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Abstract—Low voltage direct current (LVDC) distribution sys-
tems have the potential to support future realization of smart
grids and enabling of increased penetration of distributed renew-
ables, electric vehicles, and heat pumps. They do, however,
present significant protection challenges that existing schemes
based on dc fuses and conventional electro-mechanical circuit
breakers cannot manage due to the nature of dc faults and slow
device performance. Therefore, this paper presents an advanced
protection scheme that addresses the outstanding challenges for
protecting an LVDC last mile distribution network. The scheme
takes advantage of advanced local measurements and communi-
cations that will be naturally integrated in smart grids, and the
excellent level of controllability of solid state circuit breakers. It
thus provides fast dc fault detection and interruption during dc
transient periods, in addition to achieving fault limitation and fast
reliable restoration. The introductory part of the paper quantifies
the potential benefits of LVDC last mile distribution networks,
and discusses the potential LVDC architectures that best utilize
the existing plant. Based on the new LVDC architectures, a typ-
ical U.K. LV network is energized using dc and modeled, and
is used as a case study for investigating the protection issues
and evaluating the new protection scheme performance through
simulation.

Index Terms—Distributed energy resources, low voltage direct
current (LVDC) distribution systems, power system protection,
smart grid, solid state circuit breakers.

I. INTRODUCTION

H
ISTORICALLY, the first distribution power system

to supply electricity to customers in a district area

(Edison’s Pearl Street Station) was introduced in 1882 as low

voltage direct current (LVDC) [1]. But ac has dominated since,

because it was more manageable to economically transmit

ac power over long distances [1]. Currently and because of

advances in control and power electronics technologies, dc has

been increasingly used particularly for long high voltage dc

(HVDC) transmission lines to provide a cost effective solution

for transferring power over long distance with better power

flow controllability. At distribution levels in today’s public

power systems, dc networks are not widely used yet, and
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their applications are limited to specific areas such as auxiliary

installations in power plants and substations, electric traction

systems due to the wide usage of dc motors, and for aircraft

power systems and electric ships due to the enhanced control-

lability of dc [2]. Recently, LVDC distribution systems have

been considered as one of the efficient energy technologies for

powering different sized data centers [3], [4].

With the help of modern power electronics and advanced

smart grid technologies, it is believed that LVDC distribution

systems have the potential to be a valuable component to meet

a number of the challenges that existing last mile distribu-

tion electricity networks will face during the transformation to

smart grids. The last mile distribution networks expect more

connection of small scale renewable and advanced distributed

energy resources (DERs) in future in addition to supplying

more heat and transport demands [5]. Such changes will cause

the future grid’s last mile to experience significant pressure for

the provision of significantly increased power flow capacity

and the accommodation of decentralized controls. Further con-

straints on the choices made in changing the last mile network

stem from the scale and intrusive nature of the LV network—

options where wholesale changes to cable assets involving

significant numbers of disruptive street works can be avoided

during the transition of the network are very attractive. There

is therefore a need for a rethink of the new standard designs

to be adopted in last mile networks. LVDC with the help of

smart controls and advanced information and communication

technology’s (ICTs) have the potential to facilitate this trans-

formation, and offer more advantages over the corresponding

LV ac systems [6].

However, the implementation of LVDC systems introduces

a new complex arrangement of mixed ac and dc, and this

presents significant technical challenges for protecting and

operating the new system. For example, under fault condi-

tions, as the system becomes more complex new forms of

faults with different fault transients will be introduced and dif-

ferent system responses are anticipated. This is in addition to

the problems linked to interrupting a dc fault current without

natural zero crossing points compared to ac.

Therefore, the focus of this paper is on the technical pro-

tection issues and solutions that enable an LVDC last mile

distribution network. The outline of the paper is as fol-

lows. Section II quantifies the potential benefits of using dc

instead of ac across the LV network last mile. Section III dis-

cusses the potential LVDC architectures that best utilize the

existing plant. Section IV investigates the outstanding protec-

tion challenges of an LVDC network with high penetrations
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of microgeneration, and evaluates the effectiveness of existing

protection options for protecting LVDC systems. In Section V,

a new protection solution that can provide more resilient and

more reliable operation for an LVDC network integrated with

high penetrations of microgeneration has been developed, and

evaluated through simulation analysis. Finally, the conclusions

of the work presented in this paper are drawn in Section VI.

II. POTENTIAL BENEFITS OF LVDC LAST MILE

The European Union (EU) (LVD) 2006/95/EC standard per-

mits the use of higher dc voltages up to 1.5 kV for LV dc

distribution systems compared to 1 kV for LV ac systems [7].

This has technical advantage of delivering higher power as

will be discussed later. Also in dc systems, the inductances

have limited effect on the voltages during normal operation,

and thus the reactive current component that introduces more

losses is insignificant. In addition, the skin effect that normally

increases the cable resistance in ac networks has no impact in

dc cables. The advantages of these features in addition to better

controllability of dc systems for improving future distribution

network operation are discussed as follows.

A. Improving System Efficiency and Increasing Power Flow

Capacity

Using LVDC with higher voltages will reduce the thermal

losses and voltage drops in LV cables, and allow a higher

power capacity to be obtained and system efficiency to be

improved. This is significantly important for rural networks

which have long feeders and system efficiency can be an

issue. The experience from a real rural LVDC test network

as a part of Finnish national smart grids research program has

concluded that LVDC is more efficient solution to rural ac

networks when the feeders lengths are over 1 km [8]. LVDC

has also the potential to enable increased power flow capac-

ity for urban networks to supply higher load density. Another

advantage for urban network examples is reduced fault lev-

els by the converters across the network. This could facilitate

more the operation of LV ring configurations to improve the

redundancy level, and allow the use of equipment with lower

short circuit rating and reduced cost.

B. Facilitating the Connection of Renewable Energy

Resources and DC Loads

Most of the decentralized devices generate/consume dc or

require a dc intermediate stage. These devices can be connected

directly or by dc/dc converters to LVDC networks, and the

energy losses which is typically 7%–15% for converting dc

to ac can be reduced [3]. It is also easier to connect multiple

sources in parallel to dc systems than to ac systems, where

frequency synchronization is not required. An LVDC network

is also more suitable for the connection of large numbers of dc

power consuming devices. The need for using large numbers

of adapters to convert 230V ac to dc can be removed, resulting

in reduced losses and saved cost [9]. The transformers used for

the adaptors of electronic equipment can cause considerable

losses during stand-by mode. As stated in [9], and according

to the International Energy Agency (IEA), in the EU, the total

domestic consumption of electronic equipment in stand-by

mode has been estimated to be more than 36 TWh/year.

C. Potential Benefits for Electricity Market

LVDC with advanced ICT systems has the potential to

allow customers, suppliers, and operators to benefits from the

enhanced controllability and flexibility in operation. This could

offer more flexible market mechanism with better stimula-

tion of customers to control their demand, and facilitate their

choices in competitive retail market with potential financial

benefits to be realized [10].

D. LVDC Benefits Versus the Cost

The technical benefits of an LVDC application should be

balanced in practice with the cost, where the life-cycle cost and

the energy efficiency are the main drivers for the LVDC to take

place in future [6]. In general, the lifetime of the electronic

conversion devices is normally shorter than traditional trans-

formers. In spite of this issue, LVDC systems have already

proven their economic benefits for other existing applications.

The recent Electric Power Research Institute (EPRI) research

has concluded that using 380 V LVDC to supply small and

medium sized data centers will improve the electrical effi-

ciency up to 15% and with 36% lower lifetime cost [4]. Also,

ABB has reported that the 1 MW 380 V dc network built in

2012 to supply a medium sized data center was 10% less than

the ac system in terms of capital costs [4].

III. PROPOSED ARCHITECTURE OF LVDC LAST MILE

The example scenario described in this paper considers ener-

gizing an existing last mile distribution network using dc to

achieve the aforementioned benefits. In such a case, the move

to dc should make the best use of existing ac assets and ensure

the reliability and integrity of the new system. A number of

key issues that are still facing the design of LVDC last mile in

terms of new topology, operating voltage levels, and earthing

arrangements are discussed as follows.

A. LVDC Last Mile Topology

Considering a typical U.K. LV configuration as the test

network, the new LVDC network will be supplied from the

secondary substations 11/0.4 kV Dy11 transformer via ac/dc

converter as shown in Fig. 1. In general, an LVDC can be

interfaced to the ac grid by fully controlled interfaces such

as voltage source converters (VSCs) based on isolated gate

bipolar transistor (IGBT) switches. IGBT-based VSCs have

the ability to control the dc voltages, and allow independent

control of active and reactive power between the LVDC and

the ac grid. In terms of dc feeder connections, the existing ac

cables can be configured as either unipolar or bipolar when are

used for dc [8]. Bipolar systems provide more voltage level

options and higher power capacity than unipolar. More details

on how to configure the existing ac cables to be used for dc

applications are given in [11].
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Fig. 1. LVDC last mile distribution network example.

End user interfaces are also an important part that helps

LVDC to maximize its benefits. Fig. 1 depicts both connec-

tions to a conventional ac-load household and a future dc

enabled house, shown as A and B, respectively. The ac house

requires a dc/ac inverter to provide 230V ac, and all dc loads

and sources are interfaced to the host system through dc/ac

converters, and high speed ac sources such as microwind and

micro gas turbines are interfaced by ac/dc/ac converters. When

these devices are connected to the dc enabled house, the con-

version stages are reduced. The electronic devices internally

powered by dc can be connected directly to the system or

through dc/dc converters. This is in addition to the possibility

of connecting multiple sources in parallel to the dc system as

shown for customer B in Fig. 1. Any domestic ac loads such

as ac rotating machines can still be supplied by ac/dc convert-

ers in the dc enabled house, though they are likely to be few

in number in the future.

B. Operating DC Voltage Levels

With respect to LVDC operating voltages, there is lack of

standards due to the lack of applications for such networks.

The EU LVD2006/95/EC as mentioned earlier identifies the

range of dc low voltages to be from 75 V up to 1.5 kV, with

any voltage out of this range considered beyond LV [7]. But

there is as yet no agreed nominal value as there is in traditional

LVAC distribution systems. The only existing single world-

wide standard for an LVDC voltage is the 380 Vdc which has

been adopted for powering numbers of data centers [4]. The

main driver for choosing this standard is stated to be low cap-

ital and operating cost [4], [12]. As for future LVDC last mile

networks, the most appropriate operating voltage still remains

as an open question.

The rating of existing LV cables can also have an impact

on selecting dc operating voltages. The existing LV ac cable

ratings are specified as root mean square (RMS) limits, but

the applied voltages clearly reach their associated peak val-

ues. Thus, if an existing LV cable were to be used for a dc

application, the dc voltage rating can be equal to the peak of

the ac voltage instead of the ac RMS. Using dc voltages equiv-

alent to the ac peaks will deliver the same power with lower

current, resulting in reduced thermal losses in LV feeders. A

typical 1 kV ac PVC insulated underground cable has been

successfully used as a dc feeder with voltages up to ±750 Vdc

for the Finnish LVDC test network, and the continuous 5000

h of operation have not caused any failure or damage to the

cable [8]. The only problem with using higher dc voltage is the

requirement for converters with higher voltage ratings which

may lead to higher cost. The research in [6] has considered

the impact of different dc voltages on the life cycle costs of

converters and dc cables in LVDC systems, and has found that

the most optimal dc voltage lies between 0.6 and 1 kVdc. This

analysis has based on the existing average cost of power elec-

tronic devices. With technology advancement and increased

application of dc, the cost of these devices will reduce. This

may allow the optimal voltages to increase further, by which

further capacity will be provided. To sum up, there is an urgent

need for standards organizations to provide a nominal dc volt-

age that will maximize the value of the application of dc

technologies in public distribution systems.

C. Earthing Arrangements

The earthing system of an LVDC network can be a complex

issue, and different earthing systems result in different voltage

control and protection performance. The LVDC network can

be operated as an unearthed IT-system with no short-circuit

path between the ac and dc systems through the earth, and the

consumers’ networks can be locally earthed. This option pro-

vides an additional protection to the converters against high

earth fault currents. However, additional protection such as

residual current devices (RCD) will be necessary to protect

against earth faults on the consumers’ side of unearthed LVDC

systems [13]. Within unearthed LVDC, it will be more dif-

ficult to keep the neutral current to zero for balancing the

poles’ voltages in bipolar systems. So, bipolar LVDC networks

may require solid earth at the neutral, or earthing through

resistances to minimize earth fault currents and balancing the

voltages. Another issue is that, existing regulations such as

electricity safety, quality, and continuity regulations (ESQCR)

do not allow unearthed IT-system configuration for LV public

networks in the U.K. [14]. This may lead to the need for exist-

ing regulations to be revised in order to allow more flexible

earthing arrangements for public LVDC, while still ensuring

the safety of personnel and equipment.

IV. LVDC LAST MILE PROTECTION ISSUES

Protection systems’ effectiveness is crucial in future LVDC

development. This is because the change to dc creates new

forms of faults with different natures and different transient

compared to ac. Previous research [15] has shown that for

a dc fault at the converter terminals, a high transient short-

circuit up to 35 times the steady-state fault current can flow

within less than 4 ms. Such high current amplitudes will

flow through the network sensitive components with a sig-

nificant I2t thermal energy, resulting in the requirement for

more expensive plant with higher ratings. Another issue is the
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Fig. 2. Equivalent circuit of faulted dc feeder. (a) Capacitor discharge current
contribution. (b) Anti-parallel diodes fault current contribution.

lack of representative dc protection standards for accurately

characterizing dc short circuits during both the transient and

steady state periods. IEC61660 is the most inclusive standard

that has been widely used for characterizing faulted dc aux-

iliary systems [16]. However, the research in [15] has shown

that IEC61660 underestimates the dc transient phenomena of

faulted last mile networks. Therefore, more accurate mathe-

matical models of dc faults for designing more effective dc

protection are discussed next, followed by the issues of using

existing protection against dc faults.

A. Characteristics of DC Short-Circuit Currents

When a dc fault is initiated, the IGBT switches of the

converters are normally blocked for self-protection and the

smoothing capacitor of the filters as shown in Fig. 2(a) will

immediately act as a significant dc source, and feed a high

transient current decaying exponentially as given in (1) until

the capacitor voltage given in (2) becomes zero [17]

iC = C
dVc

dt
= −

I0ω0

ω
e−δt sin (ωt − β) +

V0

ωL
e−δt sin ωt (1)

VC =
V0ω0

ω
e−δt sin(ωt + β) −

I0

ωC
e−δt sin ωt. (2)

Here, VC and iC are the voltage across the capacitor and

the discharge current of the capacitor, respectively. V0 and I0

are the initial voltage and current of the smoothing capacitor.

C is the capacitance value, δ = R/2L, and ω0 =
√

δ2 + ω2.

R and L are the equivalent resistance and inductance from the

fault point to the dc source. Also,

ω =
√

(1/LC) − (R/2L)2 (3)

β = arctan(ω/δ). (4)

The time for the capacitor voltage to drop to zero is given by

t1 = t0 + (π − γ )/ω. (5)

t0 is the initial time when the fault is initiated, and

γ = arctan [(sin β)/(cos β − (I0/V0ω0C))]. (6)

When the capacitor is completely discharged, the antipar-

allel diodes as shown in Fig. 2(b) will be forward biased, and

act as a bridge rectifier and continue supplying the fault during

the transient. The fault current of the dc feeder inductors will

be circulated in the diodes, and it can be calculated from the

following equation [17]:

iL = I′
0e−(R/L)t (7)

where I′
0 is the initial current value of the inductor.

After the transient is passed, a steady state dc fault current

will be supplied by the grid through the antiparallel diodes.

Each leg of the converter will pass one phase current as given in

iga = Im sin(ωst + α − ϕ) + (im0 sin(α − ϕ0)

−Im sin(α − ϕ)e−t/τ (8)

where ωs is the synchronous angular frequency, α is the phase

A voltage angle, and

φ = tan−1(ωs(Lg + L)/R). (9)

The time constant τ = (Lg+L)/R. Im is the grid current

magnitude, and Im0 and ϕ0 are the initial grid current amplitude

and initial phase angle, and Lg is the grid inductance. The

total current contribution to the dc steady-state fault current

supplied by the grid is the sum of the three phases a, b, and c

currents iga, igb, and igc.

B. Issues With Existing DC Protection Options

Interrupting dc fault current with the same features as

described above is more difficult than for ac. Three exist-

ing protection methods against dc faults are discussed here,

and evaluated. The first method is protecting dc systems from

the ac side by measuring dc voltage and current during the

fault and operating the breakers on the ac side. Such a solu-

tion is widely used as an economic way to protect dc lines in

HVDC systems [18], but will disconnect the complete dc net-

work. The selectivity of such a solution can be improved by

using the handshaking protection method as developed in [19].

The method uses ac breakers on the ac system and fast act-

ing mechanical switches on the dc system. The switches do

not break any dc faults, and are used only for reconfiguring

dc lines after the fault is cleared by the ac breakers. Such

a protection option could be effective for HVDC but not the

best option for local distribution networks. This is because the

entire network is temporarily disconnected until the mechani-

cal switches perform their functions, and this can lead to power

quality and local stability issues.

The second dc protection option is by creating zero crossing

points for dc fault currents. This is achieved by using a series

reactor with conventional electro-mechanical circuit breakers

(EMCBs) on the dc side [20]. The reactor is used to limit the

fault magnitude, cause the dc fault current to oscillate, thus

creating a zero crossing, with the EMCB interrupts the fault

at the first zero crossing. Such a method is less reliable for high

impedance faults, where a relatively large reactor is required

to create oscillation. In addition, adding more reactance will

lead to more fault stress due to the release of larger stored

energy during the fault.

The third dc protection method is by directly interrupting

the dc fault on the dc side by devices that do not require zero

crossing points such as current-limiting fuses and EMCBs such

as moulded case circuit breakers (MCCBs) [21]. However, the

performance of such devices for dc protection is slower than

for ac. Extinguishing the dc arc is more difficult than for ac,

where increased arc length and arc splitter are required [22].

The dc fuses and MCCBs performance for protecting a sim-

ple LVDC distribution network has been tested in [13]. The
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short-circuit fault at the ac end user was cleared within 0.04 s

by MCCB on the consumer side, and the fault on the dc side

of the unearthed LVDC example required 5.1 s to be cleared

by an insulation monitoring relay on the dc side and a breaker

on the ac side. Such slow operating times cannot protect the

system from the high peaks of dc faults during the transient,

and the following fault consequences are expected.

1) Converters and other sensitive devices become defense-

less against high transient dc faults during the discharge

of the filters’ capacitors, resulting in absorbing high

thermal energy for longer time and increasing the

requirements for higher current ratings.

2) The rapid depression of dc voltages as a result of

high transient currents will last longer. This will make

the converters lose control and more likely trip before

downstream protection, leading to substandard protec-

tion selectivity and unnecessary disconnection.

3) Post-fault high transient spikes of dc voltages are

expected. The research in [21] has proven that when a dc

fault on an LV side was cleared after 5 ms, a large tran-

sient dc voltage enough to impact the unfaulted feeders’

loads was experienced.

4) It will be more difficult to maintain the stability of local

microgenerators and avoid sympathetic tripping against

remote dc faults due to the sensitivity of these devices

to undervoltage conditions during the dc transient.

Subsequently, to avoid the above-listed operation issues, dc

faults need to be cleared during the transient period within

timescale no more than 4 ms [15]. This requires very fast dc

fault detection and interruption with a good level of selectivity.

Such protection performance within such a timescale cannot be

achieved by using traditional dc fuse-based and EMCB-based

protection schemes. Therefore, the next section develops a new

protection solution to address these issues.

V. FAST ACTING LVDC PROTECTION SCHEME

An advanced protection scheme that performs fast and

selective dc protection for new LVDC last mile distribution

networks is developed in this section. The scheme overview is

described next, followed by an evaluation of its effectiveness

through modeling and simulation studies.

A. Overview of the Scheme

The new protection solution is communication-based with

a combination of ac and fast acting electronic-based dc

protection. It is based on the measurement of dc fault cur-

rent directions and magnitudes, and dc voltages during dc

fault transient periods using multiple intelligent electronic

devices (IEDs) that have self-monitoring, control, and com-

munication functions. Solid state circuit breakers (SSCBs)

which can be turned on and off within few microseconds

are used for interrupting dc faults. The common controllable

examples of SSCBs that can be used for dc protection are;

the normally-on Silicon carbide junction field effect transistor

(SiC JFET), an integrated gate-commutated thyristor (IGCT),

and an IGBT. SiC JFET and IGBT-based SSCBs have rela-

tively faster switching speed than the IGCT, but the IGCT is

Fig. 3. LVDC network protected by fast acting protection scheme.

Fig. 4. Structure of the dc feeder’s protection and selected end user
protection.

still 900 times faster than a typical EMCB [23]. Any type

of these SSCBs can be used within the developed protec-

tion scheme, but the IGCT has lower on-state losses than the

IGBT and higher current rating capabilities than SiC JFET

which requires many devices to be paralleled. Therefore, IGCT

SSCB is considered in the developed scheme.

Fig. 3 redraws the test network of Fig. 1 for clarity, and is

used to explain the scheme principles. The ac breaker shown

as ACCB in Fig. 3 is used to protect against internal faults of

the main converter and external faults on the dc point of com-

mon coupling (PCC). The ACCB is controlled by an intelligent

electronic device (IED) relay which can be equipped within the

main converter, shown as C in Fig. 3. On the dc side, each main

dc feeder is protected by one SSCB as shown in Fig. 3, and

controlled by a local IED relay. Fig. 4 depicts in more detail

the structure of the first dc feeder’s protection and selected end

user protection. The SSCB of the end user has two antipar-

allel controlled switches. One switch shown as B1 in Fig. 4

is remotely controlled by the IED located at the beginning of

main feeder (IED1) in order to block reverse fault currents sup-

plied by microgenerators, and facilitate controllable reclosing.

With such a design there is no need for having a reverse con-

trollable switch at the beginning of the feeder to block reverse

fault currents, and the breaker can be protected by anti-parallel

diodes in case of upstream faults. The other end user antipar-

allel switch shown as B2 in Fig. 4 is locally controlled by

IEDenduser1, and protects against end users’ faults in a coor-

dinated way with the upstream protection. The coordination

between IED1 and IEDenduser1 is achieved by setting the pick

up current of IEDenduser1 lower than the pick up of IED1.

When a dc fault occurs on the dc side, all the network

devices will notice the disturbance in different ways. Changes

in the current magnitudes and directions in addition to the
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Fig. 5. Algorithm of the developed dc multifunction protection scheme.

rapid decrease in the dc voltages during the fault are used as

an indicator for detecting and locating faults, and performing

fast selective tripping. The direction of fault currents helps

in identifying the fault locations very quickly. The proposed

scheme assumes that the direction of currents flow toward the

downstream is positive and represented by 1, and toward the

upstream is negative and represented by 0. Based on these

directions and fault current magnitudes, the appropriate relay

signals such as a trip signal, a blocking signal, or a reclos-

ing signal to perform the required protection functions and

algorithm are provided by the associated IED. The protec-

tion functions are described in more detail in Fig. 5. The

IEDs exchange the signals only when the dc undervoltage

thresholds are exceeded, and send trip signals only when the

current thresholds are exceeded. Three fault scenarios asso-

ciated with fault locations F1, F2, and F3 in Fig. 3 are

considered to explain how fast fault detection and selective

tripping described in Fig. 5 can be achieved.

When fault F1 as shown in Fig. 3 is considered, the fault will

be supplied by the ac grid and the downstream microgenera-

tors. The fault current flows through the relay C (see Fig. 3)

will have positive direction 1, and the reverse currents flow

through all the relays IED1-4 and other downstream end users

IEDs will have negative direction 0. Therefore, the avail-

able direction-based current information for the relay C is

[1C, 0IED1 0IED2 0IED3 0IED4]. The 1 and 0 as already men-

tioned representing the forward and reverse current directions,

and the associated relays to these directions are represented

by the subscripts. The fault location is then easily identified,

as between the IEDs with two opposite directions 1 and 0

(i.e., on the PCC), and when the threshold fault currents are

exceeded the following actions are taken.

1) Relay C trips the breaker on the ac side to interrupt the

ac grid fault contribution at the first zero crossing.

TABLE I
CONVERTER AND MAIN FEEDER RELAYS PERFORMANCE

DURING FAULT F1

TABLE II
CONVERTER AND MAIN FEEDER RELAYS PERFORMANCE

DURING FAULT F2

Fig. 6. Transient discharge pole-pole dc fault behavior at the PCC.

2) IEDs1-4 of the main feeders remotely block the micro-

generators reverse currents.

Blocking the reverse fault current will reduce the thermal

stress on the system during the transient period, and remove

the limitations on more renewables uptake due to fault level

issues. Table I below explains different protection functions

required from different relays for the fault F1 at the PCC.

In the case of fault F2 (see Fig. 3), the fault cur-

rent direction information seen by relay C, IEDs1-4 are

[1C, 1IED1 0IED2 0IED3 0IED4], respectively. In this case the

feeder with a current has direction 1 is the faulted feeder,

and its relay (IED1) takes the lead. Now looking from the

IED1 toward the downstream end users IEDs, the avail-

able direction signals for the IED1 are [1IED1, 0IEDenduser1

0IEDenduser2. . . 0IEDenduserN] seen by the feeder IED1 and pro-

vided by the downstream end users IEDs. The fault is then

located on the main feeder, and the following actions as listed

in Table II are performed.
1) IED1 remotely trips all the downstream microgenerators.

2) IED1 clears the fault locally by operating its SSCB (1).

3) Taking the advantage of an automatic reset of the SSCB,

a controllable reclosing action against temporary faults

can be automatically implemented by the IED1.
With respect to the downstream fault F3 as shown in Fig. 3,

the fault current directions seen by relay C, the main feeders

IEDs, and by the end users IEDs are [1C, 1IED1 0IED2 0IED3

0IED4, 1IEDenduser1 0IEDenduser2. . . 0IEDenduserN], respectively.

The end user with a current with direction 1 is faulted. In this

case the fault is local, and can be directly detected by the local

IEDenduser1 and cleared by the associated SSCB(1a) without

the need for communicating upstream protection.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

EMHEMED AND BURT: ADVANCED PROTECTION SCHEME FOR ENABLING AN LVDC LAST MILE DISTRIBUTION NETWORK 7

Fig. 7. Transient discharge pole-pole dc fault at the PCC with and without
microgeneration contribution.

B. Test Network Modeling

The LVDC test network described earlier is modeled using

PSCAD/EMTDC, and used to demonstrate the developed

scheme through simulation. The data of the MV network is

based on actual data provided by a U.K. network operator [24].

The MV system is modeled using an ideal voltage source and

impedance with X/R = 5 to provide a fault level of 156 MVA

at the ring main unit (RMU). An impedance of 4.5% and rating

of 0.5 MVA has been taken for the secondary substation trans-

former (11/0.433 kV). The LVDC network is assumed to be a

radial unearthed unipolar network providing 612 Vdc between

the two poles, and supplying 400 kVA load. The parameters

of the LV cables are Rdc = 0.164 �/km, and L = 0.24 mH/km,

and the cables length is assumed to be 1 km.

As aforementioned in Section IV-A, when a dc fault is first

initiated the converter IGBTs are immediately blocked, and the

fault is supplied by the smoothing capacitor during the transient

and by the ac grid through the antiparallel diodes during the

steady-state period. So the converter IGBTs are inoperative

during the short-circuit, and the converter behaves as a six

pulse bridge rectifier with smoothing capacitor. Therefore, the

interface of the test LVDC to the ac grid is modeled as a six

pulse rectifier with smoothing capacitor C = 6750 µF. Such a

model is valid for protection studies, and gives the worst dc

fault scenario where no converter control action is implemented,

and the highest dc short circuit is obtained. The represented

studies have also considered the extreme microgeneration fault

contribution scenario (100% of the load supplied locally). The

microgenerators are represented by dc current sources con-

nected in parallel with capacitors with C = 470 µF. In terms of

protection model, the SSCBs are modeled as a typical power

electronic switch connected in parallel with a snubber RC cir-

cuit, and has a minimum extinction time = 30 µs. The pickup

current of each relay is set as twice of the full load current,

and the undervoltage threshold is set to be 85% of the nominal

Vdc. A fixed communication delay equals to 1 ms is applied.

C. Simulation Studies

Faults F1, F2, and F3 shown on Fig. 3 are again considered

during the simulation analysis. The fault F1 is applied at the

PCC, and F2 and F3 are applied on the main feeder and on the

end user side, respectively. Fault F1 at the PCC creates a very

high transient dc fault current, and its peak (50 kA) is reached

within less than 1 ms as shown in Fig. 6. The discharge of the

filters’ capacitors of the microgenerators contributes to almost

16% of the total peak as shown in Fig. 6 with slower rise time

due to the dc feeders resistance and inductance. The fault is

Fig. 8. Comparison between uninterrupted dc discharge fault current and
interrupted fault current by SSCB.

Fig. 9. Impact of reclosing with dead time 15 ms on the LVDC voltage.

quickly detected by relay C and cleared from the ac side by

the ACCB at the first zero crossing point within 13.2 ms.

Such a protection operating time has allowed the passage of

the discharge current, but the fast trip of the local generators

by downstream SSCBs has reduced the impact of this cur-

rent during the transient period by reducing the decay time as

shown in Fig. 7. The results have shown that local microgen-

erators can be disconnected remotely within 30 µs plus 1 ms

communication delay.

When fault F2 is applied, the protection scheme has shown a

good level of discrimination—the relay C detects the fault but

does not react. After 1 ms communication delay (the feeder

IED to communicate with the end users’ IEDs), the fault F2

is quickly cleared by the relay and the SSCB of the faulted

feeder, and by disconnecting the downstream microgenerators

within 2 ms (including the impact of two-way communication)

as shown in Fig. 8. Such fast fault interruption during the tran-

sient period has protected the last mile from being exposed to

high current with 5 kA peak for longer period as illustrated

in Fig. 8. This is in addition to significantly limiting the fault

contribution from the microgenerators of the unfaulted adja-

cent feeders as shown in Fig. 8. The results have also proven

that the disconnected loads can be automatically reconnected

by the controllable reclosing function of the feeder SSCB (1).

The impact on the dc voltage during the fault interruption and

reclosing is very limited as given in Fig. 9. This will improve

the ride through capability of the healthy feeders’ microgener-

ators. As for the fault F3, the fault is cleared locally by the end

user SSCB(1a) within 30 µs as shown in Fig. 10. These results

have also ensured selectivity between the end user SSCB(1a)

and the feeder SSCB (2).

It can be concluded from the simulation studies that in addi-

tion to the provision of fast dc fault detection and interruption

which prevent dc faults from reaching damaging levels, more

elaborate protection functions such as fault limitation and, fast

reliable restoration have also been achieved. Within the studies

the impact of high frequency noise currents on the sensitivity
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Fig. 10. Downstream dc fault cleared by the end user SSCB.

of the SSCBs is assumed to be negligible. This phenomenon

will be considered in future work in order to evaluate the reli-

ability of the developed SSCB-based protection scheme and

avoid unpredictable protection behavior. In addition, to justify

the implementation of the developed scheme, the added on-

state losses of SSCB and increased cost need to be balanced

with the afforded benefits.

VI. CONCLUSION

This paper has presented a new protection solution which

provides the fast and selective tripping required of new LVDC

last mile distribution networks. The provision of this solution

will thereby enable the potential benefits afforded by energiz-

ing last mile using dc. The benefits include accommodating

increased penetration of distributed renewables, supporting

better control, supplying new heat and transport demands, and

reducing losses in LV feeders. A representative architecture

was created, and test network modeled, in order to evaluate the

new protection scheme’s effectiveness in simulation. Results

show that more resilient network performance can be delivered

by quickly detecting and interrupting dc faults during transient

periods at low current levels and within small timescales. This

has significantly limited the fault level, and supported the ride

through capability of local generation. In addition, the system

reliability has been improved by implementing controllable

reclosing functions and reducing restoration times.
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