
Wan, C, Yan, X, Zhang, D, Qu, Z and Yang, Z

 An advanced fuzzy Bayesian-based FMEA approach for assessing maritime 

supply chain risks

http://researchonline.ljmu.ac.uk/id/eprint/10373/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 

University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 

the individual authors and/or other copyright owners. Users may download and/or print one copy of 

any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.

You may not engage in further distribution of the material or use it for any profit-making activities or 

any commercial gain.

The version presented here may differ from the published version or from the version of the record. 

Please see the repository URL above for details on accessing the published version and note that 

access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 

intend to cite from this work) 

Wan, C, Yan, X, Zhang, D, Qu, Z and Yang, Z (2019) An advanced fuzzy 

Bayesian-based FMEA approach for assessing maritime supply chain risks. 

Transportation Research Part E: Logistics and Transportation Review, 125. 

pp. 222-240. ISSN 1366-5545 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


An advanced fuzzy Bayesian-based FMEA approach for assessing 

maritime supply chain risks 

 

Abstract 

This paper aims to develop a novel model to assess the risk factors of maritime supply chains 

by incorporating a fuzzy belief rule approach with Bayesian networks. The new model, 

compared to traditional risk analysis methods, has the capability of improving result accuracy 

under a high uncertainty in risk data. A real case of a world leading container shipping 

company is investigated, and the research results reveal that among the most significant risk 

factors are transportation of dangerous goods, fluctuation of fuel price, fierce competition, 

unattractive markets, and change of exchange rates in sequence. Such findings will provide 

useful insights for accident prevention.  

Keywords: maritime supply chain, maritime transport, Bayesian network, fuzzy logic, FMEA, 

maritime risk  

1 Introduction 

The maritime industry is playing an increasingly important role in international trade as ships 

are carrying a large quantity of cargos over a long distance in a cost-effective and 

environmentally friendly manner (Rodrigue, 2017). This contributes to the fast development 

of maritime supply chains (MSCs). The UNCTAD report (2017) revealed that more than 80% 

of global trade in terms of volume is transported by ships. As a core component of the global 

logistics system, MSCs connect different transport modes to realise door-to-door services. Due 

to the high capital intensive characteristic of the maritime industry, any form of disruption 

along MSCs can adversely affect business sustainability and cause unimaginable losses. 

Furthermore, the impact will be passed onto other relevant transport modes along the same 

chain. For example, United States (U.S.) port labour disputes, leading to an 11-day lockout in 

2002 and the shutdown of West Coast ports in 2005, caused a loss of $1 billion and $1.9 billion 

per day, respectively (Gorman, 2015). Thus, attention has been attracted from both academia 

and industry on how to properly and effectively analyse and manage risks associated with 

MSCs (Vilko and Hallikas, 2012; IMO, 2012), particularly taking into account the fact that 

many of them are from different perspectives and having various risk characteristics. 

Numerous methods have been developed and applied in previous studies for supply chain risk 

management. They can be broadly classified into two groups, which are traditional risk analysis 

tools including risk matrix (Anthony, 2008), risk maps (Chang et al., 2015), the analytic 

hierarchy process (AHP) method (Asgari et al., 2015), the failure mode, effect analysis (FMEA) 

(Pujawan and Geraldin, 2009), and fault tree analysis (FTA) (Chen et al., 2011); and advanced 

uncertainty modelling techniques such as fuzzy logic, Monte Carlo simulation, and Dempster-

Shafer theory (Liu et al., 2013c). However, these methods under many circumstances have 



shown inherent drawbacks/incapability in their practical applications. For example, AHP and 

FMEA cannot deal with the high uncertainties (e.g. incompleteness and vagueness) existing in 

risk data of supply chain operations, and D-S theory suffers from the conflict problems of 

evidence, which will lead to irrational results. Moreover, current research of supply chain risk 

management focuses more on only two risk parameters, (i.e. likelihood and consequence) and 

it is often studied from a single dimension such as financial, operational and technical. This 

will not provide enough information needed for decision making, and the situation is getting 

even worse with the increase of the global MSC complexity. 

Therefore, several questions arise: What risk parameters need to be considered in the MSC risk 

assessment? How to provide a uniformed scale to measure the risks from different perspectives? 

How to utilize the selected risk parameters for accurate risk analysis in a rational way? How to 

deal with the uncertainties in the complex MSC systems? How can we make better use of the 

existing risk analysis tools in order to achieve a more flexible and accurate risk assessment? 

This paper attempts to answer these questions and fill in the research gaps by meeting the 

following research objectives: 

(1) To determine the risk parameters influencing MSC risk analysis. 

(2) To develop a suitable model for risk assessment of MSCs in an uncertain environment.  

(3) To verify the rationality and feasibility of the proposed method. 

This study provides a reference for both researchers and practitioners in terms of the assessment 

of risk factors under uncertainty. It provides a basis for evaluating different kinds of risks to 

ensure that the safety and security of maritime logistic systems can be tackled in an integrated 

framework. The novelty of this paper is threefold. Firstly, it systemically identifies the risk 

events relating to MSCs from a whole supply chain perspective involving multiple dimensions 

such as technical, operational, managerial and financial risks. Secondly, the study explores and 

incorporates more risk parameters, which is beneficial to better understanding and modelling 

of risks in MSCs. Thirdly, it develops a new method to effectively deal with different types of 

uncertainties existing in the risk assessment of MSC risks. 

After the introduction, the next section reviews the related literature and highlights the research 

gaps. Section 3 presents the novel approach and steps for conducting an MSC risk assessment. 

In Section 4, the feasibility and superiority of the proposed method are demonstrated through 

a case study of a container shipping company. The main contributions of this study are 

discussed in Section 5, and this work is concluded in Section 6. 

2 Literature review  

Scholars have spent a lot of efforts in exploring, investigating, and evaluating MSC risks due 

to its importance in ensuring the safety and resilience of global maritime logistics systems. This 

section reviews the previous work relating to the definition and assessment of MSC risks and 

outlines the gaps that need be addressed in the current research. 



2.1 Maritime supply chain risks 

MSCs have been suffering from various types of risks, and research has therefore been 

conducted from different perspectives of risk management in the logistics and transportation 

domains. Some previous studies focuse on the analysis of relationships between different actors 

and between safety and costs within a supply chain taking into consideration the impact of 

some specific risk sources in order to provide a reference for rational decision-making. For 

example, Wang et al. (2018) investigated optimal insurance premiums for two different 

contracts (i.e. multiplicative contract and additive contract) between express logistics providers 

and customs under transportation disruption risk so as to provide insights into the selection of 

different shipment insurance contracts. Yang et al. (2018) developed a game model based on 

Bayesian network to determine the optimal inspection strategy of a port authority considering 

the influence of inspection risk in port state control. Vidyarthi et al. (2007) investigated the 

trade-off between logistics costs and inventory safety using a nonlinear mixed-integer 

programming method.  

Other research pays more attention to the identification and assessment of risk factors which 

have negative impact on the safety and efficiency of logistics operations. In this research, risks 

are generally represented as Risk = (P, C), where P is the occurrence probability of a risk and 

C is the severity of the consequence. For example, Yu and Goh (2014) regarded supply chain 

risks as the probability of occurrence of an adverse event during a certain period within a supply 

chain and the associated consequences which affect supply chain performance. Kumar et al. 

(2010) defined supply chain risk as the potential deviations from the initial objective, which 

would result in a decrease of value at different levels. This was also evidenced by a review of 

224 journal papers (Ho et al., 2015), which revealed that most of the previous research on 

supply chain risk assessments paid special attention to the occurrence probability/likelihood of 

an event, while a few studies assessed the severity of the consequences as well. The 

combination of P and C presents a simple and effective way to represent a risk. However, a 

risk is a complex and interdisciplinary concept with a variety of parameters involved in addition 

to the probability and consequence, such as uncertainty, exposure, and scenarios (Aven, 2012). 

Aven (2010) defined it as Risk = (P, C, U), where U represents the uncertainty about P and C. 

He also tried to connect another parameter - the background knowledge (K) - to the subjective 

probability in the risk description, resulting in Risk = (P, C, U, K). Such studies often argue 

that having two basic risk parameters (i.e. P and C) will lead to the loss of useful information 

in risk analysis. However, considering more risk parameters is not necessarily better and 

sometimes not practically feasible. This is particularly true for industrial cases as more 

resources (e.g., data, time, and expert knowledge) are usually required to support an in-depth 

risk assessment, dramatically increasing risk management costs.  

In the supply chain domain, a new risk parameter that has attracted attention is visibility. Good 

visibility in a supply chain will benefit operational efficiency, productivity, and effective 

planning (Petersen et al., 2005; Yu and Goh, 2014), as well as enhance supply chain stability 



by mitigating the bullwhip effect (Ouyang, 2007). Furthermore, case studies conducted by 

Harland et al. (2003) indicated that more than half of the risks influencing the studied 

companies were associated with the lack of sufficient visibility in the supply chains, and the 

situation became more worrisome given the increasing use of “virtual” supply chains. Internet 
of things (IoT) technologies have facilitated information sharing among actors in a supply chain. 

This enables the monitoring of the status of cargo shipments, improving the visibility and 

connectivity of the entire supply chain (Zhou et al., 2009). These tools significantly contribute 

to the reduction of supply chain uncertainty, thus facilitating more stringent control of product 

inventory.  

2.2 Risk assessment methods 

For the assessment of maritime transportation risks, various methods have being developed and 

applied. Those widely employed risk assessment techniques, yet having close relevance to this 

work, are introduced in the following subsections. 

2.2.1 FMEA 

As an inductive and proactive analytical method, FMEA studies the effects of single 

component failures on the system. Through the control of high-risk failure modes, the overall 

safety of the system can be increased. It is useful for an exhaustive listing of all potential 

initiating faults. Three fundamental attributes that have been employed in the traditional FMEA 

method to calculate the risk priority numbers (RPNs) of each failure are occurrence likelihood, 

consequence severity, and the probability of failures being undetected. Due to its transparency 

and easiness, the FMEA method has been widely applied in maritime domains for safety and 

reliability analyses including Berle et al. (2011), Yang and Wang (2015), and Gul et al. (2017), 

to name just a few. However, FMEA shows certain incapability when addressing uncertainties, 

and this, in turn, stimulates the development of some new methods through incorporating 

uncertainty treatment theories such as fuzzy logic (Liu et al., 2013a), and Bayesian Networks 

(BNs) (Yang et al., 2008). 

2.2.2 Fuzzy logic  

As an extension of traditional/binary logic, the fuzzy logic introduced by Zadeh (1965) is built 

around the central concepts of a fuzzy set (which is a generalisation of the classical set theory). 

It is the logic that deals with situations, where it is difficult or sometimes impossible for an 

expert to provide clear true/false answers, by introducing the notion of the degree in the 

verification of a condition (Mendel, 2001). Fuzzy logic enables the combination of linguistic 

knowledge and numerical data in a systematic way, thus making it possible to process 

imprecise information and take into account uncertainties as well (Adriaenssens et al., 2004). 

Fuzzy logic-based methods are a powerful tool for modelling the behaviour of systems which 

are too complex or too ill-defined to allow for conventional quantitative techniques, or when 

the available information from the systems is qualitative and imprecise (Nait-Said et al., 2009). 

However, no perfect application of fuzzy logic in practice has been found until its combination 



with a rule base in the control of a non-linear dynamical system (Mamdani and Assilian, 1975), 

in which its importance as a powerful design methodology was highlighted and demonstrated.  

A fuzzy rule-based system is perhaps the most common way to represent human knowledge 

and to model human reasoning in a systematic manner. This kind of system represents human 

empirical and heuristic knowledge using an approximate and linguistic description that mirrors 

our own language of communication: IF-THEN rules (Ross, 2009). This makes fuzzy rule-

based systems an invaluable tool for expressions when applied in engineering systems with 

other mathematical models and data processing approaches for reliability analysis and safety 

assessments (e.g. Kong et al., 2012; Liu et al., 2013b; Polat et al., 2015; Zhang et al., 2016; Wu 

et al., 2017). Advantages of a fuzzy rule-based system include its ability to capture and preserve 

irreplaceable human experience, to develop a system that is more consistent than human experts, 

and to develop solutions faster than human experts can (Abraham, 2005). 

2.2.3 Belief rule base 

In order to model complex environments and handle uncertain information in the safety 

management of supply chains, Yang et al. (2006) further extended the classical fuzzy rule-

based systems by incorporating the concept of degrees of belief (DoB) into the consequent 

parts of traditional IF-THEN rules. Belief rule expressions in a fuzzy rule-based system can 

provide a better compact framework to represent expert knowledge. This enables the system to 

address a situation where there are DoBs or credibility regarding a hypothesis, but there is 

insufficient available evidence, or experts are not 100% certain of their judgements (Yang et 

al., 2007). Based on that, the simple rule can be extended to a so-called belief rule, with all 

possible consequents associated with belief degrees. A belief rule base (BRB) is a collection 

of such belief rules. Despite showing advantages over traditional rule-based systems, there are 

still some potential challenges such as inconsistency, incompleteness during the applications 

of BRB systems that should not be ignored (Yang et al., 2018), and combinatorial explosion 

(Wang et al., 2014). The problem of the combinatorial explosion is reflected by an exponential 

growth of the scale of BRB with the increase of the number of the attributes and the referenced 

values for each attribute, which will affect its applications in practice. A lot of effort has been 

put to seek for ways of downsizing the BRB system in order to address this problem. They 

include the use of the weights of the involved attributes in the IF part to rationalize the 

distribution of the degree of belief in the THEN part in this paper (e.g. Alyami et al., 2014). It 

can effectively increase the robustness of the development of fuzzy rules and hence, the 

accuracy of the risk results.  

2.2.4 Bayesian network 

The BN (also known as belief networks) method was developed based on the well-defined 

Bayesian probability theory and networking techniques. A BN is a graphical presentation of 

probability combined with a mathematical inference calculation, which provides a strong 

framework for representing knowledge. It also has a good ability in modelling randomness and 

capturing non-linear causal relationships, so that the inference based on incomplete, imprecise 



and uncertain information can be achieved. As a method that is both mathematically rigorous 

and intuitively understandable (Ben-Gal, 2007), the BN approach has been applied in a range 

of real applications, especially when predicting and diagnosing properties of a complex system 

are involved. For example, Baksh et al. (2018) developed a risk model based on the BN to 

investigate the possibility of marine accidents considering different operational and 

environmental factors that affect shipping operations in Arctic waters.  

2.3 Research gaps 

Although showing some good insights, the aforementioned approaches when being applied to 

maritime risk analysis, still reveal some specific research gaps as follows: 

1) Previous studies on maritime supply chain risk assessments paid special attention to the 

occurrence probability of an event and the severity of the consequences (e.g. Manuj and 

Mentzer, 2008; Vilko and Hallikas, 2012; Chang, Xu and Song, 2014), leaving the other 

features of risk not being fully explored during the risk analysis of complicated supply chain 

systems. Relying only on two basic risk parameters (i.e. probability and consequence) will 

inevitably lead to the loss of useful information in risk analysis, and more importantly, it cannot 

really distinguish the safety levels of different risks when the investigated chains are large and 

complicated, presenting hundreds of different risk events.  

2) The currently used risk assessment methods revealed incapability and drawbacks in their 

practical applications, especially when the quantitative analysis of maritime transport risks 

needs to be conducted in a highly uncertain environment. For example, one of the critically 

debated limitations of applying the FMEA is that equal RPN values may generate different risk 

implications (Mandal and Maiti, 2014). Also, the relative importance among the three risk 

parameters of FMEA is ignored when calculating the RPNs. Furthermore, one common 

criticism exists in the Bayesian approach is that it requires too much information for the 

construction of conditional probability tables (CPTs), and this information is often difficult or 

impossible to obtain in risk assessment. In order to make better use of inference mechanism of 

BRB systems, different approaches are introduced and incorporated into the BRB system, 

among which one of the widespread applications is the Rule-base Inference Methodology using 

Evidential Reasoning (RIMER) (Yang et al., 2006). However, one possible disadvantage of the 

RIMER approach that hinders its development in practice is its complex calculation process, 

which is arguably not friendly to mathematically unsophisticated users.  

In order to fill the research gaps, this work proposes a novel hybrid fuzzy Bayesian risk analysis 

method to further address the above theoretical issues in the risk analysis in MSCs. This is 

achieved by 1) involving an important risk parameter (visibility) of supply chain systems 

during the construction of fuzzy rule base, and 2) incorporating the BN technique into fuzzy 

rule-based risk inference in a complementary way, in which the subjective belief degrees were 

assigned to the consequent part of the rules to model the incompleteness encountered in 

establishing the knowledge base, and a Bayesian reasoning mechanism was then used to 



aggregate all relevant rules for assessing and prioritising risk factors. The proposed risk 

assessment method can process different types of information (e.g. quantitative and qualitative, 

subjective and objective) from multiple sources in a consistent manner, deal with the 

uncertainties in risk inputs, and provide accurate results while maintaining a certain degree of 

visibility, transparency, as well as easiness to operate.  

3 Methodology  

Normally, the choice of the approaches in risk studies depends on several elements including 

the data availability (qualitative and qualitative information), the degree of interrelationships 

complexity, and the causes of uncertainty. A common problem in risk assessment in the 

shipping industry is the lack of objective failure data. Thus, subjective and qualitative 

information is usually involved as a complementary input for the risk assessment, which will 

inevitably bring uncertainties due to the vagueness or imprecision of human judgements. 

Another contributor to the uncertainty in MSC risk assessment is the complexity of the 

maritime logistics system where different risk parameters may need to be considered in order 

to fulfil the requirements under different risk situations. In view of this, a fuzzy belief rule-

based Bayesian network (FBRB-BN) approach is proposed to assess the MSC risks under 

uncertainties, in which fuzzy logic is used to deal with data vagueness and Bayesian inference 

is to facilitate the rule synthesise. The major advantage of this method is the ability to model 

the relationships between risk attributes/parameters and risk status in a flexible manner (e.g. 

fuzzy risk input and output will be not necessarily presented in a linear relation) and to process 

multi-source information and transform it into subjective conditional probabilities in the BN, 

in order to effectively tackle uncertainties for precise risk assessment in the maritime industry. 

The proposed method consists of five major components. The relationships of these steps and 

how these research steps help address research questions and achieve the research objectives 

are depicted in Figure 1. Details on how to conduct these research steps are stated in the 

following subsections. 
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 Figure 1. The major research steps and their relations with the research objectives 

3.1 Establishment of the BRB for risk assessment of MSCs 

In this paper, two main extensions of risk parameters are considered during the construction of 

the BRB for MSC risk assessment. One is the visibility of risk in an MSC (Vilko et al., 2016), 

and the other is the decomposition of consequence into three categories based on different types 

of impacts on the maritime transportation. From the perspective of theoretical risk contributions, 

this horizontal addition and vertical specification of risk parameters in two tiers lead to new 

ways of constructing a fuzzy rule base in risk analysis.   

Some consequences are more tangible and easy to measure, such as time delay and financial 

loss. Other consequences may be intangible and difficult to quantify and evaluate, such as 

environmental damage and reputation loss. In recent research of risk analysis in container 

shipping operations, Chang et al. (2015) considered three types of risk consequences when 

developing risk maps: financial loss, reputation loss, and safety and security incident related 

loss. Vilko and Hallikas (2012) also described three types of risk consequences in the field of 

supply chain risk management: time-based, finance-based, and quality-based effects. 

According to the features of the maritime shipping industry, the study subdivides the risk 

consequence into three categories, which are time delay/disruption, additional cost, and 

damage to quality. 



Delays cause pressure on the schedule flexibility of liner shipping and decrease liner service 

reliability. Due to the complex and variable navigation environment, maritime transportation 

can be delayed for days or even a week without serious consequences (Vilko and Hallikas, 

2012). Generally, there is no clear time limitation on delays, and the severity of time delays 

varies significantly, depending on the types of cargo being transported. For example, a shipping 

delay of time- and temperature-sensitive products will have more severe consequences than 

that of normal goods. Here, disruption is identified as a breakdown in an MSC, where the 

minimum requirements cannot be achieved. The parameter time delay/disruption has been 

widely studied in the context of container shipping (e.g. Ghadge et al., 2013; Chang et al., 2014; 

Vilko et al., 2016). Additional costs include costs associated with additional operations and 

management (such as additional inventory costs and production costs), and fees attributable to 

risk drivers. For example, these costs include fees spent to hire armed guards on ships to protect 

cargo on routes with a high possibility of piracy attack (Willis Oketch, 2011). Damage to 

quality refers to the damage to any component within an MSC, including transported goods, 

port infrastructure, and vessels. 

Obviously, the above-discussed risk parameters are not bound in a linear relationship, and to a 

large extent, their evaluations cannot be effectively supported by objective data. Hence, a fuzzy 

belief rule-based approach is employed here. Based on the above-mentioned risk parameters, 

the BRB can be constructed according to Eq. (1) (Yang et al., 2006). 
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where, 𝛽𝑗𝑘(𝑖 = 1,2, … , 𝑁) is the DoB to which Dj is believed to be the consequent in the kth 

packet rule, when the input satisfies the antecedents 𝐴𝑘 = {𝐴1𝑘, 𝐴2𝑘, … , 𝐴𝑀𝑘 }. N is the number of 

all possible consequents. If ∑ 𝛽𝑗𝑘𝑁𝑗=1 = 1, the kth rule is considered complete; otherwise, it is 

incomplete. 

In the constructed BRB system, five risk parameters are considered as the antecedent attributes 

in fuzzy rules (the IF part). They are risk occurrence likelihood (L), visibility (V), consequence 

severity in terms of time delay/disruption (CT), additional cost (CC), and damage to quality 

(CQ). Risk status (R) is presented as the consequent attribute (the THEN part). DoBs are 

assigned to the linguistic variables used to describe the consequent attribute R in the BRB.  

To facilitate subjective data collection and representation of judgements associated with the 

five antecedent attributes and conclusion, a set of linguistic variables are defined. The linguistic 

variables for describing each attribute are decided based on the situation in the case of interest, 

with reference to the relevant studies in the literature. It is suggested that the linguistic variables 

used to describe risk parameters L, V, CT, CC, and CQ in the shipping industry can be defined 

as follows. To estimate L (Alyami et al., 2014), one may often use variables (Li, i =1, 2, 3) like 



“unlikely”, “occasional”, and “frequent”. Variables (Vj, j =1, 2, 3) used to estimate V (Alyami 

et al., 2014) are often “good”, “normal”, and “poor.” Variables (CTk, k =1, 2, 3) used to 

estimate CT (Vilko et al., 2016) are often “low”, “medium”, and “high.” Variables (CCl, l =1, 

2, 3) used to estimate CC (Vilko et al., 2016) are often “low”, “medium”, and “high.” Variables 
(CQm, m =1, 2, 3) used to estimate CQ (Vilko et al. 2016) are often “negligible”, “moderate”, 
and “critical.” Similarly, the risk status can be described using such linguistic variables (Rh, h 

=1, 2, 3) as “low”, “medium”, and “high”. Although only three variables for each risk 
parameters are considered in this paper for a better practicality purpose, it is possible to have 

some flexibility in the number and definition of variables to suit different risk scenarios, and 

examples can be found in the research by Yang et al. (2008). However, the changes of the 

defined variables and their numbers require a very careful justification from domain experts. 

With respect to the conclusion of a BRB, the DoB of the rules can be assigned based on 

knowledge accumulated from past events (Alyami et al., 2014) or directly using knowledge 

from multiple experts (Yang et al., 2009). However, in practice, it is difficult to determine all 

the DoBs of rules rationally in a BRB by only using experts’ subjective knowledge, especially 
for a large-scale BRB with hundreds or thousands of rules (Yang et al., 2017). Given this, a 

proportion method was proposed by Alymai et al. (2014) to rationalise the distribution of DoB. 

The method provided a logical and straightforward way to calculate the DoB in the THEN part. 

However, one major deficiency is the ignorance of the weight of risk parameters when 

calculating the DoB. This may affect the robustness of the BRB when the importance of the 

attributes is significantly different. Thus, the relative importance of the antecedent attributes 

should be appropriately considered when developing a rule representation in this study.  

Risk parameters

Occurrence 

likelihood
Consequence Visibility

Time delay/

disruption
Additional cost

Damage to quality  

(cargo/equipment)
 

Figure 2. The hierarchical structure of the five risk parameters 

The relationship of the risk parameters can be seen in Figure 2. It is a two-level hierarchical 

structure, where the first level consists of the three basic risk parameters, while the second one 

is composed of the sub-parameters of consequence. In light of this structure, the weight of each 

risk parameter can be calculated using an AHP method based on the evaluations of three 

domain experts (refer to Section 4 for their detailed information). The consistency of the results 



was checked, and the low inconsistency ratios (< 0.1) of all pairwise comparisons verified the 

rationality of the results. They are shown in Table 1.   

Table 1 Weight of each risk parameter in the BRB 

Risk parameters (antecedent attribute) Local weight 
Global 

weight 

Occurrence likelihood (L) 0.18 0.18 

Visibility (V) 0.08 0.08 

Consequence 

severity 

Time delay (CT) 

0.74 

0.47 0.35 

Additional cost (CC) 0.11 0.08 

Quality damage (CQ) 0.42 0.31 

 

The relative importance of each risk parameter is considered when approaching the DoB 

distribution, using the proportion method. All attributes in both IF part and THEN part are 

described by variables with three grades; as such, for any specific conclusion attribute, the DoB 

belonging to a specific grade can be calculated by summing the normalised weights of all risk 

parameters with the “same” grade. Rule 2 provides an illustration: 

 Rule #2: If L is Unlikely, V is Good, CT is Low, CC is Low, and CQ is Moderate, 

then R is Low with a 69% DoB, Medium with a 31% DoB and High with a 0% DoB. 

The total weights of all risk parameters with Low (or equivalent) and Medium (or equivalent) 

grades are 0.69 (0.18+0.08+0.35+0.08) and 0.31 (CQ, 0.31), respectively. Therefore, the DoBs 

belonging to Low and Medium in the R are 69% and 31%, respectively1. Similarly, the BRB 

used in risk assessment of MSCs containing 243 (35) rules can be developed, partially shown 

in Table 2 (such a rule base represents functional mappings between antecedents and 

conclusions). 

Table 2 The BRB in the risk assessment of MSCs 

Rules Antecedent attribute (input) Risk result (output) 

No L V CT CC CQ Low Medium High 

1 Unlikely Good Low Low Negligible 1   

2 Unlikely Good Low Low Moderate 0.69 0.31  

3 Unlikely Good Low Low Critical 0.69  0.31 

… … … … … … … … … 

82 Occasional Good Low Low Negligible 0.82 0.18  

83 Occasional Good Low Low Moderate 0.51 0.49  

84 Occasional Good Low Low Critical 0.51 0.18 0.31 

                                                           
1 If the number of the linguistics variables of the five attributes and conclusion are different, 
the fuzzy link based approach (Yang et al., 2009) can be applied in this process to calculate 
the DoB in the conclusion. 



… … … … … … … … … 

241 Frequent Poor High High Negligible 0.31  0.69 

242 Frequent Poor High High Moderate  0.31 0.69 

243 Frequent Poor High High Critical   1 

3.2 Data collection and estimation of risk factors 

Risk parameters in the antecedents are estimated with respect to each identified risk factor 

using available data. The estimated results are transformed into a unified form so that they can 

be appropriately used in a BRB system for risk inference. In a traditional BRB system, 

membership functions are generally used to model linguistic variables. Some typical inputs 

(e.g. a single deterministic value, an interval, a triangular distribution, and a trapezoidal 

distribution) may be encountered due to the possible uncertainties involved (Eleye-Datubo, 

2004). They are usually represented using fuzzy membership functions based on historical data 

or expert experience (Yang et al., 2008). A mapping function method (Liu et al., 2004) is 

usually incorporated to transform the inputs into probability distributions of linguistic variables 

in antecedents. However, some researchers have debated the merits of such observation 

transformation operations, because the risk analysis results are sensitive to the qualitative 

judgment of the linguistic variables used (e.g. Braglia et al., 2003; Yang et al., 2008). Thus, 

this study employed a subjective probability method to address this concern. Subjective 

probability is a probability derived from an expert’s judgment about the degrees of a specific 
linguistic variable to which one risk parameter belongs. In the subjective probability method, 

risk parameters are estimated and represented using the probability distribution of the linguistic 

variables, provided directly by experts.  

A questionnaire survey was designed to collect experts’ judgements about risk parameters in 

terms of the investigated MSC risk factors. By using the questionnaire as designed in Appendix 

A, experienced staff members who have closely worked to ensure the safe and efficient 

operations of the investigated MSC were selected for the case study. The subjective probability 

distributions from multiple expert judgments are merged using a weighted average approach 

(Wan et al., 2015) based on the relative importance of each expert. 

3.3 Risk inference using a BN technique 

Once all the required data have been collected and prepared, a BN technique is applied to 

conduct risk inference. The reason for selecting BN in this research is that it has been proved 

to be a better approach (Yang et al., 2008) being capable of delivering accurate result in a fast 

and reliable manner, as it overcomes the drawbacks of traditional rule synthesise methods, 

including the information loss of the fuzzy Min-Max operation and computing complication of 

the evidential reasoning approach. Moreover, its ability to capture non-linear causal 

relationships makes it an appropriate tool to synthesise the DoBs of different rules (Alymai et 

al., 2014). To achieve rule aggregation, the BRB developed in Section 3.1 is first represented 



in the form of conditional probabilities. For example, Rule #2 in Table 3 is displayed using Eq. 

(1) as follows (Yang et al., 2017): 

R2: IF Unlikely (L1), Good (V1), Low (CT1), Low (CC1), and Moderate (CQ2), THEN 

{(Low (R1), 0.69), (Medium (R2), 0.31), (High (R3), 0)}. 

This expression can be represented in the form of conditional probability as follows. 

Given L1, and V1, and CT1, and CC1, and CQ2, the probability of  

Rh (h = 1, 2, 3) is (0.69, 0.31, 0), or 

p (Rh∣L1, V1, CT1, CC1, CQ2) = (0.69, 0.31, 0)               Eq. (2) 

where “∣” symbolizes conditional probability. 

Using a BN technique, the BRB can be modelled and converted into a converging connection 

consisting of six nodes: five parent nodes, defined as NL, NV, NCT, NCC, and NCQ (Nodes L, V, 

CT, CC and CQ); and one child node, defined as NR (Node R). Having transferred the BRB into 

a BN, the rule-based risk inference for the risk assessment is simplified as the calculation of 

the marginal probability of node NR. To marginalize R, the required CPT of NR, p (R ∣ L, V, CT, 

CC, CQ) is obtained using Eq. (2). The result is a table containing values p (Rh ∣ Li, Vj, CTk, 

CCl, CQm) (h, i, j, k, l, m = 1, 2, 3) (See Appendix B). 

Subjective probabilities obtained from observations during the questionnaire survey are 

considered to be prior probabilities of every parent nodes. In this way, the prior probabilities 

of nodes NL, NV, NCT, NCC, and NCQ, can be computed as p (Li) = 𝛽𝑖, p (Vj) = 𝛽𝑗, p (CTk) = 𝛽𝑘, 

p (CCl) = 𝛽𝑙, and p (CQm) = 𝛽𝑚, respectively. Then, Eq. (3) is used to calculate the marginal 

probability of NR (Jensen and Nielsen, 2007). 
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  Eq. (3) 

3.4 Prioritisation of risk factors with utility functions 

Appropriate utility values URh are required to transform DoBs of risk status of each risk factor 

into crisp values for ranking purposes. The utility values can be defined by combining some 

specific fuzzy rules (Wang et al., 1995) and risk scores, satisfying the following conditions. 

1) IF Unlikely (L1), Good (V1), Low (CT1), Low (CC1), and Negligible (CQ1),  

THEN {(Low (R1), 1), (Medium (R2), 0), (High (R3), 0)}. 

2) IF Occasional (L2), Normal (V2), Medium (CT2), Medium (CC2), and Moderate (CQ2),  

THEN {(Low (R1), 0), (Medium (R2), 1), (High (R3), 0)}. 

3) IF Frequent (L3), Poor (V3), High (CT3), High (CC3), and Critical (CQ3),  



THEN {(Low (R1), 0), (Medium (R2), 0), (High (R3), 1)}. 

The risk score (RS) describes the individual grade of each linguistic term Li, Vj, CTk, CCl, or 

CQm (i, j, k, l, m = 1, 2, 3) using a number in the scale [1, 3], where 1 indicates the “lowest 
level” (contributing the least to the final risk status), and 3 means the “highest level” 
(contributing the most to the final risk status). Consequently, the values of URh can be calculated 

as (Yang et al., 2014): 

UR1 = RS (L1) × RS (V1) × RS (CT1) × RS (CC1) × RS (CQ1) = 15= 1 

UR2 = RS (L2) × RS (V2) × RS (CT2) × RS (CC2) × RS (CQ2) = 25= 32 

UR3 = RS (L3) × RS (V3) × RS (CT3) × RS (CC3) × RS (CQ3) = 35= 243 

Eq. (4) is used to develop a new risk priority index (RPI): 
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where, the larger the value of RPI, the more serious the risk status of a risk factor. 

3.5 Validation using sensitive analysis 

When a new model is developed, a careful test is required to verify its soundness. This testing 

is especially important and desirable when subjective elements are involved in the model’s 
evaluation process. In this study, a sensitivity analysis is conducted to test the robustness of the 

belief structures, and logicality of the FBRB-BN method proposed. Sensitivity analysis 

provides an analytical judgment for RPI. It checks how sensitive the outputs (the risk 

assessment results or RPI) are to the minor changes in inputs (judgments of the risk parameters). 

If the BRB is reliable and the proposed model is sound, then the sensitivity analysis must follow 

these three axioms (Yang et al., 2008; Jones et al., 2014): 

Axiom 1. A slight increase/decrease in the prior subjective probabilities of each input node 

should result in the effect of a relative increase/decrease of the posterior probability values of 

the output node.  

Axiom 2. Given the same variation of subjective probability distributions of each risk 

parameter in the antecedents, its magnitude of influence on the RPI will remain consistent with 

their weight distributions. 

Axiom 3. The total magnitude of the influence of the combined probability variations from x 

attributes (evidence) on the RPI should always be greater than the one from the set of x − y (y 

∈ x) attributes (sub-evidence). 

4 Results and discussion 

In previous research (i.e. Wan et al., 2018), 64 risk factors from maritime container supply 

chains were identified from five major perspectives (which are society, natural environment, 



management, infrastructure and technology, and operations), and the identified risk factors 

were further classified into different levels according to their risk values. The top five risk 

factors in terms of their likelihood and consequence are “fluctuation of fuel price”, “fierce 
competition”,  “change of exchange rates”, “unattractive markets”, and “transportation of 
dangerous goods”. In Wan et al. (2018), a basic risk analysis method, risk matrix, was used and 

the results indicated that some risk factors received very close risk scores, requiring an 

advanced method to be developed to distinguish their true difference in terms of risk 

implications. This case study, aiming to address this research gap from a practical perspective.  

This paper considers a world’s leading container shipping company to be the test case. By the 

end of February 2018, the case company had a total of 343 container ships (including 53 ships 

with a capacity equal to or above 10,000 TEUs), with a total carrying capacity of 1.86 million 

TEUs (8.5 per cent of the world total container shipping capacity), among the TOP 5 in the 

world for the scale of the container fleet. Thus, it is a representative case study of the maritime 

network analysis considering both its leading role in shipping companies worldwide and the 

accessibility in terms of data collection. The assessment of the five selected risk factors with 

respect to the company’s one specific and representative MSC was conducted to demonstrate 
the feasibility of the proposed method in the risk assessment of MSCs2. A questionnaire was 

conducted with three senior staff from different departments of the company who are the 

decision makers being in charge of the safety of the investigated chain collectively. The 

qualification of the selected experts is summarized as follows:  

 Expert No. 1: Senior Captain, technical safety department; has worked onboard 

ships on different container shipping routes for more than 12 years. 

 Expert No. 2: General Manager, marine operations centre; involved in the safety 

and security management of global container fleets for more than 12 years. 

 Expert No. 3: Marketing Manager, liner trade management group; has worked in 

the container shipping company for more than 15 years. 

Due to the similar seniority of the three experts, equal weight was assigned to each expert when 

combining their evaluations. The data collected from them were applied in the FBRB-BN 

method for analysing and ranking the MSC risks. 

4.1 Ranking of the investigated risk factors 

Taking the assessment of risk factor “fluctuation of fuel price” as an illustration, Table 3 shows 

the estimations from three experts in terms of the five risk parameters. 

 

 

                                                           
2 The investigated MSC involving international shipping and ports from difference continents, has the 

characteristics of generalisation representing MSCs. The top five risk factors evaluated in Wan et al., (2018) are 

revisited in this case. 



Table 3 Expert evaluation results for “fluctuation of fuel price.” 

Risk 

parameters 

Experts 
Combined DoBs 

No.1 No.2 No.3 

L 

10% Unlikely 

30% Occasional 

60% Frequent 

0% Unlikely 

20% Occasional 

80% Frequent 

0% Unlikely 

35% Occasional 

65% Frequent 

3.3% Unlikely 

28.3% Occasional 

68.4% Frequent 

V 

40% Good 

40% Normal 

20% Poor 

70% Good 

30% Normal 

00% Poor 

60% Good 

40% Normal 

0% Poor 

56.6% Good 

36.7% Normal 

6.7% Poor 

CT 

80% Low 

20% Medium 

0% High 

80% Low 

20% Medium 

0% High 

0% Low 

80% Medium 

20% High 

53.3% Low 

40.0% Medium 

6.7% High 

CC 

30% Low 

60% Medium 

10% High 

20% Low 

80% Medium 

0% High 

30% Low 

50% Medium 

20% High 

26.7% Low 

63.3% Medium 

10.0% High 

CQ 

80% Negligible 

20% Moderate  

0% Critical 

100% Negligible 

0% Moderate  

0% Critical 

70% Negligible 

30% Moderate  

0% Critical 

83.3% Negligible 

16.7% Moderate  

0% Critical 

 

Similarly, estimations of all risk factors in terms of each risk parameter can be obtained, and 

then they are transformed into the format of prior probability by using Eq. (2) for realising risk 

inference. 

According to Eq. (3), the risk status of “fluctuation of fuel price” can be calculated as p(Rh) = 

(51.7%, 32.3%, 16.0%). A total of 162 out of 234 rules in the established BRB are hired during 

the calculation process. The result is expressed as {(Low, 51.7%), (Medium, 32.3%), (High, 

16.0%)}; in other words, the risk status associated with the “fluctuation of fuel price” is low 

with a 51.7% DoB, medium with a 32.3% DoB, and high with a 16.0% DoB. The calculation 

was modelled using GeNle 2.0 software to facilitate BN computation. Figure 2 provides an 

example. 



 

Figure 3 Risk assessment of “fluctuation of fuel price” (using GeNle 2.0 software) 

As shown in Figure 3, any risk input modification related to the five risk parameters can trigger 

a change of the output node. This helps automate the instant risk assessment of any target risk 

factors within an MSC. In a similar way, the risk status of other selected risk factors can be 

obtained as follows: 

The risk status of “fierce competition”  

= {(Low, 62.6%), (Medium, 20.8%), (High, 16.6%)}; 

The risk status of “change of exchange rates”  

= {(Low, 58%), (Medium, 27.3%), (High, 14.7%)}; 

The risk status of “unattractive markets”  

= {(Low, 62.8%), (Medium, 21.1%), (High, 16.1%)}; 

The risk status of “transportation of dangerous goods”  

= {(Low, 32.9%), (Medium, 52.7%), (High, 14.4%)}. 

The risk status of risk factors expressed by linguistic variables with DoBs requires further 

analysis for their risk prioritisation. The RPI of risk factor “fluctuation of fuel price” is 

calculated using Eq. (4) with the utility values described in Section 3.4: 
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In a similar way, the RPI values of “fierce competition,” “change of exchange rates,” 
“unattractive markets,” and “transportation of dangerous goods” are calculated to be 47.62, 

45.04, 46.50, and 52.19, respectively. Therefore, the shipping line’s transportation of 



dangerous goods requires more attention with respect to supply chain risk management 

compared to other risk factors. Table 4 lists the RPI values of all risk factors and their rankings. 

Table 4 RPI values of some major risk factors 

Risk factors RPI value Rank 

Fluctuation of fuel price  49.73 2 

Fierce competition 47.62 3 

Change of exchange rates 45.04 5 

Unattractive markets  46.50 4 

Transportation of dangerous goods 52.16 1 

 

4.2 Comparative analysis of different risk assessment methods 

To further illustrate the practicality and advantages of the proposed method, the results 

obtained from the FBRB-BN method are compared with that from other representative risk 

assessment methods (e.g. risk matrix, risk scale analysis and FMEA) used in maritime domains 

when investigating the same case, as summarised in Table 5.  

Table 5 Results obtained from other MSC risk assessment methods 

Risk factors 
RM* 

Rank 
RSA** 

Rank 
FMEA*** 

Rank 
Risk level Risk scale RPN 

Fluctuation of fuel price High  1 10.68 2 144 2 

Fierce competition Moderate 2 9.77 4 120 3 

Change of exchange rates Moderate 2 8.53 5 105 4 

Unattractive markets  Moderate 2 9.99 3 120 3 

Transportation of dangerous goods High 1 11.01 1 189 1 

* RM=Risk matrix, usually calculated by the sum of likelihood and severity. See Yang (2010) for details. 
** RSA=Risk scale analysis, usually calculated by the product of likelihood and severity, with values ranging from 1 

to 25, and see Chang et al. (2014) for details. 
*** Usually calculated by the occurrence likelihood, consequence severity and probability of failures being 

undetected, with values ranging from 1 to 1000. See Ioannis et al. (2013) for reference. 

 

It can be seen that the results obtained by the risk matrix method are usually qualitative, which 

is more suitable for the preliminary screening of the identified risk factors rather than ranking 

given there are too many factors sharing the same risk scores. Like most of the risk assessment 

methods, the risk scale analysis only considers two risk parameters, which may not be able to 

provide a comprehensive reference for decision making in specific industrial cases. Besides, 

the results from risk scale analysis showed a low degree of discrimination. Regarding the 

traditional FMEA, one shortfall is that the same RPNs produced by different risk factors may 



hinder the prioritization and provide misleading information to decision-makers. More 

importantly, these traditional risk assessment methods showed the inherent drawbacks of 

addressing uncertainties. The rankings according to different risk assessment methods are 

compared and depicted in Figure 4. 

 

Figure 4 Ranking of risk factors with respect to different methods 

Except for the risk matrix (which cannot provide enough information for full ranking), the 

ranking results obtained by other methods are consistent to a great extent, validating the 

feasibility of the proposed methods. By comparing this result with the ranking of the risk 

factors from Wan et al. (2018), it can be found that in terms of the ranking of economic-related 

risk factors (i.e., fierce competition, fluctuation of fuel price, change of exchange rates, and 

unattractive markets), results from both studies show a similar ranking trend. However, the 

fluctuation of fuel price shows a relatively higher influence on an individual shipping company 

compared with that of the whole shipping industry. Another major difference is the ranking of 

operational-related risk factors. In the study by Wan et al. (2018), “transportation of dangerous 

goods” ranked the fifth, showing lower impacts compared with economic-related risk factors. 

In this study, however, this risk factor ranks the first due to its poor visibility, high additional 

cost, and severe damage to both cargo and ships when an accident occurs. According to the 

investigated company, the poor visibility of this risk factor is mainly due to the fact that some 

shippers tend to hide cargo information because shipping companies often charge expensive 

freight fees and insurance to transport expensive cargo and dangerous goods. Furthermore, our 

research “refines” the findings of some previous studies by providing quantitative risk 

prioritisation information. For example, in line with the research findings of Notteboom and 

Vernimmen (2009), and Chang et al. (2014), this research discloses that the fluctuation of fuel 

price is an important risk factor in the shipping operations. It ranks the second with both high 

likelihood and consequence, which deserves the attention of shipping companies. Our research 

findings also emphases that the transportation of dangerous goods is an important risk factor, 

which was ranked the first among all operational risks of the container shipping industry in 

terms of safety and security incident-related loss by Chang et al. (2015). 
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4.3 Validation of the model 

A sensitivity analysis is conducted to test the robustness of the proposed FBRB-BN model and 

the logicality of the established BRB according to the three axioms introduced in Section 3.5. 

First, the relationship between the risk status (or RPI) of risk factors and the five risk parameters 

attributes (i.e. the L, V, CT, CC and CQ) requires clarification. The linguistic variables of all 

risk parameters are positively correlated with the RPI values; as such, the relationship can be 

easily identified and described. The RPI value is higher when the linguistic variable of each 

risk parameter is worse (here, “worse” is defined, for example, as a higher likelihood, time 

delay, additional cost, quality damage, and poorer visibility).  

Next, a subjective probability of 10% is reassigned to different linguistic variables of each risk 

parameter and moved toward the maximum increment of RPI. If the model reflects logical 

reasoning, the RPI should increase accordingly. For example, if the subjective probability that 

the risk factor “transportation of dangerous goods” belongs to “frequent” increases by 0.1, and 
correspondingly, the one belonging to “unlikely” decrease by 0.1, then the RPI of the risk factor 

increases from 52.16 to 56.15. If the subjective probability of its visibility belonging to “poor” 
increases by 0.1, and correspondingly, the one belonging to “good” decreases by 0.1, then the 

RPI of this risk factor increases from 52.16 to 54.09. 

Similar studies were conducted to investigate the variation between any two linguistic variables 

relating to the five risk parameters. All the results are consistent with Axiom 1 in Section 3.5. 

Regarding the same axiom, we tested and validated the consistency of the BRB by investigating 

the RPI values associated with each rule. If the BRB established in this study is sound, the 

value of each rule does not abruptly change with respect to variation between two neighbouring 

linguistic variables of each risk parameter. For example, assume a set of rules in which all L 

belongs to “unlikely,” V belongs to “good,” CT belongs to “low,” and CQ belongs to 

“negligible” (i.e. locked evidence in BN); the minor state variation between two neighbouring 

states of the risk parameter CC from the bottom level state “low” to the top-level state “high” 
delivered changes of the RPI values from 1 to 3.48, and then to 20.36. Similarly, the values of 

all rules in the BRB were checked using GeNle 2.0 software, demonstrating the consistency 

and logicality of the BRB. 

The sensitivity study reveals that RPI values are sensitive to risk parameters. However, the 

study was based on point changes, rather than gradual variations in intervals (i.e. [0, 0.1]). As 

such, the analysis does not effectively disclose the impact magnitude of the subjective 

probability changes on the RPI values. To study the impact magnitude, a sensitivity analysis 

based on an interval [0, 0.1], where the change of the subjective probability from 0 to 0.1 with 

a step of 0.02, was used for each risk parameter toward the maximal increment of the RPI. 

Figure 5 shows that the impact magnitudes of the subjective probability changes on the RPI 

are significantly different. Such magnitudes closely follow the weight ratio among the five 

attributes - L, V, CT, CC and CQ - when developing the BRB, being 0.18:0.08:0.35:0.08:0.31, 



respectively (as shown in Table 2). This is consistent with Axiom 2 introduced in Section 3.5, 

indicating the robustness of the developed BRB in this work. 

 

Figure 5 Sensitivity analysis of influence magnitudes from different attributes  

The previous discussion mainly focuses on subjective probabilities. In the next step, an analysis 

was conducted to assess the effect of risk parameter variation on RPI values. The variation 

considered the different combinations of the risk parameters. To study the magnitude of their 

influence on RPI values, 31 combinations ( 𝐶51 + 𝐶52 + 𝐶53 + 𝐶54 + 𝐶55 ) of the five risk 

parameters in five groups were considered. The five groups are classified according to the 

number of risk parameters to be tested. For instance, the first group takes into account the 

change of variables of a single parameter, the second group involves the change of variables of 

any two combined parameters, and so on. The five groups are shown in Table 7 with different 

colours (from combination #2 to #32). According to Axiom 3, if the model reflects the reality, 

then the magnitude of the five groups’ influence on the values will consistently vary in an 

ascending/descending order among these groups. This can be assessed by comparing the 

individual effects of the variations with their corresponding RPI values. For illustration 

purposes, the assessment results associated with risk factor “transportation of dangerous goods” 
is used as an example. A 10% subjective probability is reassigned to different variables 

associated with each risk parameter, towards a maximum increment of RPI values. Table 6 

shows the RPI values in terms of the influence from each combination of the risk parameters, 

along with the variations. 

Table 6 Sensitivity analysis of the magnitude of influence of different combinations  

Combination 
Risk parameters 

RPI values 
Variation 

of RPI L V CT CC CQ 

#1      52.16 - 

#2 O     56.51 4.35 

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

0.02 0.04 0.06 0.08 0.10

In
fl

u
en

ce
 m

ag
n
it

u
d

e 
to

 R
P

I 
v
al

u
es

Varition of subjective probability

L V CT CC CQ



#3  O    54.09 1.93 

#4   O   60.63 8.47 

#5    O  54.09 1.93 

#6        O 59.66 7.50 

#7 O O    58.45 6.29 

#8 O  O   64.98 12.82 

#9 O   O  58.45 6.29 

#10 O    O 64.01 11.85 

#11  O O   62.56 10.40 

#12  O  O  56.03 3.87 

#13  O   O 61.59 9.43 

#14   O O  62.56 10.40 

#15   O  O 68.13 15.97 

#16       O O 61.59 9.43 

#17 O O O   66.92 14.76 

#18 O O  O  60.38 8.22 

#19 O O   O 65.95 13.79 

#20 O  O O  66.92 14.76 

#21 O  O  O 72.48 20.32 

#22 O   O O 65.95 13.79 

#23  O O O  64.50 12.34 

#24  O O  O 70.06 17.90 

#25  O  O O 63.53 11.37 

#26     O O O 70.06 17.90 

#27 O O O O  68.85 16.69 

#28 O O O  O 74.42 22.26 

#29 O O  O O 67.89 15.73 

#30 O  O O O 74.42 22.26 

#31   O O O O 71.99 19.83 

#32 O O O O O 76.36 24.20 

“O” means a 10% reassignment of subjective probability in each attribute moving toward the maximum increment of 

RPI. 

Combination #1 shows a baseline of the RPI; it shows the original assessment result of the risk 

factor “transportation of dangerous goods.” The 31 combinations are listed from #2 to #32; 

they are grouped into five different groups in different colours. Using Combination #27 as an 

example (evidence), the effect of this combination on RPI values can be calculated as 16.69 

(=68.85-52.16). The influence magnitude of its sub-evidence on RPI values can then be 

calculated; they are shown as Combination #1, #2, #3, #4, #7, #8, #9, #11, #12, #14, #17, #18, 

#20, and #23. Comparing all the relevant inference magnitudes of such evidence and sub-

evidence on RPI values shows that 16.69 is the largest among all selected combinations. 



Therefore, the model is validated in this example. The additional investigation was conducted 

using other combinations and risk factors. The results are consistent with Axiom 3, supporting 

the soundness and logic of the model. 

5 Summary of contributions  

This research aims to fulfil the research gaps in risk assessment of MSC research regarding the 

quantitative assessment and prioritisation of risk factors under uncertainties. In this study, more 

risk attributes/parameters are investigated according to the features of the maritime container 

shipping industry in order to measure those risk factors in a precise manner. The contributions 

of this work can be concluded from both theoretical and practical perspectives as follows. 

As far as the theoretical contributions are concerned, combining fuzzy rule bases with a belief 

structure and BNs provides a powerful tool to incorporate subjective judgments to evaluate 

risks and prioritise risk factors under uncertainty especially when risk records are incomplete. 

In the proposed research method, subjective risk analysis using probability assigned against 

the pre-defined linguistic variable has been proposed to address high uncertainty in data. 

Presenting risk inputs as a probability distribution on linguistic variables enables different types 

of uncertain information to be modelled using a unified form, providing a possibility for multi-

source information fusion through the proposed method. Compared to other fuzzy approaches 

such as Min-Max operation, this method overcomes the weakness of the loss of useful 

information in fuzzy risk inference. As the fuzzy logic is only used in the establishment of the 

BRB, the estimation of risk factors will be minimally affected by the subjective/fuzzy judgment 

of linguistic variables used in antecedence. Furthermore, the usage of BN facilitates the risk 

inference, and it is able to update the risk reference results in a timely manner when new inputs 

are incorporated. 

The results of this study also contribute to managerial practices in the realms of MSC. Firstly, 

it shows all the outstanding risk factors through a wide range of survey. Secondly, this study 

highlights the importance of visibility in the risk assessment of MSCs. As the visibility may 

significantly vary across different actors of an MSC, extensive co-operation and information 

sharing among the actors of an MSC will be helpful for better system-level risk management 

(Vilko et al., 2016). Thirdly, the decomposition of risk consequences into different categories 

according to the nature of their impacts is able to provide richer information for managers with 

respect to different decision-making requirements and helps them allocate limited resources to 

the most impactful risks. Finally, the research provides a possibility of comparing and 

integrating the risk factors of different perspectives in one single framework, and the proposed 

method can be either used as a stand-alone technique to prioritise risk factors with RPI values 

or can be integrated into the risk-based decision-making method to evaluate the effectiveness 

of different risk control options in the future.  

It is also noteworthy that the proposed method provides a standard, generic framework for the 

assessment of risk factors of MSCs. Although it is applied and demonstrated in a case study of 



the container shipping industry, it has the potential and flexibility to be tailored for wider 

applications in different supply chain industries. However, it is noteworthy that the developed 

BRB in this study needs to be reconstructed accordingly to best fit the investigated scenarios. 

In the new rule base, inputs from multiple domain experts need to be appropriately verified to 

ensure practical and non-biased belief functions (Yang et al., 2008) fitting the newly 

investigated supply chain context. Further, different risk parameters, as well as variables used 

to estimate the risk parameters, will need to be selected according to the features of other 

industries and specific requirements of carrying out the risk assessment. 

6 Conclusion 

Under a competitive global market, the increasing complexity of MSC systems and various 

types of uncertainties in maritime risks have highlighted the necessity of creating a flexible and 

effective method for assessing MSC risks. In this study, we propose a novel FBRB-BN method 

for MSC risk management, where the BRB models the relationships between risk parameters 

and risk status in a logical way; the BN technique is used to conduct risk inference. A new 

weighted utility function is applied to transform the DoBs of risk status into numerical values 

to rank risk factors. The case study of a world-leading container shipping company reveals that 

the risk factor “transportation of dangerous goods” is the most significant one in terms of the 

investigated MSC, followed by the “fluctuation of fuel price”, “fierce competition”, 
“unattractive markets”, and “change of exchange rates”. Compared to the traditional risk 

analysis methods, the new method provides sensitive and flexible risk results in real situations, 

without sacrificing easiness of the modelling process and transparency of information passing 

through the model for the final result.  

To overcome the limitations of the current study, collecting more responses from other 

international MSC companies allocated in different regions will be helpful to improve the 

generalization of the results although the selected case (i.e. a world-leading container shipping 

line) is representative. Additionally, in future research, the proposed method can be applied to 

and adapted to other industries to test its feasibility in a wider context. It is suggested that more 

attention should be paid to the risk assessment of a supply chain system from a systemic 

perspective considering the relationships among different components and the relevant impacts 

of their risk status on the safety performance of the whole system. 
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Appendix A 

Questionnaire survey 

In the previous research, top five risk factors are identified in terms of the value of risk 

index, which are “fierce competition”, “fluctuation of fuel price”, “change of exchange 
rates”, “unattractive markets”, and “transportation of dangerous goods”. These risk factors 
are identified as the key risk factors in a maritime container supply chain system, which 

will be further studied in this research.  

These key risk factors are evaluated in details in terms of their occurrence likelihood, 

visibility, consequence in terms of time delay/disruption, additional cost, and damage to 

quality. Explanations of linguistic grades of each risk parameter are shown in Table 7. 

Table 7. Definitions of linguistic grades of each risk parameter 

Parameter 
Linguistic 

grades 
Definition 

Likelihood 

Low Occurs less than once per year 

Medium Expected to occur every few months 

High Expected to occur at least monthly 

Visibility 
Low 

Impossible or difficult to be detected through intensive risk 
checks 

Medium Possible to be detected through intensive risk checks 

High Possible to be detected through regular risk checks 

Delay/disruption 

Low A delay of fewer than 24 hours in total 

Medium A delay but no more than 20% of the original schedule 
High A delay of more than 20% of the original schedule 

Additional cost 

Low An additional cost no more than 10% of the total cost  

Medium An additional cost between 10% and 50% of the total cost 
High An additional cost of more than 50% of the total cost 

Damage to quality 

Low 
Slight cargo, equipment, or system damage but fully functional 
and serviceable 

Medium 
Minor incapability of systems or equipment and a small portion 
of goods may be damaged 

High 
Damage/loss of major systems or equipment, and serious damage 
to the transported goods 

 

For example (see Table 8): 

Based on your experience, in which level do you think that “Fierce competition” 
Likelihood would be? How about the visibility, delay/ disruption, additional cost/ 

financial loss, and quality damage (cargo/equipment)? It is noted that the sum of 
belief degree on all selected grades in terms of each risk factor is less or equal to 1. 

 

Then, please make your judgement for every risk factors in terms of each risk parameter 

based on your knowledge and experience in Table 9.



Table 8. Examples of judgement 

Key risk factors 

Risk parameters 

1. Likelihood 2. Visibility 

3. Consequence 

3-1. Delay/ disruption 
3-2.  Additional cost/ 

Financial loss 

3-3. Damage to 

Quality 

(cargo/equipment) 

Low Med High Low Med High Low Med High Low Med High Low Med High 

Fierce competition 0.2  0.3 0.5 0.1 0.1 0.8  0.8 0.2 0.1 0.9  0.2 0.2 0.6 

 

 

Table 9. Assessment of key risk factors in terms of different risk parameters 

Key risk factors 

Risk parameters 

1. Likelihood 2. Visibility 
3. Consequence 

3-1. Delay/ disruption 3-2.  Additional cost 3-3. Damage to Quality 

Low Med High Low Med High Low Med High Low Med High Low Med High 

Fierce competition                

Fluctuation of fuel price                

Change of exchange rates                

Unattractive markets                

Transportation of 
dangerous goods 

               



Appendix B 

Table 10 The conditional probability table of NR 

L L1 

V V1 

… 

V3 

CT CT1 

… 

CT3 CT1 

… 

CT3 

CC CC1 

… 

CC3 CC1 

… 

CC3 CC1 

… 

CC3 CC1 

… 

CC3 

     CQ 

R 
CQ1 

… 

CQ3 CQ1 

… 

CQ3 CQ1 

… 

CQ3 CQ1 

… 

CQ3 CQ1 

… 

CQ3 CQ1 

… 

CQ3 CQ1 

… 

CQ3 CQ1 

… 

CQ3 

R1 1 0.69 0.92 0.61 0.65 0.34 0.57 0.26 0.92 0.61 0.84 0.53 0.57 0.26 0.49 0.18 

R2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

R3 0 0.31 0.08 0.39 0.35 0.66 0.43 0.74 0.08 0.39 0.16 0.47 0.43 0.74 0.51 0.82 

. 

. 

. 

L L3 

V V1 

… 

V3 

CT CT1 

… 

CT3 CT1 

… 

CT3 

CC CC1 

… 

CC3 CC1 

… 

CC3 CC1 

… 

CC3 CC1 

… 

CC3 

     CQ 

R 
CQ1 

… 

CQ3 CQ1 

… 

CQ3 CQ1 

… 

CQ3 CQ1 

… 

CQ3 CQ1 

… 

CQ3 CQ1 

… 

CQ3 CQ1 

… 

CQ3 CQ1 

… 

CQ3 

R1 0.82 0.51 0.74 0.43 0.47 0.16 0.39 0.08 0.74 0.43 0.66 0.35 0.39 0.08 0.31 0 

R2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

R3 0.18 0.49 0.26 0.57 0.53 0.84 0.61 0.92 0.26 0.57 0.34 0.65 0.61 0.92 0.69 1 

L= Likelihood (L1=unlikely, L2=occasional, and L3=frequent); V= Visibility (V1=good, V2=normal, and V3=poor); CT= Consequence severity in terms of time delay (CT1= low, CT2=medium, and 

CT3=high); CC= Consequence severity in terms of additional cost (CC1= low, CC2=medium, and CC3=high); CQ= Consequence severity in terms of quality damage (CQ1= negligible, CQ2=moderate, 

and CQ3=critical); R= Risk status (R1=low, R2=medium, and R3=high). 
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