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A local continuum solvation theory, exactly treating electrostatic matching conditions on the
boundary of a cavity occupied by a solute particle, is extended to cover time-dependent solvation
phenomena. The corresponding integral equation is solved with a complex-valued
frequency-dependent dielectric functietw), resulting in a complex-valued-dependent reaction

field. The inverse Fourier transform then produces the real-valued solvation energy, presented in the
form of a time correlation functiofiTCF). We applied this technique to describe the solvation TCF

for a benzophenone anion in Debyacetonitrile and two-mode Debyddimethylformamide
solvents. For the Debye solvent the TCF is described by two exponential components, for the
two-mode Debye solvent, by three. The overall dynamics in each case is longer than that given by
the simple continuum model. We also consider a steady-state kinetic regime and the corresponding
rate constant for adiabatic electron-transfer reactions. Here the boundary effect introduced within a
frequency-dependent theory generates only a small effect in comparison with calculations made
within the static continuum model. @998 American Institute of Physics.
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I. INTRODUCTION comes decisive: Being combined with modern quantum-
chemical calculations they allow a precise description of

~In the present work we consider time-dependent SolVag|ecironic structure and charge distributions in chemically
tion phenomena in polar media in terms of a refined con-

! . ) - nontrivial solute species, whereas all recent molecular treat-

gnu;_rr; .m?ddlurr::) rr;}odgl. The correfspondmg Iex%e;;menta ents invoke crude solute models and concentrate on a de-
at Include both o §eryat|ons of time-resolve uores'scription of the details of solvent structure.

cence spectréStokes shiftsin polar solvents and the more

traditional ts of elect ¢ &1 Kineti Two types of effects must be incorporated in a time-
raditional measurements of electron trand@e) kinetics. fgependent continuum theory so that may become satisfactory
r

For the last decade Se"e“’?" theoret|_cal approa(_:hes " Ehls fie studying solvation dynamics. We shall refer to the first
have been tested. They include direct MD simulati&§, " »
ne as the “boundary effect” and the second one as the

the computations of spatial pair correlation functions base effect of solvent structure.” The first effect can be formu-

on interaction site model6.e., statistical equilibrium theo- s L .

. . 22 - lated within the Born-Kirkwood-OnsagdBKO) solvation

ries), extended to cover time dependenté?dynamical de- . . o o .

velopments of the mean spherical approximatiSA)2>-25 model. This static treatment mimics equilibrium solvation as
result of purely electrostatic interactions between a solute

a nonlocal continuum theoR}, and other semianalytical . ) . :
treatment£:2’-3All these approaches represent rnicrOSCOpiCcharge density, contained in a cavity, and the solvent polar-
ization induced by this charge in the continuum medium out-

molecular solvent theories at various levels of sophistication:.

It is commonplace to claim that continuum medium modelsSide the cavity. With a single medium parameter, the static
are incapable of adequately treating solvationdielectric constant,, the BKO model may be successfully

dynamics-6.2427:3934The basic motivation is that, for De- applied for complicated solutes of arbitrary size and shpe.
bye solvents, the continuum theory predicts monoexponenThe electrostatic problem to be solved is the Poisson equa-
tial kinetics for solvent relaxation from an instantaneoustion with relevant matching conditions for its solution on the
change in the solute charge distribution in ionic solutes. Thigavity boundary. Efficient techniques for numerically calcu-
contradicts both experiment and the abovementioned micrdating this solution are well developed for the static c#se.
scopic treatments. Such an approach has also been extended to treat, still at a

The objective of our work is to demonstrate that reasonstatic level, nonequilibrium solvation effedts*® and has
able modifications of the conventional continuum solventbeen used in computing free energy surfaces and
model enable one to overcome this deficiency. The thus improfiles®***~**When proceeding to a dynamical treatment,
proved continuum theories are able to qualitatively monitorthe exact electrostatic boundary conditions have always been
the same picture of polar solvent dynamics as do moleculafreglected because of technical difficultes, although a formal
theories. Then, by properly adjusting the model parameterieory matching time-dependent electrostatic fields on the
(a feature which is common for both molecular and con-boundary has been report#dSo, the development of a dy-
tinuum modely experimental dependencies can be well re-namical BKO theory, for correctly treating the boundary
produced. With this background the following important conditions(which till now has been readily available only at
(usually disregardecadvantage of continuum treatments be-a static leve), is necessary.
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The second effect appears due to an incorporation oplied in our work. The two types of TCFs needed to describe
elements of solvent structure in the continuum model. Thighese two experimental situations are derived within the
can be done in the framework of nonlocal electrostdfic®  framework of a unified linear response picture for describing
The time-dependent nonlocal theory of Stokes shifts hasharge redistribution within the chemical objects under ex-
been reported It was based on an approdci*®where ex- amination. The logical structure of this approach, common
cluded volume effects were not explicitly considered. At-for both local and nonlocal background theories, is exposed
tempts of an accurate treatment of cavity effects within an Sections IlI, V, VI. Most immediate applications are con-
static nonlocal theory have been announted® Their dy-  sidered in Sections V and VI at the local BKO level.
namical development is in order.

It must be emphasized that a nonlocal approach is in
practice available only for spherically symmetrical objects.l"”EI?EUEF?IRIUM S%EVATI\I/IORI\IEIIEDFRFEECETI\ISTIA\IT'IA N
For such cases the BKO boundary effect vanishes. Indeed, CTRIC CO uu S ©
for a spherically symmetric ion the BKO model comprises a et us provide a continuum calculation of the solvation
simple Born treatment which, being extended to the descripenergy as an example. Only longitudinal fields are consid-
tion of time resolved Stokes shifts in Debye solvents, is wellered. The basic linear response relation connecting the solute
known to yield (in conflict with experiment a single- charge density(r) (a “force”) with the induced medium
exponential kinetic evolution with a characteristic time, reaction field®(r) (a “response’) reads
the longitudinal relaxation period. This means that at the N
present technical levelspherically symmetrical solutes D(r)=Kp(r), 2.1
v_vithin a nonlocal electrostatic treatmetite two abovemen- \ynarek is a linear integral operator with kern(rr’); the
tioned effects appear as mutually complementary ones: Thg,responding explicit representation of this operator relation
first brings an influence of boundary matching conditions for;g
nonspherical cavities and solute charge distributions, the sec-
ond introduces elements of internal solvent structure in de- _ 3, / ,
scribing the solvation of simplified solutes reduced to spheri- (I)(r)—f K re(r). @2

cally symmetric models. We shall ideK lized tibilit ¢

An important simplification inherent to the linear re- © s,a_ consider as a generalized Susceplibiity operator,
sponse approach is that the relevant dynamic dependenciKér’r ) is th? corresponding no_n_local su_sc_ept|b|I|ty kernel.
. . CIRS many typical cases an explicit descriptid®.2) of the
can be deduced as a straightforward extrapolation of equilib- g ) : ) .
rium equations of the corresponding static theory. This facpperatorK IS unavailable In pract|ce;. an aItgrnaUve IS pro-
was emphasized and utilized independently for application th'ded by a Imgar conjputanongl aIgonthm which numerlca!ly
nonstationary kinetics with stepwise initial conditiois the fePreSg”tS this relation. For instance, in the BKO solvation
context of the MSA treatment of time-dependent StokeéﬁOdeF ‘we treat the solvent as a q]electnc continuum with
shift<?3) and also for deriving the steady-state KGH kineticsdi€lectric constant, and susceptibilityyo
of ET (in the framework of a simple continuum ET the®y 1
Later this idea was widely exploitéd:?>2"3*39ts most re- Xo=7-(e0—1). 2.3
cent applications*4**have some features in common with
the present dynamical treatment. In their practice these thed-his continuum fills the whole space outside the cavity oc-
ries focus on the account of the first of two effects, classifieuPied by the solute. With the cavity surface denotedSby
above as a local BKO boundary effect. The present articléVe use the notatiol; and V. for the volumes inside and
also reports only BKO calculations. The novel methodicaloutside ofS, respectively. In the BKO theory the solute
element in an incorporation of the tinfer frequency de- ~ chargep(r) induces a charge density(r) on the surfaces
pendent linear-response methodology in a standard nume@nd the reaction field(r) is defined as its potential
cal BKO SCRF procedur®& This makes practically available a(r')
the computations of time-correlation functioGECFs for ‘D(r)Zf d?r’ |
real chemically interesting objects of complicated shape with s
their charge distributions found in a direct quantum-chemicalGiven a charge distributiop(r), the surface charge(r) is
treatment. The extention of this technique to treat the seconfibund as a solution to a linear integral equation containing
effect (the solvent molecular structyrén the frame of a p(r). The symbolic relation(2.1) then means: Solve this
nonlocal theory will be a subject of a future publication.  integral equation and apply formu(2.4).

The kinetic regimes we are going to investigate cover  Another example of an algorithmic application of the
two types of solvation dynamical experiments. First, welinear relation(2.1) is a nonlocal dielectric continuum theory
study the kinetics of medium relaxation in the vicinity of an with a cavity®>®! Here the field®(r) is created by a com-
instantaneously created ion in a polar solvent. The other rebination of a surface charge(r) and a charge distribution
gime corresponds to a steady-state kinetics typical for ETg(r) which is induced in the bulk medium outside the cavity
rate measurements, in which the role of initial conditions is ,

. : . . g(r’)
suppressed. This case is conventionally treated in terms of q>(r)=f d3r’ —
the Kramers-Grote-HynedKGH) theory® which is also ap- Ve r—r’|

(2.9

| g(r)=0(r e Vj). (2.5
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The input medium characteristic is now the dielectric suscepA simple example of an application of the basic relati8ri)
tibility kernel x(r,r’), a nonlocal counterpart of the static is a linear response estimation of the time-dependent solva-
susceptibilityxy (2.3). It is defined as tion energy(more precisely its interaction compongmle-

r=r'D reV, fined as

X(r=19 "t or r'eV;

us(t)=f d3rpod(t). (3.3

The surface charge(r) and external charge densig(r)
are found as a solution to the corresponding integral equatiofifhe r-dependence of relevant field quantities is suppressed
containing x(|r—r’]). Usually a parametrization of this for brevity here and in the forthcoming text unless this leads
quantity is performed in terms of its Fourier transfogitk),  to confusion) In Eq. (3.3) ®(t) is a time-dependent reaction
we then obtainy(|r —r’|) as an inverse Fourier transform. field describing the relaxation of an instantaneously created
The corresponding computation at the present moment ifuctuationd(t=0) to an equilibrium valug given by Eq.
only availabl@®5! for spherically symmetrical solutes with (2.1)
x(K) given as a sum of Lorentzian mod@¢>48 ®.=R 3.4

The equilibrium solvation energy in continuum theory 0= RPo- 3.4

has the same expression for the both models discussed abolge dynamic quantity of main interest, the fieki(t), is
obtained in terms of the basic equati®1) via an inverse

U0=£ f d3rp(r)d(r), (2.7  Fourier transform. i
2 An explicit expression for the dynamical operaifw)
where the integration is actually performed only over theis hardly available but we can construct its matrix represen-
internal volumeV; because of an obligatory constraint im- tation. The method for doing this follows earlier reasoning
posed on the solute charge density applied in the static casé>° We introduce a basis set of
relevant charge distributions,,(r) which is implied to be

p(r)=0(reVe). 2.8 sufficient for describing the evolution of the solute charge
Before proceeding to a discussion of the time dependence efensityp(r|w)
the solvation energy we have to eliminate its inertialess high- o
frequency component).. which is specially calculated by p(r|@)=2, pap(r)Map(@)=({p[m(w))), (3.5
the same scheme described above ab

P..(r)=K.p(r),

(2.6

wherem,,(w) are expansion coefficients determined by the
(2.9  conditions of an experiment. We have collected here the ba-

1 sis densities in a row-vectdt p|
Ux=§ Jd3rp(r)d>x(r). _
{(pl=(p11.p22,--- P12, - - ) (3.6
The operatorK.. differs from operatoK of (2.1) only by  and the expansion coefficients in a column-ve¢tofw)))
changing the static dielectric constang for the high-

frequency constant,, in the integral equation for the surface mMyy(w)
charge density. We assume that the high-frequency permit- mZ%(w)
tivity kernel y..(|r —r'|) is local Im(w)))= = : (3.7

1 M)

Xo(K)=x==7—(ex—1). (2.10 '

(Double indices &b) are used rather than single ones be-

In this instance the procedur@.9) becomes common for cause in practice the basis functiopg, are generated in

both BKO and nonlocal theories. terms of the Cl theoryf °as elements of a transition density
matrix with a special convention choosing cross-indices with
a#b.) The corresponding set of basis reaction fielgg(r)

IIl. THE DYNAMICAL LINEAR RESPONSE APPROACH is constructed in terms of the statiequilibrium) equation

WITHIN A DIELECTRIC CONTINUUM (2.1). We collect them in the row-vector
REPRESENTATION 0 T
{(P|=K{(p|. (3.9

The dynamical theory is based on the linear responsghereby an expansion of the reaction fidiqr|w) which is
relation analogous to Eq3.5) is given by

O(r,w)=T r 3.1 —

()= T(w)p(r]) BD T p(ra)=3 BasrNasl@) = (Bn(0)))

which extends the static equati¢2.1) over the whole spec- ab
trum of frequencyw. The frequency-dependent complex- =R<<p_|n(w)>> (3.9

valued operatofl (w) reduces tK in the static case _ _ o
where|n(w))) is a column-vector of expansion coefficients

T(w=0)=K. (3.2  nyy(w).
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We construct now a set of medium dynamic variableswhereT; ;(7) is the inverse Fourier transform f; ;( ).

Yap by defining their Fourier transforms as The operatofT(7) acts on functions of and is the inverse
Fourier transform ofl ().
Yab(w):j d3r pap(1) D (1| w) (3.10 Such a representation d(t) corresponds to a model
. ) experimental situatidn’ when the charge distributiop; is
and collecting them in a column-vector instantaneously created &t 0. Henceforth we work with a
v J Erloha dimensionless quantity, the solvation TCF
[Y(@))= | d*[p))®(r|w), (319 Ua(t)— U
. _ C)=———"7—. 3.2)
where| p)) is the transpose df p|, Eq.(3.6). By combining Ug(0)—Ug(e)
Egs.(3.9 and(3.11) we obtain It should also be commented that linear response rela-
[Y(w)))=Toln(w))) (3.1  tions like (3.1), (3.;6) represent p.roperties of statistipal av-
, , . erages of dynamical variables liké(t) or Y(t). Strictly
with matrix T, defined as speaking, it is these averageb(t)) or (®(w)) and(Y(t))
. or (Y(w)) which enter the equations of this Section. Their
To= f d®r[p))K{((pl, (3.13  fluctuations are introduced in Section VI in terms of the gen-
o . o ) . eralized Langevin description. At thirue microscopig
which is known as the static reorganization maftié “mi-  |eyel of description the time-dependent solvation energy
nus” sign has been omitted, contrary to the notation of Ref(3.1& is governed by the TCF
39). We can also define the dynamic reorganization matrix
T(w) IO =(Y1()Y12(0)). (3.22

o o We show in Appendix A that this refined treatment gives the
T(w)=J d*r[p)T(w){(p]. (3.19  same result as Eq$3.19), (3.20.

Now, if one rewrites the linear response relati@l) as IV. THE METHODOLOGY OF DYNAMICAL

®(w)=T(0)((p[m(w))), (315 ~ CALCULATIONS

We need now an explicit prescription for evaluating ma-
trix T(w) (EQ.(3.19) in order to proceed to practical calcu-
lations. This prescription is given by the notin? that
[Y(0)))=T(w)m(w))). (3.16  within a linear dielectric continuum treatment based on phe-
Bomenological Maxwell equations, the dynamical equations

then multiplies this on the left byp_)> and integrates, the
result becomes

The relationship between the expansion coefficients is als

established with the aid of E43.12 relating the Fourier transforms of time-dependent field quan-
' tities can be deduced from similar static equations for the
IN(@)))=Ty ' T(w)|M(w))). (8.179  corresponding equilibrium quantitieA similar ansatz also

works in the case of the MS&) The procedure needed is a
imple change of relevant static susceptibilititise linear
esponse coefficientsfor their dynamical counterparts,

which are complex-valued functions of frequenay.

Ug(t) —Ug(t=2)=Y14(t) = Y12(0=0). (3.18  Thereby, the dynamic operatdw) (3.1) is obtained from

Here we have assumeg=p,; and have definef,,(t) as  the static susceptibility operatét (2.1) by simply changing

the inverse Fourier transform df,,(w). The functiond(w)  the static quantities, (the BKO theory or x(k) (the non-

is defined in terms of expansion coefficiemg,(w) accord- local theory for the functions

ing to Eq.(3.19. If we take

The direct utility of these formal relations may be rec-
ognhized by noting that the time-dependent solvation energ
(Eq. (3.3)) can be expressed as

e(w)=¢gq(w)+ies(w) (the BKO theory, 4.0
mab(w)=5abu[ lim - ! } (3.19 x(k,®)=x1(k,0)+ixz(k,w) (the nonlocal theory
Haoio—e 4.2

(where the quantity in square brackets is the Fourier transIhis actually means that we solve the same static integral

form of the Heaviside step functio (t)), this corresponds equations(one for the BKO case, another for the nonlocal
to cas¢ with the complex-valued functiongl.1) or (4.2) sub-

B stituted for their static counterpar{see Appendix B for
p(1)=p11O(1), technical details As a result one obtains intermediate aux-

t . t iliary complex-valued charge densities
@(t)ZJ drT(t—71)p(7)= f d7T(7)|py1, (3.20
— 0

o(w)=01(w)
+ioy(w) (the BKO and nonlocal theorigs

t
Ug(t)—Ug(t=m)= fodTTll,ll( 7) = (To) 11,115 4.3
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g(w)=g;(w)+ig,(w) (the nonlocal theory (4.4) be incorporated in our scheme, but this sophistication was
not included in the equations of Appendix B whegeis

The complex-valued response fields considered as a fixed real quantity.

O(w)=P1(w)+iPy(w) (4.9
are obtained in terms of the same equatit®d), (2.5). Fi- V. BKO CALCULATIONS AND THEIR RESULTS
nally, the medium variable¥,,(w) are available from Eq. Our test calculations were performed with a benzophe-

(3.16. Matrix T(w) in this equation is calculated according none anion as the solute. This seems to be the only poly-
to Eq.(3.14) with relevant pairs of basis charge densities. Soatomic ion for which solvation dynamics in the ground elec-
in order to calculateT,, .4, we first calculate the field tronic state im-butanol has been experimentally studiéd®
O q(w)=T(w)peq as described by Eq&t.1)—(4.5) and then  Its geometry was taken to be the same as that of the neutral
evaluate its integral3.14 with p,,,. In practice it is expedi- molecule found by standard optimization procedures using
ent to work with the quantities concerned with the inertialthe PM3 method. The value of the dihedral angle between
components of corresponding fields. The separation of ththe planes of benzene rings was taken to be 30°. Its charge
noninertial component is performed by the obvious relationglistribution was calculated within a standard quantum-
chemical BKO SCRF procedure basing on a semiempirical
Tin(@)=T(0) = T(w—), PM3 scheme. We studied several polar solvents, which are

Pin(w)=P(w) —P(w—x), (4.6p  characterised by different types of dielectric dispersion. The
quantity we calculated and investigated was the diagonal el-
[Yin(@))) =Tin(@)|m(w))). ement of the reorganization matrik,,(») for the lowest

Note that the calculation of matrik(w— ) corresponds to electron_ic state of the benzophenone anion. For brevity we
a static BKO calculation withe,, taken for the dielectric denote it as
constant(as discussed at the end of Sectiopnbecause, at [Tin(@)]11.1=E(0)=Ey(0)+iEy(w). (5.1

the operator level, L .
It plays the role of susceptibility in the linear response rela-

T(w—2)=K.,. (4.7)  tion (4.6) and henceforth will be called the “response func-
tion.” Thus, the real function&,(w) andE,(w) obey stan-
dard symmetry constraints

t Ei(w)=Ei(- ),
Us(t)—Us(t:w):JOdT[Tin(T)]11,11_[T0,in]11,11- Ey(0)=—Ey(— o), (5.2

For the time-dependent solvation enef8y20 we obtain, by
subtracting the constant inertialess part,

(4.9 which were well reproduced in our test calculations. Other
For the experimental situation as modelled by E@19, technical details are given in Appendix B.

(3.20, the response field;,(t) vanishes at=0. In the framework of a simple continuum medium

In this context, the frequency-dependent reorganizatiomnodef>*’ (the BKO theory with suppressed boundary con-
matrix ditiong the pure solvent susceptibilitfthe frequency-

. dependent Pekar fachois evaluated as
Tin(@)=[Tin(@)J1 +i[Tin(w) ]2 (4.9
_ . . 1 1
becomes a key quantity in a dynamical treatment. In the third  [F(w)] '=-—— | —— ——]|, (5.3
A7 \e, &e(w)

line of Eq. (4.6) the quantitiegm(w))) and|Y;,(w))) may
be interpreted as vectors of “forces” and “responses,” re-where e(w) is a complex-valued permittivity function of a
spectively. Hence, the matrix elements pure solvent. This function is a counterpart of the response
[Ti()] 4.10 function E(w) for the case of the simple continuum model.
ini™/lab,cd For a one-mode Debye functiof{w) it comprises of the
are complex-valued susceptibilitiegesponse functions same single-mode function corresponding to a relaxation
obeying general theorems of the linear response theoryime equal to the longitudinal time period. It should be noted,
These special properties are useful in applications. For inthat the phemenological description efw) used in the
stance, TCFs of medium variablg¥;,],, are readily ob- present studywith a high-frequency tail decaying asai
tained from quantities4.10 by applying the fluctuation- breaks down at high frequenci&s® (w> 102 s.71), which
dissipation theoreniFDT). is why we have not considered the correlation function for
The solute charge distribution remains real in the presenimes faster than 1 ps.
treatment. This is sufficient within a purely linear response . :
approach. Nonlinear effects of solute polarization by the sol’ Calculation of - E(w) in a Debye solvent
vent reaction fieldb appear when the solute charge distribu-  We took acetonitrile as a typical Debye solv&hPolar-
tion p(r) is calculated as a functional @b(r): p=p[P]. ity and relaxation parameters for pure acetonitrile are given
Thereby,p would necessarily become complex-valued in ain Table I. A Cole-Cole plot folE(w) is shown in Fig. 1. It
nonlinear treatmentcf. the SCRF methcfl) based on the is drawn in a normalized coordinate frame
present approach with complex-valuéd Such effects could (E,(w)/A,E (w)/A), where A=E(w=0). A similar plot
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TABLE I. Parameters of solvent polarifgtatic dielectric constant,, high
frequency constart,.) and relaxatior(the Debye relaxation timeﬁgi, the d
weight factorsg;) for acetonitrilé® and dimetilformamidé&® one-moce . ;

Debye /
Acetonitrile® Dimethylformamide 04t ;"
&0 37.84 37.25 = /
£, 3.51 2.84 o5
o1, S 3.3%10 %2 0.74x10°*?
Tpo, S 1.036<10 1
h, 1.0 0.046 02t
h, 0.954

@Acetonitrile has a single-mode Debye spectrum, so index “1"” is omitted in
the text.

070 1 1 1
-4 2 0 2 4

for the pure solvent(acetonitrile susceptibility, see Eq. Inwro)

(5.3, '_S also given for the sake of .comp_arlson. |tS. Compa'jl'FIG. 2. Normalized plot of the imaginary part &,(w), for refined BKO

son with E(w) calculated as described in Appendix B esti- calculations in acetonitrile. The dashed curve corresponds to the best one-
mates the importance of the refined theory. An accurate alode Debye descriptior, is an effective relaxation time, see the text.
lowance made for the BKO boundary conditions in terms of

Egs. (4.1)—(4.10 results in more than a 20% change in

E,(w) (as compared to the imaginary part of E5.3)) in the "
region where this quantity has a maximum. This implies that E(w)/A= 2.
the one-mode Debye model is not successful in treating dy-

namical boundary effects in a Debye solvent. In Fig. 2 wewhere for this case=2. Values of the parameters are given

compare the calculated functidy(w) with its Debye coun- in Table II.

terpart with an effective relaxation time,. (The 7, value Our calculations of the TCE(t) function (see Appen-
was defined asry=w,®, where wy is the maximum of dix A) for the benzophenone anion in acetonitrile yield
E,(w)). The result isro=4.00x 10~ 3 s. which is compared n ¢

to the experimental value of the longitudinal time period C(UZE gi exp{——), (5.5
7.=3.30x 10 12 5. for acetonitrile, see Table I. The disper- i 7i

sion region of the calculated function is narrower than itsyheren=2, i.e., C(t) is fitted well by a biexponential ex-
Debye counterpart. The symmetrical shape of the Cole-Colgression. The use of E5.5) provides an illuminating for-
plot for the calculated function and the asymptotic behaviormat with which to discuss the results; this procedure is also
of its imaginary part imply that the Cole-Céle or  commonly used to analyze time dependent fluorescence
Davidson-Col& models of dielectric dispersion are not suc- stokes shifts data®° Representative results exposed in this
cessful in treating dynamical boundary effects in a Debyananner are given in Table II, for the solvation of a ben-

D X gi=1, (5.4

gi
(1-iwT)

solvent. o _ zophenone anion in acetonitrile. Comparison of the im-
A good approximation for the calculated functi&ifw)  proved BKO data with the longitudinal relaxation timg of
is found in terms of a multi-mode Debye model pure acetonitrilésee Table i reveals several interesting fea-

tures. Most importantly, the biexponential fit typically yields
one relaxation time slower thar , with the other compo-
nent faster tharr_ . In other words, inclusion of the bound-

one-mode  __.--------
Debye .~
0,4 TABLE II. Parameters of Eq5.4) for response functiof(w) obtained for
pa the solvation of a benzophenone anion in acetonitrile and in dimethylforma-
= mide by the refined BKO and simple continuum calculations.
i
02k Acetonitrile Dimethylformamide
Refined Simple Refined Simple
BKO continuum BKO continuum
00k —A, kd/mol 77 77 95 95
' , , , , , , 1, S 3.0<10°®  3.3x10°*¥ 3.3x10%® 3.75x10°1
0,0 0.2 0,4 0,6 0.8 10 75, S 7.4x10° 1 1.4x10°% 1.57x10° %2
E,/a T3, S 3.5<107
01 0.72 1.0 0.50 0.68
FIG. 1. Cole-Cole plot of generalized susceptibilffw) (A=E(w=0)) 92 0.28 0.45 0.32
0.05

for refined BKO calculations in acetonitrile. The dashed curve correspondgs;
to the best one-mode Debye description.
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2k
refined BKO
10} .
= 4+ ) N
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20 . = simple
N 6r continuum ™\
30+ N
1 1 1 1 1 _8 L L L L L
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FIG. 3. The log of the TCF, [€(t)], plotted as a function of time for the FIG. 4. The log of the TCF, ()], plotted as a function of time for the
solvation of a benzophenone anion in acetonitrile. The solid refined BKoSOlvation of a benzophenone anion in dimethylformamide. The solid refined
curve is compared with two monoexponential decay laws governed by reBKO curve is compared with the dashed simple continuum curve.

laxation timesr_ and g .

The calculation ofE(w) using the refined BKO theory
ary conditions in the BKO theory, yields an additional relax-yields a three-mode Debye model for benzophenone anion,
ation component having slower dynamics than expectedee Eq(5.4). Values of the outcome parameters are given in
from the simple continuum model. Our calculationsGift) Table II. In our calculations the time dependence of the sol-
function for model anions in a Debye solvent, see Sectiorvation energy is represented in terms of the TCf), see
VI B, show that the biexponential expression@ft) is quite  Eq. (5.5, wheren=3. In Fig. 4, IfC(t)], is plotted for a
a general result. Moreover, the following inequality holds: benzophenone anion in dimethylformamide. The deviation of
this calculated curve from the TCE(t) obtained using the
simple continuum theoryEq. (5.3), wheres(w) contains two
This result is well knowfi®?"and agrees with the available Debye componentsclearly demonstrates the role of the
experimental data, e.g., see Table 3 in Ref. 60. boundary conditions. This type of behavior 16(t), evalu-

In Fig. 3, IfC(t)] is plotted for a benzophenone anion in ated using the refined BKO theory, is typical for non-Debye
acetonitrile. For comparison; t/ 7_is also plotted, as well as  solvents, see Fig. 10a in Ref. 2.
—t/7p, wherep is the Debye relaxation time of acetoni-  We also studied acetone anebutanol, as examples of
trile. It is clear that the functiorC(t) is not well approxi-  typical non-Debye solvents described by the Cole-Cole and
mated by—t/r_but falls between the curves correspondingCole-Davidson models of dielectric dispersion, respectively,
to the two limiting relaxation time$. see Table 3 in Ref. 60. In contrast to the experimental Yata,
Taking into account Eq5.6), one can come to the con- the refined BKO theory gives for these solvents Bfw)
clusion that such a behavior of the correlation function isfunction, which is reasonably well approximated by the
quite common for the ion solvation in the Debye solvents.Cole-Cole and Cole-Davidson models, respectively. Prob-
Biexponential behavior o€(t) has been found earlier with ably, this result shows the restrictions of the BKO treatment,
simplified cavity models, both ellipsoidai®® and a combi-  which does not take into account the “effect of solvent struc-
nation of two cubic cell$* Because spatial dispersion was ture.”
also disregarded in these studies, they may be considered as
approximations to the present BKO scheme which treats ex-
actly the cavity effect. VI. ELECTRON TRANSFER PROCESSES

A. Adiabatic theory

TI<TL<T3. (5.6

B. Calculations of E(w) in non-Debye solvents In the simplest version, ET kinetics are determined by

We took dimethylformamide as a typical non-Debye sol—the evolution of the transfer charge density

vent. It is described by the two-mode Debye model of dielec-  pyo=poo—p11, (6.1
tric dispersion, see Table 3 in Ref. 60. The parameters for

dimethylformamide are listed in Table I. For pure dimethyl-\évﬁaerreep ijzé;)si?ndmpaltlr(i;) fg:etrt]gerg;i?ggséeeie“nﬁﬂt;’ ;r:(;he
formamide a simple continuum theory predicts a two-mode 9 y

Debye susceptibility function with two relaxation timesg product(index “22") Cl states. The corresponding response

and r,. They are obtained by substituting the correspondindcunCtIon

two-modee(w) in Eqg. (5.3) and given in Table II. [Tin(®w)]oo o= Mw)=N(w)+iky(w) (6.2
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enters the adiabatic equation of motion for the ET mediumwhere F(w) is given by Eq.(5.3. Here we shall abstain

variable from this approximation. Thus, for a single variaiXe(6.3)
we obtain the equation of motion
X:f d°r poPin - (6.9 . dW,
—Fo-[Mw)]"*'=—|—y | +GRF (6.10

dXx

w

In general, the free energy surface of an ET process, as a
function of the inertial medium coordinat®g,=(Yin)ap, iS  Which acquires a typical form for a generalized Langevin

written as® equation(GLE)
1 _ PV
U(Ya)==5 2 (ToYanarbrYanYarr +WolYap): (@)= TolX= (ax TGRF ©.19
ab,a’b’ ®
6.4 after introducing the following notations:
The first term represents the self-energy associated with me- _ Fo-[Mw)] 1=f(w); f(o=0)=f,,
dium coordinates in which (6.12
fo
To=Toin=Tin(0=0) (6.5 U(X)=§-x2+wo(X).

is the inertial component of the static reorganization matrixqere U(X) represents the ET potential profile as calculated

(the sign has been changed as compared to the notation gf the CI/BO method®**with force constants- 87 and 3,
Ref. 39. The second term, namely, the lowest eigenvalue of

the corresponding CI Hamiltonian_, repre;ents the solute se!f— d_U: — B*.(X—X*)(at the barrier topX=X?),
energy plus the solute-solvent interaction. The stochastic dX 6.13
equation of motion for the medium coordinates reads '

du
OW R:ﬂo-(X—Xo)(at reactant minimumX=Xg).
- 0
~Fo [Ti@)] Y Y(@) =~ |50+ IGRR) _ _ |
(6.6) Finally, the Arrhenius rate prefactor of the KGH theory is
1 1 1 o* 5
L, 11 1 o (B
Fo _47-r(80c 80)- A oy \/B , 6.14

Here we introduced the Fourier transformsdqW,/dY,;),  WhereQ” is the decay frequency. As described previodsly,
of forces (—dWy/dY,,) and collected them in a column- it is readily expressed in terms afw). Thereby, the present
vector (—|dW,/dY)),); the|GRF)) indicates the vector of continuum treatment, aimed at a direct evaluation of permit-
Fourier transformed Gaussian random forces Bpd is the  tivity M), happens to be closely related to the following
Pekar factor. This is the Fourier-transformed version of theevaluation of the ET rate in terms of the KGH theory.
dynamical equation obtained earl®&r° Its appearance, in

the context of the present linear response formulation, is very

transparent. We must choose the expansion coeffictegds g calculations

as We used again here only the BKO approach. The spheri-
1 oW, cally symmetrical approximation for a solute needed in the
Map(t) = |:_0 Y ap’ nonlocal theory is hardly acceptable for studying ET. We
(6.7 considered ET in model anion-biradicals (§H, where

1 [ W, n=4, 6 and 83*The geometries were taken to be the same
mab(“’):F_O (gyab as those of Refs. 43, 44. The CI/BO procedure was per-

“ formed under the PM3 methdd.We took a model Debye

and rewrite the linear response relati@16 as solvent(a prototype of acetodg which is characterized by

W the foIIowing2 parameters: £,=20.7, ¢,=19 and
_ —1. . . _0 TD:3.20><1071 S.
[Y(@)))=Fo " Tin(@)-| aY Yo ©3 A good approximation for the calculated function

Equation(6.6) is then found by inverting Eq6.8) and add- ng))(/é jl)ls\]:\?huenrz IZ tir)r\n (chi g)twc\)lmn;]ooge Engy egmg(?f; see
ing random forces in order to make allowance for ~ " o 13l L 7 eoc10-Bs o
fluctuations?® = 2 :

In earlier applications this equation of motion was sim-
plified by factorizing the reorganization matrix as

The respective changes in the ET kinetics can be visual-
ized by considering the decay frequenfy in the KGH
theory as a root of the characteristic equatisee the desig-

Fo nations in Egs(6.11), (6.12)

Tin(@)=E gy Tor ©9 f(iw)=fot B7. (6.19
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ol flio)=f+*

f(ioo)

20

Ig(w)

FIG. 5. Solution of the characteristic equati¢.15 for the decay fre-
quencyQ* for two alternatives of the function(w), see the text, for a

(CH,)s model anion-biradical. The dashed curve corresponds to the simple

1111

from the energy gapU” (the splitting of adiabatic levels at
the barrier top as minusAU”/2. The potentiall (X) then
acquires a cusp form. Strictly speaking, the corresponding
kinetics must then be treated by a quantum non-adiabatic
theory in which the quantitf2” loses its importance.

The discussion of the present Section is entirely illustra-
tive for several reasons. First, the anions considered are
purely theoretical models and there is no experimental data
for them. Second, as recent studies have shtime energy
profiles obtained from the simple BKO treatment give a poor
description of ET energetics and must be refined by a proper
account of the molecular structure of the solvent in the first
solvation shell. Finally, the application of data from Table IlI
for treating ET kinetics is consistent only for (G . For
the case of (Ch), the barrier is too low and a steady state
kinetic regime is unlikely, whereas for (G4 a nonadia-
batic ET theory must be applied.

What our computations demonstrate is how important

continuum theory and the solid curve Corresponds to the refined BK%Xact boundary conditions are in treatlng ET kinetics. The

theory. Here— 87 represents a force constant at the top of the barrier of thea

ET potential profile, see Eq46.13.

As a consequence of causaffyf(iw) (with real w) is al-
ways real. Because the inverse quaniitw) vanishes when
|w|— o0, it can readily be evaluated on the imaginarygxis
in terms of a general relation of dispersion theBry

. 2 [*=X\y(w)
)\(Iw)=; Om X. (616)
We finally obtainf(i ) as the inverse of Eq6.16), accord-
ing to Eq.(6.12.

The solution to Eq(6.19 is found graphically as the
abscissa of the point where the cuf{éw) crosses the hori-
zontal line f(iQ*)=f,+ 87, see Fig. 5. This solution is
unique because the causality condition ensures ftfiab)
increases monotonically.

The value of)* was evaluated using for(w) first of all
a one-mode Debye model with the value, evaluated using

nswer is that their effect is less remarkable than in the case
of time-dependent solvation spectroscopy, in agreement with
the results of earlier MD computations.

VIl. DISCUSSION

The results of Sections V and VI show that the essential
features of the solvation dynamics of ions are reasonably
well reproduced in the framework of continuum medium the-
oretical models. Starting with a simple Debye description of
a polar solvent we were able to recover a polyexponential
kinetic evolution as its dynamical outcome. Our observations
are complemented by the results of an approximate nonlocal
theory as applied to model two-sphere charge distribiffion.
Main conclusions following from these two different ap-
proaches are in a qualitative agreement. Both the boundary
effect (obtained in terms of the present BKO computation
and the effect of solvent molecular structu@ nonlocal
computation, Ref. 26 and our unpublished glataly multi-
ply a number of Debye modes involved in the resulting ki-

the parameters of the model Debye solvent, and secondly reetics and shift their relaxation parameters. A relative impor-

two-mode Debye model with the,, g,, 7, and , values
listed above for functioml\(w)/A;. The first pure Debye
case corresponds to the approximati6r®) with F(w) given
by Eqg.(5.3). The results are listed in Table Ill. The relative
difference between the twd * values for the first two model

anion-biradicals does not exceed 13%. A strong increase in

the decay frequency for (Ghf is the result of a small cou-

tance of the two effects is unclear now. This ambiguity could
be resolved only within a more sophisticated unique calcula-
tion, combining a nonlocal treatment with a realistic non-
spherical cavity for a solute. A general structure of such a
theory is outlined in Sections IIl, 1V.

Being a first step, the present work needs further refine-
ment in future. Two features of actual TCFs seem to be

pling matrix element for this case, which can be estimatednissing in our computations: oscillations and short-time

TABLE lll. The decay frequency)”™ and Arrhenius rate prefactdk of the KGH theory evaluated using
one-modg(1D) and two-modg2D) Debye models for three anion-biradicals, see the text.

U*2eV AU*Pev Q7 (1D),s* 0*@D,s! A@D,s! A@D),s?
(CHy, 0.16 0.51 3.6% 10" 3.23x 101 4.20x 10%° 3.70< 10%
(CHYg 0.45 0.12 3.4x10% 3.12x10% 1.44x 101 1.32x 104
(CHyg 0.58 0.028 1.18 10" 1.10x 10" 2.70x 101 2.56x 101

3% is the barrier height of the ET reaction.

PAU7 is the splitting between adiabatic levels at the barrier top.
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Gaussian behavidr:1417202fThe both effects could be natu- ¢, in static equilibrium equations. In this way calculations of
rally introduced without changing the essence of our ap-TCFs were performed for complicated chemical solutes ac-
proach. Proper modifications must be brought into an inputounting for electrostatic boundary conditions and with an
susceptibility function(such ase(w) in Section VA or explicit treatment of the solute electronic structure at a rea-
x(k,w) in Section V B. The change will be transferred to sonable quantum-chemical level.
the outcome response functions and reproduce the desired We have formulated two methods for transforming the
temporal effects in their inverse Fourier transforms. Oscilla-complex-valued SCRF results into TCFs. The first @8ec-
tions are expected to appear by adding resonance modens IV, V) represents the nonstationary kinetics of the time-
component® which may be either of a conventional Lorent- dependent Stokes shift and the second @extion V) de-
zian fornf®®” or Gaussiafi®® For doing this consistently scribes the stationary monoexponential kinetics of an ET
more information on the details of both the input susceptiprocess. Although the computations were confined to the
bilities and the outcome TCFs is necessary. Borrowing sucframework of the local electrostatic BKO model, their exten-
information either from experiment or from MD simulations tion to a nonlocal electrostatic methodology is straightfor-
the resulting oscillatory behavior of TCFs could be generatedvard.
without problems. Altogether we conclude that the dynamical version of

More vague is the problem of Gaussian initial kinetics.the continuum theory developed here reproduces well the
We displayed the results of the present calculations in termbw and intermediate frequency range of response functions
of Lorentzian-typew-dependencies vanishing according toand the corresponding intermediate and long time solvation
an inverse power law whdm|— . In the time domain they kinetics in a nonstationary regime. Technical problems with
generate exponentially decaying functions. In order to get @he high-frequency range and corresponding short time kinet-
Gaussian component of the time evolufibf+1"?’one must  ics seem to reflect a principal deficiency of the continuum
change the Lorentzian tails of at least some of the spectralpproach. Because the opposite is true as regards the MD
bands for Gaussian on&%° Again, if this is performed with  computations of TCF§1®°the continuum and molecular
an input susceptibility function, the result of modifying its approaches may be considered in this sense to be mutually
asymptotic behavior will be transferred to the outcome recomplementary.
sponse function. In the time domain this is sufficient to gen-
erate the short time component of decay kinetics. As follows
from Egs.(A4a), (A6) of Appendix A, a Gaussian tail in the ACKNOWLEDGMENTS
imaginary part of the response function generates Gaussian
short-time kinetics. Here, however, we arrive at an intrinsic 1 he authors would like to thank the Russian Foundation
deficiency in the continuum approach. The exponentially defor Fundamental ResearotiProject No. 96-03-32544for
caying high frequency portions of complex-valued r(_:.Spons@roviding the funding for this work. This material is based
functions are not available, within a reasonable accuracy, i#Pon work supported by the U.S. Civilian Research and De-
terms of the computational procedure described in Appendi¥€lopment Foundation under Award No. RC1-202.
B. This is why we report in the present article only the re-
sults obtained with Lorentzian susceptibilities.

The importance of high-frequency spectral component&dPPENDIX A: TIME CORRELATION FUNCTIONS
in steady state KGH kinetics can be also discussed. As seen

from the graphical solution for the decay frequency in Fig. 5 The TCF describing a time-resolved Stokes shift is de-

R y . 'fined as~’

it critically depends on the value df,+ 8~, which deter-

mines the frequency range essential for findidg. So, in Ug(t)—Ug()

Fig. 5 this region lies aroun®@” and the frequency range C()= Ug(0)—Ug() " (A1)

0>07 is negligible. (Note also, that when working with

frequenciesw>10 ™!, quantum dynamical effects be- According to formulag4.8) and (5.1),

come important and the whole treatment needs a deep modi- JLE(7)dr—A

fication. When Q7 lies in the classical region the refine- C)=——x— A=E(w=0)<0. (A2)
ments of dynamical calculations which we introduced have

little influence on the calculated rate constant. Here E(7) is the inverse Fourier transform &(w), Eq.

(5.1. It can be expressed in terms of eitf®&( w) or E;(w)

with the aid of the Kramers-Kronig relations. The resuffis
VIIl. CONCLUSIONS

1 o0

In the present work we generalized a conventional SCRF = f dwE;(w)coswr (7>0)
approach’® for treating polar solvation effects for computa- Tl
tions with a complex-valued dielectric permittivity function E(r)=¢ 1 (= . . (A3)
e(w). This extends the idé&?that, due to the properties of P fﬁxdsz(w)sm wr  (7>0)
Maxwell's equations, a description of nonequilibrium dy- 0 (r<0)
namical phenomena can be gainédithin a continuum
theory by simply substituting:(w) for the static permittivity Let us introduce the functio®(t) (wheret>0)
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sin wt

G(t)= f(:E(T)dT: % ficdw

2

Ei(w), (Ada)

coswt—1

= TE, (o). (A4b)

By studying the limitt— o we find the following relations:

lim G(t)=A, (A5a)
t—oo

1 (- E

—J 2®) 4omn, (A5b)
r — w

1 (= coswt

lim —J dw=0. (A5c)
t—oo ™ —x

Expression(A5a) immediately follows from(Ada), expres-
sion (A5b) results from Eq(6.16 when\ is changed foE,
and w=0, and expressiofA5c) follows from (Adb), (A5a)
and (A5b). With this notation

G(t)—A
C(t)z ——A (A6)
Let us now consider the TCF
IO =(Y(1)Y(0)). (A7)

Its Fourier transforml(w) is determined by the FDY In
the high temperature limit

2kT
J(w)ZTEZ(w). (A8)

1113
1 e1(w)
T e PP L PPy
1 &g2(w)
<) g Go(@)?F (so(@)? (B9
We anticipate thatr also becomes complex-valued
o(w)=0(w)tioy(w) (B5)

(the r-dependency is suppressed in the present notation for

brevity). Performing the substitutiory,— () and takingo

in the form(B5) in Eq. (B1), we separate the real and imagi-

nary parts and ultimately arrive at the pair of equations
71(w) = ky(@)[Vp(r)+(5+2m) 0y ()]
— k(@) (S+2m) 0 w),
o) = Ko@) [Vp(r) +(5+2m)0y()]

+k1(@)(S+2m) o). (B6)

For a first approximation, we fig;(w) in the first equation,

and theno,(w) in the second. Each of these equations can

then be solved by standard technigd@éfter this we may
simultaneously solve the systei6) by iterations.
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