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ABSTRACT

The job shop scheduling problem with the makespan criterion is a certain NP-hard case from OR theory having
excellent practical applications. This problem, having been examined for years, is also regarded as an indicator
of the quality of advanced scheduling algorithms. In this paper we provide a new approximate algorithm that
is based on the big valley phenomenon, and uses some elements of so-called path relinking technique as well
as new theoretical properties of neighbourhoods. The proposed algorithm owns, unprecedented up to now,
accuracy, obtainable in a quick time on a PC, which has been confirmed after wide computer tests.
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1. INTRODUCTION

The job shop scheduling problem with the makespan criterion comes from the practice of OR and
models many real production processes very well on the basis of the flow of tasks. The problem has
been known for years in the scheduling theory as a particularly hard combinatorial optimisation
case. Although in the last three decades a lot of effort has been put into research in this area, good
results have appeared quite recently, see state-of-the-art papers by Bl�ażewicz, Domschke, and
Pesch (1996), Vaessens, Aarts, and Lenstra (1996), and Jain and Meeran (1999), supplemented by
a few recent studies (Jain, Rangaswamy, and Meeran, 2000; Pezella and Merelli, 2000; Nowicki
and Smutnicki, 2001).

Up to the eighties, the majority of the research focused on optimisation methods, among which
B&B scheme played the central role. At the beginning of the nineties, it became evident that pure
optimisation methods reached the limit; they cannot solve instances larger than 250 operations
within a reasonable time (hours, days). Following this, approximate approaches (developed so
far in the background) became foreground tasks. Many studies have been carried out to improve
efficacy of these algorithms, measured by the accuracy being opposed to the running time. We refer
here to various GA, TS, SA approaches, see review part in Vaessens, Aarts, and Lenstra (1996),
and CS methods given in Dorndorf, Pesch, and Phan-Huy (2000, 2002).

Tabu search (TS) approach, proposed by Glover (Glover and Laguna, 1997), seems to be espe-
cially promising for the problem considered. Among few individual TS methods, algorithm TSAB
(Nowicki and Smutnicki, 1996), designed originally in 1993, introduced a real breakthrough in
thinking about efficient approximate approaches for the job shop problem because it offers a simple
implementation, very short running time and good accuracy.
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Although much has been done, the quality of solutions obtainable in a reasonable time remains
unsatisfactory. In this paper we provide new algorithm i -TSAB, which by the use of big valley
phenomenon, some elements of path relinking philosophy, and new theoretical properties offers
unprecedented, until now, accuracy in a time span of minutes on a PC. Proved properties are
general enough to be applied in many other algorithms. As the immediate practical result of the
proposed approach, we have found 91 better upper bounds among 112 yet unsolved instances from
the common benchmark set, attacked by all job shop algorithms designed up to now all over the
world.

The paper is organized as follows. After the presentation of the problem, its model and denota-
tions (Section 2) are discussed, followed by introduction of some theoretical properties (Section 3).
New algorithm i -TSAB has been shown in Section 4, its implementation and tuning in Section 5,
whereas its comparison with other algorithms in Section 6.

2. PROBLEM, MODEL AND NOTATIONS

The job shop problem is defined formally as follows. There is a set of jobs J = {1, . . . , n}, a set of
machines M = {1, . . . , m} and a set of operations O = {1, . . . , o}. Set O is decomposed into subsets
corresponding to the jobs. Job j consists of a sequence of oj operations indexed consecutively by
(l j−1 + 1, . . . , 1 j−1 + o j ) which should be processed in that order, where l j = ∑ j

i=1 oi is the total
number of operations of the first j jobs, j = 1, . . . , n (l0 = 0) and

∑n
i=1 oi = o. Operation i must

be processed on a machine µi ∈ M during an uninterrupted processing time pi > 0, i ∈ O. Thus,
the set of operations O can by naturally decomposed into subsets Mk = {i ∈ O : µi = k}, each of
which corresponding to operations that should be processed on machine k; let mk = |Mk|, k ∈ M.
We assume that any successive operations of the same job are going to be processed on different
machines. Each machine can process one operation at a time, at most. A feasible schedule is defined
by starting times Si ≥ 0, i ∈ O, such that the above constraints are satisfied. The problem is to find
a feasible schedule that minimizes the makespan maxi∈O(Si + pi ).

In this paper we refer to the permutation-and-graph model, introduced originally by us in Now-
icki and Smutnicki (1996), which is simpler and of smaller size than the commonly used disjunctive
graph model of Roy and Sussman (1964). In our model, the schedule is represented by the processing
order of operations on machines, i.e. by m-tuple π = (π1, . . . , πm), where πk = (πk(1), . . . , πk(mk))
is a permutation on Mk, k ∈ M; πk(i ) denotes the element of Mk, which is in position i in πk. Let �k

be the set of all permutations on Mk, then π ∈ � = �1 × �2 × · · · × �m. For the processing order
π , we create a direct graph G(π ) = (O, R ∪E(π )) with a set of nodes O and a set of arcs R ∪E(π ),
where R = ⋃n

j=1

⋃o j −1
i=1 {(l j−1 + i, l j−1 + i + 1)} and E(π ) = ⋃m

k=1

⋃mk−1
i=1 {(πk(i ), πk(i + 1))}. Arcs

from set R represent the processing order of operations in jobs, whereas arcs from set E(π ) repre-
sent the processing order of operations on machines. Each node i ∈ O in the digraph has weight
pi and each arc has weight zero.

The processing order π ∈ �, such that graph G(π ) does not contain a cycle, will be called
the feasible processing order. For the feasible processing order π ∈ �, we denote the length of
the longest path in G(π ) among the paths going to node i (including the node weight) by rπ (i ).
By symmetry, we denote the length of the longest path among the paths going out from node
i (including the node weight) by qπ (i ). It is well known that the schedule Si = rπ (i ) − pi , i ∈ O
(represented by π ) is the feasible schedule. Makespan Cmax(π ) for this schedule equals the length
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of the longest path (critical path) in G(π ). Now we can rephrase the job shop problem as that of
finding a feasible processing order π ∈ � that minimizes Cmax(π ).

In the sequel, we also use the alternative representation of G(π ). For operation i , we denote its
job-successor by Aj (i ) (i.e. the next operation to i in the job to which operation i belongs) and job-
predecessor by Bj (i ). By symmetry, we denote the the machine-successor (next operation processed
on the same machine that operation i ) by Amπ (i ) and machine-predecessor of operations i by
Bmπ (i ). We complete these definitions by putting zero if the required operation does not exist. For
operation i , the sets of successors and predecessors are denoted briefly by Bπ (i ) = {Bj (i ), Bmπ (i )}
and Aπ (i ) = {Aj (i ), Amπ (i )}.

3. NEW PROPERTIES OF NEIGHBOURHOODS

We start from the most commonly used technique of generating neighbours in local search (LS)
methods, see Laarhoven, Aarts, and Lenstra (1992) and Taillard (1994). Let π be the feasible
processing order, and uπ = (uπ

1 , . . . , uπ
s ), where uπ

i ∈ O, be the critical path in G(π ) (s is the
number of nodes in this path). We refer to neighbourhoods generated by swap moves performed
from the processing order π , in such sense that two adjacent operations (x, y) = v, x, y ∈ uπ , on a
machine from the critical path uπ in G(π ) are swapped, providing the new processing order, denoted
hereinafter by π(v). This technique uses so-called elimination property of the critical path and
ensures feasibility for all resulting processing orders. We denote by N(π ) the set of all such moves
from π , thus processing orders N (π ) = {π(v) : v ∈ N(π )} constitute the basic swap neighbourhood
of π .

Repetitive process, which chooses the solution by a neighbourhood exploration, is usually the
most time-consuming part of LS algorithms; this refers to TS as well as to other methods, as
an example SA. Total calculation cost depends on the number of neighbours and the amount of
calculations per neighbour. To reduce them several approaches have been proposed. For example,
our algorithm TSAB from Nowicki and Smutnicki (1996) uses so-called reduced set of moves
N∗(π ) ⊆ N(π ), |N∗(π )| � |N(π )| (reduced neighbourhood N ∗(π ) ⊆ N (π ), respectively), which
refers to block properties from Grabowski, Nowicki, and Smutnicki (1988). Other authors have
evaluated neighbours by inexpensive lower bound, rather than by the makespan, see for example
Taillard (1994) and Ten Eikelder et al. (1999). Unfortunately, it has been found in Nowicki and
Smutnicki (2001) that the latter technique frequently deteriorates the quality of the algorithm.
Therefore, we prefer a completely new approach heading towards the reduction of complexity
O(o) stemmed from the standard method of makespan calculation.

In the sequel we will provide new properties applicable to N (π ), where π ∈ � is a feasible
processing order. To this order we introduce two additional notions for the given feasible τ ∈ �,
graph G(τ ) and any two of its nodes a, b. By Pτ (a ∨ b) and Pτ (ā) we denote the set of all paths
‘containing nodes a or b’ and ‘not containing node a’, respectively. For the given set of paths P,
we denote the length of the longest path in P by D[P].

Property 1. For any (σ ) = π(v), where v = (x, y) ∈ N(π ), we have

Cmax(σ ) = max{D[Pσ (x ∨ y)], D[Pπ (x̄)]}. (1)

Proof of the property is given in Appendix A.



148 E. NOWICKI AND C. SMUTNICKI

Equation (1) states that Cmax(σ ) can be calculated using two components. The former term
D[Pσ (x ∨ y)] follows from ‘new’ graph G(σ ) and is the lower bound (further denoted by LBT)
proposed by Taillard (1994). He showed that LBT = D[Pσ (x∨ y)] can be calculated in a time O(1),
using values rπ (i ), qπ (i ), i ∈ O, on the basis of the following equation

LBT = max{� + qπ (Aj (y)), max{�, rπ (Bj (x))} + px + max{qπ (Aj (x)), qπ (Amπ (y))}} (2)

where

� = max{rπ (Bj (y)), rπ (Bmπ (x))} + py.

The latter term in (1) derives from the ‘old’ graph G(π ). Its calculation is slightly more complex,
but seldom needs to be performed. Indeed, if LBT ≥ Cmax(π ), then from the inequality Cmax(π ) ≥
D[Pπ (x̄)], we have Cmax(σ ) = LBT, thus second term mentioned in (1) can be skipped. Otherwise,
if LBT < Cmax(π ), then its use is necessary.

The subsequent property supports finding the second term in (1). It employs the list Fπ =
(Fπ (1), . . . , Fπ (o)) of all operations from O, being the topological order of nodes from graph G(π ).
Precisely, we require fπ (a) < fπ (b) for any pair (a, b) ∈ R ∪ E(π ), where fπ (i ) is the position in
Fπ occupied by the operation i ; Fπ ( fπ (i )) = i, i ∈ O.

Property 2. Let Fπ denotes the topological order of nodes from G(π ). Let FJ = { j ∈ O : Bj ( j ) =
O} and LJ = { j ∈ O : Aj ( j ) = 0} be sets of the first and last operations of jobs, respectively. For any
σ = π(v), v = (x, y) ∈ N(π ), we have

D[pπ (x̄)] = max{RQ, R ′, R ′′, Q ′, Q ′′}, (3)

where

RQ = max{rπ (a) + qπ (b) : fπ (a) < fπ (x) < fπ (b), (a, b) ∈ R ∪ E(π )},
R ′ = max{rπ (a) : fπ (a) < fπ (x), a ∈ LJ}, R ′′ = max{rπ (a) : a ∈ Bπ (x)},
Q ′ = max{qπ (a) : fπ (x) < fπ (a), a ∈ F J}, Q ′′ = max{qπ (a) : a ∈ Aπ (x)}

and additionally

D[Pσ (x ∨ y)] = LBT ≥ max{R ′′, Q ′′}. (4)

Proof of the property is given in Appendix B.
From Properties 1 and 2 we conclude that the makespan Cmax(σ ), σ = π(v), for fixed move

v = (x, y) ∈ N(π ), can be found using the following formula

Cmax(σ ) =
{

LBT, if LBT ≥ Cmax(π ),
max{LBT, RQ, R ′, Q ′}, otherwise.

(5)

Because of (5) we can formulate the following surprising theorem.

Theorem 1. Having rπ (i ), qπ (i ), i ∈ O and Fπ , the makespan Cmax(σ ) for fixed σ ∈ �, σ =
π(v), v = (x, y) ∈ N(π ), can be found in the time O(max{∑n

j=1 log o j ,
∑m

k=1 log mk}).

Proof of the theorem is given in Appendix C.
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From the theorem and its proof it follows that the exact value of Cmax(σ ) can be found in a time
strictly less than O(o); please note, we have o = ∑n

j=1 o j = ∑m
k=1 mk. This result can be immediately

applied in TS or SA, if only one uses a neighbourhood included in N (π ). Indeed, assuming that in
order to select a solution from the neighbourhood N (π ), we have to find h ≤ |N (π )| makespans
Cmax(σ ), the running time has been shortened from O(h·o) to O(h·max{∑n

j=1 log o j ,
∑m

k=1 log mk}).
We have tested benefits from Theorem 1 using algorithm TSAB, on instances from Taillard (1993),
having o j = m, j = 1, . . . , n, mk = n, k = 1, . . . , m, n ≥ m. For them, the complexity of finding the
best solution in the neighbourhood gets reduced theoretically from O(h·nm) to O(h·n log m), where
h = |N∗(π )|. In experiments, the running time was reduced 8 times for instances with n = 15, m =
15, 11.8 times for instances with n = 20, m = 20 and 13.6 times for instances with n = 30, m = 20.

4. ALGORITHM i -TSAB

The positive correlation between the distance among local extremes and the makespan value
for all Taillard’s instances has been detected (Nowicki and Smutnicki, 2001). This fact suggests
the presence of big valley (BV) phenomenon in the solution space. BV comprises the best elite
solutions dispersed over its area, constitutes an unusually small part of this space, and contains a
huge number of solutions. Then, we are looking for a method with at least: (1) diversification, on
the basis of various initial solutions, broadly and uniformly dispersed over BV area; (2) tracing,
to localize the centre of BV, probably close to the global minimum; (3) perfect exploration, of any
subarea of BV, concentrated around a chosen initial solution.

We propose algorithm i -TSAB satisfying desired requirements; its general idea follows from
our paper, Nowicki and Smutnicki (2001). Goal (1) is realized by the special generator of ini-
tial solutions, based on some elements of path relinking philosophy (Glover and Laguna, 1997).
Goal (2) by an original method of updating the collection of elite solutions. Formally, for aim
(3), one can use any LS method; however, we recommend TSAB due to its amazing exploration
properties.

Shortly speaking, the proposed algorithm i -TSAB operates on the set of dispersed elite solutions
from BV, further transformed by New Initial Solution (NIS) generator, to provide successive
solutions for local explorations of BV with the help of TSAB.

4.1. New initial solution generator

Each new initial solution φ is generated on the basis of some two elite solutions γ, δ and the
reference makespan CR. The value CR denotes the best makespan found during the search; we have
CR ≤ min{Cmax(γ ), Cmax(δ)}. The generator has the form of function NIS, shown in Fig. 1. Its
fundamental aim is to provide the solution φ = NIS(γ, δ, CR), located ‘between’ γ and δ, to run
local exploration (TSAB in our case). In order to control the distance between any two solutions
α and β, we use the measure D(α, β) to represent a minimal number of swap moves of adjacent
operations on a machine (not necessarily from the critical path) to get β from α. It is already
known that

D(α, β) = |{(x, y) ∈ ET(α) : (y, x) ∈ ET(β)}|, (6)
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Figure 1. Function NIS(γ, δ, CR).

where ET(α) and ET(β) are transitive closure of E(α) and E(β), respectively. The measure (6) can
be written in the equivalent form, more suitable for calculations,

D(α, β) = |{(x, y) ∈ ET(α) : β−1(y) < β−1(x)}|, (7)

where β−1(z) denotes the position of operation z in permutation βµz ; βµz (β
−1(z)) = z.

Function NIS(γ, δ, CR) begins from the processing order π = γ and performs a number of
iterations, using neighbourhood N (π ). At iteration iter ≥ 1, we find for processing order π , the
move set N(π ) and makespans Cmax(π(v)), v ∈ N(π ). Next, it creates the auxiliary move set N+ =
{v = (x, y) ∈ N(π ) : δ−1(y) < δ−1(x)}. By (7), each move v ∈ N+ directs π(v) toward the processing
order δ, i.e. D(π(v), δ) = D(π, δ) − 1, whereas each move v ∈ N(π )\N+ directs π(v) backward, i.e.
D(π(v), δ) = D(π, δ) + 1. Since the set N+ can be empty, we propose to use in the selection set
K , defined as follows: K := N+, if N+ 
= ∅ and K := N(π ), otherwise. NIS chooses the move
w ∈ K , such that Cmax(π(w)) = minv∈K Cmax(π(v)) and, then, putting π := π(w) it goes to the next
iteration. Function stops at the iteration iter = �maxV ·D(γ, δ) and returns the current processing
order φ = π ; value 0 < maxV < 1 is a tuning parameter. The case N+ = ∅ appeared rarely in
experiments; thus, in practice, we have D(γ, φ) ≈ maxV·D(γ, δ) and D(φ, δ) ≈ (1−maxV)·D(γ, δ).

Formally, the function NIS can perform less than �maxV · D(γ, δ) iterations, if only for some
iter we found Cmax(π ) < CR. However, this case was observed unusually seldom, which means that
the probability of finding a better solution directly on the path from one solution to another is
very small, even though this path links elite solutions.
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Figure 2. Algorithm i -TSAB.

4.2. Proper algorithm

Algorithm i -TSAB works with the set of dispersed elite solutions ES = {π i : i = 1, . . . , maxE},
where maxE is a tuning parameter. Pairs of solutions from ES transformed by NIS provide promis-
ing initial solutions for further local explorations of BV, performed in our case by TSAB. To make
denotations brief, we use symbol (π B, CB) := TSAB(φ), if π B has been returned by TSAB, started
from φ and CB = Cmax(π B). The run of i -TSAB consists fundamentally of two phases: initiation
and the proper work phase, see Fig. 2.

In the initiation phase the algorithm builds up, step-by-step, the primal set ES. At the beginning,
the set contains only single elite solution π1, where (π1, C1) := TSAB(π0) and π0 is an outer
starting solution (provided by INSA; Nowicki and Smutnicki, 1996). Let π i−1, 2 ≤ i < maxE, be
the last solution introduced to ES. The successive elite solution π i entered to ES is derived from the
local exploration (π i , Ci ) = TSAB(φ), started with the new initial solution φ := NIS(π i−1, π0, C∗)
located between π i−1 and π0, i = 2, . . . , maxE. The best known makespan C∗ is updated by all
search processes.

Just after ES has been filled with max E solutions, the algorithm passes to the proper work phase.
In this phase, it repeatedly modifies the set ES, preserving its cardinality maxE fixed. Because elite
solutions from ES are derived from BV, one can use them to approximate the location of global
minima. BV centre is approximated by the solution from ES with the minimal makespan, denoted
next by πk, whereas the remaining solutions roughly approximate borderlines of the promising
search area. Our aim is to lessen, step-by-step, this search area, replacing solutions from ES
with new ones, located towards the centre. To this order, we identify, at first, the most distant
solution π l from ES with respect to the centre πk. Then, we generate the new initial solution
φ = NIS(πk, π l , C∗) located between πk and π l . In the end, starting from this φ, we initiate local
exploration (π B, CB) = TSAB(φ), which provides new elite solution π B to replace unconditionally
old π l . This process is repeated until the distance from πk to each of the remaining elite solutions
becomes less than a specified, small threshold value maxD.

Although one can find some common elements in i -TSAB and path relinking (PR) philosophy,
differences are evident. PR is based on the belief that while going towards trajectory between
two local minima we can find a better local minimum (or even a global one), immediately on or
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close to this trajectory. In our approach, the trajectory is an auxiliary tool that provides dispersed
starting solutions for successive local explorations, very often conducted far from the trajectory.
We found, in experiments, that a small number of restarts of LS algorithm with longer but precise
exploration is much better than numerous restarts of LS, equipped with a quick but cursory
exploration mechanism.

5. IMPLEMENTATION AND TUNING PARAMETERS OF i -TSAB

Algorithm i -TSAB has been coded in Delphi and run on a PC with Pentium III 900 MHz processor.
Initial solutions have been found by algorithm INSA equipped with accelerator presented in
Nowicki and Smutnicki (2001), which reduces running time from O(o2 maxk∈M mk) to O(o2). Made
implementation applies Theorem 1 in NIS and TSAB (called at the lower level) for neighbourhoods
N (π ) and N ∗(π ), respectively.

5.1. Topological order

Below, we show how to find a new list Fα for the processing order α = π(w), obtained by making a
selected move w = (x, y) from the proper neighbourhood in a quick way. Formally, it can be found
by standard procedure, in the time O(o), on the basis of G(α). The method proposed hereafter
theoretically owns the same complexity as a standard procedure; however it is faster in practice. Let
j ′ = fπ (x) and j ′′ = fπ (y) denote positions of swapped operations x, y on the list Fπ ; j ′ < j ′′. We
split subsequence Y = (x = Fπ ( j ′), Fπ ( j ′ +1), . . . , Fπ ( j ′′) = y) from the list Fπ into two disjoined
subsequences W = (w1, . . . , wr = y) and Z = (x = z1, . . . , zs), so that W contains all nodes from
Y (excluding x) from which there exists a path to node y in graph G(π ); r + s = j ′′ − j ′ + 1. It can
be verified that the list L = (Fπ (1), . . . , Fπ ( j ′ −1), W, Z, Fπ ( j ′′ +1), . . . , Fπ (o)) is the topological
order for graph G(α), which means that we can set Fα := L. Operations y and x are located on
positions fα(y) := j ′ −1+r and fα(x) := j ′ +r , respectively. This procedure needs O( j ′′ − j ′ +1)
of time. Value j ′′ − j ′ + 1 is significantly less than o, for o of order 1000 varies from 2 to 20.

5.2. Heads and tails

Having known the list Fα, theoretically we can find rα(i ), qα(i ), i ∈ O, α = π(w), w = (x, y), in
the time O(o), using obvious recursive formula

rα(Fα( j )) = max{rα(i ) : i ∈ Bα(Fα( j ))} + pFα ( j ), j = 1, . . . , o, (8)

qα(Fα( j )) = max{qα(i ) : i ∈ Aα(Fα( j ))} + pFα ( j ), j = o, o − 1, . . . , 1; (9)

for completeness, we set rα(0) = 0 = qα(0). In practice, they can be calculated in a faster way.
First, observe that only several r j ’s have to be recalculated, namely rα(i ) 
= rπ (i ) only for nodes
i ∈ MR = { j ∈ O : ∃ path in G(π ) from x to j}; x ∈ MR. The set MR and new (modified) respective
values rα(i ), i ∈ MR can be found by bow-tie algorithm from the paper by Ten Eikelder et al.
(1999); however, we can do this in a more efficient way. All nodes from MR are in the subsequence
(Fα( j ′ − 1 + r ), . . . , Fα(o)) of the list Fα. Thus, it is enough to apply formula (8) successively for
j = j ′ − 1 + r, j ′ + r, . . . , o, putting rα(Fα(k)) = rπ (Fα(k)), 1 ≤ k ≤ j ′ − 2 + r . By symmetry, we
calculate new values of qα(i ), i ∈ O, using formula (9), successively for j = j ′ +r, j ′ +r −1, . . . , 1,
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putting qα(Fα(k)) = qπ (Fα(k)), j ′ + r +1 ≤ k ≤ o. This procedure theoretically needs a time O(o);
similarly the bow-tie algorithm, however, is several times faster in practice.

5.3. ULC detector

In order to detect and prevent situations when the same elite solutions are periodically introduced
to ES (this phenomenon we call upper level cycle, ULC), a special ULC detector has been designed
and appended to i -TSAB. ULCs have been observed sporadically in our computer tests, chiefly
for smaller instances and only if the distance max1≤i≤maxE D(πk, π i ) becomes sufficiently small,
less than 50–80. The detector breaks an identified ULC by introducing to ES the processing order
πk instead of π l (see Section 4 for the meaning of indices k and l).

5.4. Tuning parameters

Algorithm i -TSAB has two groups of parameters, which have to be chosen experimentally: (1)
parameters introduced in Section 4: max E, max V, max D; and (2) parameters associated with
TSAB acting at the lower level: max iter (maximal number of iterations without improving the
makespan), max t (tabu list length), max l (maximal number of promising solutions stored), max
c, max δ (parameters of the lower level cycle detector). All these parameters strongly interact,
hence tuning of the algorithm may cause a certain problem. To make the tuning process simple
we set parameters from the group (2) in accordance to the recommendation from the source
paper (Nowicki and Smutnicki, 1996), namely max t = 8, max l = 5, max c = 2, max δ = 100.
Parameter max iter has been set, as the result of some sophisticated tests on Taillard’s instances, as
follows: max iter = 40,000/7,000, excluding small cases (with o ≤ 225) for which we set max iter =
20,000/4,000; symbol a/b means max iter = a if an improvement has occurred, and max iter = b
if Back Jump Tracking has been performed. After some other tests, we decided to set max E = 8
(as the best, from the accuracy and running time points of view), max V = 0.5 (since we do not
observe dominance of any peculiar value from the interval [0, 1]), and max D = 5 (as the arbitrary
stop criteria).

6. COMPARISON OF i -TSAB WITH OTHER ALGORITHMS

Algorithm i -TSAB has been tested on the following benchmarks: FT6, 10, 20 (Fisher and
Thompson, 1963), LA01-40 (Lawrence, 1984), ABZ5-9 (Adams, Balas, and Zawack, 1988),
ORB01-10 (Applegate and Cook, 1991), YN1-4 (Yamada and Nakano, 1992), SWV01-20 (Storer,
Wu, and Vaccari, 1992), TA01-80 (Taillard, 1993) and DMU01-80 (Demirkol, Mehta, and Uzsloy,
1998). For the sake of limited length of the paper, we show here results for three hard benchmarks
YN1-4, SWV01-20, TA01-80. Full results from our studies can be found in the report; Nowicki and
Smutnicki (2002). Here, we only mention that four oldest benchmarks have been solved optimally
(excluding ABZ8, 9), either by B&B or by approximate methods; modern approximate approaches
(including TSAB) solve them with accuracy below 0.1%.

Among a rich number of approximate algorithms for the job shop problem, only a few (besides
TSAB) own high accuracy, confirmed by representative tests on the broad benchmark set. These
are two variants of shifted bottleneck approach, namely SB-RGSL10 (called here BAL) from Balas
and Vazacopolous (1998) and TSSB (called here PEZ) from Pezzella and Merelli (2000). These
algorithms (together with TSAB) dominate the remaining ones, thus only they will be used for



154 E. NOWICKI AND C. SMUTNICKI

evaluations. To complete comparison, we also refer to the best solutions extracted from the report
of Balas and Vazacopolous (1995) (called here BAL∗), i.e. solutions from SB-GLS1, SB-GLS2
and double series of procedures SB-RGSLk for k = 1, 5, 10, 15, 18. In order to avoid discussion
about computers’ speed used in tests, we enclosed, for each algorithm, the original name of a
machine, on which it has been tested, as well as the original running time. It is difficult to get the
real computer-independent CPU time; Dongarra test (Balas and Vazacopoulos, 1998) refers to
floating point operations and is therefore not suitable for algorithms PEZ and i -TSAB, which use
exclusively integer operations.

For comparison to other methods, we have used two measures, namely the accuracy being
opposed to the running time. Accuracy of an approximate algorithm A, which generates the solution
π A for some instance, has been evaluated by the relative percentage error RE of makespan Cmax(π A)
to the lower bound LB of the optimal makespan and the relative improvement RI of Cmax(π A)
to the fixed reference makespan CRef (more precisely to a certain good upper bound, commonly
available in literature)

RE = 100% · Cmax(π A) − LB
LB

, RI = 100% · CRef − Cmax(π A)
CRef

. (10)

The results of running times will be presented in a compact form. We have found that the running
time of i -TSAB (on the long-time horizon) almost linearly depends on the total number of iterations
performed—the latter value is traced in our algorithm by counter Tot Iter. (Single iteration means
the exploration of single neighbourhood in TSAB or NIS.) This fact allows us to calculate CPU
time immediately from Tot Iter by simple proportion, assuming known CPU time for a fixed
number of iterations; we use CPU time for 1 million iterations as the reference value. The average
values of these measures, calculated over the selected group of instances, will be denoted by ARE,
ARI and ACPU, respectively. Besides ACPU, we also refer to ACPU-B, which means the average
CPU time to the best solution found.

Let us go to the detailed discussion of computational results. TA class contains 80 instances
(225 ≤ o ≤ 2,000) organized into eight groups TA01-10, . . . , TA71-80 with sizes n × m : 15 ×
15, 20 × 15, 20 × 20, 30 × 15, 30 × 20, 50 × 15, 50 × 20 and 100 × 20, respectively. Instances TA51-
80 are commonly considered easy. For all of them (excluding TA62, 67) the optimal solution
has been found already in the initial phase of algorithm i -TSAB, as a rule, after a single call of
TSAB. Therefore, we focus our attention on instances TA01-50, for which only 16 instances have
known optimal solutions, see http://www.eivd.ch/ina/collaborateurs/etd/default.htm. Groups
TA21–30, 41–50 still remain the hardest—not a single optimal solution has been found.

The behaviour of i -TSAB on instances TA01–50 has been shown in Table 1. Values of ARE,
ARI and ACPU-B were scanned after a given number of iterations Tot Iter. Value of ACPU-B
for fixed Tot Iter, represents the average CPU time to the best solution found, under restriction
that i -TSAB stops after Tot Iter iterations. Algorithm i -TSAB provides solutions of quality better
than algorithms PER, BAL and BAL∗ in a short time. For example, for TA21–30, algorithm i -
TSAB offers ARE = 5.68% found in ACPU-B equals 328 seconds. For comparison, algorithm
i -TSAB achieves ARE = 6.57% (that of BAL) before 0.5 million of iterations, which corresponds
to ACPU-B less than 6 seconds on our PC (BAL needs, to this aim, approximately 4,380 seconds).
Even taking into account a big difference in computers speed, i -TSAB works faster. Value ARE =
6.10%, characteristic for BAL∗, is reached by algorithm i -TSAB within 2–5 million of iterations
(25 and 47 seconds of ACPU-B). The same note refers to algorithm PEZ with ARE = 6.52%.
Similar observation can also be made for the next hardest group TA41-50. Generally, i -TSAB on
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Table 1. Test for TA, SWY and YN instances

i -TSAB scanned at Tot Iter (in millions)

Instances 0.5 1 2 5 10 20 50 PEZ BAL BAL∗

ARE [%] (to LB from http://www.eivd.ch/ina/collaborateurs/etd/
default.htm; Jain and Meeran, 1999, and Brinkkötter and Brucker, 2001)

TA01–10 0.64 0.48 0.27 0.11 0.45 0.25 0.16
TA11–20 4.04 3.47 3.11 2.98 2.91 2.81 3.47 3.34 2.81
TA21–30 6.55 6.20 6.12 6.01 5.88 5.69 5.68 6.52 6.57 6.10
TA31–40 1.73 1.63 1.48 1.18 1.03 0.85 0.78 1.92 1.13 0.80
TA41–50 6.81 6.25 5.98 5.69 5.33 4.97 4.70 6.04 5.71 5.20
TA01–50 3.95 3.61 3.39 3.19 3.05 2.89 2.82 3.68 3.40 3.01
SWV01–05 2.99 2.60 2.13 1.88 1.56 1.21 1.01 2.02 1.26
SWV06–10 10.03 9.41 8.90 8.71 8.42 8.07 7.49 9.64 8.06
SWV11–15 1.59 1.35 1.21 1.05 0.84 0.57 0.51 2.12 1.41
YN01–04 6.36 6.36 5.98 5.76 5.41 5.27 5.18 5.96 5.59

ARI [%] (to reference makespans T, SWV and YN from Balas and
Vazacopoulos, 1995)

TA01–10 −0.04 0.11 0.33 0.49 0.15 0.34 0.44
TA11–20 −0.17 0.38 0.72 0.84 0.91 1.01 0.37 0.50 1.01
TA21–30 0.12 0.44 0.52 0.62 0.48 0.92 0.93 0.15 0.10 0.54
TA31–40 0.68 0.77 0.93 1.22 1.36 1.53 1.60 0.50 1.11 1.59
TA41–50 −0.46 0.07 0.33 0.60 0.93 1.27 1.53 0.26 0.56 1.05
SWV01–05 7.49 7.84 8.26 8.49 8.77 9.09 9.27 8.37 9.04
SWV06–10 9.15 9.67 10.09 10.25 10.49 10.77 11.24 9.48 10.78
SWV11–15 7.53 7.75 7.88 8.03 8.22 8.47 8.52 7.06 7.70
YN01–04 5.53 5.53 5.86 6.05 6.37 6.49 6.57 5.88 6.21

ACPU-B [sec]
TA01–10 4 7 17 26 2 175 1 182
TA11–20 7 12 24 41 52 108 2 526 3 383
TA21–30 6 15 25 47 140 278 328 34 910 4 377
TA31–40 6 9 24 66 129 275 341 14 133 5 069
TA41–50 11 27 38 99 260 536 975 11 512 10 726
SWV01–05 5 9 26 62 131 269 462 1 290
SWV06–10 5 13 22 33 67 273 514 2 917
SWV11–15 7 16 27 50 143 228 360 9 173
YN01–04 7 7 20 54 154 216 510 5 938

The time needed by i -TSAB to perform 1 milion of iterations

Instances: TA SWV YN

Group: 01–10 11–20 21–30 31–40 41–50 01–05 06–10 11–15 01–04

ACPU [s] 15.8 19.5 25.3 24.5 33.4 13.2 18.7 24.2 25.0

Note. PEZ—algorithm from Pezzella and Merelli (2000), BAL—algorithm SB-RGSL10 from Balas and
Vazacopoulos (1998), BAL∗—found on the basis of the best solution among those provided in Balas and
Vazacopoulos (1995), ACPU-B—i -TSAB on Pentium 900 MHz, PEZ on Pentium 133 MHz, BAL on Sun Sparc
330.
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Table 2. New upper bounds for TA11–50 instances

k = 10 k = 20 k = 30 k = 40

TA LB UB UB∗ LB UB UB∗ LB UB UB∗ LB UB UB∗

k + 1 1323 1364 1361 1539 1645 1644 1764◦ 1859 2018

k + 2 1351 1367 1511 1601 1600 1774 1796 1867 1961 1956

k + 3 1282 1342 1472 1558 1557 1778 1796 1793 1809 1879 1859

k + 4 1345◦ 1602 1651 1647 1828 1832 1829 1927 1989 1984

k + 5 1304 1340 1504 1597 1595 2007◦ 1997 2005 2000

k + 6 1302 1360 1539 1647 1645 1819◦ 1940 2022 2021

k + 7 1462 1464 1462◦ 1616 1687 1680 1771 1784 1778 1789 1913 1903

k + 8 1369 1396 1591 1615 1614 1673◦ 1912 1956 1952

k + 9 1297 1341 1335 1514 1625 1795◦ 1915 1968

k + 10 1318 1353 1351 1473 1585 1584 1631 1686 1674 1807 1937 1928

Note. UB—old upper bound; UB∗—new upper bound.
◦Optimal makespan.

instances TA01–50 provides ARE = 2.82%, whereas PEZ, BAL and BAL∗ provides only 3.68,
3.40 and 3.01%, respectively.

SWV class contains 20 instances (200 ≤ o ≤ 500) organized into four groups SWV01–05, . . . ,
SWV16–20 with sizes 20×10, 20×15, 50×10, 50×10, respectively. SWV16–20 are easy (optimal
solutions have been found in single call of TSAB) and we will therefore analyse only the first three
groups; optimal solutions are known for six instances. YN class contains four instances YN01–04
(o = 400) with size 20 × 20; no optimal solutions have been known. SWV and YN have not been
tested by algorithm PEZ; we have compared i -TSAB only with BAL and BAL∗. Results are shown
in Table 1. Similarly as for TA instances, algorithm i -TSAB provides solutions of a quality better
than algorithms BAL, BAL∗ in a short time.

Up till now, all benchmarks have been attacked, by means of very time-consuming runs, for
all new generations of algorithms. Nevertheless, i -TSAB during various tests and standard runs
(with tuning parameters recommended in Section 5) found many new upper bounds. In the group
TA11–50, among the unsolved 34 instances, we improved 25 upper bounds, see Table 2; for TA17,
the result provides optimal solution. In groups SWV, YN, we found six new upper bounds, namely,
SWV04–1474, SWV07–1600, SWV9–1661, SWV11–2983, YN01–885 and YN03–892; for SWV11
the obtained makespan is optimal. Among the unsolved 63 DMU instances, we improved 60 upper
bounds, see Taillard (1994). To summarize, we have found 91 better upper bounds among 112 yet
unsolved instances.

7. CONCLUSIONS

The proposed algorithm i -TSAB provides a powerful tool to solve the job shop problem with the
makespan cirterion. It offers very good accuracy, in comparison to other best known approaches,
obtainable in a short running time on a modern PC. These properties, confirmed through exhaustive
tests on all known benchmarks, follow from the suitable use of properties of the solution space,
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especially BV. The general idea of the algorithm can be applied to other scheduling problems, as
an example, the flow shop and hybrid flow-shop problem.

APPENDIX A: PROOF OF PROPERTY 1

We begin completing the definition of a set of paths. Let us denote by Pτ (ā ∧ b̄) and by Pτ (ā ∧ b)
the set of all paths ‘not containing nodes a and b’ and ‘not containing node a but containing node
b’, respectively.

Taking into account the position of operation x on a machine µx, the following four cases oc-
cur: (i) Bmπ (x) 
= 0, Amπ (y) 
= 0; (ii) Bmπ (x) 
= 0, Amπ (y) = 0; (iii) Bmπ (x) = 0, Amπ (y) 
= 0; and
(iv) Bmπ (x) = 0, Amπ (y) = 0. In the case (i) the graph G(σ ) has been obtained from G(π ) by re-
moving three sequencing arcs (Bmπ (x), x), (x, y), (y, Amπ (y)) and adding the next three other
sequencing arcs (Bmπ (x), y), (y, x), (x, Amπ (y)). In the case (ii), by removing two sequencing arcs
(Bmπ (x), x), (x, y) and adding (Bmπ (x), y), (y, x); in the case (iii), by removing two sequencing
arcs (x, y), (y, Am(y)) and adding (y, x), (x, Amπ (y)); and finally, in the case (iv), by removing
one sequencing arc (x, y) and adding (y, x). In all four cases, we obtain Pσ (x̄ ∧ ȳ) = Pπ (x̄ ∧ ȳ).
Moreover, for each path from the set Pπ (x̄ ∧ y), there exists in the set Pσ (x̄ ∨ ȳ) a path con-
taining all its nodes, which implies the following inequality D[Pπ (x̄ ∧ y)] ≤ D[Pσ (x ∨ y)]. Us-
ing the obvious relation between the introduced notions and employing the above dependen-
cies, we obtain Cmax(σ ) = max{D[Pσ (x∨ y)], D[Pσ (x̄∧ ȳ)]} = max{D[Pσ (x∨ y)], D[Pπ (x̄∧ ȳ)]} =
max{D[Pσ (x ∨ y)], D[Pπ (x̄ ∧ ȳ)], D[Pπ (x̄ ∧ y)]} = max{D[Pσ (x ∨ y)], D[Pπ (x̄)]} which provides
(1) and completes the proof.

APPENDIX B: PROOF OF PROPERTY 2

From the definition of Fπ it follows that for any path w = (w1, w2, . . . , wz), wi ∈ O, i = 1, . . . , z ≥
1, in graph G(π ), we have fπ (w1) < fπ (w2) < · · · < fπ (wz). Therefore, value D[Pπ (x̄)] can be found
through the analysis of the following five, not necessarily disjoined, classes of paths w ∈ Pπ (x̄): (RQ)
there exists a node w j , 1 ≤ J ≤ z−1 so, that fπ (w j ) < fπ (x) < fπ (w j+1), (R ′) fπ (wz) < fπ (x) and
wz ∈ LJ, (R ′′) fπ (wz) < fπ (x) and wz ∈ Bπ (x), (Q ′) fπ (x) < fπ (w1) and w1 ∈ FJ, (Q ′′) fπ (x) <

fπ (w1) and w1 ∈ Aπ (x). Any path w ∈ Pπ (x̄) either belongs to one of the enumerated classes or
can be considered as a part of some path from these classes. Denoting lengths of maximal paths in
classes (RQ), (R ′), (R ′′), (Q ′), (Q ′′) by RQ, R ′, R ′′ Q ′, Q ′′, respectively, we get directly formula (3).
Thus, there remains the proof of (4). From equation (2), we have LBT ≥ R ′′, LBT ≥ qπ (Aj (x)) and
LBT ≥ py + max{qπ (Aj (y)), qπ (Amπ (y))} = qπ (y). From two recent inequalities, taking account
of y = Amπ (x), we obtain LBT ≥ Q ′′, which justifies (4) and completes the proof.

APPENDIX C: PROOF OF THEOREM 1

Values LBT, R ′ and Q ′ can be found in the time O(1), O(n) and O(n), respectively. Formally, since
|E(π )| = ∑m

k=1(mk−1) = o−m and |R | = ∑n
j=1(o j −1) = o−n, value RQ can be found in the time

O(o). However, in the set of arcs
⋃mk−1

i=1 {(πk(i ), πk(i + 1))} associated with machine k ∈ M, there
exists at most one arc (a, b) such that fπ (a) < fπ (x) < fπ (b). One can find this arc (or an answer
that it does not exist) in the time O(log mk) by means of binary search in the increasing sequence
fπ (πk(1)), . . . , fπ (πk(mk)). A similar case appears for a set of arcs

⋃o j −1
i=1 {(l j−1 + i, l j−1 + i + 1)}
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associated with job j, j ∈ J. There, necessary arc (a, b) can be found in the time O(log o j ), by
means of binary search in the increasing sequence fπ (l j−1 + 1), . . . , fπ (l j−1 + o j ). Thus, value RQ
can be found in the time O(max{∑n

j=1 log o j ,
∑m

k=1 log mk}), which implies that Cmax(σ ) can be
found in the same time and completes the proof.
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