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ABSTRACT

Context. Most solar and stellar dynamo models use the αΩ scenario where the magnetic field is generated by the interplay between
differential rotation (the Ω effect) and a mean electromotive force due to helical turbulent convection flows (the α effect). There are,
however, turbulent dynamo mechnisms that may complement the α effect or may be an alternative to it.
Aims. We investigate models of solar-type dynamos where the α effect is completely replaced by two other turbulent dynamo mecha-
nisms, namely the Ω × J effect and the shear-current effect, which both result from an inhomogeneity of the mean magnetic field.
Methods. We studied axisymmetric mean-field dynamo models containing differential rotation, the Ω × J and shear-current effects,
and a meridional circulation. The model calculations were carried out using the rotation profile of the Sun as obtained from helioseis-
mic measurements and radial profiles of other quantities according to a standard model of the solar interior.
Results. Without meridional flow, no satisfactory agreement of the models with the solar observations can be obtained. With a suf-
ficiently strong meridional circulation included, however, the main properties of the large-scale solar magnetic field, namely, its
oscillatory behavior, its latitudinal drift towards the equator within each half cycle, and its dipolar parity with respect to the equatorial
plane, are correctly reproduced.
Conclusions. We have thereby constructed the first mean-field models of solar-type dynamos that do not use the α effect.
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1. Introduction

The standard dynamo model for the Sun and stars is the αΩ
model where, within the framework of mean-field magnetohy-
drodynamics, the magnetic field is produced by an interplay
between differential rotation (the Ω effect) and the collective
action of turbulent cyclonic convection flows, known as the
α effect (Parker 1955, 1979; Steenbeck et al. 1966; Krause &
Rädler 1980). The α effect is here responsible for generating the
poloidal component of the large-scale magnetic field (LSMF),
whose toroidal component is mainly generated by the the Ω ef-
fect. The model is often supplemented with meridional flows,
leading to so-called flux-transport dynamos (e.g., Choudhuri
et al. 1995; Küker et al. 2001; Rempel 2006; Dikpati & Gilman
2007). The meridional flows may transport toroidal magnetic
flux toward the equator and their speed may determine the cycle
period, thus allowing us to bypass a number of problems con-
nected with the α effect and αΩ dynamos, as, for instance, that,
in the case of the Sun, the obtained cycle periods are generally
too short and the magnetic activity is not sufficiently concen-
trated at low latitudes (see, e.g., Ossendrijver 2003; Rüdiger &
Hollerbach 2004; Brandenburg & Subramanian 2005a).

In mean-field magnetohydrodynamics, the influence of the
turbulence on the LSMF is expressed by the mean turbulent elec-
tromotive force (MEMF), E = 〈u × b〉, where u and b are the
fluctuating parts of the velocity and magnetic field and angular
brackets denote averages. The by far best known contribution to
E is provided by the α effect, namely, a turbulent electromotive
force α〈B〉, with α denoting a (symmetric) tensorial factor of

⋆ Appendices A and B are only available in electronic form at
http://www.aanda.org

proportionality and 〈B〉 the LSMF. However, there are other tur-
bulent dynamo mechanisms besides the α effect. Two of them are
the Ω × J effect (Rädler 1969; Stix 1976) and the shear-current
or W×J effect (Rogachevskii & Kleeorin 2003, 2004);Ω is here
the angular velocity of the stellar rotation, J = ∇ × 〈B〉/µ0 the
large-scale electric-current density, and W = ∇ × V the large-
scale vorticity, V denoting the large-scale velocity. Both these
effects result from an inhomogeneity of the LSMF, in contrast
to the α effect, which also works with a homogeneous 〈B〉 (that
is to say, for calculating the α effect, 〈B〉 may be considered as
homogeneous on the scale of the fluctuations).

In the commonly used representation of the MEMF on the
basis of symmetry considerations (see Rädler 1980; Krause &
Rädler 1980; Rädler 2000; Rädler et al. 2003), the Ω × J and
shear-current effects represent contributions to the δ term, a term
of the form Eδ = δ × (∇ × 〈B〉), where δ is a vector. Since
Eδ · J = 0, the effects described by this term cannot bring en-
ergy into the mean magnetic field and, thus, cannot lead to work-
ing dynamos when acting alone. These effects have been inves-
tigated little in the context of solar and stellar dynamos. For a
recent study of the possible role of theΩ × J effect when acting
together with the α effect and differential rotation in a spherical
shell, or when acting together with another part of the MEMF,
not included in dynamo studies before, in a rigidly rotation full
sphere, see Pipin & Seehafer (2009), where an illustration of the
physical mechanism behind the Ω× J effect also may be found;
the mechanism of the shear-current effect is very similar to that
of the Ω × J effect.

In this paper, we consider mean-field dynamo models in the
geometry of a spherical shell, as appropriate for solar-type stars,
where the α effect is completely omitted. Instead, the Ω× J and
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shear-current effects serve as turbulent dynamo mechanisms. In
nearly all mean-field dynamo studies, the effective strengths of
the different physical ingredients are controlled by freely var-
ied dimensionless parameters; in the case of dynamo effects,
e.g., the α effect, these are usually referred to as dynamo num-
bers. This reflects our present knowledge of the physical pro-
cesses in the convection zones of the Sun and stars. Realistic
self-consistent numerical models of these processes and their in-
teractions will remain out of reach for the foreseeable future.
Given this situation, we deem it advisable to explore the poten-
tials of turbulent dynamo effects other than the α effect.

Numerical evidence for turbulent dynamo effects has so
far mainly been obtained from convection simulations in small
(compared to the dimensions of a star) rectangular boxes
(e.g., Brandenburg et al. 1990; Ossendrijver et al. 2001, 2002;
Giesecke et al. 2005; Käpylä et al. 2006; Cattaneo & Hughes
2006; Hughes & Cattaneo 2008). Due to the assumption of a
uniform mean magnetic field and other limitations, most of these
studies could only find parts of the MEMF that are proportional
to the LSMF, i.e., the α effect and turbulent pumping (a contri-
bution to the MEMF of the form Eγ = γ × 〈B〉, with γ denoting
a vector; it leads to an advection of the mean magnetic field).
Recently, however, Käpylä et al. (2009), who used a procedure
referred to as the test field method (Schrinner et al. 2005, 2007)
together with numerical simulations of turbulent convection with
shear and rotation, were able to also identify the action of the
combinedΩ × J and shear-current effects.

Here, we explore axisymmetric kinematic dynamo models
containing the Ω × J and shear-current effects, differential ro-
tation, and meridional circulation. In calculating the MEMF we
use analytical expressions derived by Pipin (2008) on the basis
of a simplified version of the τ approximation (cf. Vainshtein
& Kichatinov 1983; Brandenburg & Subramanian 2005a,b). We
construct models with distributed dynamo action in the bulk of
the convection zone, rather than in the overshoot layer at the bot-
tom of the convection zone. The model calculations are carried
out using the rotation profile of the Sun as obtained from he-
lioseismic measurements and radial profiles of other quantities
according to a standard model of the solar interior.

The remainder of the paper is organized as follows: in Sect. 2
we describe our dynamo model, as well as the used numerical
procedure (some benchmark tests for our computer code are pre-
sented in Appendix A). Then, in Sect. 3, we present the obtained
results. In Sect. 4, we draw conclusions and discuss our results.

2. Model and numerical procedure

The axisymmetric LSMF is written in the usual way as the sum
of a poloidal and a toroidal part,

〈B〉 = ∇ ×
Aeφ

r sin θ
+ B eφ , (1)

where A(r, θ, t) (the flux function for the poloidal field) and
B(r, θ, t) (the toroidal field component) are scalar functions of
radius, r, colatitude, θ, and time, t, and eφ is the unit vector in
the direction of the azimuthal coordinate, φ. The mean-field in-
duction equation then takes the form

∂A

∂t
= r sin θ Eφ −

Uθ

r

∂A

∂θ
− Ur

∂A

∂r
, (2)

∂B

∂t
=

1
r

∂ (Ω, A)
∂ (r, θ)

+
1
r

(

∂r (Eθ − UrB)
∂r

−
∂ (Er + UθB)

∂θ

)

, (3)

where the effects of the large-scale flows enter through the
differential-rotation rate, Ω(r, θ) = |Ω(r, θ)|, and the components
of the meridonal flow, Ur and Uθ.

To calculate the MEMF, whose effects appear through the
components of E in Eqs. (2) and (3), we modify the expressions
given in Pipin & Seehafer (2009) by completely omitting the α
effect but including, in addition to theΩ× J effect, isotropic and
anisotropic turbulent diffusion, and turbulent pumping, now also
the shear-current effect. The contribution of this to the MEMF is
to linear order, i.e., for a weak mean magnetic field, as well as
neglecting the effect of the Coriolis force, given by (Pipin 2008)

E(W)
i

= εinm

{

C1V lmBnl +C2BnlVml +C3V lmBln

+ C4BlnVml

} 〈

u(0)2
〉

τ2
c , (4)

where tensor notation and the summation convention have been
used. Bi j = ∂〈Bi〉/∂x j is the gradient tensor of the mean mag-
netic field and V i j a corresponding quantity for the differential
rotation, namely, V i j = ∂Vi/∂x j, with V = r sin θ (Ω − Ω0) eφ
being the rotational velocity, defined in a reference frame that
rotates with angular velocity Ω0, the rigid-body rotation rate
of the core (encountered at midlatitudes through the convection
zone). u(0) is a small-scale or turbulent convective background
velocity as present in the absence of rotation and a mean mag-
netic field, τc the correlation time of u(0), and C1 = (ε − 3/5) /6,
C2 = (ε − 1) /5, C3 = (1 + ε) /15, and C4 = − (7ε + 11) /30

are constants; ε =
√

〈

b(0)2
〉

/
(

uc
√
µ0ρ

)

is the square root of the
prescribed ratio between the energies of a fluctuating magnetic
background field b(0), assumed to be generated by a small-scale
dynamo (which is fully independent of the mean magnetic field),

and the background velocity field u(0) (uc =

√

〈

u(0)2
〉

is the rms
value of the background velocity field and ρ the mass density).

In the following, we assume energy equipartition between
the two background fields, i.e., ε = 1. Furthermore, only the az-
imuthal Ω × J and shear-current effects are taken into account.
This may be justified by the fact that the toroidal part of the solar
LSMF is much stronger than the poloidal one. However, the re-
maining parts of the MEMF (isotropic and anisotropic turbulent
diffusion, turbulent pumping) are included in all components.
The components of the MEMF in spherical coordinates then
become
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with E(W)
φ in Eq. (7) denoting the contribution of the shear-

current effect, given by

E(W)
φ = η̃T C

(W)
δ

f
(d)
4

{

11
6

(

Ω̂ − 1
)

(

cos θ
∂B

∂r
− sin θ
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· (8)

f
(a)
1 , f

(a)
3 , f

(d)
2 , and f

(d)
4 denote functions of ε and the Coriolis

number Ω∗ = 2Ω0τc that are given in Appendix B, G =

(∂/∂r) logρ is the density scale factor, Ω̂ = Ω/Ω0, and η̃T =

Cη ηT , with ηT =
〈

u(0)2〉
τc. Cη ≤ 1, C

(Ω)
δ
≤ 1, C

(W)
δ
≤ 1 are

parameters to control the relative strengths of different turbu-
lence effects. Cη regulates the turbulence level, and C

(Ω)
δ

and C
(W)
δ

weight theΩ× J effect and the shear-current effect, respectively.
Currently, the dependence of the shear-current effect on the

Coriolis number is unknown. Equation (4) has been derived dis-
regarding the effect of the Coriolis force and is, thus, safely ap-
plicable only in the limit of slow rotation,Ω∗ ≪ 1. But in the so-
lar convection zone, in particular its deeper layers, the Coriolis
number is large, Ω∗ ≫ 1 (cf., e.g., Fig. 2 in Pipin & Seehafer
2009). To take this into account, we modulate the value of E(W)

φ ,

given by Eq. (8), by the quenching function f
(d)
4 (Ω∗) which also

appears in the expression for theΩ × J effect (penultimate term
in Eq. (7), proportional to C

(Ω)
δ

); additionally, the expression for
the shear-current effect is normalized so as to give Eq. (4) in the
limit of slow rotation, for which one finds f

(d)
4 (Ω∗) ≈ (1/5)Ω∗.

Without such a quenching, i.e., directly applying Eq. (4), the
shear-current effect would become unrealistically strong at the
bottom of the convection zone.

In our numerical calculations we have used a dimensionless
form of the equations, substituting r = xR⊙ and t → η0t/R2

⊙,
where η0 = 1.8 × 109 m2/s is the maximum value of ηT in the
convection zone; that is, length is measured in units of the solar
radius and time is measured in units of the turbulent magnetic
diffusion time, TD ≈ 8.5 yr. The integration domain is radially
bounded by x = 0.72 and x = 0.96. The boundary conditions on
the magnetic field are the usual approximate perfect-conductor

conditions, i.e., A = 0,
∂xB

∂x
= 0, at the bottom boundary (Köhler

1973), and vacuum conditions, that is, B = 0 and a continuous
match of the poloidal field component to an exterior potential
field, at the top boundary.

The radial profiles of characteristic quantities of the turbu-
lence, such as the rms value uc and the correlation length and
time, ℓc and τc, of the convective background velocity field, as
well as the density stratification, were calculated on the basis of
a standard model of the solar interior (Stix 2002), assuming the
ratio of the correlation length to the pressure scale height (re-
ferred to as the mixing-length parameter) to be 1.6. The rotation
profile as known from helioseismic measurements (Schou et al.
1998) is approximated by

Ω = Ω0 f (x, θ) , (9)

with

f (x, θ) =
1

435

[

435 + 51 (x − x0) + 26φ (x)
(

1 − 5 cos2 θ
)

(10)

− 3.5
(

1 − 14 cos2 θ + 21 cos4 θ
)]

, (11)

where

φ (x) = 0.5 {1 + tanh [50(x − x0)]} (12)

and x0 = 0.71 is the position of tachocline, situated below the
bottom boundary of the integration domain.

A remark concerning our locating the lower boundary at
x = 0.72 seems in order. Very often this boundary is placed at
x = 0.65 (cf., e.g., Jouve et al. 2008). Then, however, some mod-
eling of the tachocline is needed, where the differential rotation
changes into rigid rotation in the radiative core. The physical
parameters of this transition region are rather uncertain at the
moment. Here, we consider a convection-zone dynamo model
with distributed dynamo action in the bulk of the convection
zone, where all physical parameters needed can be derived from
helioseismic measurements and the standard model of the so-
lar interior. There are other dynamo models where the dynamo
just operates in the tachocline (a critical discussion of arguments
for and against deep-seated and distributed dynamos is found in
Brandenburg 2005).

The meridional flow, U, is modeled in the form of two
stationary circulation cells, one in the northern and one in the
southern hemisphere, with poleward motion in the upper and
equatorward motion in the lower part of the convection zone (for
the theory of the meridional circulation see, e.g., Rempel 2005,
2006; Miesch et al. 2008; Brun & Rempel 2009). The condition
of mass conservation, ∇ · (ρU) = 0, is ensured by a stream-
function representation of ρU (cf., e.g., Bonanno et al. 2002), so
that

U =
1
ρ
∇ ×

ψeφ

x sin θ
=

1
ρ
∇ψ ×

eφ

x sin θ
· (13)

The stream function, ψ, is written as

ψ(x, θ) = u0 ψ̂(x, θ) , (14)

with u0 denoting the maximum amplitude of U, which is treated
as a free paramter. Our choice for ψ̂(x, θ) is

ψ̂(x, θ) = c0 sin2 θ cos θ T (x),

c0 =

⎛

⎜
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⎜

⎜
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∣

∣

∣

∣

∣

∣

⎞

⎟

⎟

⎟

⎟

⎠

−1

, (15)

where the function T (x) is selected such that the top and bottom
boundaries are impenetrable and stress-free (free of tangential
stresses), that is (see, e.g., Batchelor 1967),

Ux = 0,
∂Ux

∂θ
+ x
∂Uθ

∂x
− Uθ = 0 at x = xt, x = xb , (16)

where xt and xb are the outer and inner radius, respectively, of
the considered spherical shell. Using

Ux =
u0 c0

(

3 cos2 θ − 1
)

T

ρx2
, Uθ = −

u0 c0 sin θ cos θ
ρx

dT

dx
, (17)

as follows from Eqs. (13)–(15), the boundary conditions given
by Eq. (16) take the form

T = 0 , x
d

dx

1
ρx

dT

dx
−

1
ρx

dT

dx
= 0 at x = xt, x = xb (18)

and are satisfied with

T (x) = P2 (ξ) + c1
[

P3 (ξ) − ξ
]

+ c2
[

P4 (ξ) − 1
]

− 1 , (19)
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Fig. 1. Radial profiles of model quantities. Left:
mass density. Middle: isotropic (ηT f

(d)
2 (Ω∗),

solid line) and anisotropic (2ηT f
(a)
1 (Ω∗),

dashed line) turbulent magnetic diffusivities
in units of η0. Right: effective strength of the
Ω× J effect, f

(d)
4 (Ω∗) /

(

f
(d)
2 (Ω∗) + 2 f

(a)
1 (Ω∗)

)

.

Fig. 2. Effective strengths of the contributions to the shear-current effect
as given by Eq. (8): (11/6)(Ω̂ − 1)N (top left), (1/6)(cos θ ∂Ω̂/∂x −
(sin θ/x) ∂Ω̂/∂θ)N (top right), (1/3) sin θ

(

∂Ω̂/∂θ
)

N (bottom left), and

−(1/3) sin θ(∂Ω̂/∂r)N (bottom right), with N = f
(d)
4 (Ω∗)/( f

(d)
2 (Ω∗) +

2 f
(a)
1 (Ω∗)).

where

ξ =
2x − (xt + xb)

xt − xb
(20)

is the radial coordinate transformed from the interval [xb, xt] to
the interval [−1, 1], Pn denotes the Legendre polynomial of de-
gree n, and c1 ≈ −0.207 and c2 ≈ −0.097 are numerically deter-
mined constants; for the normalization constant c0 (cf. Eq. (15))
one then finds c0 ≈ 0.027.

Figure 1 shows radial profiles of the mass density, the
isotropic and anisotropic magnetic diffusivities, and the effective
strength of the Ω × J effect, and in Fig. 2 the effective strengths
of the contributions to the shear-current effect as given by Eq. (8)
are displayed. The properties of the two large-scale flows used
in the model, namely, contours of the differential rotation rate
and the geometry and strength of the meridional circulation, are
depicted in Fig. 3. Other model quantities, such as the radial pro-
file of the Coriolis number, Ω∗, and the pumping velocity of the
toroidal part of the LSMF, are as in Pipin & Seehafer (2009, see
Fig. 2 there).

Numerical procedure

In our numerics we use a Galerkin method, expanding the
magnetic field in terms of a basis that satisfies the boundary

Fig. 3. The large-scale flows. Left panel: contours of the rotation rate Ω
(left) and streamlines of the meridional flow, U, i.e., contours of its
stream function, ψ (right). Right panel: radial profile of the component
Uθ of the meridional flow at a latitude of 45◦ (in m/s).

conditions implicitly. The system of Eqs. (2) and (3) admits ex-
ponentially growing or decaying solutions, which we represent
in the form

A (x, θ, t) = eλt
∑

n

∑

m

Anm sin θ S (A)
nm (ξ) P1

m (cos θ) , (21)

B (x, θ, t) = eλt
∑

n

∑

m

BnmS (B)
n (ξ) P1

m (cos θ) , (22)

where S
(A)
nm and S

(B)
n are linear combinations of Legendre poly-

nomials, and P1
m is the associated Legendre function of degree m

and order 1. These expansions ensure the regularity of the solu-

tions at the poles θ = 0 and θ = π, where Bθ and Bφ, i.e.,
A

sin θ
and B, have to vanish. The radial boundary conditions are sat-
isfied by the choice (see “basis recombination” in Boyd 2001;
Livermore & Jackson 2005)

S (A)
nm (ξ) = Pn−1 (ξ) + a(1)

nmPn (ξ) + a(2)
nmPn+1 (ξ) , (23)

S (B)
n (ξ) = Pn−1 (ξ) + b(1)

n Pn (ξ) + b(2)
n Pn+1 (ξ) , (24)

where

a(1)
nm =

2n + 1
(n + 1)2 + 2m/γ

, a(2)
nm = −

n2 + 2m/γ

(n + 1)2 + 2m/γ
, (25)

b(1)
n = − xb(2n + 1)

xb(n + 1)2 − 2/γ
, b(2)

n = −
xbn2 − 2/γ

xb(n + 1)2 − 2/γ
, (26)

with γ =
2

xt − xb
denoting the derivative of ξ with respect to x.

Integrations over radius and latitude, necessary for calculat-
ing the expansion coefficients anm and bnm, were done by means
of the Gauss-Legendre procedure, and the eigenvalue problem
for determining the exponent λ and the associated eigenmodes

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912614&pdf_id=1
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912614&pdf_id=2
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912614&pdf_id=3
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Fig. 4. Difference between the growth rates of the first (most unstable)
dipolar mode and the first quadrupolar mode in the plane spanned by
C

(Ω)
δ

and u0 for C
(W)
δ
= 0. Red colors correspond to a dominance of

dipolar modes and blue colors to a dominance of quadrupolar modes.
Also shown are isolines of the frequency of the first dipolar mode (in
areas where it oscillates), with numbers giving the oscillation frequency
(2π/T , T being the time period of the oscillation) in units of the inverse
magnetic diffusion time, η0/R

2
⊙. The solid bold line indicates the sta-

bility boundary for the first dipolar mode, with the unstable (dynamo)
region lying to the right of this line; the first dipolar mode is both un-
stable and dominating in the upper right quarter of the panel.

was solved by means of Lapack routines. The spectral resolution
was 15 modes in the radial basis and 22 modes in the latitudi-
nal basis for the calculations of growth rates (including stability
boundaries) and dynamo periods, and 14 × 30 modes for sim-
ulations of time evolutions and butterfly diagrams (see Sect. 3
below); by the assumption of either dipole-type or quadrupole-
type solutions the latitudinal resolution could be doubled in a
part of the calculations. The results were qualitatively confirmed
by a number of runs with still higher resolution. Benchmark cal-
culations for the code used are presented in Appendix A.

3. Results

3.1. δ(Ω)
Ω dynamo with meridional flow

The meridional flow becomes essential for the dynamo if the ef-
fective magnetic Reynolds number, based on the meridional flow
velocity and the turbulent magnetic diffusivity, is high enough.
Meridional flow velocities higher than about 10 . . .20 m/s can
scarcely be brought into agreement with the solar observations.
Thus, the turbulent magnetic diffusivity should be low. In our
formulation, all turbulence effects are consistently scaled by the
parameter Cη. Decreasing Cη leads to increasing the influence
of the flow on the magnetic field and acts, thus, like increas-
ing the amplitude of the flow. An advection-dominated regime
with a solar-like magnitude of the meridional flow is obtained if
Cη � 1/20. Below, we fix Cη to the value 1/40.

Figure 4 illustrates the bifurcation scenario for a δ(Ω)Ω dy-
namo with meridional flow. Here the sources of the dynamo are
theΩ×J effect (the shear-current effect being neglected) and dif-
ferential rotation. Also included are turbulent diffusion (isotropic
and anisotropic) and turbulent pumping. As the oberservations
of solar activity suggest, the large-scale solar magnetic field is
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Fig. 5. Dependence of the dynamo period on u0 along the stability
boundary of the most unstable dipolar mode for the δ(Ω)Ω (solid line)
and δ(W)Ω (dashed line) dynamos.

characterized by an antisymmetric parity with respect to the
equatorial plane. In the figure, the plane spanned by the parame-
ters C

(Ω)
δ

(measuring the strength of theΩ× J effect) and u0 (the
maximum amplitude of the meridional flow) is displayed, with
red/blue colors indicating a dominance of dipolar/quadrupolar
modes, which are antisymmetric/symmetric with respect to the
equatorial plane, over quadrupolar/dipolar modes. For a suffi-
ciently high velocity of the meridional flow the dipolar parity
dominates, as needed for the Sun. The critical dynamo number
C

(Ω)
δ

where the first dipolar mode becomes unstable does not de-
pend very much on the flow strength. This may result from the
fact that the meridional flow mainly acts as a conveyor belt for
the magnetic field, rather than as a generation mechanism.

In Fig. 5 (solid line) the dependence of the dynamo period on
the amplitude of the meridional flow along the stability boundary
is shown. As expected, the period is a decreasing function of the
flow velocity (cf. Bonanno et al. 2002, 2006). The dependence
approximately follows a power law with a scaling exponent of
−0.7.

Figure 6 (top and middle) shows, in the form of the strength
of the toroidal field and field lines of the poloidal field in the
meridional plane, the evolution of the LSMF in an δ(Ω)Ω dynamo
model on the basis of the first dipolar mode for C

(Ω)
δ
= 0.006

and u0 = 15 m/s. In the bottom panel of the figure, an associ-
ated simulated butterfly diagram, i.e., the strength of the toroidal
LSMF (integrated over depth in the convection zone) in the time-
latitude plane is shown, together with isocontours of the radial
field component at the top boundary of the considered spherical
shell. The latitudinal drift of the toroidal field towards the equa-
tor, as indicated by the observations of sunspots, is qualitatively
correctly reproduced; the poloidal field is coupled to the toroidal
field and shows a similar drift towards the equator. The phase
relation between the toroidal and poloidal parts of the magnetic
field, in particular the polar reversal of Br shortly after the maxi-
mum of Bφ at low latitudes, with BrBφ < 0 before and BrBφ > 0
after the polar field reversal, is also in good agreement with the
solar observations.

In the example shown in Fig. 6, the obtained cycle period
is about 80 yr, which is nearly four times the period of the

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912614&pdf_id=4
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912614&pdf_id=5
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t=0 t=π/6 t=π/3

t=π/2 t=2π/3 t=5π/6

Fig. 6. δ(Ω)Ω dynamo for C
(Ω)
δ = 0.006 and

u0 = 15 m/s. Top and middle: snapshots
of the strength of the toroidal LSMF (color-
coded, red/blue colors correspond to posi-
tive/negative field values) and field lines of
the poloidal LSMF (solid/dashed lines indi-
cate clockwise/counter–clockwise field direc-
tion) over half a cycle in the meridional plane.
Bottom: associated butterfly diagram, show-
ing the (color–coded) strength of the toroidal
LSMF (integrated over depth in the convection
zone) in the time-latitude plane. Also shown are
isocontours of the radial field component at the
top boundary (solid red/dashed blue lines indi-
cate positive/negative values).

solar activity cycle. Tuning the parameters cannot significantly
reduce the period. This may appear not fully satisfactory, but the
period is at least in the right order of magnitude. Furthermore,
for the example in Fig. 6, we find Bφ/Br ≈ 15, which is by a fac-
tor of 10 . . .100 smaller than the ratio between the large-scale
toroidal and poloidal fields as supposed for the solar convection
zone. In general, increasing the speed of the meridional flow in
the model reduces the obtained ratio between the toroidal and
poloidal fields, in apparent conflict with the need to reduce the
cycle period.

3.2. δ(W)Ω dynamo with meridional flow

Figures 7 and 8 show results for a dynamo on the basis of the
shear-current effect, differential rotation, and a meridional flow,
with the α effect and theΩ× J effect being neglected (but again
with turbulent diffusion and turbulent pumping being included).
The results strongly resemble those for the δ(Ω)Ω dynamo with
meridional flow as described in Sect. 3.1, obviously due to the
similarity between the Ω × J effect and the shear-current ef-
fect. The comments given in Sect. 3.1 thus apply here as well.
The dependence of the dynamo period on the amplitude of the
meridional flow along the stability boundary (Fig. 5, dashed line)
approximately follows a power law with a scaling exponent of
−0.6.
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Fig. 7. As Fig. 4, but with C
(Ω)
δ

replaced by C
(W)
δ

, and C
(Ω)
δ
= 0.

4. Conclusions

We have studied kinematic axisymmetric mean-field dynamo
models in the geometry of a spherical shell, as appropriate for
the Sun and solar-type stars, where the Ω × J and shear-current

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912614&pdf_id=6
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t=0 t=π/6 t=π/3

t=π/2 t=2π/3 t=5π/6

Fig. 8. As Fig. 6, but for a δ(W)Ω dynamo with
C

(W)
δ = 0.007 and u0 = 15 m/s.

effects were included as turbulent sources of the large-scale mag-
netic field while the α effect was omitted. Besides the turbulent
dynamo mechanisms and differential rotation, a meridional cir-
culation, in the form of two stationary circulation cells, one in
the northern and one in the southern hemisphere, also was incor-
porated into the models. We have concentrated on the dynamo
onset.

Our results show that the Ω × J and shear-current effects
can, at least in principle, take over the role that the α effect usu-
ally plays in mean-field dynamo models. However, only if the
meridional flow is sufficiently fast are the characteristic prop-
erties of solar-type dynamos qualitatively correctly reproduced.
In particular, the amplitude of the meridional flow needs to ex-
ceed a threshold value in order that the most unstable mag-
netic mode has dipolar parity and oscillates. This mode then also
shows a latitudinal drift towards the equator within each half cy-
cle and a phase relation between the poloidal and toroidal parts
of the field in accordance with the observations of solar activ-
ity. The threshold value for the amplitude of the meridional flow,
u0 � 10 m/s (reached at the surface, the flow speed at the bottom
is on the order of 1 m/s), is consistent with solar observations
and agrees with the value of 10 m/s often adopted in studies of
flux-transport dynamos with the α effect (cf., e.g., Bonanno et al.
2002; Jouve et al. 2008).

In models of advection-dominated dynamos, the specifics
of the turbulent dynamo mechanism that generates the mean
poloidal field are less important than they are in models

without meridional flow (given the rotation law and the gener-
ation of the mean toroidal field from the mean poloidal field by
velocity shear). Once the field is generated, it is advected equa-
torwards by the flow. However, the distribution of the turbulent
dynamo sources, or their more or less strong localization, deci-
sively influences the parity properties of the LSMF. Studies of
flux-transport dynamos with an α effect as the turbulent source
of the LSMF indicate that the α effect must be strongly local-
ized at the bottom of the convection zone to ensure the correct
(dipolar) parity of the LSMF (Dikpati & Gilman 2001; Bonanno
et al. 2002). In our models, the turbulent dynamo effects are dis-
tributed over the bulk of the convection zone, though they are
strongest near the bottom of the included domain. We note that
our turbulent dynamo sources are not introduced arbitrarily but
are calculated using a standard model of the solar interior to-
gether with rotation rates obtained from helioseismic measure-
ments.

As other advection-dominated dynamo models, the models
presented here work only if the effective magnetic diffusivity is
strongly reduced compared to the mixing-length estimates. At
a radial distance of, say, 0.85 R⊙, the turbulent magnetic dif-
fusivity in our models is about 0.2 η0 (η0 = 1.8 × 109 m2/s
is the maximum value of the turbulent magnetic diffusivity in
the convection zone according to the mixing-length estimate).
Together with our value of 0.025 for the parameter Cη (which
regulates the turbulence level), this gives an effective magnetic
diffusivity of about 107 m2/s, in agreement with the upper limit

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912614&pdf_id=8
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of 3× 107 m2/s for the turbulent magnetic diffusivity in the bulk
of the convection zone given by Dikpati & Gilman (2006, 2007)
for flux-transport dynamos with the α effect.

The cycle periods that we obtain are at least three times as
long as the observed period of the solar activity cycle. Also, the
ratio between the toroidal and poloidal parts of the large-scale
magnetic field is significantly smaller than supposed for the so-
lar convection zone (apparently a common problem of all flux-
transport models). Here one should keep in mind that requiring
a perfect fit to the solar details, as far as these are known, would
overstress the models. For instance, a solution that bifurcates at
the dynamo onset will change quantitatively if it is traced away
from the bifurcation point. Thus, ultimately, self-consistent non-
linear models will be needed.
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Appendix A: Benchmarks for the code used

Here we present some benchmark tests for the computer code
that we used and show how the crititical dynamo numbers and
dynamo periods for the models of Sects. 3.1 and 3.2 converge
for an increasing number of modes taken into account.

A.1. Free decay modes

First we test the accuracy of the implementation of the exterior
boundary conditions and the speed of convergence. If we neglect
all the dynamo effects in Eqs. (2) and (3), only simple isotropic
diffusion remains and the equations take the form

∂A

∂t
=
∂2A

∂x2
+

sin θ
x2

∂

∂θ

1
sin θ

∂A

∂θ
, (A.1)

∂B

∂t
=

1
x

∂2 (xB)
∂x2

+
1
x2

∂

∂θ

1
sin θ

∂ (sin θB)
∂θ

, (A.2)

where for simplicity the magnetic diffusivity has been assumed
to be homogeneous and has been set equal to unity. The equa-
tions for the poloidal and toroidal parts of the field are decoupled
here. The eigenmodes to Eqs. (A.1) and (A.2) are the free decay
modes, exponentially decaying ∝ expλit, where the λi are the
eigenvalues of the Laplacian operator for the considered domain
under the imposed boundary conditions; these eigenvalues are
all real and negative. For the test, we consider the case of a full
sphere (rather than a spherical shell) surrounded by vacuum, for
which the free decay modes can be determined analytically and
are well documented in the literature (see, e.g., Moffatt 1978;
Backus et al. 1996). For that purpose, the potential functions A
and B are written as

A (x, θ, t) = eλt
∑

n

∑

m

Anm sin θ S (A)
nm (x) P1

m (cos θ) , (A.3)

B (x, θ, t) = eλt
∑

n

∑

m

BnmS (B)
n (x) P1

m (cos θ) , (A.4)

with

S (A)
nm (x) = x

(

P2n+1 (x)−P1 (x)
(2n+1) (2n+2)+2 (m+1)

2m + 4

)

,(A.5)

S (B)
n (x) = x (P2n+1 (x) − P1 (x)) , (A.6)

where the radial variable, x, varies in the interval [0, 1]; the trans-
formation to the variable ξ (cf. Eqs. (21) and (22) in Sect. 2)
is not used here. By the choice of the basis functions given by
Eqs. (A.5) and (A.6) the exterior vacuum conditions are satisfied
and the regularity of the fields at the origin is ensured. This set
of basis functions differs from that used in our calculations for
the spherical shell, but the general structure of the code and the
solution algorithms are not changed.

The dependence of the solutions to Eqs. (A.1) and (A.2)
on radius is given analytically in terms of the spherical Bessel
functions jn(x) ∝

(

1/
√

x
)

Jn+1/2(x) (where Jn+1/2 is the ordi-
nary Bessel function of half-integer order n + 1/2), and the
decay rates, −λn, are given by the squares of the zeros of the
functions jn−1 for the poloidal and jn for the toroidal modes.
The slowest decaying (largest scale) poloidal mode decays with
the rate −λ(A)

1 = π2, the slowest decaying toroidal mode with
the rate −λ(B)

1 ≈ 4.49342; the corresponding eigenfunctions are

S
(A)
1 (x, θ) ∝ j1

(

λ
(A)
1 x

)

sin2 θ and S
(B)
1 (x, θ) ∝ j1

(

λ
(B)
1 x

)

sin θ.
These two decay modes are used for the test. The θ dependences
of their potential functions are given by the first terms (with

Table A.1. Convergence of the eigenvalues and eigenvectors of the
slowest decaying poloidal and toroidal modesa .

N E(λ) [A] E(B) [A] E(λ) [B] E(B) [B]
3 1.08e-7 3.98e-9 3.83e-5 6.849e-4
4 5.651e-11 1.255e-12 9.984e-8 4.365e-9
5 9.68e-14 2.142e-16 1.207e-10 2.497e-12
6 7.72e-14 2.136e-20 8.707e-14 9.068e-16
7 1.38e-14 1.325e-24 1.77e-14 4.80e-19
8 1.90e-14 4.427e-29 5.32e-15 6.263e-23

a N is the number of modes in the radial basis, and E(λ)[A] and E(B)[A]
are the errors of eigenvalue and eigenvector for the poloidal mode and
E(λ)[B] and E(B)[B] the corresponding errors for the toroidal mode.

m = 1) in the latitudinal expansions on the right-hand sides of
Eqs. (A.3) and (A.4). (The potential functions A and B differ
from the potentials S and T in the poloidal-toroidal decompo-
sition B = ∇ × (r × ∇S ) + r × ∇T as normally used in non-
axisymmetric cases, see, e.g., Moffatt (1978) and Backus et al.
(1996). For our axisymmetric case, one has ∂S/∂θ = A/ sin θ
and ∂T/∂θ = B. The angular dependence of both S for the
slowest decaying poloidal mode and T for the slowest deacay-
ing toroidal mode is given by the spherical surface harmonic
Y0

1 (cos θ) ∝ cos θ, in agreement with the θ dependences of A
and B as given above.)

Table A.1 shows the convergence of the eigenvalues
and of the corresponding eigenvectors for our numerical
scheme. Similar to Livermore & Jackson (2005), the eigen-
vectors are scaled so that S

(A)
1 (x = 1, θ = π/2) = 1 and

S
(B)
1 (x = 0.5, θ = π/2) = 1, and the errors are measured as

E (λ) = |λtrue − λnum| and E (B) =
∫

V
|Btrue − Bnum|2 dV . The

number of modes in the radial basis, N, is varied, while in the
latitudinal basis just the first mode is taken into account. The
convergence is seen to be exponential in both the poloidal and
toroidal cases.

A.2. Test case B of Jouve et al. (2008)

The next test case is taken from Jouve et al. (2008), who pre-
sented a comparitative benchmark study of different numeri-
cal codes for axisymmetric mean-field solar dynamo models in
spherical geometry. Here we consider their test case B, which is
a pure αΩ dynamo in a spherical shell with sharp gradients of the
turbulent magnetic diffusivity and the strength of the α effect at
the bottom of the convection zone; for details we refer to Jouve
et al. (2008). The potential functions A and B are expanded ac-
cording to Eqs. (21)–(26) in Sect. 2, and the integration domain
is now radially bounded by xb = 0.65 at the bottom and xt = 1
at the top.

In Jouve et al. (2008), the strength of the α effect is regulated
by a dynamo number, Cα. The different codes are compared by
indicating in tables the critical α-effect dynamo number, Ccrit

α ,
at which exponentially growing solutions appear, and the corre-
sponding oscillation frequency,ω = 2π/T . In addition, butterfly
diagrams and the evolution of the fields in the meridional plane
are shown. Our values of Ccrit

α and ω for different spectral reso-
lutions are given in Table A.2, and Fig. A.1 shows the temporal
evolution of the toroidal and poloidal parts of the field (i.e., of
the unstable eigenmode) at the critical dynamo number. The val-
ues in Table A.2 are in best agreement with those given in the
corresponding table, Table 3, of Jouve et al. (2008). Similarly,
the evolution shown in Fig. A.1 is apparently identical to that
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Fig. A.1. As Fig. 6 (top and middle), but for test
case B of Jouve et al. (2008) at the critical α-
effect dynamo number with a spectral resolu-
tion of 16 × 16 modes.
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Fig. A.2. Convergence of the critical dynamo
numbers (left) and associated dynamo periods
(right) for the models of Sects. 3.1 and 3.2.
N is the total number of modes taken into ac-
count. Calculations were done for resolutions
of 6× 6, 6× 8, 8× 10, 10× 14, 16× 18, 15× 22,
and 14 × 30 modes in the radial and latitudi-
nal bases, respectively (in addition, the dipo-
lar symmetry was taken into account, so that
the highest latitudinal resolution is actually 50).
Solid lines refer to the δ(Ω)Ω dynamo model and
dashed lines to the δ(W)Ω dynamo model, and
blue color (i.e., the lower/upper curve pair in
the left/right panel) corresponds to u0 = 15 m/s
and red color to u0 = 25 m/s.

Table A.2. Test case B of Jouve et al. (2008)a.

Resolution Ccrit
α ω

8 × 8 0.443 180.5
10 × 10 0.4175 175.1
12 × 12 0.4095 172.2
13 × 13 0.411 172.4
14 × 14 0.4122 172.7
16 × 16 0.4125 172.9

a Critical values of the dynamo number, Ccrit
α , and the oscillation fre-

quency at the dynamo onset, ω, for different radial and latitudinal spec-
tral resolutions. ω is measured in units of the inverse magnetic diffusion
time.

shown in the corresponding figure, Fig. 7, of Jouve et al. (2008);
the same applies to the simulated butterfly diagrams (not shown
here).

A.3. Convergence of crititical dynamo numbers and dynamo
periods for the models of Sects. 3.1 and 3.2

Figure A.2 shows the convergence of the critical dynamo num-
bers (where the first dipolar mode becomes unstable) and as-
sociated dynamo periods for the δ(Ω)Ω dynamo model consid-
ered in Sect. 3.1 and for the δ(W)Ω dynamo model considered in
Sect. 3.2. The amplitude of the meridional flow is u0 = 15 m/s
and u0 = 25 m/s; u0 = 15 m/s is the value we used most,

and u0 = 25 m/s is the highest meridional-flow amplitude that
we considered, corresponding to the largest magnetic Reynolds
number in the study. High Reynolds numbers are known to cause
numerical problems.

Appendix B: Definitions of the functions f
(a)

i
and f

(d)

i

Here we give the definitions of the functions f
(a)
i

and f
(d)
i

that are
used in the representation of the turbulent electromotive force E.
For details of the calculations we refer to Pipin (2008).

f
(a)
1 =

1
4Ω∗ 2

[

(

Ω∗ 2 + 3
) arctanΩ∗

Ω∗
− 3

]

,

f
(a)
3 =

1
4Ω∗ 2

[

(

(ε − 1)Ω∗2 + ε − 3
) arctanΩ∗

Ω∗
+ 3 − ε

]

,

f
(d)
2 =

1
4Ω∗ 2

[

(

(ε − 1)Ω∗2 + 3ε + 1
) arctanΩ∗

Ω∗

− (3ε + 1)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

f
(d)
4 =

1
2Ω∗ 3

[

(

2Ω∗ 2 + 3
)

− 3
(

Ω∗ 2 + 1
) arctanΩ∗

Ω∗

]

·
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