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A local continuum solvation theory, exactly treating electrostatic matching conditions on the
boundary of a cavity occupied by a solute particle, is extended to cover time-dependent solvation
phenomena. The corresponding integral equation is solved with a complex-valued
frequency-dependent dielectric function«~v!, resulting in a complex-valuedv-dependent reaction
field. The inverse Fourier transform then produces the real-valued solvation energy, presented in the
form of a time correlation function~TCF!. We applied this technique to describe the solvation TCF
for a benzophenone anion in Debye~acetonitrile! and two-mode Debye~dimethylformamide!
solvents. For the Debye solvent the TCF is described by two exponential components, for the
two-mode Debye solvent, by three. The overall dynamics in each case is longer than that given by
the simple continuum model. We also consider a steady-state kinetic regime and the corresponding
rate constant for adiabatic electron-transfer reactions. Here the boundary effect introduced within a
frequency-dependent theory generates only a small effect in comparison with calculations made
within the static continuum model. ©1998 American Institute of Physics.
@S0021-9606~98!50403-5#

I. INTRODUCTION

In the present work we consider time-dependent solva-
tion phenomena in polar media in terms of a refined con-
tinuum medium model. The corresponding experimental
data1–7 include both observations of time-resolved fluores-
cence spectra~Stokes shifts! in polar solvents and the more
traditional measurements of electron transfer~ET! kinetics.
For the last decade several theoretical approaches in this field
have been tested. They include direct MD simulations,8–18

the computations of spatial pair correlation functions based
on interaction site models~i.e., statistical equilibrium theo-
ries!, extended to cover time dependence,19–22dynamical de-
velopments of the mean spherical approximation~MSA!23–25

a nonlocal continuum theory,26 and other semianalytical
treatments.7,27–35All these approaches represent microscopic
molecular solvent theories at various levels of sophistication.
It is commonplace to claim that continuum medium models
are incapable of adequately treating solvation
dynamics.1–6,24,27,30,34The basic motivation is that, for De-
bye solvents, the continuum theory predicts monoexponen-
tial kinetics for solvent relaxation from an instantaneous
change in the solute charge distribution in ionic solutes. This
contradicts both experiment and the abovementioned micro-
scopic treatments.

The objective of our work is to demonstrate that reason-
able modifications of the conventional continuum solvent
model enable one to overcome this deficiency. The thus im-
proved continuum theories are able to qualitatively monitor
the same picture of polar solvent dynamics as do molecular
theories. Then, by properly adjusting the model parameters
~a feature which is common for both molecular and con-
tinuum models!, experimental dependencies can be well re-
produced. With this background the following important
~usually disregarded! advantage of continuum treatments be-

comes decisive: Being combined with modern quantum-
chemical calculations they allow a precise description of
electronic structure and charge distributions in chemically
nontrivial solute species, whereas all recent molecular treat-
ments invoke crude solute models and concentrate on a de-
scription of the details of solvent structure.

Two types of effects must be incorporated in a time-
dependent continuum theory so that may become satisfactory
for studying solvation dynamics. We shall refer to the first
one as the ‘‘boundary effect’’ and the second one as the
‘‘effect of solvent structure.’’ The first effect can be formu-
lated within the Born-Kirkwood-Onsager~BKO! solvation
model. This static treatment mimics equilibrium solvation as
result of purely electrostatic interactions between a solute
charge density, contained in a cavity, and the solvent polar-
ization induced by this charge in the continuum medium out-
side the cavity. With a single medium parameter, the static
dielectric constant«0 , the BKO model may be successfully
applied for complicated solutes of arbitrary size and shape.36

The electrostatic problem to be solved is the Poisson equa-
tion with relevant matching conditions for its solution on the
cavity boundary. Efficient techniques for numerically calcu-
lating this solution are well developed for the static case.36

Such an approach has also been extended to treat, still at a
static level, nonequilibrium solvation effects37–40 and has
been used in computing free energy surfaces and
profiles.39,41–44When proceeding to a dynamical treatment,
the exact electrostatic boundary conditions have always been
neglected because of technical difficultes, although a formal
theory matching time-dependent electrostatic fields on the
boundary has been reported.37 So, the development of a dy-
namical BKO theory, for correctly treating the boundary
conditions~which till now has been readily available only at
a static level!, is necessary.
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The second effect appears due to an incorporation of
elements of solvent structure in the continuum model. This
can be done in the framework of nonlocal electrostatics.45–48

The time-dependent nonlocal theory of Stokes shifts has
been reported.26 It was based on an approach45–48where ex-
cluded volume effects were not explicitly considered. At-
tempts of an accurate treatment of cavity effects within a
static nonlocal theory have been announced.49–51 Their dy-
namical development is in order.

It must be emphasized that a nonlocal approach is in
practice available only for spherically symmetrical objects.
For such cases the BKO boundary effect vanishes. Indeed,
for a spherically symmetric ion the BKO model comprises a
simple Born treatment which, being extended to the descrip-
tion of time resolved Stokes shifts in Debye solvents, is well
known to yield ~in conflict with experiment! a single-
exponential kinetic evolution with a characteristic timetL ,
the longitudinal relaxation period. This means that at the
present technical level~spherically symmetrical solutes
within a nonlocal electrostatic treatment! the two abovemen-
tioned effects appear as mutually complementary ones: The
first brings an influence of boundary matching conditions for
nonspherical cavities and solute charge distributions, the sec-
ond introduces elements of internal solvent structure in de-
scribing the solvation of simplified solutes reduced to spheri-
cally symmetric models.

An important simplification inherent to the linear re-
sponse approach is that the relevant dynamic dependencies
can be deduced as a straightforward extrapolation of equilib-
rium equations of the corresponding static theory. This fact
was emphasized and utilized independently for application to
nonstationary kinetics with stepwise initial conditions~in the
context of the MSA treatment of time-dependent Stokes
shifts23! and also for deriving the steady-state KGH kinetics
of ET ~in the framework of a simple continuum ET theory52!.
Later this idea was widely exploited.24,25,27,34,35Its most re-
cent applications27,34,35have some features in common with
the present dynamical treatment. In their practice these theo-
ries focus on the account of the first of two effects, classified
above as a local BKO boundary effect. The present article
also reports only BKO calculations. The novel methodical
element in an incorporation of the time~or frequency! de-
pendent linear-response methodology in a standard numeri-
cal BKO SCRF procedure.36 This makes practically available
the computations of time-correlation functions~TCFs! for
real chemically interesting objects of complicated shape with
their charge distributions found in a direct quantum-chemical
treatment. The extention of this technique to treat the second
effect ~the solvent molecular structure! in the frame of a
nonlocal theory will be a subject of a future publication.

The kinetic regimes we are going to investigate cover
two types of solvation dynamical experiments. First, we
study the kinetics of medium relaxation in the vicinity of an
instantaneously created ion in a polar solvent. The other re-
gime corresponds to a steady-state kinetics typical for ET
rate measurements, in which the role of initial conditions is
suppressed. This case is conventionally treated in terms of
the Kramers-Grote-Hynes~KGH! theory53 which is also ap-

plied in our work. The two types of TCFs needed to describe
these two experimental situations are derived within the
framework of a unified linear response picture for describing
charge redistribution within the chemical objects under ex-
amination. The logical structure of this approach, common
for both local and nonlocal background theories, is exposed
in Sections III, V, VI. Most immediate applications are con-
sidered in Sections V and VI at the local BKO level.

II. EQUILIBRIUM SOLVATION EFFECTS IN A
DIELECTRIC CONTINUUM REPRESENTATION

Let us provide a continuum calculation of the solvation
energy as an example. Only longitudinal fields are consid-
ered. The basic linear response relation connecting the solute
charge densityr(r ) ~a ‘‘force’’ ! with the induced medium
reaction fieldF(r ) ~a ‘‘response’’! reads

F~r !5K̂r~r !, ~2.1!

whereK̂ is a linear integral operator with kernelK(r ,r 8); the
corresponding explicit representation of this operator relation
is

F~r !5E d3r 8K~r ,r 8!r~r 8!. ~2.2!

We shall considerK̂ as a generalized susceptibility operator,
K(r ,r 8) is the corresponding nonlocal susceptibility kernel.
In many typical cases an explicit description~2.2! of the
operatorK̂ is unavailable in practice; an alternative is pro-
vided by a linear computational algorithm which numerically
represents this relation. For instance, in the BKO solvation
model36 we treat the solvent as a dielectric continuum with
dielectric constant«0 and susceptibilityx0

x05
1

4p
~«021!. ~2.3!

This continuum fills the whole space outside the cavity oc-
cupied by the solute. With the cavity surface denoted byS
we use the notationVi and Ve for the volumes inside and
outside of S, respectively. In the BKO theory the solute
charger(r ) induces a charge densitys(r ) on the surfaceS
and the reaction fieldF(r ) is defined as its potential

F~r !5E
S
d2r 8

s~r 8!

ur 2r 8u
. ~2.4!

Given a charge distributionr(r ), the surface charges(r ) is
found as a solution to a linear integral equation containing
r(r ). The symbolic relation~2.1! then means: Solve this
integral equation and apply formula~2.4!.

Another example of an algorithmic application of the
linear relation~2.1! is a nonlocal dielectric continuum theory
with a cavity.50,51 Here the fieldF(r ) is created by a com-
bination of a surface charges(r ) and a charge distribution
g(r ) which is induced in the bulk medium outside the cavity

F~r !5E
Ve

d3r 8
g~r 8!

ur 2r 8u
; g~r !50~r PVi !. ~2.5!
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The input medium characteristic is now the dielectric suscep-
tibility kernel x(r ,r 8), a nonlocal counterpart of the static
susceptibilityx0 ~2.3!. It is defined as

x~r ,r 8!5 Hx~ ur 2r 8u!
0 r or r 8PVi

r ,r 8PVe
. ~2.6!

The surface charges(r ) and external charge densityg(r )
are found as a solution to the corresponding integral equation
containing x(ur 2r 8u). Usually a parametrization of this
quantity is performed in terms of its Fourier transformx(k),
we then obtainx(ur 2r 8u) as an inverse Fourier transform.
The corresponding computation at the present moment is
only available50,51 for spherically symmetrical solutes with
x(k) given as a sum of Lorentzian modes.26,45,48

The equilibrium solvation energy in continuum theory
has the same expression for the both models discussed above

U05
1

2 E d3rr~r !F~r !, ~2.7!

where the integration is actually performed only over the
internal volumeVi because of an obligatory constraint im-
posed on the solute charge density

r~r !50~r PVe!. ~2.8!

Before proceeding to a discussion of the time dependence of
the solvation energy we have to eliminate its inertialess high-
frequency componentU` which is specially calculated by
the same scheme described above

F`~r !5K̂`r~r !,
~2.9!

U`5
1

2 E d3rr~r !F`~r !.

The operatorK̂` differs from operatorK̂ of ~2.1! only by
changing the static dielectric constant«0 for the high-
frequency constant«` in the integral equation for the surface
charge density. We assume that the high-frequency permit-
tivity kernel x`(ur 2r 8u) is local

x`~k!5x`5
1

4p
~«`21!. ~2.10!

In this instance the procedure~2.9! becomes common for
both BKO and nonlocal theories.

III. THE DYNAMICAL LINEAR RESPONSE APPROACH
WITHIN A DIELECTRIC CONTINUUM
REPRESENTATION

The dynamical theory is based on the linear response
relation

F~r ,v!5T̂~v!r~r uv! ~3.1!

which extends the static equation~2.1! over the whole spec-
trum of frequencyv. The frequency-dependent complex-
valued operatorT̂(v) reduces toK̂ in the static case

T̂~v50!5K̂. ~3.2!

A simple example of an application of the basic relation~3.1!
is a linear response estimation of the time-dependent solva-
tion energy~more precisely its interaction component! de-
fined as

US~ t !5E d3rr0F~ t !. ~3.3!

~The r -dependence of relevant field quantities is suppressed
for brevity here and in the forthcoming text unless this leads
to confusion.! In Eq. ~3.3! F(t) is a time-dependent reaction
field describing the relaxation of an instantaneously created
fluctuationF(t50) to an equilibrium valueF0 given by Eq.
~2.1!

F05K̂r0 . ~3.4!

The dynamic quantity of main interest, the fieldF(t), is
obtained in terms of the basic equation~3.1! via an inverse
Fourier transform.

An explicit expression for the dynamical operatorT̂(v)
is hardly available but we can construct its matrix represen-
tation. The method for doing this follows earlier reasoning
applied in the static case.37–39 We introduce a basis set of
relevant charge distributionsrab(r ) which is implied to be
sufficient for describing the evolution of the solute charge
densityr(r uv)

r~r uv!5(
ab

rab~r !mab~v!5^^ r̄ um~v!&&, ~3.5!

wheremab(v) are expansion coefficients determined by the
conditions of an experiment. We have collected here the ba-
sis densities in a row-vector^^ r̄ u

^^ r̄ u5~r11,r22,...,r12, . . . ! ~3.6!

and the expansion coefficients in a column-vectorum(v)&&

um~v!&&5S m11~v!

m22~v!

A
m12~v!

A
D . ~3.7!

~Double indices (ab) are used rather than single ones be-
cause in practice the basis functionsrab are generated in
terms of the CI theory37–39as elements of a transition density
matrix with a special convention choosing cross-indices with
aÞb.! The corresponding set of basis reaction fieldsFab(r )
is constructed in terms of the static~equilibrium! equation
~2.1!. We collect them in the row-vector

^^F̄u5K̂^^ r̄ u. ~3.8!

Thereby an expansion of the reaction fieldF(r uv) which is
analogous to Eq.~3.5! is given by

F~r uv!5(
ab

Fab~r !nab~v!5^^F̄un~v!&&

5K̂^^ r̄ un~v!&&, ~3.9!

whereun(v)&& is a column-vector of expansion coefficients
nab(v).
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We construct now a set of medium dynamic variables
Yab by defining their Fourier transforms as

Yab~v!5E d3rrab~r !F~r uv! ~3.10!

and collecting them in a column-vector

uY~v!&&5E d3r u r̄ &&F~r uv!, ~3.11!

whereu r̄ && is the transpose of^^ r̄ u, Eq.~3.6!. By combining
Eqs.~3.9! and ~3.11! we obtain

uY~v!&&5T0un~v!&& ~3.12!

with matrix T0 defined as

T05E d3r u r̄ &&K̂^^ r̄ u, ~3.13!

which is known as the static reorganization matrix39 ~a ‘‘mi-
nus’’ sign has been omitted, contrary to the notation of Ref.
39!. We can also define the dynamic reorganization matrix
T(v)

T~v!5E d3r u r̄ &&T̂~v!^^ r̄ u. ~3.14!

Now, if one rewrites the linear response relation~3.1! as

F~v!5T̂~v!^^ r̄ um~v!&&, ~3.15!

then multiplies this on the left byu r̄ && and integrates, the
result becomes

uY~v!&&5T~v!um~v!&&. ~3.16!

The relationship between the expansion coefficients is also
established with the aid of Eq.~3.12!

un~v!&&5T0
21T~v!um~v!&&. ~3.17!

The direct utility of these formal relations may be rec-
ognized by noting that the time-dependent solvation energy
~Eq. ~3.3!! can be expressed as

US~ t !2US~ t5`!5Y11~ t !2Y11~v50!. ~3.18!

Here we have assumedr05r11 and have definedYab(t) as
the inverse Fourier transform ofYab(v). The functionF(v)
is defined in terms of expansion coefficientsmab(v) accord-
ing to Eq.~3.15!. If we take

mab~v!5dab,11F lim
«→10

1

iv2«G ~3.19!

~where the quantity in square brackets is the Fourier trans-
form of the Heaviside step functionQ(t)!, this corresponds
to

r~ t !5r11Q~ t !,

F~ t !5E
2`

t

dtT̂~ t2t!r~t!5F E
0

t

dtT̂~t!Gr11, ~3.20!

US~ t !2US~ t5`!5E
0

t

dtT11,11~t!2~T0!11,11,

whereT11,11(t) is the inverse Fourier transform ofT11,11(v).
The operatorT̂(t) acts on functions ofr and is the inverse
Fourier transform ofT̂(v).

Such a representation ofF(t) corresponds to a model
experimental situation1–7 when the charge distributionr11 is
instantaneously created att50. Henceforth we work with a
dimensionless quantity, the solvation TCF

C~ t !5
US~ t !2US~`!

US~0!2US~`!
. ~3.21!

It should also be commented that linear response rela-
tions like ~3.1!, ~3.16! represent properties of statistical av-
erages of dynamical variables likeF(t) or Y(t). Strictly
speaking, it is these averages^F(t)& or ^F(v)& and^Y(t)&
or ^Y(v)& which enter the equations of this Section. Their
fluctuations are introduced in Section VI in terms of the gen-
eralized Langevin description. At this~true microscopic!
level of description the time-dependent solvation energy
~3.18! is governed by the TCF

J~ t !5^Y11~ t !Y11~0!&. ~3.22!

We show in Appendix A that this refined treatment gives the
same result as Eqs.~3.18!, ~3.20!.

IV. THE METHODOLOGY OF DYNAMICAL
CALCULATIONS

We need now an explicit prescription for evaluating ma-
trix T(v) ~Eq. ~3.14!! in order to proceed to practical calcu-
lations. This prescription is given by the notion37,52 that
within a linear dielectric continuum treatment based on phe-
nomenological Maxwell equations, the dynamical equations
relating the Fourier transforms of time-dependent field quan-
tities can be deduced from similar static equations for the
corresponding equilibrium quantities.~A similar ansatz also
works in the case of the MSA.23! The procedure needed is a
simple change of relevant static susceptibilities~the linear
response coefficients! for their dynamical counterparts,
which are complex-valued functions of frequencyv.
Thereby, the dynamic operatorT̂(v) ~3.1! is obtained from
the static susceptibility operatorK̂ ~2.1! by simply changing
the static quantities«0 ~the BKO theory! or x(k) ~the non-
local theory! for the functions

«~v!5«1~v!1 i«2~v! ~ the BKO theory!, ~4.1!

x~k,v!5x1~k,v!1 ix2~k,v! ~ the nonlocal theory!.
~4.2!

This actually means that we solve the same static integral
equations~one for the BKO case, another for the nonlocal
case! with the complex-valued functions~4.1! or ~4.2! sub-
stituted for their static counterparts~see Appendix B for
technical details!. As a result one obtains intermediate aux-
iliary complex-valued charge densities

s~v!5s1~v!

1 is2~v! ~ the BKO and nonlocal theories!,

~4.3!
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g~v!5g1~v!1 ig2~v! ~ the nonlocal theory!. ~4.4!

The complex-valued response fields

F~v!5F1~v!1 iF2~v! ~4.5!

are obtained in terms of the same equations~2.4!, ~2.5!. Fi-
nally, the medium variablesYab(v) are available from Eq.
~3.16!. Matrix T(v) in this equation is calculated according
to Eq.~3.14! with relevant pairs of basis charge densities. So,
in order to calculateTab,cd , we first calculate the field
Fcd(v)5T̂(v)rcd as described by Eqs.~4.1!–~4.5! and then
evaluate its integral~3.14! with rab . In practice it is expedi-
ent to work with the quantities concerned with the inertial
components of corresponding fields. The separation of the
noninertial component is performed by the obvious relations

Tin~v!5T~v!2T~v→`!,

F in~v!5F~v!2F~v→`!, ~4.6!

uYin~v!&&5Tin~v!um~v!&&.

Note that the calculation of matrixT(v→`) corresponds to
a static BKO calculation with«` taken for the dielectric
constant~as discussed at the end of Section II! because, at
the operator level,

T̂~v→`!5K̂` . ~4.7!

For the time-dependent solvation energy~3.20! we obtain, by
subtracting the constant inertialess part,

US~ t !2US~ t5`!5E
0

t

dt@Tin~t!#11,112@T0,in#11,11.

~4.8!

For the experimental situation as modelled by Eqs.~3.19!,
~3.20!, the response fieldF in(t) vanishes att50.

In this context, the frequency-dependent reorganization
matrix

Tin~v!5@Tin~v!#11 i @Tin~v!#2 ~4.9!

becomes a key quantity in a dynamical treatment. In the third
line of Eq. ~4.6! the quantitiesum(v)&& and uYin(v)&& may
be interpreted as vectors of ‘‘forces’’ and ‘‘responses,’’ re-
spectively. Hence, the matrix elements

@Tin~v!#ab,cd ~4.10!

are complex-valued susceptibilities~response functions!
obeying general theorems of the linear response theory.
These special properties are useful in applications. For in-
stance, TCFs of medium variables@Yin#ab are readily ob-
tained from quantities~4.10! by applying the fluctuation-
dissipation theorem~FDT!.

The solute charge distribution remains real in the present
treatment. This is sufficient within a purely linear response
approach. Nonlinear effects of solute polarization by the sol-
vent reaction fieldF appear when the solute charge distribu-
tion r(r ) is calculated as a functional ofF(r ): r5r@F#.
Thereby,r would necessarily become complex-valued in a
nonlinear treatment~cf. the SCRF method36! based on the
present approach with complex-valuedF. Such effects could

be incorporated in our scheme, but this sophistication was
not included in the equations of Appendix B wherer is
considered as a fixed real quantity.

V. BKO CALCULATIONS AND THEIR RESULTS

Our test calculations were performed with a benzophe-
none anion as the solute. This seems to be the only poly-
atomic ion for which solvation dynamics in the ground elec-
tronic state inn-butanol has been experimentally studied.54,55

Its geometry was taken to be the same as that of the neutral
molecule found by standard optimization procedures using
the PM3 method. The value of the dihedral angle between
the planes of benzene rings was taken to be 30°. Its charge
distribution was calculated within a standard quantum-
chemical BKO SCRF procedure basing on a semiempirical
PM3 scheme. We studied several polar solvents, which are
characterised by different types of dielectric dispersion. The
quantity we calculated and investigated was the diagonal el-
ement of the reorganization matrixTin(v) for the lowest
electronic state of the benzophenone anion. For brevity we
denote it as

@Tin~v!#11,115E~v!5E1~v!1 iE2~v!. ~5.1!

It plays the role of susceptibility in the linear response rela-
tion ~4.6! and henceforth will be called the ‘‘response func-
tion.’’ Thus, the real functionsE1(v) andE2(v) obey stan-
dard symmetry constraints56

E1~v!5E1~2v!,

E2~v!52E2~2v!, ~5.2!

which were well reproduced in our test calculations. Other
technical details are given in Appendix B.

In the framework of a simple continuum medium
model52,57 ~the BKO theory with suppressed boundary con-
ditions! the pure solvent susceptibility~the frequency-
dependent Pekar factor! is evaluated as

@F~v!#215
1

4p S 1

«`
2

1

«~v! D , ~5.3!

where «~v! is a complex-valued permittivity function of a
pure solvent. This function is a counterpart of the response
function E(v) for the case of the simple continuum model.
For a one-mode Debye function«~v! it comprises of the
same single-mode function corresponding to a relaxation
time equal to the longitudinal time period. It should be noted,
that the phemenological description of«~v! used in the
present study~with a high-frequency tail decaying as 1/v!
breaks down at high frequencies58,59 (v.1012 s.21), which
is why we have not considered the correlation function for
times faster than 1 ps.

A. Calculation of E„v… in a Debye solvent

We took acetonitrile as a typical Debye solvent.60 Polar-
ity and relaxation parameters for pure acetonitrile are given
in Table I. A Cole-Cole plot forE(v) is shown in Fig. 1. It
is drawn in a normalized coordinate frame
(E2(v)/D,E1(v)/D), where D5E(v50). A similar plot
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for the pure solvent~acetonitrile! susceptibility, see Eq.
~5.3!, is also given for the sake of comparison. Its compari-
son with E(v) calculated as described in Appendix B esti-
mates the importance of the refined theory. An accurate al-
lowance made for the BKO boundary conditions in terms of
Eqs. ~4.1!–~4.10! results in more than a 20% change in
E2(v) ~as compared to the imaginary part of Eq.~5.3!! in the
region where this quantity has a maximum. This implies that
the one-mode Debye model is not successful in treating dy-
namical boundary effects in a Debye solvent. In Fig. 2 we
compare the calculated functionE2(v) with its Debye coun-
terpart with an effective relaxation timet0 . ~The t0 value
was defined ast05v0

21, where v0 is the maximum of
E2(v)!. The result ist054.00310213 s. which is compared
to the experimental value of the longitudinal time period
tL53.30310212 s. for acetonitrile, see Table I. The disper-
sion region of the calculated function is narrower than its
Debye counterpart. The symmetrical shape of the Cole-Cole
plot for the calculated function and the asymptotic behavior
of its imaginary part imply that the Cole-Cole61 or
Davidson-Cole62 models of dielectric dispersion are not suc-
cessful in treating dynamical boundary effects in a Debye
solvent.

A good approximation for the calculated functionE(v)
is found in terms of a multi-mode Debye model

E~v!/D5(
i

n F gi

~12 ivt i !
G ; (

i
gi51, ~5.4!

where for this casen52. Values of the parameters are given
in Table II.

Our calculations of the TCFC(t) function ~see Appen-
dix A! for the benzophenone anion in acetonitrile yield

C~ t !5(
i

n

gi expS 2
t

t i
D , ~5.5!

wheren52, i.e., C(t) is fitted well by a biexponential ex-
pression. The use of Eq.~5.5! provides an illuminating for-
mat with which to discuss the results; this procedure is also
commonly used to analyze time dependent fluorescence
Stokes shifts data.2,3,60Representative results exposed in this
manner are given in Table II, for the solvation of a ben-
zophenone anion in acetonitrile. Comparison of the im-
proved BKO data with the longitudinal relaxation timetL of
pure acetonitrile~see Table II! reveals several interesting fea-
tures. Most importantly, the biexponential fit typically yields
one relaxation time slower thantL , with the other compo-
nent faster thantL . In other words, inclusion of the bound-

TABLE I. Parameters of solvent polarity~static dielectric constant«0 , high
frequency constant«`! and relaxation~the Debye relaxation timestDi

, the
weight factorsgi) for acetonitrile60 and dimetilformamide.60

Acetonitrilea Dimethylformamide

«0 37.84 37.25
«` 3.51 2.84
tD1 , s 3.37310212 0.74310212

tD2 , s 1.036310211

h1 1.0 0.046
h2 0.954

aAcetonitrile has a single-mode Debye spectrum, so index ‘‘1’’ is omitted in
the text.

FIG. 1. Cole-Cole plot of generalized susceptibilityE(v) (D5E(v50))
for refined BKO calculations in acetonitrile. The dashed curve corresponds
to the best one-mode Debye description.

FIG. 2. Normalized plot of the imaginary part ofE2(v), for refined BKO
calculations in acetonitrile. The dashed curve corresponds to the best one-
mode Debye description.t0 is an effective relaxation time, see the text.

TABLE II. Parameters of Eq.~5.4! for response functionE(v) obtained for
the solvation of a benzophenone anion in acetonitrile and in dimethylforma-
mide by the refined BKO and simple continuum calculations.

Acetonitrile Dimethylformamide

Refined
BKO

Simple
continuum

Refined
BKO

Simple
continuum

2D, kJ/mol 77 77 95 95
t1 , s 3.0310213 3.3310213 3.3310213 3.75310213

t2 , s 7.4310213 1.4310212 1.57310212

t3 , s 3.5310211

g1 0.72 1.0 0.50 0.68
g2 0.28 0.45 0.32
g3 0.05
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ary conditions in the BKO theory, yields an additional relax-
ation component having slower dynamics than expected
from the simple continuum model. Our calculations ofC(t)
function for model anions in a Debye solvent, see Section
VI B, show that the biexponential expression ofC(t) is quite
a general result. Moreover, the following inequality holds:

t1,tL,t2 . ~5.6!

This result is well known4–6,27and agrees with the available
experimental data, e.g., see Table 3 in Ref. 60.

In Fig. 3, ln@C(t)# is plotted for a benzophenone anion in
acetonitrile. For comparison,2t/tL is also plotted, as well as
2t/tD , wheretD is the Debye relaxation time of acetoni-
trile. It is clear that the functionC(t) is not well approxi-
mated by2t/tL but falls between the curves corresponding
to the two limiting relaxation times.6

Taking into account Eq.~5.6!, one can come to the con-
clusion that such a behavior of the correlation function is
quite common for the ion solvation in the Debye solvents.
Biexponential behavior ofC(t) has been found earlier with
simplified cavity models, both ellipsoidal35,63 and a combi-
nation of two cubic cells.34 Because spatial dispersion was
also disregarded in these studies, they may be considered as
approximations to the present BKO scheme which treats ex-
actly the cavity effect.

B. Calculations of E„v… in non-Debye solvents

We took dimethylformamide as a typical non-Debye sol-
vent. It is described by the two-mode Debye model of dielec-
tric dispersion, see Table 3 in Ref. 60. The parameters for
dimethylformamide are listed in Table I. For pure dimethyl-
formamide a simple continuum theory predicts a two-mode
Debye susceptibility function with two relaxation timest1

andt2 . They are obtained by substituting the corresponding
two-mode«~v! in Eq. ~5.3! and given in Table II.

The calculation ofE(v) using the refined BKO theory
yields a three-mode Debye model for benzophenone anion,
see Eq.~5.4!. Values of the outcome parameters are given in
Table II. In our calculations the time dependence of the sol-
vation energy is represented in terms of the TCFC(t), see
Eq. ~5.5!, wheren53. In Fig. 4, ln@C(t)#, is plotted for a
benzophenone anion in dimethylformamide. The deviation of
this calculated curve from the TCFC(t) obtained using the
simple continuum theory~Eq. ~5.3!, where«~v! contains two
Debye components! clearly demonstrates the role of the
boundary conditions. This type of behavior forC(t), evalu-
ated using the refined BKO theory, is typical for non-Debye
solvents, see Fig. 10a in Ref. 2.

We also studied acetone andn-butanol, as examples of
typical non-Debye solvents described by the Cole-Cole and
Cole-Davidson models of dielectric dispersion, respectively,
see Table 3 in Ref. 60. In contrast to the experimental data,60

the refined BKO theory gives for these solvents anE(v)
function, which is reasonably well approximated by the
Cole-Cole and Cole-Davidson models, respectively. Prob-
ably, this result shows the restrictions of the BKO treatment,
which does not take into account the ‘‘effect of solvent struc-
ture.’’

VI. ELECTRON TRANSFER PROCESSES

A. Adiabatic theory

In the simplest version, ET kinetics are determined by
the evolution of the transfer charge density

r005r222r11, ~6.1!

where r22(r ) and r11(r ) are the diagonal elements of the
charge density matrix for the reactant~index ‘‘11’’ ! and
product~index ‘‘22’’ ! CI states. The corresponding response
function

@Tin~v!#00,005l~v!5l1~v!1 il2~v! ~6.2!

FIG. 3. The log of the TCF, ln@C(t)#, plotted as a function of time for the
solvation of a benzophenone anion in acetonitrile. The solid refined BKO
curve is compared with two monoexponential decay laws governed by re-
laxation timestL andtD .

FIG. 4. The log of the TCF, ln@C(t)#, plotted as a function of time for the
solvation of a benzophenone anion in dimethylformamide. The solid refined
BKO curve is compared with the dashed simple continuum curve.
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enters the adiabatic equation of motion for the ET medium
variable

X5E d3rr00F in . ~6.3!

In general, the free energy surface of an ET process, as a
function of the inertial medium coordinatesYab[(Yin)ab , is
written as39

U~Yab!52
1

2 (
ab,a8b8

~T0
21!ab,a8b8YabYa8b81W0~Yab!.

~6.4!

The first term represents the self-energy associated with me-
dium coordinates in which

T05T0in5Tin~v50! ~6.5!

is the inertial component of the static reorganization matrix
~the sign has been changed as compared to the notation of
Ref. 39!. The second term, namely, the lowest eigenvalue of
the corresponding CI Hamiltonian, represents the solute self-
energy plus the solute-solvent interaction. The stochastic
equation of motion for the medium coordinates reads

2F0•@Tin~v!#21uY~v!&&52u
]W0

]Y
&&v1uGRF&&

~6.6!

F0
215

1

4p S 1

«`
2

1

«0
D .

Here we introduced the Fourier transforms (2]W0 /]Yab)v

of forces (2]W0 /]Yab) and collected them in a column-
vector (2u]W0 /]Y&&v); the uGRF&& indicates the vector of
Fourier transformed Gaussian random forces andF0

21 is the
Pekar factor. This is the Fourier-transformed version of the
dynamical equation obtained earlier.37–39 Its appearance, in
the context of the present linear response formulation, is very
transparent. We must choose the expansion coefficientsmab

as

mab~ t !5
1

F0

]W0

]Yab
,

~6.7!

mab~v!5
1

F0
S ]W0

]Yab
D

v

and rewrite the linear response relation~3.16! as

uY~v!&&5F0
21

•Tin~v!•u
]W0

]Y
&v . ~6.8!

Equation~6.6! is then found by inverting Eq.~6.8! and add-
ing random forces in order to make allowance for
fluctuations.52

In earlier applications this equation of motion was sim-
plified by factorizing the reorganization matrix as

Tin~v!5
F0

F~v!
•T0 , ~6.9!

where F(v) is given by Eq.~5.3!. Here we shall abstain
from this approximation. Thus, for a single variableX ~6.3!
we obtain the equation of motion

2F0•@l~v!#2152S dW0

dX D
v

1GRF ~6.10!

which acquires a typical form for a generalized Langevin
equation~GLE!

@ f ~v!2 f 0#X52S ]U

]X D
v

1GRF ~6.11!

after introducing the following notations:

2F0•@l~v!#215 f ~v!; f ~v50!5 f 0 ,
~6.12!

U~X!5
f 0

2
•X21W0~X!.

HereU(X) represents the ET potential profile as calculated
by the CI/BO method,39,44with force constants2bÞ andb0

dU

dX
52bÞ

•~X2XÞ!~at the barrier topX5XÞ!,
~6.13!

dU

dX
5b0•~X2X0!~at reactant minimumX5X0!.

Finally, the Arrhenius rate prefactor of the KGH theory is

A5
VÞ

2p
Ab0

bÞ, ~6.14!

whereVÞ is the decay frequency. As described previously,64

it is readily expressed in terms ofl~v!. Thereby, the present
continuum treatment, aimed at a direct evaluation of permit-
tivity l~v!, happens to be closely related to the following
evaluation of the ET rate in terms of the KGH theory.

B. Calculations

We used again here only the BKO approach. The spheri-
cally symmetrical approximation for a solute needed in the
nonlocal theory is hardly acceptable for studying ET. We
considered ET in model anion-biradicals (CH2)n

2 , where
n54, 6 and 8.43,44The geometries were taken to be the same
as those of Refs. 43, 44. The CI/BO procedure was per-
formed under the PM3 method.44 We took a model Debye
solvent~a prototype of acetone2!, which is characterized by
the following parameters: «0520.7, «`51.9 and
tD53.20310212 s.

A good approximation for the calculated function
l(v)/D1 is found in terms of a two-mode Debye model, see
Eq. ~5.4!, where D15l(v50), with g150.8, g250.2,
t153.80310213 s, t251.60310213 s.

The respective changes in the ET kinetics can be visual-
ized by considering the decay frequencyVÞ in the KGH
theory as a root of the characteristic equation~see the desig-
nations in Eqs.~6.11!, ~6.12!!

f ~ iv!5 f 01bÞ. ~6.15!
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As a consequence of causality,56 f ( iv) ~with real v! is al-
ways real. Because the inverse quantityl~v! vanishes when
uvu→`, it can readily be evaluated on the imaginaryv axis
in terms of a general relation of dispersion theory56

l~ iv!5
2

p E
0

`xl2~v!

v21x2 dx. ~6.16!

We finally obtainf ( iv) as the inverse of Eq.~6.16!, accord-
ing to Eq.~6.12!.

The solution to Eq.~6.15! is found graphically as the
abscissa of the point where the curvef ( iv) crosses the hori-
zontal line f ( iVÞ)5 f 01bÞ, see Fig. 5. This solution is
unique because the causality condition ensures thatf ( iv)
increases monotonically.

The value ofVÞ was evaluated using forl~v! first of all
a one-mode Debye model with thetL value, evaluated using
the parameters of the model Debye solvent, and secondly a
two-mode Debye model with theg1 , g2 , t1 and t2 values
listed above for functionl(v)/D1 . The first pure Debye
case corresponds to the approximation~6.9! with F(v) given
by Eq. ~5.3!. The results are listed in Table III. The relative
difference between the twoVÞ values for the first two model
anion-biradicals does not exceed 13%. A strong increase in
the decay frequency for (CH2)8

2 is the result of a small cou-
pling matrix element for this case, which can be estimated

from the energy gapDUÞ ~the splitting of adiabatic levels at
the barrier top! as minusDUÞ/2. The potentialU(X) then
acquires a cusp form. Strictly speaking, the corresponding
kinetics must then be treated by a quantum non-adiabatic
theory in which the quantityVÞ loses its importance.

The discussion of the present Section is entirely illustra-
tive for several reasons. First, the anions considered are
purely theoretical models and there is no experimental data
for them. Second, as recent studies have shown,44 the energy
profiles obtained from the simple BKO treatment give a poor
description of ET energetics and must be refined by a proper
account of the molecular structure of the solvent in the first
solvation shell. Finally, the application of data from Table III
for treating ET kinetics is consistent only for (CH2)6

2 . For
the case of (CH2)4

2 the barrier is too low and a steady state
kinetic regime is unlikely, whereas for (CH2)8

2 a nonadia-
batic ET theory must be applied.

What our computations demonstrate is how important
exact boundary conditions are in treating ET kinetics. The
answer is that their effect is less remarkable than in the case
of time-dependent solvation spectroscopy, in agreement with
the results of earlier MD computations.17

VII. DISCUSSION

The results of Sections V and VI show that the essential
features of the solvation dynamics of ions are reasonably
well reproduced in the framework of continuum medium the-
oretical models. Starting with a simple Debye description of
a polar solvent we were able to recover a polyexponential
kinetic evolution as its dynamical outcome. Our observations
are complemented by the results of an approximate nonlocal
theory as applied to model two-sphere charge distribution.26

Main conclusions following from these two different ap-
proaches are in a qualitative agreement. Both the boundary
effect ~obtained in terms of the present BKO computation!
and the effect of solvent molecular structure~a nonlocal
computation, Ref. 26 and our unpublished data! only multi-
ply a number of Debye modes involved in the resulting ki-
netics and shift their relaxation parameters. A relative impor-
tance of the two effects is unclear now. This ambiguity could
be resolved only within a more sophisticated unique calcula-
tion, combining a nonlocal treatment with a realistic non-
spherical cavity for a solute. A general structure of such a
theory is outlined in Sections III, IV.

Being a first step, the present work needs further refine-
ment in future. Two features of actual TCFs seem to be
missing in our computations: oscillations and short-time

FIG. 5. Solution of the characteristic equation~6.15! for the decay fre-
quencyVÞ for two alternatives of the functionl(v), see the text, for a
(CH2)6

2 model anion-biradical. The dashed curve corresponds to the simple
continuum theory and the solid curve corresponds to the refined BKO
theory. Here2bÞ represents a force constant at the top of the barrier of the
ET potential profile, see Eq.~6.13!.

TABLE III. The decay frequencyVÞ and Arrhenius rate prefactorA of the KGH theory evaluated using
one-mode~1D! and two-mode~2D! Debye models for three anion-biradicals, see the text.

UÞ,a eV DUÞ,b eV VÞ ~1D!, s21 VÞ ~2D!, s21 A ~1D!, s21 A ~2D!, s21

(CH2)4
2 0.16 0.51 3.6731011 3.2331011 4.2031010 3.7031010

(CH2)6
2 0.45 0.12 3.4131012 3.1231012 1.4431011 1.3231011

(CH2)8
2 0.58 0.028 1.1631013 1.1031013 2.7031011 2.5631011

aUÞ is the barrier height of the ET reaction.
bDUÞ is the splitting between adiabatic levels at the barrier top.
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Gaussian behavior.13,14,17,20,27The both effects could be natu-
rally introduced without changing the essence of our ap-
proach. Proper modifications must be brought into an input
susceptibility function~such as«~v! in Section V A or
x(k,v) in Section V B!. The change will be transferred to
the outcome response functions and reproduce the desired
temporal effects in their inverse Fourier transforms. Oscilla-
tions are expected to appear by adding resonance mode
components65 which may be either of a conventional Lorent-
zian form66,67 or Gaussian.68,65 For doing this consistently
more information on the details of both the input suscepti-
bilities and the outcome TCFs is necessary. Borrowing such
information either from experiment or from MD simulations
the resulting oscillatory behavior of TCFs could be generated
without problems.

More vague is the problem of Gaussian initial kinetics.
We displayed the results of the present calculations in terms
of Lorentzian-typev-dependencies vanishing according to
an inverse power law whenuvu→`. In the time domain they
generate exponentially decaying functions. In order to get a
Gaussian component of the time evolution13,14,17,27one must
change the Lorentzian tails of at least some of the spectral
bands for Gaussian ones.68,65Again, if this is performed with
an input susceptibility function, the result of modifying its
asymptotic behavior will be transferred to the outcome re-
sponse function. In the time domain this is sufficient to gen-
erate the short time component of decay kinetics. As follows
from Eqs.~A4a!, ~A6! of Appendix A, a Gaussian tail in the
imaginary part of the response function generates Gaussian
short-time kinetics. Here, however, we arrive at an intrinsic
deficiency in the continuum approach. The exponentially de-
caying high frequency portions of complex-valued response
functions are not available, within a reasonable accuracy, in
terms of the computational procedure described in Appendix
B. This is why we report in the present article only the re-
sults obtained with Lorentzian susceptibilities.

The importance of high-frequency spectral components
in steady state KGH kinetics can be also discussed. As seen
from the graphical solution for the decay frequency in Fig. 5,
it critically depends on the value off 01bÞ, which deter-
mines the frequency range essential for findingVÞ. So, in
Fig. 5 this region lies aroundVÞ and the frequency range
v@VÞ is negligible. ~Note also, that when working with
frequenciesv.1013 s21, quantum dynamical effects be-
come important and the whole treatment needs a deep modi-
fication!. When VÞ lies in the classical region the refine-
ments of dynamical calculations which we introduced have
little influence on the calculated rate constant.

VIII. CONCLUSIONS

In the present work we generalized a conventional SCRF
approach36 for treating polar solvation effects for computa-
tions with a complex-valued dielectric permittivity function
«~v!. This extends the idea23,52 that, due to the properties of
Maxwell’s equations, a description of nonequilibrium dy-
namical phenomena can be gained~within a continuum
theory! by simply substituting«~v! for the static permittivity

«0 in static equilibrium equations. In this way calculations of
TCFs were performed for complicated chemical solutes ac-
counting for electrostatic boundary conditions and with an
explicit treatment of the solute electronic structure at a rea-
sonable quantum-chemical level.

We have formulated two methods for transforming the
complex-valued SCRF results into TCFs. The first one~Sec-
tions IV, V! represents the nonstationary kinetics of the time-
dependent Stokes shift and the second one~Section VI! de-
scribes the stationary monoexponential kinetics of an ET
process. Although the computations were confined to the
framework of the local electrostatic BKO model, their exten-
tion to a nonlocal electrostatic methodology is straightfor-
ward.

Altogether we conclude that the dynamical version of
the continuum theory developed here reproduces well the
low and intermediate frequency range of response functions
and the corresponding intermediate and long time solvation
kinetics in a nonstationary regime. Technical problems with
the high-frequency range and corresponding short time kinet-
ics seem to reflect a principal deficiency of the continuum
approach. Because the opposite is true as regards the MD
computations of TCFs,13,17,69 the continuum and molecular
approaches may be considered in this sense to be mutually
complementary.
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APPENDIX A: TIME CORRELATION FUNCTIONS

The TCF describing a time-resolved Stokes shift is de-
fined as1–7

C~ t !5
US~ t !2US~`!

US~0!2US~`!
. ~A1!

According to formulas~4.8! and ~5.1!,

C~ t !5
*0

t E~t!dt2D

2D
, D5E~v50!,0. ~A2!

Here E(t) is the inverse Fourier transform ofE(v), Eq.
~5.1!. It can be expressed in terms of eitherE2(v) or E1(v)
with the aid of the Kramers-Kronig relations. The result is65

E~t!55
1

p E
2`

`

dvE1~v!cosvt ~t.0!

1

p E
2`

`

dvE2~v!sin vt ~t.0!

0 ~t,0!

. ~A3!

Let us introduce the functionG(t) ~wheret.0!
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G~ t !5E
0

t

E~t!dt5
1

p E
2`

`

dv
sin vt

v
E1~v!, ~A4a!

52
1

p E
2`

`

dv
cosvt21

v
E2~v!. ~A4b!

By studying the limitt→` we find the following relations:

lim
t→`

G~ t !5D, ~A5a!

1

p E
2`

` E2~v!

v
dv5D, ~A5b!

lim
t→`

1

p E
2`

` cosvt

v
dv50. ~A5c!

Expression~A5a! immediately follows from~A4a!, expres-
sion ~A5b! results from Eq.~6.16! whenl is changed forE2

andv50, and expression~A5c! follows from ~A4b!, ~A5a!
and ~A5b!. With this notation

C~ t !5
G~ t !2D

2D
. ~A6!

Let us now consider the TCF

J~ t !5^Y~ t !Y~0!&. ~A7!

Its Fourier transformJ(v) is determined by the FDT.56 In
the high temperature limit

J~v!5
2kT

v
E2~v!. ~A8!

The inverse Fourier transform is performed with the aid of
Eqs.~A5a–c!. This results in the expression

J~ t !

D
5kTC~ utu!, ~A9!

and, as noted previously,8,13,17 functionsC(t) and J(t) are
closely related.

APPENDIX B: COMPLEX-VALUED EQUATIONS FOR
SURFACE CHARGE DENSITY s„r …

The integral equation for the static BKO model reads37

s~r !5k0$@V̂r#~r !1@~Ŝ12p!s#~r !%~r PS!. ~B1!

Herek0 is the Born factor

k05
1

4p S 12
1

«0
D . ~B2!

The volume (V̂) and surface (Ŝ) integral operators need not
be specified here, except to note that they are linear and their
kernels are real quantities. As stated in Section IV, we now
substitute fork0 the complex-valued permittivity

k~v!5
1

4p S 12
1

«~v! D5k1~v!1 ik2~v! ~B3!

with

k1~v!5
1

4p F12
«1~v!

~«1~v!!21~«2~v!!2G ,
k2~v!5

1

4p

«2~v!

~«1~v!!21~«2~v!!2 . ~B4!

We anticipate thats also becomes complex-valued

s~v!5s1~v!1 is2~v! ~B5!

~the r -dependency is suppressed in the present notation for
brevity!. Performing the substitutionk0→k(v) and takings
in the form~B5! in Eq. ~B1!, we separate the real and imagi-
nary parts and ultimately arrive at the pair of equations

s1~v!5k1~v!@V̂r~r !1~Ŝ12p!s1~v!#

2k2~v!~Ŝ12p!s2~v!,

s2~v!5k2~v!@V̂r~r !1~Ŝ12p!s1~v!#

1k1~v!~Ŝ12p!s2~v!. ~B6!

For a first approximation, we fixs1(v) in the first equation,
and thens2(v) in the second. Each of these equations can
then be solved by standard techniques.36 After this we may
simultaneously solve the system~B6! by iterations.
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