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Abstract: The goal of this research was to improve wetland classification by fully exploiting multi-
source remotely sensed data. Three distinct classifiers were designed to distinguish individual or
compound wetland categories using random forest (RF) classification. They were determined, in
part, to best use the available remotely sensed features in order to maximize that information and
to maximize classification accuracy. The results from these classifiers were integrated according
to Dempster–Shafer theory (D–S theory). The developed method was tested on data collected
from a study area in Northern Alberta, Canada. The data utilized were Landsat-8 and Sentinel-
2 (multi-spectral), Sentinel-1 (synthetic aperture radar—SAR), and digital elevation model (DEM).
Classification of fen, bog, marsh, swamps, and upland resulted in an overall accuracy of 0.93 using the
proposed methodology, an improvement of 5% when compared to a traditional classification method
based on the aggregated features from these data sources. It was noted that, with the traditional
method, some pixels were misclassified with a high level of confidence (>85%). Such misclassification
was significantly reduced (by ~10%) by the proposed method. Results also showed that some
features important in separating compound wetland classes were not considered important using the
traditional method based on the RF feature selection mechanism. When used in the proposed method,
these features increased the classification accuracy, which demonstrated that the proposed method
provided an effective means to fully employ available data to improve wetland classification.

Keywords: wetlands; multi-source; data fusion; Dempster–Shafer theory; random forest; ensemble
classifier

1. Introduction

Wetlands are critically linked to major issues such as climate change, wildlife habitat
health, biodiversity, and groundwater issues. More specifically, wetlands play important
roles in flood mitigation, water quality protection, and global carbon and methane cycles,
acting as buffers against droughts, protecting coastlines from rising tides and storms, and
being responsible for sediment retention [1–5]. North American and global wetland losses
are estimated to be on the order of 50% since the early 1700s, and nearly 35% of global
wetlands have been lost since 1970 [2–5]. Wetland conservation is well established as a
matter of national and international public policy. Accurate maps of wetland boundaries
and their changes are essential for effective monitoring, and remotely sensed imagery
provides researchers with a means to achieve those goals [6–21].

Remotely sensed imagery has been used to generate wetland maps with various levels
of success [6–22]. High-spatial-resolution remotely sensed imagery has created some of the
most accurate wetland maps with the disadvantages of limited coverage and large time
and resource demands; turnaround times for these products can be years [4]. Wetland
classification using medium-spatial-resolution satellite imagery such as the Landsat or
ASTER series of sensors is common and considered a standard approach [17], with the
best results found when one class dominates the classification area (>30 m2) [17]. However,
studies have shown that, when mixtures of wetland types are of the same order as the
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sensor resolution [17], class separation becomes more difficult. The addition of ancillary
data such as elevation maps and field samples to the classification process of medium
resolution imagery has been found to increase classification accuracies, with accuracies
ranging from 30% to 82%, depending on the techniques used [12,17,23–25].

In most classification publications, only accuracy-related measures were reported.
However, it is also important to examine the uncertainty of the classification results and the
nature of the misclassification [26]. It is common that the uncertainty is high for some of the
misclassified pixels. However, for some misclassified pixels, the uncertainty might be low,
which is more problematic in the utilization of the classification results. The same is true
for the correctly classified pixels but with high uncertainty. In our previous studies [27,28],
where a random forest (RF) classifier was executed on a concatenating set of features
derived from multi-source remotely sensed data, up to 30% of misclassified pixels were
classified with a confidence level of greater than 85%. The results also showed that, for
about 40% of the misclassified pixels, the correct class (ground truth) was found to be the
second choice, and, in some cases, the difference in the posterior probability between the
top two categories was only ~0.05. The method used in our previous studies [27,28] is
commonly used for cover type classification using multi-source remotely sensed data, as
discussed more in detail. An apparent conclusion is that the aggregated features may not
be able to reliably separate the land-cover types of interest. However, this does not mean
that these cover types cannot be separated by those features. With the aggregation, some
features important to separate certain cover types might be masked by others. Classification
may be improved if features are utilized differently. In that vein, one motivation for this
study was to develop advanced methods to reduce these errors by maximizing the usage
of available datasets.

With the wide availability of multi-source remotely sensed data, data fusion techniques
have also been utilized to improve the classification of remotely sensed imagery [29–36].
Generally speaking, data fusion can be performed at the pixel, feature, and decision levels.
With pixel-level fusion, an improved fused image is generated by combining two data
sources [37]. The most notable example is the pan-sharpened image by combining the
low-spatial-resolution multi-spectral imagery and the high-spatial resolution panchromatic
imagery. In this context of image classification, individual data sources are not explicitly
analyzed and potentially not fully utilized with the pixel-level fusion methods. Accordingly,
data fusion at the feature level and decision level is the focus of this study. Feature-level
fusion involves concatenating sets of features before the classification process. Decision-
level fusion involves the merging of decisions from multiple classifiers either with different
features or using different classification methods. The feature-level fusion is the most
commonly used, due to its simplicity and demonstrated success [31,38]. However, the
high dimensionality in the feature space that results from feature-level fusion, even after
feature reduction efforts, is likely to be a concern for applications where the size of training
samples is small [39]. In addition, features derived from different data sources are usually
treated equally by most classifiers (such as RF methods), even though some of the data
sources may be more reliable than others [26]. On the contrary, each data source is analyzed
separately in decision-level fusion, and the uncertainty and imprecision associated with
each data source can be measured and considered in the fusion process. The challenge
with decision-level fusion lies in the selection of propositions for each data source and
effective ways to combine the decisions. In this study, we developed an ‘ensemble classifier’
based on both feature-level and decision-level fusion to improve wetland classification,
henceforth referred to as the ensemble classifier. Below, we describe the motivation for
the method development and its uniqueness compared with existing fusion methods for
remote sensing classification.

A previous study of ours showed that broad class separations are an effective way
of classifying data in a hierarchical fashion [28]. This study showed that different image
features and/or datasets could be tailored, through analysis, to be used at different stages of
classification, within a hierarchy, in order to create superior or more consistent results, when
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compared to previous studies which have relied strictly on the resolution or characteristics
of those inputs to drive splits in those classification hierarchies [40–51]. In the current study,
we leveraged these broad class separations to create two additional classifiers, in addition
to a traditional classifier focused on separating individual classes, to create an ensemble
classifier to best utilize the available datasets for the study area. This was intended to
not only increase classification accuracy but also reduce the number of high-confidence
misclassified pixels through additional observation and analysis (as mentioned earlier). We
propose to combine these classifiers through a Dempster–Shafer (D–S) theory of combined
evidence using the results from the three classifiers, due to its capability of handling
uncertainty [32].

This study is unique in two aspects considering the proposed method and analysis.
For most existing methods related to ensemble classifiers and/or decision-level fusion,
multiple classifiers are employed to deal with identical sets of classes [30,34,52,53]. Our
work fully leveraged the diversified features derived from available multi-source remotely
sensed data to be used in individually designed classifiers with unique class propositions.
Furthermore, prior knowledge on wetland cover types and remotely sensed data used
was also utilized in the selection of features for each classifier, in addition to the data-
driven machine learning approaches that were commonly and exclusively used in most
classification methods. One might argue that hierarchical classification methods effectively
utilized features to separate different categories of cover types. However, the uncertainty
associated with the classifiers in the hierarchy was not addressed [28] and was difficult
to be accounted for in the lower parts of the hierarchy. The D–S theory used in this study
provides an effective means to consider the uncertainty in each classifier. Similarly, to the
argument on rule-based past-processing applied to classification maps, the advantage of
this method in in its handling of uncertainty and avoiding the selection of thresholds in
any rule-based methods. In this study, detailed analysis of the nature of misclassification
was also carried out, which was lacking in the literature [29,30,34,52,53].

It is worth mentioning that deep learning is attracting substantial attention in cover
type classification using multi-source remotely sensed data including but not limited
to wetland classification [40–46]. These developed deep learning methods can also be
categorized as pixel-level, feature-level, and decision-level fusion. Most of them implement
feature-level fusion. The issues discussed earlier on pixel-level and feature-level fusion
for classification also apply to those based on deep learning. Nevertheless, results have
shown classification accuracies which are not dramatically different from those using other
classification techniques. In addition, deep learning techniques generally require very large
datasets in terms of available features and training data, and very large computational
resources. With that said, decision-level fusion methods including the one proposed in this
study can be used together with deep learning networks.

The remainder of the paper is structured as follows: in Section 2, the study area and
images used are described; the methodology including data processing, feature extraction
and selection, and the developed ensemble classifier is documented in Section 3; results
and a discussion are presented in Sections 4 and 5, respectively; in Section 6, conclusions
and future work are provided.

2. Study Area and Images Used

The study area was selected from a location in Northern Alberta due to the availability
of the Alberta Biodiversity Monitoring Institute (ABMI) wetland inventory [54]. Figure 1
illustrates the rough approximate area of interest. This wetland inventory comprises five
different land cover classes (fens, bogs, marshes, swamps, and upland), identified and
mapped out using photo interpreted data [54]. The ABMI wetland inventory is parsed
out in individual study areas throughout Northern Alberta, Canada, each approximately
21 km2 in size. For this study, 10 sites, as shown in Figure 1, were selected because of
the domination by wetland cover types. Collection and analysis for the photo data were
completed in 2016 [54].
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Figure 1. The study area from a geographic perspective together with a Landsat-8 True-Color image 
(RGB Bands 4, 3, 2) and aerial imagery. Individual study areas are highlighted as red polygons, 
drawn from the ABMI wetland inventory dataset on the Landsat-8 image. 

Figure 1. The study area from a geographic perspective together with a Landsat-8 True-Color image
(RGB Bands 4, 3, 2) and aerial imagery. Individual study areas are highlighted as red polygons, drawn
from the ABMI wetland inventory dataset on the Landsat-8 image.
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The land-cover classes identified in the ABMI wetland inventory (bogs, fens, marshes
swamps, and upland) and their detailed descriptions can be found in [47]. Below, the
characteristics of these cover types more relevant to remote sensing data interpretation are
summarized. Bogs are hydrologically isolated peatlands, receiving water from precipitation
only. They are stagnant, with low nutrient availability, and support low biological diversity.
Bogs typically have a low water table, appearing dry at the surface.

Fens are also peatlands, but hydrologically connected. Fens can be nutrient-poor or
-rich, depending on nutrient input from water sources. Fens often have high water tables
and connect wetland systems over great distances. Marshes are mineral wetlands. They
exhibit a variable water table, which can vary throughout the season. Marshes receive
water from a combination of ground water, runoff, and precipitation, as well as through
connecting streams. They are periodically dry, with nutrient-rich soil, promoting the
growth of a diverse range of emergent, grass-like vegetation. Swamps are considered
mineral wetlands, although they may also exist as peatlands in some cases, with woody
plant cover that comprises more than 25% of the total area. Swamps receive water from
a combination of ground water, runoff, and precipitation. Water movement ranges from
stagnant to dynamic. Swamps typically represent transition zones between other wetlands
and non-wetland areas, known as uplands, and support high biological diversity.

The upland class is a broad non-wetland class created by the ABMI in order to encom-
pass non-wetland land covers such as grassy areas, cleared areas, and sparse and dense
forests of various species. This includes upland deciduous, mixed-wood, and coniferous
stands (age classes combined), grassy areas, and shrub areas [54].

For individual study areas shown in Figure 1, ground-truth data were provided in
the ABMI dataset. The number of labeled pixels for each study area was determined from
the size of land-cover plots identified by ariel imagery and ground survey data as per the
ABMI wetland maps. As shown by the example of areas identified as swamp in Figure 2,
the labeled pixels were clustered in areas. In the selection of training and validation data,
the groupings of pixels were maintained. On average, approximately 64% of the identified
pixels were used for training, with the remainder used for validation. These pixel and
land-cover assignments are summarized in Table 1.

Table 1. Land-cover class assignment and the number of pixels contained in the training and
validation set.

Class Number Assigned to Class Number of Pixels in Training Set Number of Pixels in Validation Set

Fen 1 288,343 156,102
Bog 2 36,637 14,479

Marsh 3 25,309 23,416
Swamp 4 109,490 91,510
Upland 5 2,314,364 636,441

Landsat-8, Sentinel-2, and Sentinel-1 imagery represented the primary image sources
used in this study. Attempts were made to acquire imagery close to 2016–2017 to match the
collection dates of the aerial imagery used to create the ABMI dataset. However, additional
images from other dates were also collected in order to create a more robust dataset. It
should also be noted that Sentinel-1 imagery coverage of the study area was not available
until 2017. The Landsat-8 series of sensors collect multispectral optical imagery with a
spatial resolution of 30 m by 30 m across all spectral bands, including bands centered
on the thermal spectrum [55]. All Landsat imagery used was Level 1G, which is both
radiometrically and geometrically corrected.

The Sentinel-2 imagery used was the Level 2A bottom-of-atmosphere reflectance in the
cartographic geometry imagery product. These images have a resolution of 10 m by 10 m
and contain four bands. These bands are centered on 492.4 nm, 559.8 nm, 664.6 nm, and
832.8 nm—blue, green, red, and near-infrared (NIR) respectively [56]. Sentinel-2 imagery
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was chosen due to its availability, higher resolution compared to Landsat-8, and spectral
bands which are useful in characterizing both vegetation and water.
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Sentinel-1 imagery (C-band) had a resolution of 5 m by 20 m [57] and two channels in
VV and VH. Sentinel-1 imagery was resampled to 10 m by 10 m in order to facilitate ease of
analysis with the other imagery products.

Lastly, a digital elevation map (DEM) of the study area taken from the Canadian
Digital Surface Model [58] at a spatial resolution of 30 m by 30 m with an associated DEM
derived slope was used.

In total, three Landsat-8 images, seven Sentinel-2 images, and four Sentinel-1 images
were collected. Table 2 summarizes the dates and types of imagery that were collected for
this study.

Table 2. Summary of satellite imagery collected for this study.

Image ID Imagery Season Date Level of
Processing Accessed From

#1 Landsat-8 Summer 27 July 2015 Level 1G United States Geological Survey
(USGS)

#2 Landsat-8 Fall 15 September 2016 Level 1G USGS
#3 Landsat-8 Fall 10 September 2020 Level 1G USGS

#4 Sentinel-2 Fall 17 September 2017 Level 2A European Space Agency
(ESA)—Sentinel

#5 Sentinel-2 Summer 11 August 2017 Level 2A ESA—Sentinel
#6 Sentinel-2 Summer 2 September 2018 Level 2A ESA—Sentinel
#7 Sentinel-2 Fall 29 September 2020 Level 2A ESA—Sentinel
#8 Sentinel-2 Summer 28 June 2021 Level 2A ESA—Sentinel
#9 Sentinel-2 Summer 1 July 2021 Level 2A ESA—Sentinel

#10 Sentinel-2 Summer 28 July 2021 Level 2A ESA—Sentinel
#11 Sentinel-1 Summer 12 August 2018 Level 1—SLC ESA—Sentinel
#12 Sentinel-1 Summer 27 July 2019 Level 1—SLC ESA—Sentinel
#13 Sentinel-1 Fall 19 September 2020 Level 1—SLC ESA—Sentinel
#14 Sentinel-1 Summer 9 August 2021 Level 1—SLC ESA—Sentinel

3. Methodology

In this study, an ensemble classifier using a feature- and decision-level fusion frame-
work was developed. Leveraging prior knowledge and all available data in the study area,
three classifiers were first designed to reliably distinguish individual or compound classes
among the five cover types (fen, swamp, marsh, bog, and upland), executed in parallel with
one another using a RF classifier, and the results from these classifiers were then combined
according to the D–S theory. The base of this ensemble classifier was the commonly used
(also referred to as the traditional method) feature-based fusion method (Classifier #1) for
the classification of the five individual classes (fen, swamp, marsh, bog, and upland). As
discussed later, with the traditional method, some features known to have high discrim-
inant powers in separating some broad classes (such as wetland and upland) are often
not selected using automatic feature selection methods. This may lead to some confusion
between wetland and upland classes due to the absence of these features. To overcome
this problem, two additional classifiers (Classifiers #2 and #3) were designed to classify
compound cover types. For Classifier #2, two broad cover types were classified—wetland
(fen, swamp, marsh, bog) vs. dry land covers (upland). For Classifier #3 the focus was on
separating more structured land covers (swamp and upland) to less structured land covers
(fen, bog, and marsh). Due to the uncertainty expected from any classification method, the
D–S theory was employed to combine the results from these classifiers.

Figure 3 outlines the overall workflow for our approach, and the details are
described below.
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3.1. Features and Their Derivation

Furthermore, 184 candidate features were derived and are summarized in Table 3. The
calculations and analyses performed to produce these features are described below.

For this study, 11 different types of remotely sensed features were used. They were
vegetation indices, surface albedo, and textual measures derived from multi-spectral im-
agery, surface temperature from the thermal bands of multi-spectral imagery, backscatter
coefficients and derived features from SAR imagery, and digital elevation models (DEMs)
and features derived from DEMs. These features were selected in order to characterize
vegetative activity, water content, radiometric absorption, horizontal structure and rough-
ness, water content of surface objects, and topography. It is worth mentioning that textual
features derived from Sentinel-2 imagery were selected due to their success in the classifi-
cation of land covers in the popular literature [40,59–61] and from our own observations.
This is further expanded upon in Sections 4 and 5. Surface temperature, from our past
study [27], was shown to be useful in classifying wetland types.
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Table 3. Features used during this study and their associated variable index. Reflection is shortened
to “Reflect.” and Sentinel is shortened to “Senti.” M, V, and E correspond to the mean, variance, and
entropy texture, respectively. The number at the end of each feature name refers to the image ID in
Table 2.

Index Name Index Name Index Name Index Name

1 B1 Reflect. #1 47 B3 Senti. 2 #6 93 B4-M-Senti. 2 #6 139 B2-E-Senti. 2 #4
2 B2 Reflect. #1 48 B4 Senti. 2 #6 94 B1-M-Senti. 2 #7 140 B3-E-Senti. 2 #4
3 B3 Reflect. #1 49 B1 Senti. 2 #7 95 B2-M-Senti. 2 #7 141 B4-E-Senti. 2 #4
4 B4 Reflect. #1 50 B2 Senti. 2 #7 96 B3-M-Senti. 2 #7 142 B1-E-Senti. 2 #5
5 B5 Reflect. #1 51 B3 Senti. 2 #7 97 B4-M-Senti. 2 #7 143 B2-E-Senti. 2 #5
6 B6 Reflect. #1 52 B4 Senti. 2 #7 98 B1-M-Senti. 2 #8 144 B3-E-Senti. 2 #5
7 B7 Reflect. #1 53 B1 Senti. 2 #8 99 B2-M-Senti. 2 #8 145 B4-E-Senti. 2 #5
8 NDVI #1 54 B2 Senti. 2 #8 100 B3-M-Senti. 2 #8 146 B1-E-Senti. 2 #6
9 NDWI #1 55 B3 Senti. 2 #8 101 B4-M-Senti. 2 #8 147 B2-E-Senti. 2 #6
10 Albedo #1 56 B4 Senti. 2 #8 102 B1-M-Senti. 2 #9 148 B3-E-Senti. 2 #6
11 Temp1 #1 57 B1 Senti. 2 #9 103 B2-M-Senti. 2 #9 149 B4-E-Senti. 2 #6
12 Temp2 #1 58 B2 Senti. 2 #9 104 B3-M-Senti. 2 #9 150 B1-E-Senti. 2 #7
13 B1 Reflect. #2 59 B3 Senti. 2 #9 105 B4-M-Senti. 2 #9 151 B2-E-Senti. 2 #7
14 B2 Reflect. #2 60 B4 Senti. 2 #9 106 B1-M-Senti. 2 #10 152 B3-E-Senti. 2 #7
15 B3 Reflect. #2 61 B1 Senti. 2 #10 107 B2-M-Senti. 2 #10 153 B4-E-Senti. 2 #7
16 B4 Reflect. #2 62 B2 Senti. 2 #10 108 B3-M-Senti. 2 #10 154 B1-E-Senti. 2 #8
17 B5 Reflect. #2 63 B3 Senti. 2 #10 109 B4-M-Senti. 2 #10 155 B2-E-Senti. 2 #8
18 B6 Reflect. #2 64 B4 Senti. 2 #10 110 B1-V-Senti. 2 #4 156 B3-E-Senti. 2 #8
19 B7 Reflect. #2 65 Senti. VV-#11 111 B2-V-Senti. 2 #4 157 B4-E-Senti. 2 #8
20 NDVI #2 66 Senti. VH-#11 112 B3-V-Senti. 2 #4 158 B1-E-Senti. 2 #9
21 NDWI #2 67 Senti. VV-#12 113 B4-V-Senti. 2 #4 159 B2-E-Senti. 2 #9
22 Albedo #2 68 Senti. VH-#12 114 B1-V-Senti. 2 #5 160 B3-E-Senti. 2 #9
23 Temp1 #2 69 Senti. VV-#13 115 B2-V-Senti. 2 #5 161 B4-E-Senti. 2 #9
24 Temp2 #2 70 Senti. VH-#13 116 B3-V-Senti. 2 #5 162 B1-E-Senti. 2 #10
25 B1 Reflect. #3 71 Senti. VV-#14 117 B4-V-Senti. 2 #5 163 B2-E-Senti. 2 #10
26 B2 Reflect. #3 72 Senti. VH-#14 118 B1-V-Senti. 2 #6 164 B3-E-Senti. 2 #10
27 B3 Reflect. #3 73 DEM 119 B2-V-Senti. 2 #6 165 B4-E-Senti. 2 #10
28 B4 Reflect. #3 74 Slope 120 B3-V-Senti. 2 #6 166 EVI Senti. 2 #4
29 B5 Reflect. #3 75 NDVI Senti. 2 #4 121 B4-V-Senti. 2 #6 167 NIRv Senti. 2 #4
30 B6 Reflect. #3 76 NDVI Senti. 2 #5 122 B1-V-Senti. 2 #7 168 EVI Senti. 2 #5
31 B7 Reflect. #3 77 NDVI Senti. 2 #6 123 B2-V-Senti. 2 #7 169 NIRv Senti. 2 #5
32 NDVI #3 78 NDVI Senti. 2 #7 124 B3-V-Senti. 2 #7 170 EVI Senti. 2 #6
33 NDWI #3 79 NDVI Senti. 2 #8 125 B4-V-Senti. 2 #7 171 NIRv Senti. 2 #6
34 Albedo #3 80 NDVI Senti. 2 #9 126 B1-V-Senti. 2 #8 172 EVI Senti. 2 #7
35 Temp1 #3 81 NDVI Senti. 2 #10 127 B2-V-Senti. 2 #8 173 NIRv Senti. 2 #7
36 Temp2 #3 82 B1-M-Senti. 2 #4 128 B3-V-Senti. 2 #8 174 EVI Senti. 2 #8
37 B1 Senti. 2 #4 83 B2-M-Senti. 2 #4 129 B4-V-Senti. 2 #8 175 NIRv Senti. 2 #8
38 B2 Senti. 2 #4 84 B3-M-Senti. 2 #4 130 B1-V-Senti. 2 #9 176 EVI Senti. 2 #9
39 B3 Senti. 2 #4 85 B4-M-Senti. 2 #4 131 B2-V-Senti. 2 #9 177 NIRv Senti. 2 #9
40 B4 Senti. 2 #4 86 B1-M-Senti. 2 #5 132 B3-V-Senti. 2 #9 178 EVI Senti. 2 #10
41 B1 Senti. 2 #5 87 B2-M-Senti. 2 #5 133 B4-V-Senti. 2 #9 179 NIRv Senti. 2 #10
42 B2 Senti. 2 #5 88 B3-M-Senti. 2 #5 134 B1-V-Senti. 2 #10 180 Senti. DPSVI-#11
43 B3 Senti. 2 #5 89 B4-M-Senti. 2 #5 135 B2-V-Senti. 2 #10 181 Senti. DPSVI-#12
44 B4 Senti. 2 #5 90 B1-M-Senti. 2 #6 136 B3-V-Senti. 2 #10 182 Senti. DPSVI-#13
45 B1 Senti. 2 #6 91 B2-M-Senti. 2 #6 137 B4-V-Senti. 2 #10 183 Senti. DPSVI-#14
46 B2 Senti. 2 #6 92 B3-M-Senti. 2 #6 138 B1-E-Senti. 2 #4 184 VBF-10

Specifically, the vegetation indices used included the normalized difference vegetation
index (NDVI), the enhanced vegetation index (EVI), and the near-infrared reflectance veg-
etation index (NIRv). NDVI is a popular and standard vegetation index sensitive to leaf
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area index, coverage, pigment content of vegetation canopies, and vegetative photoactiv-
ity [62,63]. EVI is defined as

EVI =
2.5× (RB8 − RB4)

RB8 + 6× RB4 − 7.5× RB2 + 1
, (1)

where RB2, RB4, and RB8 are the reflectance at spectral bands 2, 4, and 8, from Sentinel-2
imagery, respectively. EVI was not calculated using Landsat-8 imagery due to early tests
which found that EVI using Sentinel-2 imagery was of a much greater significance during
classification. EVI has been shown to be effective in characterizing vegetation features
such as leaf area index, temporal changes in vegetative activity and resolving vegetation
differences from areas which have complex background surface reflectance [64–66]. NIRv,
a near-infrared reflectance vegetation index, is defined as

NIRv =
RB8 − RB4

RB8 + RB4
× RB8. (2)

Its success in characterizing vegetation in a mixed pixel environment and low leaf
areas has been reported in the literature [67]. Again, NIRv was calculated for Sentinel-
2 imagery only due to its larger significance when compared to NIRv calculated with
Landsat-8 imagery. NDWI works on a similar principle to NDVI but is designed to be
sensitive to water content rather than to photosynthetic activity. NDWI is defined as

NDWI =
RB5 − RB6

RB5 + RB6
, (3)

where RB5 and RB6 are the reflectance in the green and mid-infrared band (MIR), respec-
tively, from Landsat-8 imagery. NDWI was only calculated for Landsat-8 imagery because
early tests showed that, for Sentinel-2 imagery in our study area, NDVI was a much more
significant feature compared to NDWI. The authors of [68] asserted that NDWI is more
sensitive to changes in liquid water content of vegetation canopies vs. NDVI. They [68]
also argued that the effect of atmospheric aerosol scatter effects in the MIR region are weak;
thus, NDWI is less sensitive to atmospheric optical depth compared with NDVI. Due in
part to its success in the popular scientific literature, NDWI is a standard layer product for
the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor [69].

Surface albedo is a measure of reflectivity from a surface, ranging from 0 (full absorp-
tion) to 1 (complete reflectance). A standard approach in determining the surface albedo
using Landsat imagery is through a numerically determined relationship described by
Liang et al. [70,71]. Liang described albedo α using Landsat-5 TM imagery through the
following equation:

α = 0.356α1 + 0.130α3 + 0.373α4 + 0.085α5 + 0.072α7 − 0.0018, (4)

where the subscript on each α represents a band number in a Landsat-5 TM image. For
Landsat-8 imagery the band subscripts were α2, α4, α5, α6, α7 vs. α1, α3, α4, α5, α7 for
Landsat-5.

Surface temperature was calculated for individual pixels from Landsat-8 imagery
using the standard methodology from the Landsat-8 (L8) Data Users Handbook [55].

The textural features were derived from Sentinel-2 imagery, due to its relatively higher
spatial resolution in comparison with that of Landsat 8. The three texture features (mean,
variance, and entropy) were calculated within a window size of 4 × 4 pixels for the four
Sentinel-2 imagery bands, using the standard software suites in ENVI 5.6 [65], and they are
defined in Equations (5)–(7). This window size was determined empirically.

Mean =
Ng−1

∑
i=0

iP(i), (5)
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where Ng is the number of distinct grey levels in the quantized image, and P(i) is the
probability of the occurrence of each gray level [72].

Variance =
Ng−1

∑
i=0

(i−M)2P(i), (6)

where M is the mean as defined in Equation (5) [72].

Entropy = −
Ng−1

∑
i=0

P(i)× lnP(i). (7)

In these equations, Ng is the number of distinct gray levels in the quantized image,
P(i) is the probability of the occurrence of each grey level, and M is the mean as defined in
Equation (5) [72]. In this study, Ng was determined automatically by ENVI through the
available quantization range of the imagery.

The backscatter coefficients in VV and VH, denoted as σvv and σvH, respectively, were
obtained from the calibrated Level 1 Single Look Complex (SLC) product of Sentinel-1 [57].
In order to reduce noise, the enhanced frost speckle filter from PCI Geomatica with a 5 × 5
pixel window was used to filter all Sentinel-1 imagery. The window size was chosen on the
basis of empirical analysis. After processing, the Sentinel-1 imagery was georeferenced to
the Sentinel-2 imagery.

From the Sentinel-1 imagery, we also produced an adaption of the quad-polarization
of the SAR vegetation index (RVI) proposed by Periasamy [73], i.e., the dual-polarization
SAR vegetation index (DPSVI), defined as

DPSVI =
σvv + σvH

σvv
. (8)

This index has been found to be a significant feature in separating different types of
crops and from separating land covers of high vegetation water content from land covers
better characterized by dry biomass.

Additionally, the DEM, DEM-derived slope, and valley bottom flatness (VBF) were
used. Slope was calculated from the DEM using the ENVI 5.6 topographic modeling
function with a 3× 3 window. The DEM and DEM-derived slope were selected to determine
the role geographic features play in distinguishing wetland classes. For instance, it is known
that some species of fens prefer to grow on slopes. VBF was calculated using the open-
source GIS software suite System for Automatic Geoscientific Analysis (SAGA) using the
processed DEM data as previously described. VBF measures the degree of valley bottom
flatness at multiple scales [74]. Large flat valleys are typical of landscapes for wetlands,
once open water has been masked from the data. Experiments were conducted while
varying slope thresholds, where it was found that a slope threshold of 17 produced the
most significant VBF feature. VBF has been found to be a very significant feature in the
classification of wetlands from the ABMI dataset, as reported by the Alberta Biodiversity
Monitoring Institute [54].

As a final note regarding the imagery and features used in this study, in order to
preserve the information from the higher-resolution Sentinel-2 imagery, all images were
resampled to 10 m by 10 m resolution when layers were stacked together.

3.2. Feature Selection

As mentioned earlier, three classifiers were designed in this study, and two feature
selection methods were employed. For Classifier #1 (see details in the next section) where all
cover types were identified, the built-in feature selection mechanism in the RF classification
was used. This was to fully utilize the abovementioned extracted features and maximize
their discriminant power in the classification. For Classifiers #2 and #3, where broad cover
types (compounds of cover types) were considered, the feature selection was conducted
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on the basis of prior knowledge and experimentation. This was applied to maintain the
independency in the features used for these three classifiers to avoid any bias in the fusion
process. Furthermore, it was also noted in a previous study [27] that a subset of an analyzed
and ranked set of features could be outperformed, in a classification setting, by a set of
features selected through a holistic approach. This is further expanded upon in Section 5.

The RF importance value is determined through an iterative exploration of the
dataset [75]. It is computed by summing changes in the percentage increase in mean
squared error (MSE) due to splits on every predictor and dividing the sum by the number
of branch nodes for that tree, averaged over all trees. These calculations are performed on
all input features, with larger values implying that a feature is more significant. Addition-
ally, it was observed from our previous study [27] that there was a plateau in classification
accuracy once a specific number of image features was reached. With the increase in the
number of features in a given classification, it was likely that the redundance among those
features was increased, implying that there is a ceiling to the classification accuracy for a
given dataset. Furthermore, any noise and confliction among a large number of features
might negatively affect the classification accuracy. Keeping the aforementioned in mind,
when selecting sets of features, we were cognizant of identifying the appropriate number
of features in order to avoid redundancy and noise. This is further expanded upon in
Section 5.

3.3. The Ensemble Classification Method Based on the D–S Theory

Our previous investigation [28] showed that, in the context of wetland classification, in
a hierarchical framework, certain features can separate and classify a group of wetland types
more effectively and more reliably when compared to a group focused on distinguishing
individual types. One disadvantage of a hierarchical framework lies in the fact that
the misclassification in the higher hierarchy is propagated to the subsequent levels of
classification. To address this issue, three classifiers with different propositions were
designed and carried out first, and their results were then combined according to the D–S
theory. In this way, the uncertainty associated with each classifier was considered.

In Classifier #1, individual wetland cover types were considered. The classification
propositions were fen, bog, marsh, swamp, and upland. This classifier type is commonly
used; thus, it was taken as the baseline method for comparison. For Classifier #2, two broad
cover types were classified—wetland vs. dry land covers. This classifier would utilize
features which excel at identifying moisture, and flat structural features in pixels such as
water indices, SAR backscatter coefficients, and DEM and its derivatives. For Classifier #3,
the focus was on separating more structured land covers (swamp and upland) from less
structured land covers (fen, bog, and marsh). For Classifier #3 the use of SAR features and
textural features was leveraged given their performance advantages in those areas.

As mentioned in the previous section, for Classifier #1, a suitable set of features were
selected using the RF feature selection method. For Classifiers #2 and #3, feature selection
was conducted on the basis of prior knowledge in the separation of the two broad classes.

The RF classifier is an ensemble, supervised, machine learning algorithm. It operates
by constructing multitudes of decision trees with the ultimate class of a given input deter-
mined by the majority vote from those decision trees [75–77]. With RF, diversification of
the decision trees is accomplished by developing those trees from various subsets created
through bagging or bootstrap aggregating from the training data [76]. RF lends itself well
to parallelization and computational streamlining for investigating the nuances of large
datasets. This has led RF to become one of the most successful and widely implemented
machine learning algorithms to date [75,76]. RF generally requires two main input parame-
ters: the number of trees to grow and the depth or complexity of those trees (p-value). More
trees generally result in higher classification accuracies but at greater computational costs.
However, at some point, increasing the number of trees no longer increases classification
accuracy. Similarly, choosing a tree depth that is too shallow tends to produce trees that
underfit, whereas choosing trees that are too deep will overfit the data. A total of 150 trees
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were used as determined through experimentation. A p-value of 0.05 was determined
using the curvature test, which is utilized with the RF classifier to determine when to
terminate a split in a decision tree. The aforementioned techniques used to determine RF
input parameters is considered to be a standard approach [75–78].

For the results generated from RF classification, not only was the class assignment
for each pixel generated, but also the posterior probability, which was treated as the mass
function within the framework of D–S theory.

The D–S theory is a general framework for reasoning with uncertainty. It allows the
user to combine evidence from different sources and arrive at a degree of belief (a mass
function) that takes into account all of the available, independent, sources of evidence.
Given that the RF classifier works on a majority voting principle, one product it produces
is a confidence value for each of the possible outcomes based on the percentage of votes.
We utilized this confidence value as a measure of belief in that outcome in the context
of the D–S framework. When executing computations with the D–S rule, for each of our
classifiers, we treat it as a proposition in the D–S framework. The D–S rule states that

(A) =
∑B1∩...∩Bn=A m1(B1) . . . mn(Bn)

1− K
, K = ∑

B1∩...∩Bn=∅

n

∏
i=1

mi(Bi), (9)

where m(A) is the mass function of a proposition A after considering n pieces of evidence
(in our case, the different classifiers), mi(Bi) is the mass function in the proposition Bi
supported by the i-th piece of evidence, and K is known as the total conflict factor [79].
As shown in Figure 3, the three classifiers mentioned earlier were first computed using
the RF classification method; their results were then combined using the Dempster rule of
combination under the D–S framework. The final classification was produced by assigning
a given pixel to the class with the maximum mass function. As part of the analysis of
the final classification result, comparisons were made to examine changes in land-cover
assignment, and to see how the number of high-confidence misclassified pixels changed
from the standard classifier (Classifier #1).

4. Results

Table 4 summarizes the features selected for Classifier #1 resulting from the feature
selection method described in Section 3.2, as well as those for Classifiers #2 and #3. On
the basis of these features, the classification accuracies were 87.5%, 88.3%, and 89.5% for
Classifiers #1, #2, and #3, respectively.

Table 4. Features used in each classifier, as determined though our analysis in order to maximize
classification accuracy. Index refers to the image index from Table 3.

Classifier #1 Classifier #2 Classifier #3

Index Name Index Name Index Feature Name

1 B1 Reflect. #1 180 Senti. DPSVI-#11 65 Senti. VV-#11
2 B2 Reflect. #1 181 Senti. DPSVI-#12 66 Senti. VH-#11
3 B3 Reflect. #1 182 Senti. DPSVI-#13 67 Senti. VV-#12
4 B4 Reflect. #1 183 Senti. DPSVI-#14 68 Senti. VH-#12
7 B7 Reflect. #1 184 VBF-10 69 Senti. VV-#13
15 B3 Reflect. #2 21 NDWI #2 70 Senti. VH-#13
16 B4 Reflect. #2 33 NDWI #3 71 Senti. VV-#14
19 B7 Reflect. #2 72 Senti. VH-#14
20 NDVI #2 73 DEM
184 VBF 92 B3-M-Senti. 2 #6
23 Temp1 #2 108 B3-M-Senti. 2 #10
127 B2 -V- Senti.2 #8 115 B2-V-Senti. 2 #5

123 B2-V-Senti. 2 #7
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When examining Table 4, we can note that, for Classifier #1, there were a broad mix
of features from different sources and image types. For Classifiers #2 and #3 (broad class
separations) a more limited and specific set of features were used. It can be further noticed
that the features employed in Classifiers #2 and #3 were mostly excluded from the feature
sets automatically selected for Classifier #1. This demonstrated that important features that
could be used to distinguish compound cover types would not be employed at all using the
traditional feature-level fusion method. Additionally, having different groups of features
utilized in these classifiers indicated independence in their classification results, which is
important within the framework of the D–S theory.

Classification maps generated by the proposed ensemble method for two selected
tested areas dominated by upland and wetland are shown in Figures 4 and 5, respectively,
together with the true-color composite of Sentinel-2 imagery and ground-truth maps. The
misclassification pixels by the traditional method and those that were corrected by the
proposed ensemble method are highlighted in Figures 4D and 5D. Observing Figure 4A,B
and Figure 5A,B, it can be observed that the classification results generated using the
ensemble method were consistent with the ground-truth maps and visual observations. It
can be further noted that the misclassification using the traditional method (Classifier #1)
was clustered in the upland area (Figure 4C) and fen area (Figure 5C), both in locations
with high spatial variation, and the majority of the misclassification pixels were corrected
by the addition of Classifiers #2 and #3 (the ensemble method).

Sensors 2022, 22, x FOR PEER REVIEW 16 of 29 
 

 

 
Figure 4. Classification result of a test area dominated by upland: (A) true-color composite of a Sen-
tinel-2 image; (B) ground-truth-based classification map; (C) classification map using the proposed 
method. Misclassified pixels highlighted in red; (D) Classification map using Classifier #1, where 
the misclassified pixels, which were corrected using the proposed method, are highlighted in green. 

0          200          450 
Meters 

(A) (B) 

(C) (D) 

114o45 W 114o45 W 

114o45 W 114o45 W 

114o45 W 114o45 W 

114o45 W 114o45 W 

65
o 27

 W
 

65
o 27

 W
 

65
o 27

 W
 

65
o 27

 W
 

65
o 27

 W
 

65
o 27

 W
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Sentinel-2 image; (B) ground-truth-based classification map; (C) classification map using the proposed
method. Misclassified pixels highlighted in red; (D) Classification map using Classifier #1, where the
misclassified pixels, which were corrected using the proposed method, are highlighted in green.
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In addition to the visual assessment of the classification results, quantitative analysis
was carried out and the confusion matrices for the traditional method and the Ensem-
ble Classifier are shown in Tables 5 and 6, respectively. In this section, we will focus
on observations from these results, while detailed discussion will be provided in the
discussion section.

Table 5. Confusion matrix of the traditional method (Classifier #1). Rows represent the classification,
while columns represent the reference.

Fen Bog Marsh Swamp Upland Producer Accuracy User Accuracy

Fen 134,845 2212 1753 13,691 3601 0.8638 0.7354
Bog 948 13,186 0 277 68 0.9106 0.7505

Marsh 1502 1 21,182 468 263 0.9045 0.7595
Swamp 721 40 117 8100 173 0.8851 0.1422
Upland 45,327 2130 4836 34,388 549,760 0.8638 0.9925

Overall accuracy 0.875
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Table 6. Confusion matrix of the proposed ensemble classifier. Rows represent the classification,
while columns represent the reference.

Fen Bog Marsh Swamp Upland Producer Accuracy User Accuracy

Fen 145,390 2132 1674 5508 1398 0.9315 0.8267
Bog 668 13,628 0 175 8 0.9412 0.8234

Marsh 822 0 22,200 290 104 0.9481 0.8142
Swamp 534 24 83 8462 48 0.9247 0.3203
Upland 28,445 766 3310 11,986 591,934 0.9301 0.9974

Overall accuracy 0.935

In general, the ensemble classifier incorporating the three classifiers together based
on the D–S theory resulted in an increase in the classification accuracy from 87.5% (the
traditional method, Classifier #1) to 93.5%. Upon closer examination of the results using the
traditional method (Table 5), it can be noted that the producer accuracy was high and fairly
uniform across all land covers. However, the user accuracy was lower; in particular, it was
the lowest at 14% for swamp. When examining the results using the proposed method
(Table 6), it can be noted that the user accuracy for swamps was increased by ~0.18 to 0.32.
In addition, it can be observed that the upland land cover was misclassified the most in
terms of the number of raw pixels and as a percentage of pixels misclassified. This might
be due to the broad nature of the upland class.

Checking the misclassified pixels, it can be noted that, for some, the support (mass
function) for the “wrong” cover type was very strong (over 0.85), indicating a high con-
fidence for the class assignment. However, it was observed that there was a reduction
in the number of high-confidence misclassified pixels from 26222 to 23,588—a reduction
of ~10% using the proposed method (Table 7). These results show that the addition of
two classifiers with compound classes through the ensemble classifier provided value in
increasing the accuracy and decreasing the number of the incorrectly classified pixels with
high confidence.

Table 7. Number of the misclassified pixels with high confidence and their land cover assignments
for the traditional and proposed methods.

Fen Bog Marsh Swamp Upland

High conf. misclassified
Pixels—Classifier #1 9714 604 321 414 20,167

High conf. misclassified
Pixels—the proposed method 6608 505 265 348 15,370

To further examine the improvement in individual land-cover classification provided
by the ensemble classifier, tables to show changes in the pixel assignments for each cover
type were generated (Tables 8 and 9).

It can be noted from these tables that the majority of misclassified pixels, across all
classes, which were reclassified by the ensemble classifier, were moved to the upland class.
Of additional note, a large number of pixels originally assigned to swamps were moved to
other classes, including the upland class. This movement in the assignment of pixels would
also explain the large increase in user accuracy for swamps by the proposed ensemble
classifier. Among these misclassified pixels with their assignment changes, some of them
were classified correctly using the proposed method, while some were still misclassified,
and the correct class had the second strongest support from the evidence. However, for
some in the latter group, the classification uncertainty was high. That is, for these pixels, the
largest mass function was not significantly different from the second largest one (difference
between 0.05–0.10), leading to large uncertainty class assignment. These pixels were also
summarized, as shown in Table 9.
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Table 8. Matrix showing the assignments using the proposed ensemble classifier in comparison with
Classifier #1 (the traditional method) for all pixels with changes in class assignment. Columns are the
land covers that a misclassified pixel was first assigned to from Classifier #1. The rows correspond to
the land cover that a pixel was assigned to by the ensemble classifier.

Final Land Cover

Fen Bog Marsh Swamp Upland
In

it
ia

lL
an

d
co

ve
r

Fen 0 9 11 60 4918
Bog 0 0 0 1 204

Marsh 0 0 0 2 336
Swamp 15,394 868 614 0 18,180
Upland 1206 69 134 43 0

Table 9. Matrix showing pixel assignments by the proposed ensemble classifier in comparison with
Classifier #1 (the traditional method) for a subset of the pixels shown in Table 7. For the pixels shown
here, the correct class had the second largest support from the evidence, but the largest and second
largest mass functions were similar. Columns are the land covers that a misclassified pixel was first
assigned to from Classifier #1. The rows correspond to the land cover that a pixel was assigned to by
the ensemble classifier.

Final Land Cover

Fen Bog Marsh Swamp Upland

In
it

ia
lL

an
d

co
ve

r

Fen 0 1 2 28 4903
Bog 0 0 0 0 204

Marsh 0 0 0 2 333
Swamp 7125 114 182 0 17,482
Upland 708 22 34 10 0

5. Discussion
5.1. On Feature Selection and Selected Features for Classification

In this study, the selection of features for Classifier #1 followed a standard data-driven
machine learning methodology, which is commonly used. The features for Classifiers #2
and #3 were manually selected, following a holistic approach, similar to that presented in
a previous paper of ours [27]. From a holistic standpoint, we selected families of features
which, by design, were best suited for class separation sought for each classifier, while
ensuring the independence of these classifiers required by the D–S theory. The design of
Classifiers #2 and #3 in terms of class propositions was to fully utilize the available datasets.
It was observed that, for Classifier #1, most features selected were from optical imagery.
For instance, backscatter coefficients and related indices from SAR imagery and water
indices from optical imagery were known and, thus, identified for Classifier #2 (separating
wetlands from upland covers), while backscatter coefficients from SAR imagery and textural
features from optical imagery were identified for Classifier #3 (separating structured from
less structured land covers). Through feature analysis and experimentation, we were able to
determine a set of features which maximized the classification accuracy for those classifiers.
As an interesting note, in the previous study [27], we reported that there were many
instances where a set of holistically determined features actually produced more accurate
classification results when compared to sets of features selected through quantitative
analysis. In this study, we also observed the same phenomenon when determining feature
inputs for Classifiers #2 and #3. These results may call for an integrated knowledge-based
and data-driven feature selection method. These results also confirmed our belief (briefly
mentioned in Section 1) that simple feature-level fusion for classification using multi-source
remotely sensed data might underutilize some features.

From an imagery standpoint, it was noted that there was no clear correlation between
the collection dates of the imagery and their significance. Intuitively, imagery closer to 2016
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(the collection date of the aerial imagery used to create the ABMI plots) should be of greater
significance but this was generally not the case. Landsat imagery from 2015 and 2016 was
more significant when compared to the collection from 2020, while, for both Sentinel-1 and
-2, there was no clear correlation. This might indicate that features of these cover types
exhibited in Sentinel-2 SAR imagery were not highly dynamic. It was also suspected that
factors such as atmospheric attenuation and inter-year variations in water levels were due
in part in driving these differences.

By exploring images, it was also noted that classification accuracies from inputs strictly
drawn from Landsat-8 images produced accuracies which were higher when compared to
classification experiments where inputs were strictly drawn from Sentinel-2 images. This
was counter-intuitive. It would be expected that inputs with higher resolution would result
in higher classification accuracies. However, upon further analysis, it was noted that the
land covers considered in this study were broader when compared to other land cover
maps which have more narrow class definitions [80]. In previous studies, by virtue of data
availability, land covers such as fens and bogs were parsed further into treed and non-treed
versions of those land covers. For those datasets, the higher-resolution imagery might have
provided the expected accuracy increases; however, with this ABMI dataset with broader
classes, it is suspected that the high spatial resolution of the Sentinel-2 images might have
introduced more variability among cover types, which made the classification it more
difficult. Lastly, during these experiments, it was noted that the classification accuracy
when using only individual datasets was some 5–8% lower when compared to classification
accuracies from multi-source remotely sensed data, which is consistent with the literature.

5.2. On Misclassified Pixels

The core of this study was the development of the ensemble classifier in an effort to
increase classification accuracies while also reducing the number of the incorrectly classified
pixels with high confidence. The prevalence of misclassified pixels of high confidence (>85%
certainty in assignment) and misclassified pixels which had the correct land cover class
as the second highest ranked land cover was noted in this study with Classifier #1 (the
traditional method). As shown by the results, these issues were overcome by adding
two classifiers in the proposed ensemble classifier to a certain extent. Examining the mis-
classified pixels using the proposed method, it was noticed that the three classifiers were
not always in agreement with one another, as shown in Table 10. It was further noticed that
the misclassified pixels with high confidence were located at the transition zones between
cover types, as shown in Figure 6. This intuitively and physically makes sense since the
transition from one wetland cover type to another is fuzzy in nature [81].

Table 10. Land-cover breakdown of the misclassified pixels where two classifiers disagreed or
all disagreed.

Fen Bog Marsh Swamp Upland

Two Disagree 6817 150 235 523 27,402
All Disagree 752 8 76 1 7330

In addition to the transition zones where these classifiers tended to conflict with each
other, pixels with disagreement among classifiers were also within in the areas with high
variability according to a visual examination, as shown in Figure 7. This would drive
variations in features, which in turn could then contribute to the variability in the outcomes
of the different classification propositions. Additional information may be needed to further
solve this confliction.
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image; (B) classification map using the proposed method with the misclassified pixels highlighted in red.
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The misclassification involving upland may also be due to the fact that the upland
class was very broad and encompassed a great deal of different land-cover types, which
led to large variations in the selected features for it. As an example, Classifier #3 was used
to classify structured and nonstructured cover type. Upland was included in the structured
class, considering the domination of trees and shrubs in this class. However, there were
also nonstructured cover types in this class. To mitigate this, we attempted to split the
upland class to two subclasses during the decision-level fusion process according to the
D–S theory. However, there was no real improvement in the results (not shown). The best
strategy was to separate upland to different categories, which was not attempted due to
the lack of training samples for detailed upland cover types.

5.3. On the Proposed Ensemble Classifier

The overall classification accuracy of the proposed method was 0.93. When compared
to other studies, it was noted that this accuracy was greater or comparable with those
obtained for land-cover classification using multi-source remotely sensed data [34,82–84].
In addition, the proposed method was less complex than some of these studies. It should be
stressed that we could not find classification studies of our study area which used a decision-
or feature-level fusion framework for direct comparison in the literature; furthermore, all
of the comparable studies we found used different datasets or combinations thereof, for
both the land-cover maps and the remotely sensed imagery used. However, it can be noted
that the ABMI conducted its own classification studies of its own dataset using Landsat-5
and Landsat-8 imagery, with an RF classifier; the classification accuracies were around
0.8–0.85 [54].

A direct comparison was carried out in this study with the traditional classification
method based on feature-level fusion using multi-source remotely sensed data (Classifier
#1). Results were presented and discussed in the previous sections. The improvement
of the proposed method over the traditional method relied on its effective utilization of
available datasets and features. As previously mentioned in Section 1, features that can
be used to separate certain cover types might be excluded by considering all cover types
together, such as the features derived from SAR imagery and DEM. The inclusion of these
features otherwise excluded in Classifiers #2 and #3 led to an increase in in user accuracy
of the swamp class by ~18%. It was also noted that, in Classifier #1, the impact of the SAR
imagery was lower when compared to it being utilized in a classifier focused on broader
class separations. When combined in the ensemble classifier, the value of this imagery was
better utilized.

In total, the proposed ensemble classifier provided a framework to effectively utilize
the best available data in order to support wetland classification. In this study, while an RF
classifier was employed, other classifiers could be utilized. We experimented with support
vector machine (SVM) and naïve Bayes classifiers, where we found that the overall accu-
racies were generally lower (by ~5–8%), but the computation times were greatly reduced,
compared to similar RF tests, in some cases by over 80%. The additional classification
accuracy gained by using RF was obtained at a considerable computational cost.

The proposed ensemble classifier combined the strengths of various types of remotely
sensed data in the differentiation of wetland cover types. This same principle could be ap-
plied to the classification of other cover types. The three classifiers were designed parallelly
and independently, even though the same classifier (RF) was used. The idea of designing
two classifiers to classify broader cover types was inspired by the hierarchical classification
methods including our own work. As mentioned earlier, with hierarchical classification
methods, the errors/uncertainties in the higher hierarchies are often not considered in the
lower ones; thus, error propagation is the biggest problem. With the proposed method
in this study, the uncertainty associated with these classifiers was explicitly considered
under the framework of the D–S theory and, thus, solved the error propagation problem
in hierarchical classification. In the same vein, this study expands the literature on the
utilization of the D–S theory. Even though the D–S theory is powerful conceptually, its
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application is not trivial, especially in the determination of the mass functions, including
the selection of propositions of non-zero mass functions. As mentioned in Section 1, in most
studies based on the D–S theory, identical sets of classes were often employed for different
classifiers [30,34,52,53]. Different prepositions were considered for the three classifiers in
this study, and they were selected according to prior knowledge of the wetland cover types
and remotely sensed data. Not only did this result in higher classification accuracies but it
also provides us a framework for future work where we can more easily explore subclasses,
class overlaps, and unknown classes.

The usage of prior knowledge in the designing of Classifiers #2 and #3 was also one
of the disadvantages of the proposed approach. In this study, the categories and features
were selected manually. This may not be practical for studies dealing with a large number
of cover types. Ideally, a knowledge-based automatic approach would be preferable. This
will be pursued in future work.

Lastly, the ensemble classifier in its current form has not been successful in dealing
with cover types with great diversity such as the upland class. Even though it is ideal
to separate such cover types into different several classes during the training process, it
might not be realistic due to the difficulty in the selection of training samples. Our initial
experiments where we tried to separate two subclasses during the decision-level fusion
process did not show accuracy increases or effective or consistent class separation. Future
versions of this classifier will have to address this.

6. Conclusions

An ensemble classification methodology combining three classifiers based on the D–S
theory was developed and tested on a study area in Northern Alberta. Classifier #1 was a
traditional feature-level fusion method for classification using multi-source remotely sensed
data where all land-cover classes were classified together. The other two classifiers were
focused on compound cover types. With Classifier #2, wetland cover types (fen, bog, marsh,
and swamp) and dry land covers (upland) were considered, whereas, with Classifier #3, the
focus was on the separation of less structured land covers (fen, bog, and marsh) and more
structured ones (swamp and upland). Features used for classification were determined
using the analysis of RF feature significance for Classifier #1 and through a more holistic
approach for Classifiers #2 and #3. Use of a holistic approach for feature selection was
not traditional; however, on the basis of prior knowledge and experimentation, we were
able to select a set of features for Classifiers #2 and #3 which produced high accuracy
when compared to a strict feature significance analysis approach. This also mimicked the
results observed in past studies [27]. Once each classifier was computed, those results
were combined using the Dempster’s combination rule. Results showed that the proposed
ensemble classifier increased the classification accuracy from 0.88 to 0.93, compared with
the traditional classification method (Classifier #1). Additionally, it was noted that there
was a reduction of ~10% in the number of the misclassified pixels with high confidence,
which provides additional assurance in the quality of the classification results, something
which is generally not explored in this style of research.

The proposed approach provided a framework to intelligently utilize available re-
motely sensed data for wetland classification, which could be employed for other cover type
classification. Incorporating data-driven machine learning and knowledge-based holistic
methods, different propositions were designed; thus, different features were selected for
these three classifiers to maximize their discriminant powers in the classification of these
wetland cover types (individually or in combination). As detailed in the discussion, this
made this framework unique compared with most studies based on D–S theory reported in
the literature. In addition, compared with hierarchical classification methods, the proposed
ensemble classifier’s advantages were enhanced by selecting different features to classify
different classes, while its weaknesses were addressed by explicitly taking into account the
uncertainties of different classifiers.
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Even though the holistic knowledge-based method was successful in the design of
Classifiers #2 and #3, prior knowledge could be utilized in a more explicit and automatic
fashion, enabling the proposed method to be employed as a general framework in wider
applications. This will be endeavored moving forward. With the current approach, ad-
vanced features derived from the available datasets will be further explored, and more
classifiers will be added. Additional testing will be also carried out by expanding the study
area to the remaining parts of the ABMI wetland inventory. Other data sources, such as
RADARSAT-2 and LiDAR images, will be considered.
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