related as follows:

(20

N

N+1

N

(N+1)/2
(N—l

(N—=1)/2
V( E(k+l))= )

V(EW).

(21

The last equation reveals, in addition, that the shrink-
ing rate of the volume is rather slow and a large number
of iterations may be required for convergence. However,
since this volume relation only depends on the dimension
N, and the initial ellipsoid contains a minimizing point
in its interior, the ellipsoid algorithm converges to a
feasible point. If there is no feasible poire.g., the
admissible set is emptythe algorithm will continue to
iterate indefinitely, alternating between two or more con-
straints.

We note that the update of the ellipsoid matBxin
each iteration equatidh is computationally expensive
and can be avoided by computing the update of the
centerc recursively, as shown in Ref. 1. There is a large
computational savings for smak but both computa-
tional and memory requirements grow with the iteration
index. Combined recursive/block implementations are
also possible.

RESULTS

In this section, we present a few examples of the
application of the admissible solution approach to in-
verse electrocardiography. These examples include both
dipole source simulations and simulations based on data
recorded from experiments using canine hearts. The pur-
pose of this section is to show that the approach gives
reasonable results despite the lack of a global objective
function, and to give a few illustrations of how it can be

used to evaluate constraints and assumptions. Specifi-

cally, we will present

(1) results of a feasibility study showing that the method
gives reasonable resulférst reported in Ref. P
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(2) an illustration of how the iterative solution can be
used to reveal efficacy of constraintirst reported
in Ref. 3; and

(3) an illustration of how the method can be used to
study the interaction of modeling assumptions and
constraints on inverse solutions.

Experimental Techniques and Error Evaluation

We include results based on two simulation scenarios,
which we will denote DS, for “dipole simulation,” and
TS, for “tank simulation.” Model DS had two different
implementations, denoted DSa and DSb.

In both cases, simulated torso data were computed
and then noise was added at specified signal-to-noise
ratios, before inverse computing epicardial potentials.
Epicardial potentials, either computed from dipole
sources or measured from the dog hearts, were the true
solution against which different inverse solutions were
evaluated. These scenarios, with known epicardial data
and computed torso data, allowed us to explicitly com-
pare various inverse solutions.

Dipole Source Simulation, DS.The simulation model
DS employed

(1) a single fixed dipole as the equivalent cardiac source;

(2) a forward solution for a homogeneodise., epicar-
dium and body surface onlygeometric model based
on a human subjedthe Dalhousie torsd); and

(3) body surface potentials computed in two different
ways as described below.

The geometric model used with the dipole source was
based on a single subject and consisted of 352 torso
nodes connected to form 700 triangles and 98 epicardial
nodes connected to form 192 triangfésThe cardiac
source was a single fixed current dipole located near the
center of the left ventricle. We aligned the dipole with
the X, Y, andZ axes of the torso geometry to generate
different potential distributions, and also generated linear
combinations of these three orientations. Epicardial and
torso surface potentials were then calculated by two dif-
ferent numerical pathways, producing two distinct imple-
mentations of simulation DS:

(1) DSa, dipole computed: both epicardial and torso po-
tentials were computed directly from the dipole

source without using the forward model in the com-

putation of the torso potentials.

DSb, forward computed: epicardial potentials were
computed from the dipole source. Then, using these
computed epicardial potentials as an equivalent
source, torso potentials were calculated using the for-
ward solution matrixA.

)

Figure 3 shows isopotential maps for both sets of
torso potentials. The potentials produced by these two
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Front Back

Triangulated Heart Geometry

DSa Simulation: Dipole Computed Torso Map /\

FIGURE 3. Forward computed and dipole computed torso
potentials, as described in the text. The isopotential maps
were calculated after projecting the potentials onto a two- w
dimensional surface. The left (right) side of each map repre-
sents the projection of the anterior  (posterior ) torso surface.
The contour levels are arranged in logarithmic steps and the

location and magnitude of the maximum and minimum are

shown by a (+) and (—), respectively. Solid lines show
positive potentials and dashed lines negative potentials. V

Triangulated Torso Geometry

techniques are similar in shape and slightly different in FIGURE 4. Triangulated surface of isolated canine heart ge-

amplitude. We used these two distinct sets of dipole- ?k;netry ()topr)fal?dl_of the torr]sor:ankin which it w%s Suspindfd
H H _ ottom ). Thick lines in the heart geometry indicate the lo-

based torso ;urface datq to study the.relatlonshlp' be- tions of major coronary arteries.

tween modeling assumptions and multiple constraints.

Since the second of these data sets, DSb, uses the same

forward model in inverse solutions as was used to gen- (2) a homogeneous forward solution based on the geom-
erate the data, we refer to DSb as the “exact model” etry of the tank; and

case. In contrast, for the scenario DSa, the forward (3) pody surface potentials computed from the epicardial
model used in the inverse solution doest match ex- . data and the forward model.
actly the way the data were generated, so we refer to this
as the model error, or model mismatch, case. The perfused, isolated canine heart was suspended in
Two major limitations of the dipole simulation experi- @ tank molded in the shape of an adolescent thoFé.
ments are the difficulty of reproducing realistic epicardial 4 contains an illustration of the torso tank and heart
potential distributiongdue to the simplicity of the source ~ surface geometjy The tank was filled with electrolytic
mode) and the lack of a natural way to produce the solution at a resistivity representative of a typical human
realistic time-varying epicardial distributions needed to thorax (500 {2 cm). Epicardial potentials were recorded
test temporal constraints. at a sampling rate of 1000 Hz per channel via 64 elec-
trodes sewn into a nylon sock placed over the isolated
heart?® Within a 4-7 s recording window, individual
beats were either selected or averaged to obtain a repre-
sentative beat for that window.

Torso Tank Preparations, TSTo test our inverse meth-
ods with time-varying measured data, we used the tank
model, TS, which included

(1) epicardial data recorded from an isolated canine Evaluation of Results. We evaluated our results using
heart preparation in a fiberglass tank molded in the two error measures that are standard in the literature,
shape of an adolescent human torso; relative rms error (RE) and correlation coefficients
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FIGURE 5. Top: An epicardial electrogram. Results are
shown in the bottom figure for the portion of the cycle be-
tween the dotted vertical lines. Dashed vertical lines show
time instants illustrated in the next figure. Bottom: correla-
tion coefficients (CC) for various reconstructions at a SNR of
40 dB. The solid line shows the CC’s for convex optimization
results and the dotted, dashed, and dash-dot lines show the
CC'’s for energy, Laplacian, and joint energy/Laplacian regu-
larization, respectively.

160 200

(CO),* together with visual inspection of epicardial time
signals (electrogramp and isopotential mapdPM). On
each IPM, the location and magnitude of the maximum
and the minimum are indicated by+-) and (—) signs,
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TIME 122

Original

Admiss. Soln.

FIGURE 6. This figure displays the inverse computed isopo-
tential maps for two time instants. The time instants are 124
and 140 ms after the stimulus that initiated the heart beat, as
indicated by the dashed vertical lines in the previous figure.

The constraint value@the €'s in the section on standard

constrainty were calculated based on the measured epi-
cardial potentials. We note that the true epicardial solu-
tions were not usedluring the inverse procedure, but

only to obtain the constraint values before beginning.
This is analogous to comparing standard regularization
methods using their respective optimal regularization pa-

respectively, and the contours are drawn as interpolatedrameters, as in Ref. 29.

equipotential lines over a polar two-dimensional projec-

Thus, we used a very limited subset of available con-

tion of the epicardial surface with the apex at the center Straints, but with an unrealistically accurate foreknowl-
and the A/V ring around the outside. Solid lines repre- edge of the correct value of the constraints. The goal
sent positive potentials and dashed lines negative poten-here was simply to establish whether such a procedure,
tials. The contours are drawn in logarithmic steps based Which does not pose any overall objective function, can
on the largest absolute extremum in each map. One maparrive at solutions that are comparable in accuracy to
is drawn for each time instant, and where appropriate, those using traditional methods. The initial eIIipsoid was
the maps are then presented as an IPM sequence. t%kecl;l asB=aly with a=15]y|3 and initial center
c’=0.

We performed numerical experiments using both di-
pole and tank scenarios, but will illustrate only our re-

In the feasibility study, we used a small number of sults with tank data(TS) and a SNR of 40 dB. The

. bottom panel in Fig. 5 shows CC'’s as a function of time
constraints, assumed we knew the exact value of these, : . .
: . for four different inverse methods over the portion of the
constraints, and then compared the results of the admis- . . .
cycle marked by the dotted vertical lines in the upper

sible solution inverse method with some standard meth- : } .
panel. The four inverse methods were: admissible solu-

ods in a simple test scenario. We used five typical “stan- . o o
M . . . : tion approach(solid line), two-norm regularizatior{dot-
dard” constraints as described in the section on standard : ; L . o
ted line), Laplacian regularizatiofdashed ling and joint

constraints: two-norm/Laplacian regularizatiofdash-dot To illus-

(1) trate the spatial behavior of the solution, in Fig. 6, we

(2 show isopotential maps of the original measured poten-
tials (on the lefy and two inverse reconstructions, using

3 two-norm regularizatiorimiddle) and the admissible so-

4) lution method(right), at two time instants during QRS.

)

Feasibility Study

the square of the 2-norm of the residual;

the square of the 2-norm of the Laplacian of the
solution;

the square of the 2-norm of the solution;

the square of the 2-norm of the Tikhonov error using
an identity matrix as the regularizer; and

the max norm of the solution.

The RE and CC values are shown in Fig. 6 for each
reconstruction.
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Evaluation of Constraint Efficacy

As described in the section on the admissible solution
approach, at each iteration we selected the “worst” con-
straint(i.e., the one that achieved the maximumdfto
control the next iteration. Thus, by monitoring which
constraint was chosen by the algorithm at each iteration
for a particular simulation, we were able to observe
which constraints were active and how they interacted as
the ellipsoid shrank. We performed many tests using this
approach, and here present some illustrations.

Comparing Unweighted and Weighted Norm Constraints.
To illustrate this procedure, we present results of two
tests using the dipole model DSb at 30 dB SNR. The
constraints used in the first test were the same as in the
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feasibility test. In a second simulation, we replaced the FiIGURE 7. Correlation coefficients

standard two-norm and two-norm-of-Laplacian con-
straints withlocally weightedtwo-norm and two-norm-
of-Laplacian constraintgThis is similar in principle to
the approach reported in Ref. 2@The spatial weighting

500

1000

1500

(top) and active con-

straint (bottom ) as functions of iteration index for DSb simu-
lations, with the dipole source in the Y direction at 30 dB
SNR using “exact model” data. The left two figures show
results with standard constraints and the right two with
weighted constraints. Constraint coding is described in the

was computed, based on the true solutions, to emphasize®*t

each constraint in spatial regions where the amplitude
(Laplacian was small, and deemphasize it in regions
where the amplitudgLaplacian was large. This was
accomplished by using a diagonal weighting matixto
replace a constraint based ap(x)=|Rx|5 with one
based ong(x)=|WRx|5. The diagonal elements o
were weight factors calculated at each node as the ratio
of the two-norm of the amplitudéLaplaciar) over the
whole surface to the two-norm of the amplitufeapla-
cian) over the neighborhood of the node. We noted that
this is the same as usingveeightedtwo-norm where the
weighting matrix is diagonal with the square roots of the
elements oW as its nonzero elements.

In Fig. 7, we illustrate a typical result: the top figure
shows the correlation coefficient for both methods as a
function of the iteration number. The bottom figures
show which constraint the algorithm chose at each itera-
tion, coded according to the numbering in the feasibility
study section. The left pair of figures shows results with
standard constraints and the right pair with weighted
constraints.

Efficacy of Temporal Constraints.Here, we present a
sample of our results using tank dgfES) and the aug-
mented forward model with ten time samplels={10)
and global spatial and global temporal constraifite
latter based on a simple high-pass temporal filteFhe
temporal constraint used was on the two-norm of the
output of this filter, and the spatial constraints were on
the two-norm of the residual, amplitude, etc., where all
norms are over all time instants and spatial locations
included in the augmented model. In general, we ob-
served that at relatively high SN®RO dB), the temporal

constraints were used by the algorithm only at the very
end, just before convergence, while at a somewhat lower
SNR (30 dB), the temporal constraints were used much
earlier. In Figs. 8 and 9, we illustrate these results at 30
dB for an interval of 10 mgten time samplgsearly in
QRS. All constraints used were global over all time
instants and spatial locations. In addition to the five con-
straints used in the previous example, we used a global
temporal constraint in the form of the two-norm of a
simple high-pass filter, as described in the spatiotemporal
constraints section.

In Fig. 8, we show examples of time signals from
four epicardial locations. The inclusion of the temporal
constraint tends to improve reconstructed signal shape,
and as can be seen in the signal at electrode No. 18, even
when the result is less accurate, it is generally less noisy.
The bottom of Fig. 8 contains comparisons of CC and
RE and shows which constraints were employed as a
function of iteration number during the ellipsoid algo-
rithm. We note that the coding is the same as in Fig. 7,
except that the temporal constraint has been inserted as
No. 2 and the codes of the other constraints incremented
by one. Figure 9 compares an isopotential map sequence
from this experiment: the left column shows the original
data (shown every 2 ms while the middle column
shows the reconstruction with temporal constraints and
the right column without. To make the comparison
clearer, the same isopotential contour spacing has been
used on all maps. Most notable is the increased density
of the isopotential lines in a number of the temporally
constrained maps and the somewhat more accurate shape
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FIGURE 8. Comparison of admissible solutions with and
without a global temporal constraint for a 10 ms interval
early in QRS: The four panels show time signals at four
epicardial locations. The solid lines are the originals and the
dashed (dot-dash ) lines reconstructions with  (without ) tem- It
poral constraints. The next pair of panels show correlation Time 128 Time 129 Time 129
coefficients and relative error over the 10 ms interval with
(solid line ) and without (dashed line ) the temporal con-
straints. Constraint usage is shown in the bottom panel:
constraint No. 1 is the residual error two-norm and No. 2 is
the temporal constraint.

FIGURE 9. Same scenario as in previous figure, but here,
comparing isopotential maps every 2 ms.

solution is larger than in DSb; it includes both geometric
model error and noise. If we use a constraint bound
of the wave front in the later maps in the sequence. based on the noise only, then it will be “too tight” and
the algorithm will tend to overfit the data. Some effects
of these different model assumptions are shown in Figs.
10 and 11. Figure 10 shows results with the mismatched
We can also observe how the efficacy of various con- DSa model when the residual error constraint bound in-
straints may change depending on our model assump-cluded both the noise and the model error and was, thus,
tions by using the model mismatch dipole body surface the “true” residual error. Figure 11 shows the results
data DSa. In the DSb test described above, the truewith the same DSa model but when the bound was based
residual error norm is proportional to the noise standard only on the noise—in other words, the error in the for-
deviation. If we use this as the residual constraint bound, ward model was ignored, and the residual constraint was
then it is a tight and accurate bound. In the DSa simu- too tight. The format for both Figs. 10 and 11 is the
lation, however, the true residual error between the noisy same as in Fig. 7, showing results for standard and
simulated torso data and the forward-projected epicardial weighted constraints. As can be seen from Fig. 7, in the

Interaction of Model Assumptions with Constraints
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FIGURE 11. Same as in the previous figure, but with the
residual constraint bound based only on additive noise vari-
ance, and therefore unrealistically tight.

FIGURE 10. Correlation coefficients (top) and active con-
straint (bottom ) as functions of iteration index for DSa simu-
lations, with the dipole source in the Y direction at 30 dB
SNR using model mismatch data and accurate (loose) re-
sidual constraint. Note that the number of iterations is dif-
ferent in the two cases shown. Layout as in the previous by incorporating the Tikhonov error as a constraint in the

figure. procedure. In fact, one could incorporate Tikhonov con-
straints for more than one regularization function and

more than one value of the regularization parameter si-
multaneously. Because of the iterative nature of numeri-
cal solutions to the resulting convex optimization prob-

lem, one can monitor which constraints are employed by
the algorithm as it iterates in order to gain understanding
of the effect(or lack of effecj of a particular constraint

or constraints on the solution. For instance, one can find
a solution with a given set of constraints and then repeat
the solution while leaving out or adding one constraint at
a time, in order to closely study the efficacy of a par-

t ticular constraint.

As noted in the introduction, disadvantages of the
approach include the lack of an objective function with a
unique solution and increased computational load. Run-
ning our simulations iNMATLAB on a midlevel SGI
workstation with no particular attempt to optimize our
code, the algorithm takes about 6 min to run for each
time instant. Using the temporal constraint on an interval

The admissible solution method proposed in this pa- of ten time instants as described earlier, it took 24 h or
per for the inverse problem of electrocardiography has more to run.
certain advantages over traditional regularization ap- One issue that could surface, in principle, is what
proaches. It is flexible in the number and type of con- happens if the admissible set was empty, in which case
straints that can be incorporated, requiring only that each the algorithm would tend to run without stopping. In our
constraint be defined by a convex set in the solution experience, this only happened when there was a coding
space. Nonstandard constraints such as locally weightedor mathematical error, and has been easy to spot as the
constraints, frequency domain constraints, nondifferen- number of iterations was clearly excessive. Thus, in
tiable constraints, etc., can be incorporated without any practice, after a little experience one can put a ceiling on
particular difficulty. The need for regularization param- the number of iterations the algorithm is allowed to run.
eters is replaced by a need for bounds on the constraints;f this ceiling is reached, it can be taken as a warning
while this involves the use o& priori information, the sign that something is wrong. At a minimum, the bounds
bounds can be related to measurable physiological quan-can be relaxed on the constraints on which the algorithm
tities. One can ensure “almost-Tikhonov” performance is stuck and the algorithm restarted.

accurate bound case the algorithm stopped after a rela-
tively small number of iterations because the residual
bound was so loose and none of the other constraints
were effective in further constraining the solution. By
contrast, applying the overly tight residual constraint
caused more constraints to be employed and the algo-
rithm continued for over ten times as many iterations.

DISCUSSION AND CONCLUSIONS

In this section, we will discuss some of the importan
features of the admissible solution approach presented in
this paper, point out some implications of the simulation
results, and present conclusions and current and future
research directions.

Discussion of the Method
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Discussion of Simulation Results sion of more constraints. However, this behavior is of

We do not wish to overemphasize the significance of gtt;\g;)/us importance and will be the subject of a separate

the simulation results presented here; as we state in the (2) As mentioned previously, we have begun the pro-

results section, our purpose in this paper is to present the . ; .
. i o cess of studying recorded epicardial data to develop a
concepts behind the method and illustrate that it gives - X . )
library of realistically derived constraints. We will then

reasonable results. However, we offer the following con- . . . :
. . apply these constraints to inverse solutions using the
jectures based on our present results:

approach presented here.

(1) The results of the feasibility study show that the . .
. . . (3) We are currently working on a more computation-
method produces reasonable inverse solutions using only

. ally efficient, parallel implementation of convex optimi-
a small number of constraints. : . . . X
. . . zation algorithms, which will allow us to incorporate a
(2) When we compare results obtained using weighted . . .
; : : .~ longer time interval into the augmented model, and thus
constraints to those obtained with standard constraints, : g .
) permit the use of promising frequency-domain con-
two phenomena that occur are as followa: Due to the straints
type of weighting used, as explained in the section on . .
X . ' : (4) We are exploring analytical methods to measure
the evaluation of constraint efficacy, constraints on

. . i changes in the “size” of the intersection of the con-
weighted features of the solution are more likely to be straint sets when different combinations of constraints
used by the algorithmsee Figs. 7, 10, and L1We

presume that this is because weighted constraints, espe:Clre used, by studying the problem in a more tractable

cially when derived from the actual correct answer, fit geogn e\;\r;c settlng.l ing th f Hicient opti
the candidate solutions better and are thus more likely to miz(a)tionealagl]r(fritixrggsrg‘]‘g € use ot more €flicient opti-
dominate the overall constraint and thereby actively di- 6) We feel thai the issue of interaction between
rect the iteration path(b) Although correlation coeffi- . : : .

cients are usually comparable, the maxima and minima model error and inverse solutions is a very important one

; . . for any practical application of inverse electrocardio-
of reconstructed isopotential maps are generally closer in : e
both amplitude and location to the correct values, i.e. graphy. We tried to address some of the implications of

. . ; . the problem of unmodeled error in the forward solution
less over-regularized, with weighted than with un- . S : . . X
; . in a simplified way in some of the dipole simulations
weighted constraints.

(3) When there is a mismatch between the forward described in this paper. We hope to be able to use torso

. ; tank experimental results to study the effects of such
and inverse models, there seems to be a complicated : : o L
modeling error in a more realistic setting in the near

interaction between the constraints used, the values cho-future
sen for the constraint boundeelated to the degree & '
priori knowledge about the errgrand the resulting in-

verse solutions. For instance, in Fig. 10, where the re-

S'duil t%onitramt S qglt:a Ioo?t(;;mced I t{:\kes |r}to ac- The authors wish to express their gratitude to Clas
count the known model errprthe advantage of using Jacobson for many fruitful and insight-producing discus-

weighted constraints over standard ones is considerableSions of this work, to Kadagattur Srinidhi for help with
(isopotential maps bear this out j

2 Wh traint 100 i ¢ e i some of the simulations and figures, and Dr. Bruno Tac-
.( ) en constraints are too tigas for example in cardi for assistance in obtaining measured data. This
Fig. 11), results are reasonably accurate as long as

. . material is based upon work supported by the National
enough constraints are usétiis was borne out by other Science Foundation under Grant No. BCS-9309359
simulations, not reproduced here, in which constraints '

pt Grant No. HL52338 from the National Institutes of
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