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Abstract
A general and widely tunable method for the generation of Representative Volume Elements ( RVEs ) for cellular

materials based on distance and level set functions is presented. The approach is based on random tessellations

constructed from random inclusion packings. A general methodology to obtain arbitrary­shaped tessellations to

produce disordered foams is presented and illustrated. These tessellations can degenerate either in classical

Voronoï tessellations potentially additively weighted depending on properties of the initial inclusion packing used, or

in Laguerre tessellations through a simple modification of the formulation. A versatile approach to control the

particular morphology of the obtained foam is introduced. Specific local features such as concave triangular Plateau

borders and non‑constant thickness heterogeneous coatings can be built from the tessellation in a straightforward

way and are tuned by a small set of parameters with a clear morphological interpretation.
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Cellular materials, Microstructure generation, Representative Volume Element, Level sets, Distance fields, Open‑cell

foams, Closed‑cell foams, Multi‑scale analysis.

1. Introduction
Cellular materials are characterized by a morphology based on a space‑filling assembly of near‑polyhedral volumes

( cells ) separated by walls. An archetype for this kind of materials is the equilibrated liquid foam, for which cells

originate from bubbles that are separated by tensioned liquid films, those meeting 3‑by‑3 at 120°, and forming

so‑called Plateau borders [ 1, 2 ]. However, solid foams such as closed‑cell metallic foams obtained by directly

foaming a liquid metal ( e.g. Al ), polymer ( e.g. PU ) open‑cell foams, or open‑cell metal foams obtained either by

coating an existing polymer foam or by casting liquid metal in a polymer foam­based mould also present

morphologies strongly similar to liquid foams, more or less close to the Plateau equilibrium. Grain assembly in

polycrystalline metals or rocks can also be seen as derived from a cellular medium structure, more or less compliant

with Plateau conditions. More complex biomaterials such as trabecular bones, wood or tissues characterized by a

well‑grown extra cellular matrix also share several morphological similarities with cellular materials, and were

already idealized as such in mechanical models by some authors [ 3, 4 ].

The physical behavior ( e.g. mechanical, acoustical, thermal, transport‑related, … ) of this type of materials strongly

depends on their microstructure and this particular link is the subject of an increasing number of studies, for various

fields of application, mechanics and acoustics being the most represented. Next to purely experimental studies

[ 5‑11 ], computational models at the microstructural scale, or homogenization‑based and multi‑scale models may

bring a more in‑depth understanding of the relationship between the local morphological features of the material and

its global behavior. Closely related to experimental characterizations are the numerical simulations that use the real

geometry of materials, thanks to the use of computer‑aided tomography data, to build finite element models

[ 12‑15 ]. In spite of the valuable results they provide ( in particular when coupled with real tests on scanned

samples ), such studies however present the same kind of drawbacks as in purely experimental studies, i.e. the cost

and time for sample preparation, scanning and data post‑processing may constrain authors to study limited

numbers of samples. Therefore, general conclusions which ideally should require broader parametric studies are

difficult to reach. Another class of models that may bring valuable insight on this aspect makes use of idealized

microstructure geometry descriptions to explore and understand elementary mechanisms related with the particular

morphology of the material [ 16‑32 ]. In spite of the fact that such models cannot fully resemble scanned data, they
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provide the opportunity to single out the influence of specific morphological parameters of the material for various

physical phenomena.

The success of the latter approach is however strongly constrained by the ability of the geometrical model to

represent as realistically as possible the morphological features of the material in a more or less parametrized way.

The identification of such idealized Representative Volume Elements ( RVEs ) remains an important and debated

question for cellular materials in general.

To this end, deterministic models have been derived from the observation of liquid foams. One of the first of such

models is the Kelvin model [ 33 ] which consists of a regular packing of ( slightly curved ) tetra(kai)decahedra

( truncated octahedra ). This model was ( more than 100 years later ) improved by the Weaire‑Phelan model [ 34 ]

made of two different types of cells, dodecahedra and tetradecahedra. Such regular models however fail to

represent foams with non‑uniform bubble sizes or more disordered, out‑of‑equilibrium solid foams. It was shown in

[ 35 ] that morphological features of those models such as the number of faces by cell and edges by cell face

significantly diverge from real foams, which lead to another 11‑faced polyhedral model to be proposed. Next to those

polyhedral cell models, some simple geometries based on regular bars or plates assemblies were also used [ 29,

21, 18 ]. Within such models, plate thickness or lattice node positions can be randomized to account for the natural

variability of the material. Packings of overlapping spheres were also used for this purpose, randomized [ 25 ] or not

[ 19 ].

More realistic and versatile representations were introduced by the use of random tessellations, i.e. Voronoï

tessellations on random point distributions [ 16, 24 ] and Laguerre tessellations on random sphere packings to

obtain multi‑sized cell arrangements [ 30, 36 ]. It should be mentioned that similar microstructural models are used

for polycrystalline materials [ 37‑49 ], demonstrating a degree of similitude of the morphology of these materials with

foam‑based media. The morphological properties of Laguerre‑based models have been well characterized,

compared and fitted to real foams [ 50, 51 ], supporting with quantitative arguments that solid foam are not in

Plateau equilibrium [ 52 ]. These generation methods represent very well the size distribution of cells and some

other morphological parameters ( face‑by‑cell count, edge‑by‑face count, dihedral and interior angles, … ) but

produces very regular geometries, i.e. cell walls and / or struts are straight. Other morphological features such as

wall / strut thickness and strut sections are not determined by the tessellation itself and need to be constructed

afterwards. The available examples cited above keep those aspects simple, i.e. with constant thickness wall / strut

and circular strut sections.

The real shape of struts arising from Plateau borders geometry in open‑cell polymer foams or polymer‑based metal

foams usually presents typical triangular concave sections of variable size and concavity, as reported by micrograph

inspections [ 53, 9 ]. Metal‑coated polymer foams present moreover hollow struts due to the elimination of the

polymer preform, also well visible on micrographs [ 10 ] or reconstructed 3D data [ 13 ]. Some intermediate states

between closed and open foams may exist ( i.e. partially reticulated ), with highly variable pore throat sizes, resulting

in highly variable strut sizes and shapes [ 6, 54 ]. The throat size or the closed face rate in partially reticulated PU

foams have been reported to have an important effect on the acoustic behavior of such foams either experimentally

[ 7 ] or with the help of numerical simulations [ 28, 32 ]. These latter numerical studies used a Kelvin unit cell as

geometrical model, with variable thickness cylindrical struts and planar membrane with circular holes. To the best of

our knowledge, only one publication describes and tests a generalizable and automated way to generate the exact

shape of Plateau borders [ 22 ]. Their approach consists in applying a surface minimization process on a base

tessellation with the software Surface Evolver. The methodology was illustrated with a single Weare‑Phelan unit cell,

which does not allow assessing how Surface Evolver performs on more complex base tessellations. This

methodology seems focused on foams very close to the equilibrium, and is presumably difficult to use for more

disordered solid foam morphologies.

In this paper, we present and illustrate a general and widely tunable methodology for the generation of RVEs for

cellular materials making use of distance and level set functions. The approach is, like most others, based on

random tessellations constructed from random inclusion packings. However, we present here a general procedure

to obtain arbitrary‑shaped tessellations enabling to produce disordered foam microstructures, more representative of

metallic and out‑of‑equilibrium foams. These arbitrary‑shaped tessellations can degenerate in classical Voronoï

tessellations, potentially additively weighted, depending on properties of the initial inclusion packing used. Starting

from the RVE generation procedure defined in [ 55 ] in a 2D setting, the present contribution develops additional
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tools to extend the approach for cellular materials in a 3D context. We furthermore introduce a versatile approach to

control the particular morphology of the obtained foam. This is achieved by defining a “Plateau” level set function, by

setting up a procedure allowing the extraction of geometries from multiple level set functions for the proper

reproduction of sharp edges, and by incorporating additional features such as concave triangular Plateau borders

and non­constant thickness heterogeneous coatings are built from the tessellation in a straightforward way and

tuned by a small set of parameters with a clear morphological interpretation. Finally, it is emphasized that the

generation process can be constrained to produce periodic RVEs without heavy modification of the implementation.

The paper is organized as follow. We first introduce and define some concepts and notations that will be used in

subsequent developments ( section 2 ). In particular, specific distance functions are introduced and the concept of

level set function is defined. We then present the basis of our approach to generate RVEs for open and closed

foams ( section 3 ). It includes a short explanation of the method to produce arbitrary‑shaped tessellations as well

as illustrations of its use to generate closed foam RVEs ( section 3.1 ). It is followed by the introduction of a specific

level set function used to generate open foam RVEs ( section 3.2 ) as well as the explanation on how to extract

properly the resulting geometry ( section 3.3 ). We continue then with advanced strategies to obtain more subtle

aspects of the morphologies for the generated foams ( section 4 ). We cover techniques to finely tune the shape of

generated Plateau borders ( section 4.1 ), to introduce spatial variation on controlling parameters ( section 4.2 ) and

to add a coating phase on the generated foams, potentially non‑uniform and / or multi­layered ( section 4.3 ). We

finally shortly present some quantitative morphological parameters characterizing the obtained foams ( section 5 ).

The paper is closed by a discussion section ( section 6 ) and conclusions ( section 7 ).

2. Notations and definitions
In the sequel, Ω

RVE
denotes the 3D domain of an RVE. In this paper, we use cubic domains exclusively ( square for

2D illustrations ) and all dimensions are given with respect to this cube side length.

In 3D, level sets are surfaces defined implicitly by relationships of the type f(x) = k, in which x represents spatial

coordinates, the functions f(x) are generally called level set functions. Such surfaces are closed ( except on

boundaries of the definition domain of f(x) ), non‑self‑intersecting, non‑branched ( manifold only ) and orientable. In

particular, they are everywhere perpendicular to the gradient of f(x) and their curvatures are reflected by the local

values of the second spatial derivatives of f(x).

Level set functions and all other functions in this paper will be evaluated through a discrete set of data sampled on

regular 3D grids of n³ points. The level set geometries are obtained by contouring these discrete function

representations, as done for computed tomography data reconstruction, by a classical contouring method ( e.g. the

marching cube [ 56, 57 ], the dual contouring [ 58, 59 ] ).

Φ
i
denotes a closed surface representing the boundary of an inclusion i, member of a set I gathering all inclusions of

a packing ( represented by white dashed line on figure 1a ).

Ω
i
­ is the domain inside Φ

i
, Ω

i
+ is the domain outside Φ

i
( see figure 1b, the negative domain is grey‑shaded ).

DS
i
(x) is the signed distance field of Φ

i
. This 3D function is negative on Ω

i
­ and positive on Ω

i
+ and is a natural level

set function for the inclusion i which is represented implicitly by the 0 level set of it. The order of continuity of a

signed distance field is inherited from Φ
i
everywhere except on the medial axis of the interface where it is C0. The

medial axis of Φ
i
is defined as the locus of points where the center of a sphere can be placed such that the sphere

exactly touches Φ
i
at least on two points, without intersecting it [ 60 ].
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b) c) d)
Fig. 1 : Definition and notations illustrated for a 2D simple inclusion packing. a) Domains and loci. Dashed lines denote the
inclusion boundaries, while plain lines stand for Φ

Θ
. b) Function DN

1
, c) function DN

2
and d) function DN

3
. Distance are given

relative to the RVE size, black lines are inclusion boudaries Φ
i
.

DN
k
(x) is the k‑th neighbor distance field. It gives at every position x the distance from the k‑th nearest Φ

i
in the

packing I. These functions for k equal 1,2 and 3 are illustrated in figures 1b, 1c and 1d. DN
1
(x) can be used as a

level set function representing all inclusions in the packing. It is emphasized that those functions were already

introduced and used in the context of heterogeneous material microstructure generation in our previous work [ 55 ],

and were denoted "LS
k
" in that paper.

NN
k
(x) is the k‑th neighbor identity map. It is an integer discontinuous function equal for each x to the index of the

k‑th nearest inclusion from x in the set I ( see figure 1a for NN
1
, where distinct values of the function are represented

by distinct colors ). These functions are by‑products of the DN
k

functions evaluation.

J
k
(x) is the set I without all NN

m
(x) with m in [ 1 : k­1 ] ( and J

1
(x) = I for every x ).

DN
1
(x) can be computed as :

DN
1
(x) = min

i
( DS

i
(x) ) , with i in I. (1)

Other DN
k
(x) can be computed as :

DN
k
(x) = min

j
( DS

j
(x) ) , with j in J

k
(x) . (2)

IΘ
i
is the domain where the inclusion i is the first nearest inclusion, i.e. where NN

1
(x) = i, or the set of points x closer

to inclusion i than to any other ( red area on figure 1a ).

OΘ
i
is the domain where NN

1
(x) ≠ i ( non­red area on figure 1a ).

The preceding superscript O and I stand for “outer” and “inner”.

Φ
Θi

is the boundary of IΘ
i
( white plain line on figure 1a ).

Φ
Θ

is the union of all Φ
Θi

( black and white plain lines on figure 1a ).

The general notation If
i
(x) and Of

i
(x) refers to two functions associated with domains IΘ

i
and OΘ

i
.
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a) b) c)
Fig. 2 : "Voronoï" level set functions. a) For a mono­sized disk packing. b) For a multi­sized disk packing. c) For an arbirtrary­
shaped inclusion packing. Dashed lines are the inclusion boundaries Φ

i
, plain lines are the boundaries of the tesselation cells Φ

Θi
.

3. General cellular morphologies generation

3.1 Building an arbitrary­shaped tessellation : the “Voronoï” level set function.

We previously explained how to build an arbitrary‑shaped tessellation with the help of neighboring distance fields of

an inclusion packing in a former work [ 55 ]. For the sake of clarity and completeness we reintroduce here the basic

ideas that were presented and illustrated for the case of polycrystalline material RVEs generation.

From an arbitrary‑shaped inclusion packing, we can define a tessellation made by the assembly of all domains IΘ
i

that enclose, for each inclusion i, points closer to this inclusion than to others. This tessellation degenerates in

additively weighted Voronoï and classical Voronoï tessellations for multi‑sized sphere packings and points

distributions ( or mono­sized sphere packings ), respectively. The first and second neighbor distance fields of the

initial inclusion packing can be combined to construct implicitly this tessellation. We define the “Voronoï” level set

function as

O
V
(x) = DN

2
(x) – DN

1
(x). (3)

This function is exactly zero at loci equidistant from the two nearest inclusions, i.e. on faces of the tessellation, and

positive elsewhere. It is illustrated for 2D packings in figure 2. It is emphasized that as the inclusion signed distance

fields used are negative inside their inclusions, the initial packing can present inter‑penetrated inclusions without

affecting the quality of the result. Actually, a variant of this function was specifically used in [ 61 ] to handle spurious

overlapping of yarns in the generation of woven composite RVEs.

Laguerre tessellations can also be produced this way, using multi‑sized spheres as initial packings and replacing the

signed Euclidean distance function DS
i

by a sphere power distance when evaluating functions DN
k

. Laguerre

tessellations are appreciated because they produce easily multi‑sized cell tessellations while keeping plane cell

faces and straight face edges. In our opinion, the latter aspect is only a convenient simplification, but is not

motivated by the morphology of real foams. Actually, liquid foams with multi‑sized bubbles exhibit larger pressures in

small bubbles ( causing foam coarsening with time by gas diffusion through liquid films ). This causes films between

bubbles to be slightly curved, rendering large bubbles concave. The additively weighted Voronoï tessellation

generated by (3) on a multi‑sized sphere packing seems better suited to generate this kind of feature ( see figure 2b

and 4b ).

The function O
V

alone can be used to extract a quasi‑constant thickness closed cell geometry through level sets

extracted from

O
V
(x) – t = 0. (4)

We illustrate the use of this function on the basis of three base packings, obtained respectively from mono‑sized

spheres, multi‑sized spheres and arbitrary‑shaped inclusions, which are illustrated in figure 3. The RVEs obtained

from such packings with t = 0.01 are shown in figure 4.
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a) b) c)

Fig. 3 : Initial packings used for illustrations. a) Mono­sized sphere packing. b) Multi­sized sphere packing. c) Arbirtrary­shaped
inclusion packing.

a) b) c)

Fig. 4 : Closed cell RVE examples, generated from packings of figure 3 with t = 0.01. a) From mono­sized sphere packing. b)
From multi­sized sphere packing. c) From arbirtrary­shaped inclusion packing.

In fact the local thickness of the extracted walls depends slightly on the relative angle of normals at nearest points of

the first and second nearest inclusions on that local spot. In general this leads to thinner wall centers, and presents

exactly a thickness t where the previously mentioned normals share the same orientation ( and opposite directions ).

This effect increases with the wall mean thickness. A variant of O
V
(x) introducing a weighting factor w associated

with DN
2
(x) may be be used to build all intermediary situations between a completely space‑filling tessellation

( w = 1 ) and the initial inclusion packing ( w = 0 ) :

O'
V
(x) = w.DN

2
(x) – DN

1
(x). (5)

In order to obtain the original inclusion surface with w = 0, the parameter t in equation (4) should also be multiplied

by w. An example using this alternative O'
V

is given in figure 5, in which the packing from figure 3.c is used with

t = 0.01 and w = { 0.25 | 0.5 | 0.75 }. Such intermediate morphologies can be used to represent some porous

materials that are not manufactured by foaming processes, for which the microstructure share more morphological

features with inclusion‑based morphologies. Metal foams obtained by liquid casting together with solid place holders

( removed afterward, or hollow spheres ) are examples of such type of porous media [ 62‑64 ].

Extracting the zero level set of O
V

is problematic because it is a minimum of the function that won't be properly

extracted by a contouring algorithm. A modified “local” version of O
V

is introduced further ( section 3.3 ) and can be

used for the proper extraction of this particular level set.
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a) b) c)

Fig. 5 : Intermediate RVEs between the closed cell foam ( w = 1 ) and the original inclusion packing ( w = 0 ). The RVE of figure
3.c is used with t = 0.01. a) w = 0.75 b) w = 0.5 c) w = 0.25. The value w = 1 gives the RVE of figure 4.c and w=0 would give back
the original packing, with an offset of magnitude t on inclusions.

a) b) c)
Fig. 6 : "Plateau" level set function, the level set t is drawn in withe, black dashed lines are the initial inclusion boundaries. a) For a
mono­sized disk packing. b) For a multi­sized disk packing c) For an arbitrary­shaped inclusion packing.

3.2 Building open foam morphology : the “Plateau border” level set function.

To produce open foam microstructures, a way should be defined to extract the edges of tessellation cells by the

mean of an ad‑hoc level set function, giving them triangular sections. Combined with the knowledge that Plateau

borders in liquid foams form at the intersection of three films, this suggests to combine the three first neighbor

distance functions DN
1
(x), DN

2
(x) and DN

3
(x) to build a relevant level set function. The following function, denoted

O
P

and called the “Plateau” level set function in the sequel, is exactly zero at locus where the distance from the

three nearest inclusions is the same, and is positive elsewhere :

O
P
(x) = ( DN

3
(x) + DN

2
(x) )/2 – DN

1
(x). (6)

This function is illustrated in 2D in figure 6. It is clear from this representation that the level set of this function

consists of triangles with vertex lying on the tessellation cell boundaries extracted from O
v
(x) ( i.e. Φ

Θ
). In 3D, these

level sets will generate triangular prisms centered on edges of the tessellation, with lines generated by the triangle

vertices of the prism section lying on Φ
Θ
. This furnishes a natural way to build a Plateau‑border‑like geometry

through

O
P
(x) – t = 0. (7)
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a) b) c)

Fig. 8 : Open cell RVE examples, generated from packing of figure 3. a) From mono­sized sphere, t = 0.04. b) From multi­sized
spheres, t = 0.02. c) From arbitrary­shaped inclusions, t = 0.01.

Fig. 7 : 2D illustration of the relation between cell wall
extracted with (4) (blue) and Plateau border extracted
with (7) (red) using the same value for t. The figure is
a detail of the RVE used in figure 2b and 6b.

The parameter t can here be used to control the thickness of

extracted borders. It is related to the parameter used in (4)

such that the Plateau borders produced are the largest ones

that could be completely contained in closed cell walls, as

illustrated in figure 7.

Some typical resulting geometries obtained using this level set

function are illustrated in figure 8. It is worth to remark that if

the starting inclusion distribution is a made of mono‑sized

sphere, the Plateau borders extracted from O
P
(x) are straight

while for multi‑sized spheres, they become slightly curved. For

arbitrary‑shaped inclusions, the extracted borders still present

the same triangular section but are not straight and present

complex director curves. One can also remark that resulting

Plateau borders are not concave, this aspect will be further

elaborated in section 6.

3.3 Sharp edges preservation : extracting geometry from multiple level set functions.

The Plateau borders geometry presents sharp edges due to their triangular prism shape. Such sharp edges

originate from a steep discontinuity of DN
k

derivatives on Φ
Θ
. Discrete level set functions are not well suited to

handle such kinds of discontinuities for several reasons. It is indeed well‑known that contouring algorithms fail to

extract such sharp edges [ 65 ] ( see figure 9.a ). Furthermore, several quantities computed using numerical

derivatives of O
V

or O
P
, such as normal and curvature fields [ 66 ] will also be imprecise and / or locally wrong near

Φ
Θ
.

To overcome these difficulties, the global geometry can be split into an assembly of smooth surfaces, extracted from

separate level set functions, their common curves being the problematic sharp edges ( see figure 9.b ). The three

“faces” of each Plateau border are determined from the three nearest inclusions at this place. This aspect is

emphasized on figure 8, 9.b and similar figures, in which the surfaces “coming from” each inclusions are rendered

with distinct colors. Therefore, by constructing an individual level set function for each inclusion one can extract

separately the three “faces” of each Plateau border and avoid the problem of sharp edges. However, for open cells,

such surfaces are not closed but present holes in the cell faces. As the contouring of a level set function always

produces closed surfaces, an additional slicing operation is required to obtain these holes. A second individual level

set function for each inclusion is then required and is used to slice the surface formerly obtained by contouring the

first level set function. The slicing of a 3D triangulated surface according to a level set function is very similar to the

contouring of a 2D level set function. The values of the second level set function are interpolated on vertices of the

surface extracted from the first, and a “marching triangle” algorithm is then applied to this triangulated surface to

perform the slicing. This approach is illustrated in figure 10 for an isolated cell.
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a) b)

Fig. 9 : Sharp edge issue illustration. a) Result of a single level set function extraction. b) Result of a multi level set function
extraction. Problematic sharp edges are highlighted with black lines.

a) b)

Fig. 10 : Multi level set approach illustrated on an isolated cell. a) Surface resulting of the contouring of the "inner" level set
function IO

Pi
(x). The "outer" level set function OO

Pi
(x) is ploted on the surface. b) Surface after the slicing by the "outer" level set

function.

The two “local” level set functions for each inclusion are built without modification of the O
P

definition, “global”

functions DN
k

are modified to construct two “local” functions for each inclusion denoted “inner” and “outer”

neighboring distance function ( and marked by a preceding superscript “I” and “O” ), IDN
ki

and ODN
ki
. Functions IO

Pi

and OO
Pi

are then computed using the same relations (6) as for the “global” function. The “inner” local level set is

used to extract the surface “coming from” the considered inclusion, while the “outer” local level set is used to slice it.

It is emphasized that the functions IDN
ki

and ODN
ki

have no geometrical meaning, they are rather ad‑hoc functions

constructed from DN
k

under the following constraints :

(I) Inner functions should be equal to global functions inside IΘ
i
and C1 continuous across Φ

Θi
. Indeed, inside IΘ

i
, an

inner function is intended to yield the same level set surface as its global equivalent while its particular value on OΘ
i

does not matter as the level set produced in this domain will not remain after the slicing. The only requirement

consists of the surface to be smooth on Φ
Θi

to properly extract it by contouring.

(II) Outer functions should be equal to global functions only on Φ
Θi

and C1 continuous across Φ
Θi

. An outer function

is only required to slice properly the level set extracted from an inner function. As a consequence, its particular value

is not important, except on Φ
Θi

where it should be equal to the corresponding global function.
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a) b) c)
Fig. 11 : Global and local "Plateau" level set function. a) Global function O

P
(x), the t level set is drawn in white, dashed black lines

are initial inclusion boundaries. b) Local function IO
Pi

(x) of the central inclusion, the t level set is drawn in black. c) Local function
OO

Pi
(x) of the central inclusion, the t level set is drawn in plain black. The dashed line is the t level set of IO

Pi
while black dots are

the slice loci.

These constrains are formulated according to the features needed for IO
Pi

and OO
Pi

without restriction on the way to

achieve them. As DN
k

are assemblies of patches coming from all DS
i
, a simple reorganization of those patches is

possible in order to fulfill the two preceding statements for IDN
ki

and ODN
ki
. As O

P
is a simple linear combination of

DN
k
, these two statements will also be verified for IO

Pi
and OO

Pi
, as illustrated for a 2D packing in figure 11. A careful

analysis of DN
1
, DN

2
and DN

3
permits to derive the following transformations :

IDN
1i

(x) = DS
i
(x), (8a)

IDN
2i

(x) = DN
2
(x) where NN

2
(x) ≠ i, (8b)

IDN
2i

(x) = DN
1
(x) where NN

2
(x) = i, (8c)

ODN
1i

(x) = DN
1
(x) where NN

1
(x) ≠ i, (8d)

ODN
1i
(x) = DN

2
(x) where NN

1
(x) = i, (8e)

ODN
2i

(x) = DN
2
(x) where NN

1
(x) ≠ i, (8f)

ODN
2i

(x) = DN
1
(x) where NN

1
(x) = i, (8g)

with IDN
3i

and ODN
3i

being both equal to DN
3

because the latter is already C1 continuous across Φ
Θi

. Those

transformations are further detailed and illustrated in appendix 1. One might remark that for an inclusion i, instead of

building the “outer” function, the “inner” functions of all other inclusions can be used to slice the surface coming from

inclusion i. However, this requires storing all “inner” functions for the complete domain in memory, which would

quickly lead to overflow for large RVEs ( large numbers of inclusions ). Therefore, it is preferred to evaluate both

“inner” and “outer” functions, that do not have to be kept in memory once the surface coming from inclusion i is

extracted. It should be mentioned that quantities such as the derivatives of O
P

can again be accurately computed

using the relevant “inner” or “outer” level set functions. On Φ
Θi

two values are available reflecting the fact that those

derivatives are discontinuous on this particular locus and are only defined “left and right to this discontinuity”.

Useful values of these functions are limited to a narrow band enclosing the surface to extract. For large numbers of

inclusions, a significant fraction of the computation time may be saved by limiting the computation domain to this

band. The global function O
P

and the neighbor identity maps NN
k

can be used to localize a priori this domain of

interest for each inclusion according to

DOI
i
≡ ( ( NN

1
(x) = i ) | ( NN

2
(x) = i ) | ( NN

3
(x) = i ) ) & ( ( O

V
(x) – t > ­e ) & ( O

V
(x) – t < e ) ) (9)

with e being the half thickness of the band, that should be at least 2 times the discretization size ( set by the grid of

points on which functions are evaluated ).

We finally emphasize that building a finite element mesh for the generated RVEs is not trivial ( even though not

impossible ). This problem will be discussed in section 6.
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a) b) c)

Fig. 12 : Open / closed intermediate situation using. a) a = 0.25. b) a = 0.5. c) a = 0.75.

4. Generation of advanced morphological features

4.1 Plateau border morphology

Generally, plateau border sections are not triangular prisms but unions of three concave surfaces. Other materials

may present an intermediate morphology between open and closed foams. Some techniques may be used to tune

more precisely the resulting Plateau borders morphology. We first show how to combine O
V

and O
P

to obtain

intermediate situations between fully open and closed foams. A simple way to control the concavity curvature of the

Plateau borders is then outlined. We finally indicate how to combine cases with differing parameters to produce a

larger range of variations.

Open / closed intermediates

A natural way to achieve intermediate open / closed situations is to use both O
V

and O
P

in a linear combination,

considering level sets defined by :

a.O
V
(x) + ( 1 – a ).O

P
(x) – t = 0 , (10)

with 0 < a < 1, acting as an open / closed ratio. This approach indeed simply consists in a weighted averaging of the

two geometries obtained with (4) and (7). Problems arising from sharp edges are simply treated as before, but the

entire relation (10) has now to be written in "inner" and "outer" versions using "inner" and "outer" versions of both O
V

and O
P
. Figure 12 illustrates the use of this relation with 3 different values of the parameter a.

Concavity

To obtain concave Plateau borders starting from the presented methodology, a way to tweak the relation (7) to make

it produce concave surfaces is introduced. Basically, subtracting a constant value to a level set function results in an

outward displacement of the surface it defines. Similarly, subtracting a non‑constant function induces local changes

of the surface curvature. If this non‑constant function is only C0 continuous, this will introduce infinite curvatures and

create unwanted sharp edges. A C1 function prevents this behavior but may introduce curvature jumps, while the

use of a C2 continuous function would ensure the curvature to vary smoothly. The idea is then to build a function,

preferably C2, that vanishes on Plateau border sharp edges and takes negative values near Plateau border

surfaces, to “push” inward these surfaces without moving sharp edges. To this end, the following function is used:

O
K
(x) = min( 0 , ( ( ( DN

3
(x) – DN

2
(x) ) / 2 )2 – t2 ) / 2t ). (11)

This function is illustrated in 2D on figure 13b. To properly visualize this function, one should consider its value on a

line passing by two sharp edges of a Plateau border and contained in a plane perpendicular to it ( black / white lines

on figure 13a / 13b ). On this line, the operator DS
3
(x) – DS

2
(x) varies from 0 to 2t starting from the middle of the

surface to the sharp edge as illustrated in figure 13a. The relation (11) turns this operator into a C2 function that can

be used to control the Plateau border concavity replacing (7) by

O
P
(x) – t – k.O

K
(x) = 0 , (12)

with 0 < k < 1 controlling the magnitude of the obtained concavity. For the limit k = 1, the three surfaces of a Plateau

border are tangent to each other at sharp edges. The left‑hand side of relation (12) is illustrated in figure 13c, while

extracted 3D geometries are illustrated in figure 14.
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a) b) c)
Fig. 13 : Plateau border concavity control, 2D illustration of used function. a) Operator DS

3
(x) ­ DS

2
(x). Black lines are the t level

set of O
P
. b) O

K
(x). White lines are the t level set of O

P
. c) O

P
(x) ­ t ­ k.O

K
(x). White lines are the resulting concave Plateau

borders and dashed lines are the original ones extracted from O
P

alone.

a) b)

Fig. 14 : Plateau border concavity control, 3D detail. a) k = 0.5. b) k = 1.

a) b)

Fig. 15 : Plateau border type combination. a) Fully closed cell with non­concave Plateau borders. b) Partially closed cell with
concave Plateau borders.

Combinations

Finally, as the relation (10) quite deteriorates the shape of the Plateau borders and the relation (12) does not offer a

control on the pore throat closure, one may want to use both concurrently to obtain a larger range of possibilities

including all combinations of Plateau border concavities and pore throat closures, i.e. extracting a geometry that will

use the cell wall obtained with (10) and the Plateau borders from (12). This is possible with the level sets formalism

as the minimum of two level set functions is a level set function that defines a surface which is the boundary of the

union of domains enclosed by the two initial level sets. So, if LS
1
(x) and LS

2
(x) are the left‑hand terms of (10) and

(12),

min( LS
1
(x) , LS

2
(x) ) = 0 (13)

achieves the intended combination, potentially using two different t parameters within LS
1

and LS
2
. Figure 15

illustrates the result of this approach for two different sets of parameters. Those can be compared to real samples

presenting this kind of morphology, for example in figures of [ 53 ].
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a)

b) c)

Fig. 16 : Illustration of orientation­sensitive spatial variation for an arbitrary­shaped inclusion base distribution. Wall with vertical
normals are fully open while those with horizontal normals are fully closed. Other wall are in an intermediate state. The verticality
of closed wall is well visible on the side view. a) Perspective view. b) Side view. c) Top view.

4.2 Spatial variations

We now show how to introduce some variability in different morphological parameters controlling the generation

process. Several scalar quantities are used to tune the presented level set functions, controlling the wall / strut

thickness ( t ), the pore closure rate ( a ), the Plateau borders concavity ( k ) and other parameters that will be

further defined. These scalar quantities can also be turned in x‑dependent 3D functions to control more locally those

features.

The simplest thing that can be done to explain the approach is to perform a random variation of the parameters.

Here, t is taken as an example. If a coarse grid m³ is defined, with m << n, m³ random values can be generated,

uniformly ( or other ) distributed between t
min

and t
max

and placed on this grid. Those values can be interpolated

( using linear or cubic basis ) on the n³ grid to build a T(x) field that will be used instead of the constant t in

equations. The spacing h
m

of the m³ grid determines the “wavelength” of the generated variations. Although this is

not specifically illustrated here, the results of this manipulation are visible further in figure 21 that serves another

purpose.

Since the manipulated distance fields and level set functions inherently include some properties of the geometry,

more advanced variations can easily be performed. The example of varying the wall open / closed ratio a presented

in section 4.1 is given here by constructing a global A(x) field according to the local wall orientation to mimic an

anisotropic growth of the foam microstructure. The local orientation of walls is included in the gradient of O
V
(x) and a

scalar product of this gradient with a particular direction vector can be used to build the desired A(x) field. This

gradient being hardly discontinuous between two adjacent faces, the resulting A(x) would better be smoothed before

being used. For example, the following formulation will make walls orthogonal to the chosen orientation n being

open while closing others, those “containing” the orientation n presenting the largest thickness :

A(x) = a
max

– ( a
max

– a
min

) . | grad( O
V
(x) ).n | / || grad( O

V
(x) ) ||. (14)

The absolute value is added to match only the orientation of n and not its direction. The division by the norm of the

gradient of O
V

is incorporated to ensure the second term of (14) is between 0 and a
max

– a
min

, n being a unit vector.

An example of the use of this relation is shown on figure 16 for an arbitrary‑shaped inclusion base distribution.
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a) b)

Fig. 17 : Uniform coating forming hollow struts. The underlying foam is generated with t = 0.02, a = 0 and k = 0.5. a) c = 0.01. b) c
= 0.02.

a) b) c)

Fig. 18 : Varying thickness coating, 2D illustration of used functions. a) DS
FOAM

(x). White lines are Plateau border extracted from
O

P
. b) Ramping function O

R
'(x), with r

c
= 0.2. White lines are Plateau border extracted from O

P
. c) DS

FOAM
(x) ­ c ­d

c
.O'

R
(x). White

plain lines are the extracted coating boundaries.

4.3 Coating phases

We present here a straightforward way to build the geometry of a coating on the generated open foam geometries. A

simple distance field‑based offset is used here, as already done to extract precipitated or hydration phases on

granular geomaterials in [ 55 ]. Once the signed distance field of the generated foam DS
FOAM

(x) is known, one can

extract the external boundaries of a uniform coating of thickness c with the level set defined by

DS
FOAM

(x) – c = 0. (15)

The results of this relation are illustrated on figure 17, while DS
FOAM

is illustrated in 2D on figure 18a and in 3D in

figure 20b. The distance field of the foam geometry can either be derived from the level set function it originates

from by a distance transform method ( e.g. fast marching method [ 66 ], vector­transform [ 67 ], … ) or by explicitly

computing the exact distance from the triangulated geometry. The former is quite light but requires an advanced

implementation to reach an acceptable accuracy, while the latter is on the contrary exact but quite computationally

intensive. Again, the computation of DS
FOAM

may be restricted to a narrow band of interest, more difficult to

determine a priori ( but it can be done quite approximately using O
M

or O
P

and the norm of their gradient ). This can

be advantageous with respect to. a distance transform approach that generally can stop after a given distance

without selecting a priori a domain of interest. However, for the sake of robustness of our experimental

implementation, an exact distance computation was used here for this operation.
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a) b) c)

Fig. 19 : Varying thickness coating, 3D Plateau borders detail. The Hermite spline ramping function is used. a) r
c

= 0. b) r
c

= 0.3.
c) r

c
= 0.6.

The excellent quality micrographs and measurements published by Pang et al in [ 10 ] bring the opportunity to add

some details to illustrate further the versatility of the proposed approach. The paper by Pang et al. characterized a

Ni‑Fe foam obtained by coating a sacrificial polymer foam preform and further processed to add a Cr layer on its

surface. The material composition of the hollow struts in these foams is heterogeneous; the Ni‑Fe precursor exhibits

a varying Fe concentration on the depth of the strut walls, being maximal at mid­depth; the Ni‑Fe‑Cr foam obtained

presents a sharp variation between a Ni‑Fe phase ( inward ) and an Fe‑Cr phase ( outward ). One can also observe

in the paper by Pang et al. ( especially in Figure 2.b. ) that the coating is obviously thicker on sharp edges, probably

because of a better adherence of the coating at this particular location.

An increased coating thickness near sharp edges can be obtained by the addition of a term in equation (15),

subtracting positive values where we want to "push" outward the resulting surface. As for the Plateau border

concavity control, the operator DN
3
(x) – DN

2
(x) is used as a variable representing the position relative to Plateau

border features. In particular, this operator is positive on locus of points closer to a sharp edge than to a border

"face". Then, one could thicken the coating around sharp edges by subtracting a positive value dc to the left‑hand

side of (15) where DN
3
(x) – DN

2
(x) is positive. This will give poor results as the thickness of the coating will jump

sharply from c to c + dc. To fix this, a ramping function is used that will allow a smooth variation of the coating

thickness. The linear ramping function used reads

O
R
(x) = max( 0 , min( 1 , ( ( DN

3
(x) – DN

2
(x) )/2 – r

c
.t ) / ( t.( 1 – r

c
) ) ) ), (16)

where t is the same parameter as before and rc controls the ramp length. This parameter rc should be

between 0 and 1, 1 leading to the same result as if the ramping was not applied and 0 producing a ramp that ranges

to the middle of the Plateau border faces. As this ramping function is linear, it produces sharp variations of the

coating curvature, which may be unwanted. This can be avoided using a cubic Hermite spline interpolation based on

O
R

with

O
R
'(x) = – 2.O

R
(x)³ + 3.O

R
(x)². (17)

The varying thickness coating can then be extracted with

DS
FOAM

(x) – c – d
c
.O

R
(x) = 0, (18)

using either O
R

or O
R
' as a ramping function. Relation (17) and (18) are illustrated in 2D in figure 18b and 18c, 3D

resulting geometry details are shown on figure 19.

The potential material heterogeneity of hollow struts can be generated at this stage using the signed distance to the

foam DS
FOAM

and to the extracted coating DS
COAT

. Local relevant values of those functions are illustrated in

figure 20. Smooth variations, as in the Ni‑Fe precursor, can be mapped in a model to a continuous generated

function. For sharp variations, as in the Ni‑Fe‑Cr product, it would be better to extract additional surfaces to

represent material interfaces in the model. Such mapping functions and additional surfaces are built and extracted

from DS
FOAM

and DS
COAT

or a combination of both. Additional variations such as noise and surface roughness can

also be added by manipulation of these functions. Some examples of sharp material variations are given in figure 21

and can be compared with figures 2 and 3 in [ 10 ].
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a) b)

Fig. 21 : Sharp material variation. Additional surfaces are extracted from DS
COAT

, random variations are introduced independantly
for each surface. a) Three­phase coating. b) Two­phase coating.

a) b)

Fig. 20 : Distance functions used for material heterogeneity generation. a) DS
COAT

(x). b) DS
FOAM

(x).

5. Quantifying morphology of resulting geometries.
In order to compare the resulting RVE with real samples, one should be able to quantify some morphological

parameters of the obtained geometries. This topic would deserve to be the subject of a specific dedicated work, but

we provide here an overview of the ways to evaluate some of the most used parameters.

Some parameters may be evaluated by two main approaches. One "classical" approach makes use of the

triangulated surfaces extracted from level set functions by contouring. It requires additional computations and may

be harder to implement but will give a very good accuracy even for ( reasonably ) coarse discretizations. An other

"implicit" approach directly makes use of functions already computed during the generation, mainly NN
k

, DN
k

, O
V

and O
P
. It requires almost no additional computation but the precision and relevance of the results strongly depend

on the discretization size used for those functions.

The first approach makes use of classical algorithms and only essential informations are given here. Some

parameters, such as volumes and surfaces can be computed on the final geometry but several others are better

computed on the initial tessellation itself. Its geometry can be extracted from the 0 level set of O
V

but this level set is

in practice impossible to extract with a contouring algorithm. Instead, each cell can be extracted separately by

contouring the corresponding "inner" version of O
V
. With some additional slicing using operators such as local

versions of DN
3
(x) – DN

2
(x) and function NN

k
, isolated tessellation faces, edges and nodes can be also extracted

and characterized. Cell volumes, face surfaces, edge lengths, face normal orientations, edge orientations,
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face‑by‑cell count, edge‑by‑face count, dihedral angles and interior angles ( we use those two last terms as defined

in [ 52 ] ) can all be computed using this approach. Some of these parameters will not be uniquely defined in the

case of arbitrary shaped tessellations ( e.g. dihedral angles, face normal orientations, … ), but will be accessible at

the level of each related primitive of the contoured geometry. It still remains to properly define the measures of

interest in these cases before trying to obtain and use those informations.

In the second approach, parameters such as the number of faces by cell and edges by face can be evaluated

directly from function NN
k

as they depend only on the tessellation itself. The number of faces of a cell originating

from an inclusion i is related the number of direct neighbors of this inclusion i in the original packing. This number is

simply the number of distinct value NN
2

takes inside IΘ
i
. This number can be evaluated for each inclusion in the

packing and mean value together with standard deviation can be computed. Similarly, the number of edges of the

face separating the inclusions i and j is the number of distinct values that NN
3

takes in domains where

( NN
1
(x) = i ) & ( NN

2
(x) = j ).

Dihedral and interior angles also depend on the tessellation itself and can be evaluated from NN
k

with the help of

O
V
. Let first assume that cell faces are plane and face edges are straight. The normal to the face separating the

cells i and j is given by the normalized gradient of O
V

where ( NN
1
(x) = i ) & ( NN

2
(x) = j ). This latter is almost

constant in this domain if the cell faces are planar. Other faces that share an edge with this face are the common

faces of cells i and k, with k taking all values NN
3

takes in the domain where ( NN
1
(x) = i ) & ( NN

2
(x) = j ). Dihedral

angles at those shared edges can be obtained from the arc‑cosine of the scalar product of normals of the two

considered faces, while the vector product of those gives a direction vector of the edge. This latter can then be used

to compute interior angle with scalar products of director vectors of edges sharing a node. To find these couples of

edges, one can use values of NN
4

inside the domain where ( NN
1
(x) = i ) & ( NN

2
(x) = j ) & ( NN

3
(x) = k ). As NN

4
is

not used anywhere else, to avoid computing it for this purpose only ( even though it is not expensive ), one may also

look at values of NN
3

at points adjacent to the domain where ( NN
1
(x) = i ) & ( NN

2
(x) = j ) & ( NN

3
(x) = k ),

considering only points where ( NN
1
(x) = i ) & ( NN

2
(x) = j ). It should be mentioned that this procedure can be

applied only if cell faces intersect exclusively 3‑by‑3 and face edges 4‑by‑4. In the limit of a vanishing discretization

size, this should always be the case. However, in practice with finite discretization sizes, situations will arise in which

two very close edges ( resp. nodes ) will be seen as a single one, shared by 4 ( resp. 5 ) or more

faces ( resp. edges ). If a relations graph between cells, faces, edges and nodes is built during the evaluation of

angles, such problematic situations can be detected and discarded or taken into account specifically. For arbitrary

shaped cells, depending on the quantity of interest, a mean normal for each face can be computed or functions such

as O
P

, DS
FOAM

or DS
COAT

can be used to select more precisely a domain of interest for computing the gradient of

O
V

, for example near edges or in the middle of faces.

In all cases, tessellation cell volumes, the foam volume and the coating phase volume can be evaluated with a

reasonable accuracy by counting grid points with relevant values of level set functions, and dividing the obtained

number by the total number of grid points. This indeed will give a volume relative to the RVE volume. For the volume

of a tessellation cell i, one should search for points where NN
1
(x) = i, for the foam volume DS

FOAM
(x) < 0 should be

used while using ( DS
FOAM

(x) > 0 ) & ( DS
COAT

(x) < 0 ) will allow computing the coating volume.

The medial axis of the resulting foam contains a lot of informations regarding the topology of the microstructure. This

medial axis can be extracted by searching for strong discontinuities in the gradient of DS
FOAM

. Two medial axes will

be extracted, the “inner” medial axis is representative of the wall / strut topology while the “outer” one is related to

the void topology. Each component of the gradient of DS
FOAM

can be evaluated twice at each grid point by first order

finite differences using values at two neighboring grid points. Any difference between those two values for each

component reflects a discontinuity of the gradient, the sum of the differences on each component is used as an

indicating function to find the medial axis. This function is illustrated in 2D on figure 22a. It takes negative values on

the "inner" medial axis and positive values on the "outer" one. As the two values of the components of the first order

finite difference gradients are always slightly different, a threshold has to be used to extract only "relevant" medial

axes. Moreover, the function DS
FOAM

is computed as the exact distance to a triangulated mesh for which smooth

surfaces are discretized by a patch of plane triangular facets. This introduces spurious medial axes that would not

exist for the real smooth geometry. Discontinuity in the gradient due to those spurious medial axes are rather small

( or the discretization size is poor with respect to the curvature of the represented geometry ) and can also be

discarded with a threshold. This threshold depends on the discretization size and the geometry features and is not
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a) b) c)
Fig. 22 : Extraction of medial axes, 2D illustration. a) Sum of the differences on components of the two first order finite difference
gradient of DS

FOAM
. b) Medial axes extracted with a high threshold. c) Medial axes extracted with a low threshold. Spurious

branches of medial axis that would better be discarded are well visible in the "outer" medial axis. On b) and c), blue lines are the
"inner" medial axis while red lines are the "outer" one. Indeed, in 3D, medial axes are surfaces.

trivial to set a priori. It is therefore difficult to give recommendations for its value, but we illustrate its effect by

comparing two medial axes obtained with different thresholds on figure 22b and 22c. The value of DS
FOAM

or DS
COAT

on those medial axes can be used to derive average wall / strut thickness and void sizes together with standard

deviation. Among these values, one can select only those lying on the tessellation faces ( with the help of O
V

) to

isolate the pore throat thickness, or only those lying on the director curve of Plateau border ( with the help of O
P

) to

get more precisely the inscribed radius of Plateau borders.

Anisotropy‑related parameters such as the fabric tensor [ 68 ], the Mean Intercept Length [ 69 ] or the Volume

Orientation [ 70 ] can obviously be computed in the same way as from tomography data, using the level set function

from which the final geometry originates, using a criterion LS(x) > 0 to locate void voxels. In fact, level set functions

can be manipulated to create a dummy density map that could be seamlessly imported in usual

softwares ( e.g. SkyScan ) for 3D tomography data analysis to characterize the generated geometries with exactly

the same tools as for real scanned samples.

6. Discussion
The first point to discuss is the volume discretization of the obtained geometries for their subsequent use in a

computational model. Building a good quality finite element mesh may potentially become a major issue when

dealing with this kind of RVE in a model. In all cases, the slicing operation used to extract the foam geometry

preserving the sharp edges has to be carefully implemented to give a consistent discretization along the sharp edge

itself if a classical mesh generator is considered. However, an interesting strategy for building good quality meshes

from level set functions was proposed in 2D in [ 71 ] and extended to 3D in [ 72 ]. By using a dynamic node

repositioning using level set functions, this approach is able to mesh very complex geometries with high quality

tetrahedral elements. Again, a specific implementation will be required to treat properly the sharp edges as the

procedure should be able to use multiple level set functions and to constrain nodes on these sharp edges. If both

this approach and classical meshing methods fail to produce usable meshes, one may consider the use of the

eXtended Finite Element Method ( XFEM ) [ 73, 74 ]. The XFEM has been developed to use regular non‑conforming

meshes on complex geometries, by incorporating the geometrical information in a shape function enrichment built

from the level set function that implicitly represents it. A particular XFEM setting has also been proposed [ 75 ] in

order to represent properly sharp edges with two level set functions and appears particularly well suited for the

applications considered here.

Another point we want to discuss here is related to the periodicity of the generated geometries. Periodicity of RVEs

may be desired for mainly two reasons. First, enforcing periodic boundary conditions in the generation process is

the most satisfying way to discard unwanted boundary effects and achieve statistically homogeneous RVEs. The

second reason is related to the homogenization method that is used in a subsequent physical model. Periodic
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boundary conditions were shown to give the fastest convergence of the homogenized properties while increasing

the size of the RVE [ 76 ]. The periodicity is enforced in two steps in the generation process, the first is to make the

generated foam periodic while the second is required for the coating phase. The only condition for the foam to be

periodic is that the functions DN
k

should be periodic, which indeed requires the initial packing to be already periodic.

As previously explained in [ 55 ], a way to obtain periodic packings together with associated periodic DN
k

functions

( which were objectionably denoted "LS
k
" in that paper ) can readily be implemented. It consists in taking into

account periodic neighbor copies of each inclusion during the signed distance computation process. In the same

paper, a sequential adaptive way to build functions DN
k

in a computationally efficient way was presented. For the

generated coating to be periodic, the condition is that the function DS
FOAM

has to be periodic. Just computing the

distance to the extracted foam will yield an almost periodic function, but not exactly. When using a distance

transform method for the computation of this distance function, a specific implementation should be used in order to

propagate the computation front from one side to its periodic counterpart. If an exact Euclidean distance

computation is used, parts of the foam geometry located near RVE boundaries ( up to a distance relative to the

wanted coating thickness ) should be duplicated and translated to the opposite side of the RVE. If functions DN
k

are

precisely periodic, those duplicated parts will match their periodic relatives exactly and the distance computation will

work properly.

Finally, some words should be added concerning the computational efficiency of the method. Indeed, the parameter

having the largest influence on the computation time and memory requirements is the size of the evaluation grid n³.

The RVEs shown in figures of this paper are generally generated with n = 60, except for some that required a higher

resolution and use n = 100 ( figures 16 and 17 ). The number of inclusions of the initial packing also has an

influence on some parts of the process. For instance, a higher number of inclusions in the packing will induce more

"local" versions of level set functions to be computed ( without requiring storage, see section 3.3 ). The memory

requirement is quite easy to evaluate and is generally not an issue. The major part of the needed storage is used for

discretized functions ( level set functions and operators ). As a reference, one such function requires 8 Mb in

memory for a 100³ grid. Depending on which RVE type is generated and how the generation process is

implemented, between 10 and 20 functions of this type would be required, which lead to a rather affordable memory

requirement ( 80 Mb … 160 Mb for n = 100 ). The number of functions that have to be stored in memory does not

depend on the number of inclusions in the initial packing, as each computed DS
i

can be incorporated directly in

function DN
k

and can be forgotten before computing the next one. All the useful values of this function are

accessible in DN
k

and can be retrieved when required, thanks to function NN
k
. One should then not hesitate to

isolate terms of functions in separate variables to clarify the implementation and to ease modifications. Some

memory is also required for the extracted geometries, however it is generally small compared to the storage of

discretized functions, and strongly depends on the generated geometry. Considering computation times, three main

types of operations are performed : vector operations on 3D functions to evaluate level set functions, contouring of

3D functions to extract the geometries and distance field computations. The two first are generally quite light, while,

depending on its implementation, the third can have a major influence on the computation time. If a distance

transform method is used, this process can remain cheap. It however requires having a level set representation of

the inclusions in the initial packing, which may not be the case depending on the inclusion shape generation

method. One should also keep in mind that such methods may be inaccurate, even slightly, and could lead to some

issues. As a counterpart, exact Euclidean distance evaluation methods can be used but are expensive in 3D. Such

a method was used in the present implementation and appeared to be the determinant operation limiting the size of

grids used. However, these computations are part of the initialization steps and do not have to be redone for every

geometries. For example, for a given initial inclusion packing, once all DS
i
have been computed and stored in DN

k
,

all variations of foam morphologies can be performed without doing anything else than vector operations on 3D

functions and contouring. Both are quite fast for the grid size used and permit a quasi real‑time work. It is worth to

recall that if the inclusion packing generation method presented in [ 55 ] is used, the function DN
k

are evaluated

during the generation process. Functions DS
FOAM

and DS
COAT

are also computed as an initialization process and

several generation trials can be done without recomputing them.
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7. Conclusion
In this paper, a general approach was introduced to generate RVEs for cellular materials using distance and level

set functions. In this methodology, signed distance fields of inclusions of an initial inclusion packing are used to build

neighboring distance functions DN
k

which allow building every level set functions used for the generation process.

Several ad­hoc level set functions are formulated to obtain different microstructure morphologies.

First, similarly to our early developments in [ 55 ], the "Voronoï" level set function O
V

is introduced to build

arbitrary‑shaped tessellations from the initial inclusion packing. This function alone is used to produce closed‑cell

foam RVEs and intermediate situations between a cellular material and a corresponding inclusion‑based porous

material through the inclusion distribution that generates the tessellation. Then the "Plateau" level set function O
P

is

introduced and used to extract open‑cell foam RVEs with triangular Plateau border sections. A multi level set slicing

operation is then described to avoid problem with sharp edges of Plateau borders at the contouring stage.

Then some operators are proposed to modify the level set functions to generate more subtle Plateau borders

shapes. First O
V

and O
P

are combined in a weighted averaging procedure to build intermediate situations between

fully open and fully closed cell foams. Then a curvature modifier O
K

is formulated to control the curvature of the

generated Plateau borders. Finally, a way to combine two ( or more ) geometries before the contouring stage is

shown to extend the range of possible morphologies.

A procedure to introduce a controlled variability on parameters governing the resulting geometries morphology was

explained, either randomly or based on local properties such as wall / strut orientations.

Coated foams were also considered. The signed distance to the generated foam DS
FOAM

is used to generate a

coating phase on a foam. We described a specific operator O
R

used to generate coating phases presenting an

over‑thickness near sharp edges of Plateau borders. Hollow struts of metal‑coated polymer foam can also be

generated together with an associated function that can be used to map the material parameters of a model with the

distance to the surface to reproduce potential variation in the composition of the coating, as for example, those

described in the particular case of Ni‑Fe‑Cr foams [ 10 ].

Future work is still required to further assess the relevance of the generated geometries. In particular, the

morphology of numerical samples should be compared with those of real samples with well established quantitative

descriptors. We provided for this purpose the basic ideas that can be used to access these parameters with two

different approaches. We emphasized that level set functions produced by the generation process can be used as

dummy density maps and the geometry they describe can be analyzed by classical softwares for 3D tomography

data post‑processing. A part of this future work should be dedicated to figure out efficient ways to impose a priori

some morphological properties of the foam directly as an input of the generation process, instead of having to reach

them by a trial‑and‑error approach.
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a) b)

Fig. A1 : 2D example packing. a) General view. Grey lines are Φ
Θ

while bold black lines are the Plateau borders extracted with O
P
.

b) Zoom on Plateau borders shared by inclusion 1 and 2. The plain black line is the level set of IO
P1

while the dashed line is the
level set of OO

P1
used to slice the former. The bold lines are the curves remaining after the slicing, black dots are the sharp edges.

Appendix 1
The Plateau level set function O

P
used to extract Plateau border geometry is strongly gradient‑discontinuous across

Φ
Θ
. This gradient‑discontinuity is the origin of the sharp edges of Plateau borders, which is a desired feature to be

reproduced in RVEs. Discrete level set functions cannot properly define those sharp edges, nor can contouring

algorithms extract them without additional information. However, in 3D, a closed surface containing sharp edges can

be defined by two ( or more ) level set functions, the sharp edges being defined as the intersection curves of the two

( or more ) smooth surfaces they define. The strategy adopted in this work is to define the global geometry as an

assembly of smooth surfaces, one for each bubble of the foam, defined by two level set functions each. The first

level set function, denoted the "inner" function, defines a closed and smooth surface containing the final surface of

interest, the second, denoted the "outer" function is used to slice this surface so that only the subpart of interest

remains. Figure 10 summarized this procedure for an isolated bubble. So, for each inclusion in the packing, local

"inner" and "outer" versions of the Plateau level set function are built to extract each bubble separately. There is no

dedicated formulation for those functions, instead they are built from their original definition (6), but using local

"inner" and "outer" versions of the DN
k

functions, denoted IDN
ki

and ODN
ki
. This appendix gives some more details

on the construction of those functions.

The simple 2D quasi‑regular packing of quasi‑circular inclusions depicted on figure A1a will be used for this

explanation. In this figure, inclusions are rendered with distinct colors for easy identification. Local versions of DN
k

are built for the central inclusion ( i = 1 ), filled with red. The gradient‑discontinuity locus is represented with gray

lines while the Plateau borders extracted from O
P

are drawn in bold black. The figure A1b is a zoom on Plateau

borders shared by inclusion 1 and 2. This particular inclusion couple will be used for explanations, everything being

identical for any couple grouping inclusion 1 with any inclusion j in {2,3,4,5,6,7}. On this zoom, level sets defined by

both "inner" and "outer" version of the Plateau level set function are drawn in plain and dashed black lines,

respectively. The sub‑part of the "inner" level set which is conserved after the slicing by the "outer" level set is bold,

as well as sharp edges ( points in this 2D illustration ). The figures A2a‑d represent the functions DN
1
, NN

1,
DN

2
and

NN
2

for this example packing, NN
k

representations use the same colors for inclusions as figure A1a. As mentioned

before, the explanation will focus on a particular inclusion couple ij, and two domains of interest are defined for that :

A
ij

is the domain where ( NN
1

= i ) & ( NN
2

= j ), while B
ij

is, conversely, the domain where ( NN
1

= j ) & ( NN
2

= i ).

Those two domains are adjacent, separated by a subset of Φ
Θi

and are illustrated on figure A2d for i = 1 and j = 2.

21



a) b)

c) d)

e) f)

g) h)
Fig. A2 : 2D illustration of the patch reorganization described
by equations (8a)­(8g). a) DN

1
(x). b) NN

1
(x). The white bold

line is Φ
Θ1

. c) DN
2
(x). The symbol d denote the distance

between the two closer inclusion. d) NN
2
(x). Domains A

ij
and

B
ij

are illustrated for i = 1 and j = 2. e) IDN
21

(x). f) Origin of
distance values in IDN

21
(x). g) ODN

21
(x). h) Origin of distance

values in ODN
21

(x).

The construction of "inner" and "outer" functions is

detailed here for DN
2

only, leading to the logical

derivation of relations (8b), (8c), (8f) and (8g), the

procedure being similar and simpler for DN
1
. The origin

of the gradient‑discontinuity of DN
2

across Φ
Θ1

is the

change of the second‑nearest inclusion across this

locus ( e.g. successively inclusion 2 then inclusion 1

when going from an arbitrary point in A
12

to another in

B
12

). Graphically, it can be seen simply by noting that

colors on figure A2d depicting NN
2

are not the same in

domain A
1j

and B
1j
, thus values of DN

2
on those

domains are not determined from the same inclusion

distance field, hence the gradient‑discontinuity.

The function IDN
21

should be equal to DN
2

inside IΘ
1

and C1 continuous across Φ
Θ1

, which means that

starting from DN
2
, values of B

1j
domains should be

replaced by the distance field of the inclusion which is

NN
2

in the corresponding A
1j

domain ( inclusion 2 in the

illustrated example ). The definition of domains A
ij

and

B
ij

implies that the inclusion which is NN
2

in A
ij

is NN
1

in

B
ij
, so values of DN

2
in domains B

ij
can be replaced by

values of DN
1

to yield IDN
21

. As, the union of all B
1j

is

the domain where NN
2

= 1, this transformation can be

written as

IDN
21

(x) = DN
1
(x) where NN

2
(x) = 1. (A1)

This can be generalized for any inclusion i to yield

equation (8c) and completed with equation (8b) to

represent the conservation of DN
2

values anywhere

outside B
ij

domains. The resulting IDN
21

function is

depicted on figure A2e, while the origin of distance

values is represented on figure A2f with the same

convention than for NN
k

functions on figures A2b

and A2d. It can be seen on this figure that associated

A
1j

and B
1j

domains are now filled with the same color,

which means that their values are determined from the

distance field of the same inclusions, which ensures the

gradient‑continuity.

The function ODN
21

should be equal to DN
2

on Φ
Θ1

and

C1 continuous across it. However, a minimal

transformation starting from DN
2

and fulfilling those

conditions will also leave the entire OΘ
1

domains

unchanged, altering only values in IΘ
1

in order to

restore the gradient‑continuity across Φ
Θ1

. The strategy

is the opposite to that used for IDN
21

and consists in altering the A
1j

domains in order to fill it with the distance fields

of the same inclusions than distance values in corresponding B
1j

domains. By definition of B
ij

domains, the

inclusion i is NN
2

in those domains and NN
1

in A
ij

domains, values of the latter can then be replaced by values of

DN
1

to achieve the intended transformation. As the union of all A
1j

domains is the domain where NN
1

= 1, starting

from DN
2
, this transformation can be written as

ODN
21

(x) = DN
1
(x) where NN

1
(x) = 1, (A2)
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which can again be generalized for any inclusion i to yield equation (8g) and completed by equation (8f) to conserve

DN
2

anywhere NN
1

≠ i. The resulting ODN
21

function is depicted on figure A2g, while the origin of distance values is

represented on figure A2h with the same convention than for NN
k

functions. It can be seen on this figure that

associated A
1j

and B
1j

domains are now filled with the same color, which means that their values are determined

from the distance field of the same inclusions, which ensures the gradient‑continuity.
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