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ABSTRACT 
 

The large deformation analysis is one of major challenges in numerical modelling and simulation of metal forming. 
Although the finite element method (FEM) is a well-established method for modeling nonlinear problems, it often 
encounters difficulties for large deformation analyses due to the mesh distortion issues.  Because no mesh is used, the 
meshless methods show very good potential for the large deformation analysis. In this paper, a local meshless 
formulation is developed for the large deformation analysis. The Radial Basis Function (RBF) is employed to construct 
the meshless shape functions, and the spline function with high continuity is used as the weight function in the 
construction of the local weak form. The discrete equations for large deformation of solids are obtained using the local 
weak-forms, RBF shape functions, and the total Lagrangian (TL) approach, which refers all variables to the initial 
(undeformed) configuration. This formulation requires no explicit mesh in computation and therefore fully avoids 
mesh distortion difficulties in the large deformation analysis of metal forming. Several example problems are presented 
to demonstrate the effectiveness of the developed meshless technique. It has been found that the developed meshless 
technique provides a superior performance to the conventional FEM in dealing with large deformation problems in 
metal forming.  

 
KEY WORDS:  Metal forming, Large deformation, Meshless method, FEM  
 
 

 
 
INTRODUCTION 
 
The finite element formulations of metal forming processes can 
be classified into three categories (Chen et al., 1998): the 
Lagrangian formulation, the Eulerian formulation, and the 
Arbitrary Lagrangian Eulerian (ALE) formulation. In the metal 
forming analysis, it is the key to deal with the large deformation. 
Although the finite element method (FEM) is a well-established 
mesh-based method for modeling large deformation problems, 
it often encounters difficulties due to the mesh distortion issues. 
Because the meshless methods do not use mesh (Liu and Gu, 
2005), they show very good potential for the large deformation 
analysis.  
 
Although the concept of meshless was proposed in 1970’s, it has 
been widely applied to mechanical engineering from 1990’s. 
Meshless methods have drawn increasing attention from 
researchers, and some meshless methods have achieved 
remarkable progress in real applications. These meshless 
methods do not require a mesh to discretize the problem 
domain and boundaries, because their approximate solutions 
are constructed entirely based on a set of scattered field nodes. 

Therefore, they can fully resolve the issue related to the mesh 
distortion in FEM. A group of meshless methods have been 
developed including the smooth particle hydrodynamics (SPH) 
(Gingold and Monaghan, 1977), the element-free Galerkin (EFG) 
method (Belytschko et al., 1994), the reproducing kernel particle 
method (RKPM) (Liu et al., 1995), and the point interpolation 
method (PIM) (Liu and Gu, 2001a, 2005).  
 
In the family of meshless methods, the meshless method based 
on the local weak-form (Atluri and Shen, 2002) is a well-
developed technique including the meshless local Petrov-
Galerkin (MLPG) method (Alturi and Shen, 2002; Gu and Liu, 
2001a,b; ),  and the local radial point interpolation method 
(LRPIM) (Gu and Liu, 2001c; Liu and Gu, 2001b, 2002, 2005). 
This type of meshless method has many attractive advantages 
including the straightforward approach algorithm, the good 
efficiency due to no global numerical integration, and the 
distinguished computational accuracy. Therefore, recently, this 
type of meshless techniques has been investigated from the 
theoretical aspect to application aspect. Some studies have been 
conducted to explore the possible applications of the local 
meshless techniques in engineering, for example, they have 
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been successfully used for the applications of two-dimensional 
elasto-statics and dynamics, fluid mechanics, and MEMS 
devices.  
 
In this paper, a local meshless formulation is developed for the 
large deformation analysis of the metal forming, which is a big 
challenge for researchers in mechanical engineering. Because no 
mesh is used in the meshless methods, they show very good 
potential for the large deformation analysis. The meshless 
methods based on the global weak-forms have been successfully 
used in this field. Chen et al. (1996, 1998) and Jun (1996) 
concluded that the meshless methods of EFG and RKPM are 
very effective for the large deformation analyses with 
geometrical nonlinearity, because they avoid mesh distortion 
issues which often caused in the FEM analysis, especially for 
some geometrically nonlinear problems with very large 
deformation, for which FEM will fail to give reasonable solutions 
due to the large mesh distortions.  
 
However, the study for the large deformation analyses by the 
meshless methods based on the local weak-forms is few. In this 
paper, a local meshless formulation based on the radial basis 
function (RBF) interpolation and the local weak form (Liu and 
Gu, 2005) is developed for the large deformation problems in 
the metal forming. The discrete equations for solids are 
obtained using the local weak-forms, and based on the Total 
Lagrangian (TL) approach. Several numerical examples of the 
large deformation analysis are presented to illustrate the 
performance of the present local meshless method.  It is 
demonstrated that the present meshless technique is very 
effective for the large deformation analyses, because it fully 
avoids mesh distortion issues.   
 

MESHLESS APPROACH FOR LARGE DEFORMATION 
 
RBF shape functions  

 
To approximate a function u(x) based on a local interpolation 

domain Ωs, the approximation u
h
(x) for u(x) is defined in the 

domain Ω by 

1 1

( ) ( ) ( )

n m
h

i i j j

i j

u R r a p b

= =

= +∑ ∑x x  (1) 

with the constraint condition 

1

( ) 0

n

ij i

i

p a

=

=∑ x ,       j=1~m (2) 

where Ri(r) is the radial basis function (RBF), n is the number of 
nodes in the neighborhood (the local interpolation domain) of x, 
pj(x) are monomials in the space coordinates x

T
=[x,y], m is the 

number of polynomial basis functions, coefficients ai and bj  are 
interpolation constants.  In the RBF Ri(r), the only variable is the 
distance between the interpolation point x and a field node xi, 
therefore, it is easy to be extended to 3-D problems. The second 

term of Eq. (2) consists of polynomials to guarantee the non-
singularity of the matrix and ensure linear completeness of the 
trial function (Liu and Gu, 2005).  
 
There are a number of radial basis functions. In this paper, the 
following modified Multi-Quadrics (MMQ) RBF(Liu and Gu,2005) 
is used based on the local interpolation domain. 

2 2( ) [ ( ) ]q
i i c cR r d= +x α  (3) 

where αc  is a dimensionless coefficient chosen, and dc is a 
parameter of the nodal distance or nodal spacing. There are two 

parameters (αc and q) to be predetermined. The effects of αc and 
q have been thoroughly studied by Liu and Gu (2002). It has 

been found that αc=4.0 and q=1.99 lead to good results for most 

problems considered. Hence, αc=4.0 and q=1.99 will be used in 
this paper. 
  
Coefficients ai and bi in Eq. (1) can be determined by enforcing 
Eq. (1) to be satisfied at the n nodes surrounding point x. Hence, 
we can obtain: 

T

    
= =    
     

0 m

0

m

R Pu a
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 (4) 

where, 
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Hence, we have 

( ) ( )h T
eu =x Φ x u  (7) 

where the shape function ( )Φ x , as shown in Fig. 1, is defined by 

{ }T 1
1 2( ) ( ) ( ) ( ) 1nR r R r R r x y −=Φ x GL

 

{ }1 2 0 0 0
T

e nu u u=u L  
(8) 

Mathematicians have proven the existence of the RBF 
interpolation for arbitrarily scattered nodes (Schaback and 
Wendland, 2000). Therefore, the RBF interpolation usually has 
no interpolation singularity problem. 
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Figure 1:  RBF shape function 

 
However, the RBF meshless shape functions do not satisfy the 
continuity in the global domain (Liu and Gu, 2005).  Because the 
smooth (or weight) function is not used in the RBF 
interpolation, some nodes will actually jump into or out of the 
interpolation domain. The approximated field function could be 
discontinuous when some nodes enter or leave the moving local 
interpolation domains. This discontinuity affects the 
computational accuracy of the meshless method based on RBFs. 
But fortunately, this negative influence is relative small for a 
local meshless method.  
 
Discrete meshless formulations  
 

Consider a body, as shown in Fig 2, which occupies a region
0 Ω  

at the initial stage and occupies a region 
t Ω  at the step t. The 

deformation of a material particle 
0∈ ΩX  at time t is described 

by ( , ) tt ∈ Ωx X  through the mapping functionsφ , and we have 

(Zienkiewicz and Taylor, 2000)  

( , ) ( , )t t= = +x φ X X u X  (9) 

where u is the displacement of this material particle. The 
deformation gradient F can be defined as  

∂ ∂ ∂
= = = +

∂ ∂ ∂

φ x u
F δ

X X X
 (10) 

Using the variables related to the current configuration,
t Ω , the 

standard equilibrium equation for a solid is given by 

0 in
ij, j i t

bσ ρ+ = Ω  (11) 

where σ  is the Cauchy stress tensor, b is the body force per unit 

mass and ρ  is the mass density in the current configuration 

t
Ω . In the current configuration, a symmetric measure of 

stress, the Cauchy (true) stress, σ , is often employed, which is 

the work conjugate of the rate-of-deformation,  expressed as the 
relation with the second Piola-Kirchhoff stress, S  

ij iI IJ jJ
J F S Fσ =  (12) 

For the current configuration, the traction and displacement 
boundary conditions can be expressed as 

ij j i t t
n t onσ Γ=  (13) 

i i t uu u on= Γ  (14) 

where n is the unit outward normal vector on the deformed 

surface, and iu  and it  are prescribed displacements and 

tractions on the boundaries t uΓ and t tΓ  of the current 

configuration t Ω .  

 
 
 

Initial reference 

configuration 

Current (deformed) 

configuration 

( , )X tϕ  

0Ω  

t Ω  

X2, x2  

x 

X1, x1 

X 

 
 

Figure 2:  Reference and current configurations in the 
geometrically nonlinear analysis 

 
Consider the equilibrium equation and the boundary conditions 

in the current configuration
t Ω .  For a field node L, Eq. (11) is 

satisfied by  the Petrov-Galerkin formulation over a local 

quadrature domain tΩq bounded by tΓq and leads to a local 
weak-form for this node, i.e.,  
 

, t( )d 0

t q

L ij j iw bσ ρ

Ω

+ Ω =∫  
(15) 

where 
Lw  is the weight or test function centered usually at 

node L.  The first part on the left-hand side of Eq. (15) can be 
integrated by parts to get 

,d d 0

t q t q

L ij j t L j ij L i tw n w v bσ σ ρ

Γ Ω

 Γ − − Ω = ∫ ∫  
(16) 

 
Usually, the boundary tΓq for the local quadrature domain, tΩq, 

is composed by three parts, i.e., 
t q t qi t qu t qt
Γ = Γ ∪ Γ ∪ Γ , where 

tΓqi is the internal boundary of the quadrature domain, which 

does not intersect with the global boundary tΓ; tΓqt is the part of 
the natural boundary that intersects with the quadrature 

domain, and tΓqu is the part of the essential boundary that 
intersects with the quadrature domain. The spline weight 

function can be purposely selected so that the integral on tΓqi 
vanishes to simplify the local weak-form. Hence, the local weak-
form of Eq. (16) can be re-written as 
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, d d d

d 0

t q t q t qu

t qt

L j ij t L i t L ij j t

L i t

w w b w n

w t

σ ρ σ

Ω Ω Γ

Γ

Ω − Ω − Γ

− Γ =

∫ ∫ ∫

∫
 (17) 

Due to the deformed configuration is unknown, the total 
Lagrangian (TL) formulation, which refers all stresses and 
deformations to the initial undeformed (reference) 
configuration at time t=0, is used. To get the formulations in the 
reference configuration, Eq. (17) can be re-written as the 
following matrix form 

0 0 0 0 0

dΩ d d d

q qi qu qt qΩ Γ + Γ Γ Ω

− Γ = Γ + Ω∫ ∫ ∫ ∫vFS wNFS wT ρwb  
(18) 

To handle the large deformation, the incremental formulation is 
often used. For the reference (undeformed) configuration 
during a finite deformation, we have the following incremental 
relationships 

0 0

t dt t
i i iu u u

+ = + ∆ ;  

0 0
t dt t

kj kj kjS S S+ = + ∆ ; 

0 0 0

t dt
t dt t ti i

ik ik ik ik ik
k k

u u
F F F F

X X
δ

+
+ ∂ ∂∆

= + = + = + ∆
∂ ∂

 

(19) 

Therefore, we can obtain the following incremental local weak-
form in the matrix form  

0 0

0 0 0 0

0 0 0 0

0

0 0 0

0 0 0 0 0

0 0 0

0 0

dΩ dΩ

d d

d d d

d

q q

qi qu qi qu

qt q qi qu

q

t t t

L L

t t t t t

L L

t t t

L L L

t t

L

Ω Ω

Γ + Γ Γ + Γ

Γ Ω Γ + Γ

Ω

∆ + ∆

− ∆ Γ − ∆ Γ

= Γ + Ω + Γ

− Ω

∫ ∫

∫ ∫
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∫

v F D E v S F

w N F D E w N S F

w T w ρb w N FS

v F S

)

)

 (20) 

where v is the matrix for the derivatives of the weight functions, 

F is the deformation gradient matrix, ∆E is the vector for the 

increments of Green strains, S and S
)

 are the matrix and the 

vector, respectively, of the second Piola-Kirchhoff stress, N is 
the matrix of the unit outward normal with respect to the 
reference configuration, and D is the material moduli with 
respect to the reference configuration.  

 

Using the RBF meshless shape functions, the initial position 
vector X, and the displacement vector u are approximated by 
the similar form. i.e.,  

1

( )

n

i i

i

Φ

=

=∑X X X  (21) 

1

n

i i

i

Φ

=

=∑u u  (22) 

Substituting Eqs. (21) and (22) into Eq. (20), we can obtain the 
discretized system of equations for the filed node L 

L L∆ =K U P ,          L=1~N (23) 

where 

0 0

0 0 0 0

0 0 0

0 0 0 0 0

d d

d d

q q

qi qu qi qu

t t nl t l
L L L

t t t nl t t l
L L

Ω Ω

Γ + Γ Γ + Γ

= Ω + Ω

− Γ − Γ

∫ ∫

∫ ∫

K v F DB v SB

w N F DB w N SB

 (24) 

0 0

0 0 0

0

0 0 0 0 0

d d

d d

qt q

qi qu q

t
L L L

t t t t t
L L

Γ Ω

Γ + Γ Ω

= Γ + Ω

+ Γ − Ω

∫ ∫

∫ ∫

0P w T w ρ b

w N F S v F S
) )

 
(25) 

where D is the material matrix, F is the deformation gradient 

matrix, S and S
)

 are, respectively, the matrix and the vector of 

the second Piola-Kirchhoff stress. Other matrices and vectors 
are given as 
 

, ,

, ,

0

0

x y

L
y x

w w

w w

 
=  
  

v ,            
0

0
L

w

w

 
=  
 

w  (26) 

0

0

x y

y x

N N

N N

 
=  
  

N  (27) 

x

y

T

T

  
=  
  

T ,               
x

y

b

b

  
=  
  

b  (28) 

1

1

1

1

0 0

0 0

0 0

0 0

n

n

l

n

n

X X

Y Y

Y Y

X X

φφ

φφ

φφ

φφ

∂∂ 
 ∂ ∂ 

∂∂ 
 ∂ ∂

=  
∂∂ 

 ∂ ∂
 
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B

L

L

L
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 (29) 

1 1
11 21

1 1
12 22

1 1 1 1
11 12 21 22

  nl

F F
X X

F F
Y Y

F F F F
Y X Y X

φ φ

φ φ

φ φ φ φ

∂ ∂ 
 ∂ ∂ 

∂ ∂ =  ∂ ∂
 

∂ ∂ ∂ ∂ + +
 ∂ ∂ ∂ ∂ 

B

L

L

L

 (30) 

It can be found that Eq. (23) is nonlinear because the right-hand 
side of this equation is also a function of displacements. Hence, 
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the Newton-Raphson iteration is used to get results in the 
analyses of large deformation problems. The iteration 
formulation can be written as (Belytschko et al., 2000) 

( 1) ( ) ( )n n n+ = + ∆U U U  (31) 

where ( )n
U  and ( 1)n+

U are displacements for the Newton-

Raphson iteration at nth step and (n+1)th step, respectively, and 
( )n∆U  is the displacement increment, which can be computed 

as follows 

( )
1

( ) ( ) ( )n n n
−

∆ = −U K P  (32) 

 
 
NUMERICAL EXAMPLES 
 
Uniaxial tension 

 
A 1×0.25 plane strain block is subjected to tension along the 
axial direction, as shown in Figure 3. Symmetric boundary 
conditions are used to avoid rigid body motion. Regularly 
distributed 21, 36, and 55 nodes are used to study the 
convergence. To study the effectiveness and accuracy of the 
presented method, this problem is also solved using the finite 
element method with a very fine mesh (using 451 nodes). 
Because the theoretical solution for this problem is not 
available, the FEM result is taken as the reference solution. It is 
reasonable because the convergence of FEM has been proven 
both theoretically and practically. Hence, the following norm is 
defined as an error indicator,  

( ) ( )

( )

RefMeshless
t t

u Ref
t

u u
e

u

−
=  (33) 

where ( )
Meshless
tu  and 

( )
Ref
tu are displacements obtained by the 

meshless method and the FEM reference solutions, respectively.   
 
For easy comparisons, the axial displacement, u, at the end of 
the block is applied step by step. The displacement is increased 

by increments equal to ∆u=0.2. After ten displacement steps, the 
block will stretch up to two times of its original length.  The 
error, eu, at the final deformed stage is smaller than 1%.  It can 
be found that the present meshless method has very good 
accuracy, stability and convergence. It should be mentioned 
here that FEM solution converged much slower when the 
deformation becomes large.  
 
 

 
 
 

Figure 3:  Deformation of a block under the uniaxial tension 

 
 
Compression of a solid 
  

A 4 ×2 solid billet, as shown in Fig. 4, is studied by the 
developed meshless method. This billet is subjected to 
compression along the axial direction. The large deformation 
analysis is performed and the billet is subjected to a distributed 
loading along the right end with 40/Unit.  The analysis is carried 
out using load incremental steps N and the load-scaling factor is 

α=10.0. Fig. 5 plots the progression of deformations obtained by 
the meshless formulation for different loading steps. It is seen 
that the billet can be compressed as much as 75% compared to 
its original length. The same problem is also solved by the FEM 
and by the local Kriging method (Gu et al., 2007). It is found 
that the FEM will converge very slowly once the compression is 
more than 50%.  It demonstrates that the meshless formulation 
developed in this paper is more effective than the FEM for the 
large deformation problems, and it has also proven that without 
using explicit mesh for both interpolation and integration, the 
local meshless method can fully overcome the mesh distortion 
issues in the FEM analysis. 

 

 
 

Figure 4: A solid bar under compression 
 

 

�: Initial nodes; *: Deformed nodes after 40 steps 

N=10 
N=20 

N=30 
N=40 

  

Initial 

configuration 

x 

y 

 
 

Figure 5:  The compression progression for a billet 

 
Ring compression 
 
The compression of a metal ring, which is a typical problem in 
metal forming, is analyzed. As shown in Fig. 6, the initial ring 

y 

x 

p

    Deformed shape  

  

Original shape
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geometry is: internal radii: ri =3.0 cm, height: h=4.0 cm, and 
external radii: re =6.0 cm. The ring is made of a cold forging steel 

with Young's modulus E=288 GPa and Poisson's ratio ν=0.3.   
 
Due to symmetry, only a quarter of the ring is discretized. Fig. 7 
shows the ring progressive deformations under different 
compression rates. Comparing with results by ABAQUS and 
Chen et al. (1998), the present meshless technique leads to 
almost identified results. 

 

h 

ri ro 

 
Figure 6:  The metal ring 

 
 
  

CONCLUSIONS 
 
A local meshless formulation is developed for the large 
deformation analysis which is the key for the metal forming 
modelling. The radial basis function (RBF) is employed to 
construct the meshless shape functions. The discrete equations 
for large deformation of solids are obtained using the local 
weak-form, and based on the total Lagrangian (TL) approach, 
which refers all variables to the initial configuration. This 
formulation does not require explicit mesh in computation and 
therefore fully avoids mesh distortion difficulties in the large 
deformation analysis of metal forming. Several example 
problems are presented to demonstrate the effectiveness of the 
developed method in the large deformation analysis. It has been 
found that the present local meshless method has good 
performance, and it is also very stable even for irregularly 
distributed nodes. All these examples demonstrate that the 
present local meshless method is very effective for the large 
deformation analyses, because it fully avoids mesh distortion 
issues. In summary, the meshless techniques have very good 
potential in the modeling and simulation of metal forming 
problems.  
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Figure 7:  The compression progression for the ring 
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