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Abstract 

Recently, because of the new developments in sustainable engineering and renewable energy, 

which are usually governed by a series of fractional partial differential equations (FPDEs), the 

numerical modelling and simulation for fractional calculus are attracting more and more 

attention from researchers. The current dominant numerical method for modeling FPDE is 

Finite Difference Method (FDM), which is based on a pre-defined grid leading to inherited 

issues or shortcomings including difficulty in simulation of problems with the complex 

problem domain and in using irregularly distributed nodes. Because of its distinguished 

advantages, the meshless method has good potential in simulation of FPDEs. This paper aims 

to develop an implicit meshless collocation technique for FPDE. The discrete system of 

FPDEs is obtained by using the meshless shape functions and the meshless collocation 

formulation. The stability and convergence of this meshless approach are investigated 

theoretically and numerically. The numerical examples with regular and irregular nodal 

distributions are used to validate and investigate accuracy and efficiency of the newly 

developed meshless formulation. It is concluded that the present meshless formulation is very 

effective for the modeling and simulation of fractional partial differential equations. 

 

Key words: Fractional differential equation, Meshless method, Moving least squares, RBF, 

Collocation formulation.  
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1. Introduction 

Many problems in engineering and science are governed by a serial of differential equations 

with an integer differential order. Recently, it has noted that many problems in modern 

engineering such as in sustainable environment and renewable energy are better to be 

described by fractional calculus than the normal integral calculus. In these problems, the 

governing equations are so-called fractional ordinary differential equations (FODE) or 

fractional partial differential equations (FPDE) (Agrawal et al., 2004; Benson et al., 2000; 

Butzer and Georges, 2000). For example, it has been reported that, in numerous physical and 

biological systems, many diffusion rates of species cannot be characterized by the single 

parameter of the diffusion constant (Sokolov and Klafter, 2005). Instead, the anomalous 

diffusion is characterized by a scaling fractional parameter α as well as a diffusion constant κ.  

The modeling of FODEs or FPDEs has become a new hot topic in computational mechanics 

and computational mathematics (Liu et al., 2011; Zhuang el al., 2008). Unlike the normal 

PDE, the differential order (regarding to time or space or both) in a FPDE is not with a integer 

order, in other words, with a fractional order (i.e., 0.5th order, 1.5th order, and so on), which 

will lead to a big difficulty and new challenge in numerical simulation, because existing 

numerical simulation techniques are developed for PDE with integer differential orders. At 

present, most of FPDEs are solved numerically by Finite Difference Method (FDM) (Liu and 

Zhuang et al., 2007; Meerschaert and Tadjeran, 2004), when a few of research has been 

reported using Finite Element Method (FEM)( Ervin and Roop, 2004, 2007). FDM and FEM 

are numerical approaches based on pre-defined meshes/grids, which lead to inherited issues or 

shortcomings including: difficulty in handling a complex problem domain and irregular nodal 

distribution; difficulty in conducting adaptive analysis, and low computational accuracy. 

Therefore, these shortcomings become a main barrier for the development of a powerful 

numerical simulation tool for practical engineering/science applications governed by FPDEs. 

This is also the major reason why most current research in this field are still limited in some 

one-dimensional (1-D) or two-dimensional (2-D) benchmark problems with very simple 

problem domains (i.e., squares and rectangles) and Dirichlet boundary conditions.  

In past 20 years, much effort has been directed toward the development of meshless methods 

in computational mechanics(Liu and Gu, 2005). There are many categories of meshless 

method (Gu, 2005), and group of meshless methods have been developed including the 

meshless collocation methods (Kensa, 1990; Onate et al., 1996), the smooth particle 

hydrodynamics (SPH)(Gingold and Moraghan,1977), the element-free Galerkin (EFG) 
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method (Belytschko et al., 1994), the reproducing kernel particle method (RKPM) (Liu and 

Jun et al., 1995), and the point interpolation method (PIM) (Liu and Gu, 2001b). To alleviate 

the global integration background cells (Liu and Gu, 2002), the meshless methods based on 

the local weak-forms and the boundary integral equation (BIE) have also been developed, for 

example, the meshless local Petrov-Galerkin (MLPG) method (Atluri and Zhu, 1998), the 

local radial point interpolation method (LRPIM)(Gu et al. 2007; Liu and Gu, 2001a), the 

boundary node method (BNM) (Mukherjee and Mukherjee,1997), and the boundary point 

interpolation method (BPIM)(Gu and Liu, 2002, 2003). These meshless methods have found 

many applications in engineering and science (Gu and Liu, 2003; Liu and Gu, 2005). 

In spite of the impressive progresses, there are still some technical issues (Liu and Gu, 2004) 

in the development of meshless techniques, for instance, a) the lack of theoretical study on the 

computational convergence and stability; b) the relatively lower computational efficiency; and 

c) the lack of commercial software packages for meshless analyses. Recently, some deep 

researches have been conducted and the above issues have been partially resolved. Liu et al. 

Liu and Zhang, 2008) proposed a node-based smoothed point interpolation method (NS-PIM), 

which is formulated using the polynomial point interpolation method (PIM)(Liu and Gu, 

2001b) or the radial point interpolation method (RPIM) )Liu and Gu, 2001a). It was found 

that NS-PIM behaves ‘overly-soft’, leading to the so-called temporal instability when used to 

solve dynamic problems. The formulation was also elaborated with a theoretical base on the 

G space theory (Liu, 2009). Invoking the G space theory and the weakened weak-form 

(W2)(Liu, 2008), the meshless (or smoothed FEM) methods show a number of attractive 

properties, e.g., conformability, softness, upper/lower bound, super-convergence, ultra 

accuracy, and they also work well with triangular background cells .  

Comparing with traditional FDM and FEM, the meshless methods have demonstrated some 

distinguished advantages (Liu and Gu, 2005) including: a) They do not use a mesh, so that the 

burden of mesh generation in FDM and FEM is overcome. Hence, an adaptive analysis is 

easily achievable; b)They are usually more accurate than FDM due to the use of higher order 

meshless trial functions; c) They are capable of solving complex problems that are difficult 

for the conventional FDM and FEM. Because of these unique advantages, the meshless 

method should have a good potential for the simulation of FPDEs. However, to the authors’ 

best knowledge, very limited work was reported to handle fractional partial differential 

equations (FPDE) by the meshless techniques (Chen, Ye et al., 2010; Gu, Zhuang and Liu, 

2010).Therefore, this topic calls for a significant development. 
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The objective of this paper is to develop an implicit meshless formulation based on the 

meshless shape functions and the meshless collocation formulation for numerical simulation 

of fractional partial differential equations (FPDEs). We will mostly focus on the time fractional 

diffusion equation (TFDE), which is a typical FPDE. The discrete equations for two-dimensional 

TFDEs are obtained by using the meshless shape functions and the strong-forms. The stability 

and convergence of this method are then discussed and investigated. Numerical examples 

with different nodal distributions are used to validate and investigate accuracy and efficiency 

of the newly developed meshless formulation. Some key parameters, which affect the 

performance of this meshless technique, are thoroughly investigated and the optimized 

parameters are recommended. 

2. Moving least squares shape functions 

Several meshless approximation formulations have been proposed[32]. The moving least 

squares (MLS) approximation is one of the widely used meshless methods because of its’ 

attractive properties of accuracy, robustness, and higher-order of continuity. 

Consider an unknown scalar function of a field variable u(x) in the domain, Ω.  The MLS 

approximation of u(x) is defined at x as (Liu and Gu, 2005) 

T

1

( ) ( ) ( ) ( ) ( )
m

h
j j

j

u p a
=

= =∑x x x p x a x  
(1) 

where p(x) is the basis function of the spatial coordinates, xT
=[x, y] for two-dimensional 

problem, and m is the number of the basis functions.  

In Equation (1), ( )a x  is a vector of coefficients, which is a function of x.  The coefficients a 

can be obtained by minimizing the following weighted discrete L2 norm. 

T 2

1

( )[ ( ) ( ) ]
n

i i i
i

J W u
=

= − −∑ x x p x a x
⌢

 
(2) 

where n is the number of nodes in the support domain of x for which the weight function 

( ) 0iW − ≠x x
⌢

. Because the number of nodes, n, used in the MLS approximation is usually 

much larger than the number of unknown coefficients, m, the approximated function, uh
, does 

not pass through the nodal values. 

The stationarity of J with respect to a(x) gives / 0J∂ ∂ =a  which leads to the following set of 

linear relations. 

A(x)a(x)=B(x)Us (3) 
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where sU  is the vector that collects the nodal parameters of field function for all the nodes in 

the support domain. A(x) is called the weighted moment matrix defined by 

T

1

( ) ( ) ( ) ( )
n

i i i
i

W
=

=∑A x x p x p x
⌢

 
(4) 

The matrix B in Equation (24) is defined as 

B(x)=[ 1W
⌢

(x)p(x1)  2W
⌢

(x)p(x2) …  nW
⌢

(x)p(xn)] (5) 

Solving Equation (24) for a(x), we have 

1( ) ( ) ( ) s
−=a x A x B x U  (6) 

Substituting the above equation back into Equation (1), we obtain  

T

1

( ) ( ) ( )
n

h
i i s

i

u uφ
=

= =∑x x Φ x U  
(7) 

where Φ (x) is the vector of MLS shape functions corresponding n nodes in the support 

domain of the point x, and can be written as, 

{ }T T 1

1 2( ) ( ) ( ) ( ) ( ) ( ) ( )nφ φ φ −= =Φ x x x x p x A x B x⋯  (8) 

For the convenience in obtaining the partial derivatives of the shape functions, Equation (8) is 

re-written as (Liu and Gu, 2005) 

T T( ) ( ) ( )=Φ x γ x B x  (9) 

where��

T T 1−=γ p A ����then   =Aγ p  (10) 

The partial derivatives of γγγγ can then be obtained by solving the following equations. 

, , ,i i i= −Aγ p A γ ��� , , , , , , ,( )ij ij i j j i ij= − + +Aγ p A γ A γ A γ ��

, , , , , , , , , ,

, , , , ,

(

)

ijk ijk i jk j ik k ij ij k

ik j jk i ijk

= − + + +

+ + +

Aγ p A γ A γ A γ A γ

A γ A γ A γ
 

(11) 

where i, j and k denote coordinates x and y, and a comma designates a partial derivative with 

respect to the indicated spatial coordinate that follows.  The partial derivatives of the shape 

function ΦΦΦΦ can be obtained using the following expressions.   

T T T

, , ,i i i= +Φ γ B γ B ���
T T T T T

, , , , , , ,ij ij i j j i ij= + + +Φ γ B γ B γ B γ B �

T T T T

, , , , , , , ,

T T T T

, , , , , , ,

ijk ijk ij k ik j jk i

i jk j ik k ij ijk

= + + +

+ + + +

T
Φ γ B γ B γ B γ B

γ B γ B γ B γ B
 

(12) 
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Equation (8) shows that the continuity of the MLS shape function ΦΦΦΦ is governed by the 

continuity of the basis function p as well as the smoothness of the matrices A and B.  The 

latter is governed by the smoothness of the weight function. Therefore, the weight function 

plays an important role in the performance of the MLS approximation.   

The exponential function and spline functions are often used in practice.  Among them, the 

most commonly used quartic spline weight function is given by (Liu and Gu, 2005) 

2 3 41 6 8 3
( )

0

i i i
i

r r r
W

 − + −
= 


x
⌢ 1

1

i

i

r

r

≤
>
�

(13) 

3 Time fractional diffusion equation 

The time fractional diffusion equation can be written in the following form 

( ) ( ) ( ) 2,
, , , , 0

u t
u t f t t

t

α

α κ
∂

= ∆ + ∈Ω ⊂ >
∂

x
x x x R � (14) 

together with the general boundary and initial conditions 

( ) ( ), , , , 0u t g t t= ∈∂Ω >x x x � (15) 

( ) ( )0,0 ,u u= ∈Ωx x x � (16) 

where ∆  is the Laplace differential operator, Ω  a bounded domain in 2R ,  ∂Ω  the boundary 

of Ω , κ  the diffusion coefficient, ( ) ( ), , ,f t g tx x  and ( )0u x  are known functions. 

In Equation (14), 
( ),u t

t

α

α

∂
∂

x
 is the Caputo fractional derivative of order α ( 0 1α< < ) defined 

as 

( )
( ) ( ) ( )

0

, ,1
d

1

tu t u
t

t

α
α

α

η
η η

α η
−∂ ∂

= −
∂ Γ − ∂∫

x x
�

(17) 

2.1 Time discretization 

Define kt k t= ∆ , 1, 2, ,k n= ⋯ , where t∆  is time step size. The time fractional derivative at 

1kt t +=  can be approximated by 

( )
( ) ( ) ( )11

1

0

, ,1
d

1

j

j

k tk
kt

j

u t u
t

t

α
α

α

η
η η

α η
+ −+

+
=

∂ ∂
= −

∂ Γ − ∂∑∫
x x

�
 

(18) 
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                      ( )
( ) ( ) ( )11

1 1

0

, ,1
d

1

j

j

k tj j

k kt
j

u t u t
t R

t

αη η
α

+ −+
+ +

=

−
= − +

Γ − ∆∑ ∫
x x

ɶ  

where the truncation error 1+kR  satisfies 

( )2

1kR C t
α−

+ ≤ ∆ɶ � (19) 

Let ( )1 11jb j j
α α− −= + − , 0,1,2, ,j n= ⋯ , then Equation (18) can be rewritten as 

( ) ( )
( ) ( ) ( )1

1 1

0

,
, ,

2

k
k

k j j j k
j

u t t
b u t u t R

t

αα

α α

−
+

− + +
=

∂ ∆
 = − + ∂ Γ − ∑

x
x x ɶ �

(20) 

or 

( ) ( )
( ) ( ) ( )1

1 1

0

,
, ,

2

k
k

j k j k j k
j

u t t
b u t u t R

t

αα

α α

−
+

− + − +
=

∂ ∆
 = − + ∂ Γ − ∑

x
x x ɶ �

(21) 

Substituting Equation (21) into Equation (18), we obtain 

( ) ( )

( ) ( ) ( ) ( )
1 1 1

1 2 1 1

1

, ,

, , , ,

k k

k

k j k j k j k k
j

u t u t

u t b u t u t f t R

µ

µ

+ +

− + − + +
=

− ∆

 = − − + + ∑

x x

x x x x
�

(22) 

where ( ) ( )1 2t
αµ κ α= ∆ Γ − , ( ) ( )2 2t

αµ α= ∆ Γ −  and 

( )2

1kR C t+ ≤ ∆ɶ � (23) 

where Cɶ  is a positive constant. 

Let ( )k ku u= x  be the numerical approximation to ( ), ku tx  and ( )1

2 1,k
kF f tµ+

+= x , then 

Equations (18) - (20) can be discretized as the following scheme 

1 1 1 1

1

1

, 0,1, , 1
k

k k k k j k j k
j

j

u u u b u u F k nµ+ + + − − +

=

 − ∆ = − − + = − ∑ ⋯ �
(24)�

( )0

0u u= x � (25)�

( ), , 0,1, ,k
ku g t k n

∂Ω
= =x ⋯ � (26)�

2.2 Spatial discretization 

Consider the following fractional partial differential equation as presented in Equation (24) 

1 1 1 1

1

1

, in
k

k k k k j k j k
j

j

u u u b u u Fµ+ + + − − +

=

 − ∆ = − − + Ω ∑ �
(27) 

together with Dirichlet boundary condition 
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1

1( ) ( , ), onk
ku g t+

+= ∂Ωx x � (28) 

Assume that there are dN  internal (domain) points and bN  boundary points. Hence, the 

following dN  equations at internal domain nodes can be obtained 

�
1 1 1 1

1

1

ˆ ˆ ˆ ˆ ˆ , in
k

k k k k j k j k
j

j

u u u b u u Fµ+ + + − − +

=

 − ∆ = − − + Ω ∑ �
(29) 

The following bN  equations are satisfied on ∂Ω  

( )1

1
ˆ ,k

i i ku g t+
+= x �� 1,2, , bi N= ⋯ �� � (30) 

Thus based on MLS shape function, Equation (7), we have 

( )1 1

1

ˆ ˆ
n

k k
i i

i

u u+ +

=
= Φ∑x �

(31) 

and its derivatives can be obtained by the following equations 

( )1

1

1

ˆ
ˆ

l k ln
ki
il l

i

u
u

x x

+
+

=

∂ ∂ Φ=
∂ ∂∑

x
� (32) 

( )1

1

1

ˆ
ˆ

l k ln
ki
il l

i

u
u

y y

+
+

=

∂ ∂ Φ=
∂ ∂∑

x
� (33) 

Thus, 1ˆk
iu +  and its derivatives in Equation (29) can be obtained by substituting x  into ix  in 

Equations (32) ~ (33) 

( )1 1ˆ ˆk k
i iu u+ += x ��

( )2 12 1

2 2

ˆˆ
kk

ii
uu

x x

++ ∂∂ =
∂ ∂

x
��

( )2 12 1

2 2

ˆˆ
kk

ii
uu

y y

++ ∂∂ =
∂ ∂

x
� (34) 

4 Numerical examples 

In this section, some numerical examples are studied to demonstrate the effectiveness of the 

newly proposed meshless approach. We solve the following time fractional advection-

diffusion equation 

( ) ( ) ( ) 2,
, , , , 0

u t
u t f t t

t

α

α κ
∂

= ∆ + ∈Ω ⊂ >
∂

x
x x x R �

(35) 

( ) 2, , , 0x yu t t e t+= ∈∂Ω >x x � (36) 

( ),0 0,u = ∈Ωx x � (37) 

where we employ 1.0κ = , and 

( ) ( )
2

22
, 2

3

x yt
f t t e

α

α

−
+ 

= − Γ − 
x �

(38) 

The exact solution of Equations (35)-(37) is (Gu, Zhuang et al., 2010) 
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( ) 2, x yu t t e +=x � (39) 

As a fraction order in Equation (35), we take  

0.85α = � (40) 

For quantitative studies, the following error notations are introduced 

2

1
max 0

2

1

( )

max , ,

( )

N
exact num
i i

exact num i
i i Ni exact

i
i

u u
u u

u
ε ε =

=

−
= − =

∑

∑
�

 

(41) 

2 2

, , , ,

1 1

2 2

, ,

1 1

( ) ( )

,

( ) ( )

N N
exact num exact num
i x i x i y i y

i i
x yN N

exact exact
i x i y

i i

u u u u

u u
ε ε= =

= =

− −
= =
∑ ∑

∑ ∑
�

 

(42) 

where N  denotes the number of nodes; exact
iu  and num

iu  are exact and numerical solutions, 

respectively, for interest point i; and ,iu  denotes the derivative. 

The −L shaped problem domain, given by the following equation and plotted in Fig. 1, is 

considered 

{ }( , ) 0 , 1, ( 0.5) ( 0.5) 0x y x y sign x sign yΩ = ≤ ≤ − + − ≤ � (43) 

The regularly distributed nodes, as shown in Fig. 1, are firstly used to discretize this L-shaped 

problem domain. The computational errors for different time steps are plotted in Fig. 2 and 

listed in Table 1, which have proven that the proposed meshless approach performs very well 

for this case in terms of accuracy and convergence. The convergent rate is in the order of 

2( )O t α−∆ . For comparison, the conventional FDM is also used to simulate this problem. It has 

found that if the same regular nodal distributions are used, the present meshless approach 

leads to more accurate results than FDM. �

Table 1: The computational error obtained using meshless approach at t = 1.0 (Regular nodal 

distribution on L-shaped region) 

t∆  
maxε  maxRε  

0ε  0Rε  
xε  xRε  

yε  yRε  

0.1 

0.05 

0.025 

0.0125 

4.351e-3 

1.967e-3 

8.888e-4 

4.024e-4 

--- 

2.212 

2.213 

2.209 

1.022e-3 

4.619e-4 

2.088e-4 

9.451e-5 

--- 

2.213 

2.212 

2.209 

4.856e-3 

2.195e-3 

9.919e-4 

4.489e-4 

--- 

2.212 

2.213 

2.210 

4.856e-3 

2.195e-3 

9.919e-4 

4.489e-4 

--- 

2.212 

2.213 

2.210 
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Figure 1: 1976 Regular distribution of points on L-shaped domain 

 

Figure 2: Errors as a function of the time step t∆  (Regular nodal distribution on L-shaped 

region) 
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The irregularly distributed nodes are also used for this problem with an L-shaped region, as 

shown in Fig. 3. The computational errors for different time steps are plotted in Fig. 4 and 

listed in Table 2. It can be concluded that the present meshless approach also leads to good 

computational accuracy and convergent rates for this L-shaped case using irregularly 

distributed nodes. It has proven the effectiveness of the meshless approach for a problem with 

a complex problem domain and irregular nodal distribution.  

 

 

Figure 3: Irregular distribution of points on L-shaped domain 

�

�

Table 2: The error obtained using meshless approach at 1.0t = (Irregular nodal distribution on 

L − shaped region) 

�

t∆  
maxε  maxRε  

0ε  0Rε  
xε  xRε  

yε  yRε  

0.1 

0.05 

0.025 

0.0125 

4.242e-3 

1.900e-3 

8.266e-4 

3.606e-4 

--- 

2.233 

2.299 

2.292 

1.010e-3 

4.544e-4 

1.992e-4 

8.412e-5 

--- 

2.223 

2.281 

2.368 

4.805e-3 

2.152e-3 

9.354e-4 

3.887e-4 

--- 

2.233 

2.301 

2.406 

4.792e-3 

2.157e-3 

9.460e-4 

4.019e-4 

--- 

2.222 

2.280 

2.353 

�



� ��

 

Figure 4: Errors as a function of the time step t∆ (Irregular nodal distribution on L-shaped 

region) 

 

6. Conclusion 

This paper has proposed an implicit meshless approach based on the moving least squares 

(MLS) and the meshless collocation formulation for numerical simulation of fractional partial 

differential equations (FPDE). The discrete system of equations is firstly obtained, and the 

numerical example is then used to validate and investigate accuracy and efficiency of the 

newly developed meshless formulation. It has been found that the present implicit meshless 

formulation for FPDEs is un-conditionally stable. If the same regular nodal distributions are 

used, the present meshless approach leads to more accurate results than FDM. The present 

meshless approach has good accuracy and convergence for irregular nodal distributions and 

complex problem domains. 

In summary, the newly developed meshless approach is accurate and convergent. Most 

importantly, the present approach is robust for arbitrarily distributed nodes and complex 

problem domains, for which the conventional FDM is difficult to handle. Hence, the present 

meshless formulation is very effective for the modeling and simulation of fractional 

differential equations.  
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