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Abstract

Several factors contribute to the appearance of an object in a visual scene, including pose, illumination, and deformation,

among others. Each factor accounts for a source of variability in the data, while the multiplicative interactions of these factors

emulate the entangled variability, giving rise to the rich structure of visual object appearance. Disentangling such unobserved

factors from visual data is a challenging task, especially when the data have been captured in uncontrolled recording conditions

(also referred to as “in-the-wild”) and label information is not available. In this paper, we propose a pseudo-supervised deep

learning method for disentangling multiple latent factors of variation in face images captured in-the-wild. To this end, we

propose a deep latent variable model, where the multiplicative interactions of multiple latent factors of variation are explicitly

modelled by means of multilinear (tensor) structure. We demonstrate that the proposed approach indeed learns disentangled

representations of facial expressions and pose, which can be used in various applications, including face editing, as well as

3D face reconstruction and classification of facial expression, identity and pose.

Keywords Adversarial autoencoder · Disentangled representation · Tensor decomposition

1 Introduction

The appearance of visual objects is significantly affected by

multiple factors of variability such as, for example, pose,

illumination, identity, and expression in case of faces. Each

factor accounts for a source of variability in the data, while

their complex interactions give rise to the observed entan-

gled variability. Discovering the modes of variation, or in

other words disentangling the latent factors of variations in

visual data, is a very important problem in the intersection

of statistics, machine learning, and computer vision.

Factor analysis (Fabrigar and Wegener 2011) and the

closely related Principal Component Analysis (PCA)

(Hotelling 1933) are probably the most popular statistical

methods that find a single mode of variation explaining the
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data. Nevertheless, visual appearance (e.g., facial appear-

ance) is affected by several modes of variations. Hence,

methods such as PCA are not able to identify such multi-

ple factors of variation. For example, when PCA is applied

to facial images, the first principal component captures both

pose and expressions variations.

An early approach for learning different modes of varia-

tion in the data is TensorFaces (Vasilescu and Terzopoulos

2002). In particular, TensorFaces is a strictly supervised

method as it not only requires the facial data to be labelled

(e.g., in terms of expression, identity, illumination etc.) but

the data tensor must also contain all samples in all different

variations. This is the primary reason that the use of such

tensor decompositions is still limited to databases that have

been captured in a strictly controlled environment, such as the

Weizmann face database (Vasilescu and Terzopoulos 2002).

Recent unsupervised tensor decompositions methods

(Tang et al. 2013; Wang et al. 2017b) automatically discover

the modes of variation in unlabelled data. In particular, the

most recent one (Wang et al. 2017b) assumes that the original

visual data have been produced by a hidden multilinear struc-

ture and the aim of the unsupervised tensor decomposition is

to discover both the underlying multilinear structure, as well

as the corresponding weights (coefficients) that best explain
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Fig. 1 Given a single in-the-wild image, our network learns disentangled representations for pose, illumination, expression and identity. Using

these representations, we are able to manipulate the image and edit the pose or expression

the data. Special instances of the unsupervised tensor decom-

position are the Shape-from-Shading (SfS) decompositions

in Kemelmacher-Shlizerman (2013), Snape et al. (2015) and

the multilinear decompositions for 3D face description in

Wang et al. (2017b). In Wang et al. (2017b), it is shown

that the method indeed can be used to learn representations

where many modes of variation have been disentangled (e.g.,

identity, expression and illumination etc.). Nevertheless, the

method in Wang et al. (2017b) is not able to find pose varia-

tions and bypasses this problem by applying it to faces which

have been frontalised by applying a warping function [e.g.,

piece-wise affine warping (Matthews and Baker 2004)].

Another promising line of research for discovering latent

representations is unsupervised Deep Neural Networks

(DNNs). Unsupervised DNNs architectures include the

Auto-Encoders (AE) (Bengio et al. 2013), as well as the

Generative Adversarial Networks (GANs) (Goodfellow et al.

2014) or adversarial versions of AE, e.g., the Adversarial

Auto-Encoders (AAE) (Makhzani et al. 2015). Even though

GANs, as well as AAEs, provide very elegant frameworks for

discovering powerful low-dimensional embeddings without

having to align the faces, due to the complexity of the net-

works, unavoidably all modes of variation are multiplexed

in the latent-representation. Only with the use of labels it is

possible to model/learn the manifold over the latent repre-

sentation, usually as a post-processing step (Shu et al. 2017).

In this paper, we show that it is possible to learn a disentan-

gled representation of the human face captured in arbitrary

recording conditions in an pseudo-supervised manner1 by

imposing a multilinear structure on the latent representation

of an AAE (Shu et al. 2017). To the best of our knowledge,

this is the first time that unsupervised tensor decompositions

have been combined with DNNs for learning disentangled

representations. We demonstrate the power of the proposed

approach by showing expression/pose transfer using only the

1 Our methodology uses the information produced by an automatic 3D

face fitting procedure (Booth et al. 2017) but it does not make use of

any labels in the training set.

latent variable that is related to expression/pose. We also

demonstrate that the disentangled low-dimensional embed-

dings are useful for many other applications, such as facial

expression, pose, and identity recognition and clustering. An

example of the proposed approach is given in Fig. 1. In par-

ticular, the left pair of images have been decomposed, using

the encoder of the proposed neural network E(·), into many

different latent representations including latent representa-

tions for pose, illumination, identity and expression. Since

our framework has learned a disentangled representation we

can easily transfer the expression by only changing the latent

variable related to expression and passing the latent vector

into the decoder of our neural network D(·). Similarly, we

can transfer the pose merely by changing the latent variable

related to pose.

2 RelatedWork

Learning disentangled representations that explain multiple

factors of variation in the data as disjoint latent dimensions is

desirable in several machine learning, computer vision, and

graphics tasks.

Indeed, bilinear factor analysis models (Tenenbaum and

Freeman 2000) have been employed for disentangling two

factors of variation (e.g., head pose and facial identity) in the

data. Identity, expression, pose, and illumination variations

are disentangled in Vasilescu and Terzopoulos (2002) by

applying Tucker decomposition [also known as multilinear

Singular Value Decomposition (SVD) (De Lathauwer et al.

2000)] into a carefully constructed tensor through label infor-

mation. Interestingly, the modes of variation in well aligned

images can be recovered via a multilinear matrix factoriza-

tion (Wang et al. 2017b) without any supervision. However,

inference in Wang et al. (2017b) might be ill-posed.

More recently, both supervised and unsupervised deep

learning methods have been developed for disentangled rep-

resentations learning. Transforming auto-encoders (Hinton
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et al. 2011) is among the earliest methods for disentan-

gling latent factors by means of auto-encoder capsules. In

Desjardins et al. (2012) hidden factors of variation are disen-

tangled via inference in a variant of the restricted Boltzmann

machine. Disentangled representations of input images are

obtained by the hidden layers of deep networks in Cheung

et al. (2014) and through a higher-order Boltzmann machine

in Reed et al. (2014). The Deep Convolutional Inverse Graph-

ics Network (Kulkarni et al. 2015) learns a representation that

is disentangled with respect to transformations such as out-

of-plane rotations and lighting variations. Methods in Chen

et al. (2016), Mathieu et al. (2016), Wang et al. (2017a),

Tewari et al. (2017) and Tran et al. (2017) extract disentan-

gled and interpretable visual representations by employing

adversarial training. Recent works in face modeling (Tewari

et al. 2018; Tran and Liu 2018) also employ self-supervision

or pseudo-supervision to learn 3D Morphable Models from

images. They rely on the use of a 3D to 2D image rendering

layer to separate shape and texture. Contrarily to Tewari et al.

(2018), Tran and Liu (2018) the proposed network does not

render the 3D shape into a 2D image. Learning the compo-

nents of a 3D morphable model is an additional advantage of

the pseudo-supervision employed. The method in Shu et al.

(2017) disentangles the latent representations of illumina-

tion, surface normals, and albedo of face images using an

image rendering pipeline. Trained with pseudo-supervision,

Shu et al. (2017) undertakes multiple image editing tasks by

manipulating the relevant latent representations. Nonethe-

less, this editing approach still requires expression labelling,

as well as sufficient sampling of a specific expression.

Here, the proposed network is able to edit the expression

of a face image given another single in-the-wild face image

of arbitrary expression. Furthermore, we are able to edit the

pose of a face in the image which is not possible in Shu et al.

(2017).

3 ProposedMethod

In this section, we will introduce the main multilinear mod-

els used to describe three different image modalities, namely

texture, 3D shape and 3D surface normals. To this end, we

assume that for each different modality there is a different

core tensor but all modalities share the same latent represen-

tation of weights regarding identity and expression. During

training all the core tensors inside the network are randomly

initialised and learnt end-to-end. In the following, we assume

that we have a set of n facial images (e.g., in the training

batch) and their corresponding 3D facial shape, as well as

their normals per pixel (the 3D shape and normals have been

produced by fitting a 3D model on the 2D image, e.g., Booth

et al. 2017).

3.1 Facial Texture

The main assumption here follows from Wang et al. (2017b).

That is, the rich structure of visual data is a result of mul-

tiplicative interactions of hidden (latent) factors and hence

the underlying multilinear structure, as well as the corre-

sponding weights (coefficients) that best explain the data

can be recovered using the unsupervised tensor decompo-

sition (Wang et al. 2017b). Indeed, following (Wang et al.

2017b), disentangled representations can be learnt (e.g., iden-

tity, expression, and illumination, etc.) from frontalised facial

images. The frontalisation process is performed by applying

a piecewise affine transform using the sparse shape recovered

by a face alignment process. Inevitably, this process suf-

fers from warping artifacts. Therefore, rather than applying

any warping process, we perform the multilinear decompo-

sition only on near frontal faces, which can be automatically

detected during the 3D face fitting stage. In particular, assum-

ing a near frontal facial image rasterised in a vector x f ∈

R
kx ×1, given a core tensor Q ∈ R

kx ×kl×kexp×kid ,2 this can be

decomposed as

x f = Q ×2 zl ×3 zexp ×4 zid , (1)

where zl ∈ R
kl , zexp ∈ R

kexp and zid ∈ R
kid are the

weights that correspond to illumination, expression and iden-

tity respectively. The equivalent form in case that we have a

number of images in the batch stacked in the columns of a

matrix X f ∈ R
kx ×n is

X f = Q(1)(Zl ⊙ Zexp ⊙ Zid), (2)

where Q(1) is a mode-1 matricisation of tensor Q and Zl ,

Zexp and Zid are the corresponding matrices that gather the

weights of the decomposition for all images in the batch. That

is, Zexp ∈ R
kexp×n stacks the n latent variables of expressions

of the images, Zid ∈ R
kid×n stacks the n latent variables

of identity and Zl ∈ R
kl×n stacks the n latent variables of

illumination.

3.2 3D Facial Shape

It is quite common to use a bilinear model for disentan-

gling identity and expression in 3D facial shape (Bolkart and

2 Tensors notation: Tensors (i.e., multidimensional arrays) are and

denoted by calligraphic letters, e.g., X . The mode-m matricisation of

a tensor X ∈ R
I1×I2×···×IM maps X to a matrix X(m) ∈ R

Im× Īm . The

mode-m vector product of a tensor X ∈ R
I1×I2×...×IM with a vector

x ∈ R
Im , denoted by X ×n x ∈ R

I1×I2×···×In−1×In+1×···×IN .

The Kronecker product is denoted by ⊗ and the Khatri-Rao (i.e.,

column-wise Kronecker product) product is denoted by ⊙. More details

on tensors and multilinear operators can be found in Kolda and Bader

(2008).
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Wuhrer 2016). Hence, for 3D shape we assume that there is

a different core tensor B ∈ R
k3d×kexp×kid and each 3D facial

shape x3d ∈ R
k3d can be decomposed as:

x3d = B ×2 zexp ×3 zid , (3)

where zexp and zid are exactly the same weights as in the

texture decomposition (2). The tensor decomposition for the

n images in the batch is therefore written as as

X3d = B(1)(Zexp ⊙ Zid), (4)

where B(1) is a mode-1 matricization of tensor B.

3.3 Facial Normals

The tensor decomposition we opted to use for facial normals

was exactly the same as the texture, hence we can use the

same core tensor and weights. The difference is that since

facial normals do not depend on illumination parameters

(assuming a Lambertian illumination model), we just need

to replace the illumination weights with a constant.3 Thus,

the decomposition for normals can be written as

X N = Q(1)

(

1

kl

1 ⊙ Zexp ⊙ Zid

)

, (5)

where 1 is a matrix of ones.

3.4 3D Facial Pose

Finally, we define another latent variable regarding 3D pose.

This latent variable z p ∈ R
9 represents a 3D rotation. We

denote by xi ∈ R
kx an image at index i . The indexing is

denoted in the following by the superscript. The correspond-

ing zi
p can be reshaped into a rotation matrix Ri ∈ R

3×3.

As proposed in Worrall et al. (2017), we apply this rotation

to the feature of the image xi created by 2-way synthesis

(explained in Sect. 3.5). This feature vector is the i-th col-

umn of the feature matrix resulting from the 2-way synthesis

(Zexp ⊙ Zid) ∈ R
kexpkid×n . We denote this feature vector

corresponding to a single image as (Zexp ⊙ Zid)i ∈ R
kexpkid .

Next (Zexp ⊙ Zid)i is reshaped into a 3 ×
kexpkid

3
matrix

and left-multiplied by Ri . After another round of vectorisa-

tion, the resulting feature ∈ R
kexpkid becomes the input of the

decoders for normal and albedo. This transformation from

feature vector (Zexp ⊙ Zid)i to the rotated feature is called

rotation.

3 This is also the way that normals are computed in Wang et al. (2017b)

up to a scaling factor

3.5 Network Architecture

We incorporate the structure imposed by Eqs. (2), (4) and (5)

into an auto-encoder network, see Fig. 2. For some matrices

Y i ∈ R
kyi ×n , we refer to the operation Y1 ⊙ Y 2 ∈ R

ky1ky2×n

as 2-way synthesis and Y1 ⊙ Y 2 ⊙ Y 3 ∈ R
ky1ky2ky3×n as

3-way synthesis. The multiplication of a feature matrix by

B(1) or Q(1), mode-1 matricisations of tensors B and Q,

is referred to as projection and can be represented by an

unbiased fully-connected layer.

Our network follows the architecture of Shu et al. (2017).

The encoder E receives an input image x and the convolu-

tional encoder stack first encodes it into zi , an intermediate

latent variable vector of size 128 × 1. zi is then transformed

into latent codes for background zb, mask zm , illumination zl ,

pose z p, identity zid and expression zexp via fully-connected

layers.

E(x) = [zb, zm, zl , z p, zid , zexp]
T . (6)

The decoder D takes in the latent codes as input. zb and

zm (128 × 1 vectors) are directly passed into convolutional

decoder stacks to estimate background and face mask respec-

tively. The remaining latent variables follow 3 streams:

1. zexp (15×1 vector) and zid (80×1 vector) are joined by

2-way synthesis and projection to estimate facial shape

ˆx3d .

2. The result of 2-way synthesis of zexp and zid is rotated

using z p. The rotated feature is passed into 2 different

convolutional decoder stacks: one for normal estima-

tion and another for albedo. Using the estimated normal

map, albedo, illumination component zl , mask and back-

ground, we render a reconstructed image x̂.

3. zexp, zid and zl are combined by a 3-way synthesis and

projection to estimate frontal normal map and a frontal

reconstruction of the image.

Streams 1 and 3 drive the disentangling of expression and

identity components, while stream 2 focuses on the recon-

struction of the image by adding the pose components. The

decoder D then outputs the reconstructed image from the

latent codes.

D(zb, zm, zl , z p, zid , zexp) = x̂. (7)

Our input images are aligned and cropped facial images

from the CelebA database (Liu et al. 2015) of size 64 × 64,

so kx = 3 × 64 × 64. k3d = 3 × 9375, kl = 9, kid = 80

and kexp = 15. More details on the network such as the

convolutional encoder stacks and decoder stacks can be found

in the supplementary material.
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Fig. 2 Our network is an end-to-end trained auto-encoder. The encoder

E extracts latent variables corresponding to illumination, pose, expres-

sion and identity from the input image x. These latent variables are then

fed into the decoder D to reconstruct the image. We impose a multi-

linear structure and enforce the disentangling of variations. The grey

triangles represent the losses: adversarial loss A, verification loss V , L1

and L2 losses

3.6 Training

We use in-the-wild face images for training. Hence, we

only have access to the image itself (x) while ground truth

labelling for pose, illumination, normal, albedo, expression,

identity or 3D shape is unavailable. The main loss function

is the reconstruction loss of the image x :

Ex = Erecon + λadv Eadv + λveri Everi , (8)

where x̂ is the reconstructed image, Erecon = ‖x − x̂‖1

is the reconstruction loss, λadv and λadv are regularisation

weights, Eadv represents the adversarial loss and Everi the

verification loss. We use the pre-trained verification network

V (Wu et al. 2015) to find face embeddings of our images x

and x̂. As both images are supposed to represent the same

person, we minimise the cosine distance between the embed-

dings: Everi = 1 − cos(V(x),V(x̂)). Simultaneously, a

discriminative network D is trained to distinguish between

the generated and real images (Goodfellow et al. 2014). We

incorporate the discriminative information by following the

auto-encoder loss distribution matching approach of Berth-

elot et al. (2017). The discriminative network D is itself an

auto-encoder trying to reconstruct the input image x so the

adversarial loss is Eadv = ‖x̂ − D(x̂)‖1. D is trained to

minimise ‖x − D(x)‖1 − kt‖x̂ − D(x̂)‖1.

As fully unsupervised training often results in semanti-

cally meaningless latent representations, Shu et al. (2017)

proposed to train with pseudo ground truth values for nor-

mals, lighting and 3D facial shape. We adopt here this

technique and introduce further pseudo ground truth values

for pose x̂ p, expression ˆxexp and identity ˆxid . x̂ p, ˆxexp and

ˆxid are obtained by fitting coarse face geometry to every

image in the training set using a 3D Morphable Model (Booth

et al. 2017). We incorporated the constraints used in Shu et al.

(2017) for illumination, normals and albedo. Hence, the fol-

lowing new objectives are introduced:

E p = ‖z p − x̂ p‖
2
2, (9)

where x̂ p is a 3D camera rotation matrix.
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Eexp = ‖ f c(zexp) − ˆxexp‖
2
2, (10)

where fc(·) is a fully-connected layer and ˆxexp ∈ R
28 is a

pseudo ground truth vector representing 3DMM expression

components of the image x.

Eid = ‖ f c(zid) − ˆxid‖2
2 (11)

where fc(·) is a fully-connected layer and ˆxid ∈ R
157 is

a pseudo ground truth vector representing 3DMM identity

components of the image x.

3.6.1 Multilinear Losses

Directly applying the above losses as constraints to the latent

variables does not result in a well-disentangled representa-

tion. To achieve a better performance, we impose a tensor

structure on the image using the following losses:

E3d = ‖ ˆx3d − B ×2 zexp ×3 zid‖2
2, (12)

where ˆx3d is the 3D facial shape of the fitted model.

E f = ‖x f − Q ×2 zl ×3 zexp ×4 zid)‖2
2, (13)

where x f is a semi-frontal face image. During training, E f

is only applied on near-frontal face images filtered using x̂ p.

En = ‖n̂ f − Q ×2
1

kl

1 ×3 zexp ×4 zid)‖2
2 (14)

where n̂ f is a near frontal normal map. During training, the

loss En is only applied on near frontal normal maps.

The model is trained end-to-end by applying gradient

descent to batches of images, where Eqs. (12), (13) and (14)

are written in the following general form:

E = ‖X − B(1)(Z(1) ⊙ Z(2) ⊙ · · · ⊙ Z(M))‖2
F , (15)

where M is the number of modes of variations, X ∈ R
k×n is

a data matrix, B(1) is the mode-1 matricisation of a tensor B

and Z(i) ∈ R
kzi ×n are the latent variables matrices.

The partial derivative of (15) with respect to the latent

variable Z(i) are computed as follows: Let x̂ = vec(X) be

the vectorised X , ẑ
(i) = vec(Z(i)) be the vectorised Z(i),

ˆZ(i−1) = Z(1)⊙Z(2)⊙· · ·⊙Z(i−1) and ˆZ(i+1) = Z(i+1)⊙

· · · ⊙ Z(M) , then (15) is equivalent with:

‖x̂ − (I ⊗ B(1))vec(Z(1) ⊙ Z(2) ⊙ · · · ⊙ Z(M))‖2
F

= ‖x̂ − (I ⊗ B(1))(I ⊙ ˆZ(i−1)) ⊗ I

· I ⊙ (
ˆZ(i+1)(I ⊗ �)) · ˆz(i)‖2

2

(16)

Consequently the partial derivative of (15) with respect to

Z(i) is obtained by matricising the partial derivative of (16)

with respect to Z(i). The derivation details are in the subse-

quent section.

3.6.2 Derivation Details

The model is trained end-to-end by applying gradient descent

to batches of images, where (12), (13) and (14) are written

in the following general form:

E = ‖X − B(1)(Z(1) ⊙ Z(2) ⊙ · · · ⊙ Z(M))‖2
F , (15)

where X ∈ R
k×n is a data matrix, B(1) is the mode-1 matrici-

sation of a tensor B and Z(i) ∈ R
kzi ×n are the latent variables

matrices.

The partial derivative of (15) with respect to the latent

variable Z(i) are computed as follows: Let x̂ = vec(X) be a

vectorisation of X , then (15) is equivalent with:

‖X − B(1)(Z(1) ⊙ Z(2) ⊙ · · · ⊙ Z(M))‖2
F

= ‖vec(X − B(1)(Z(1) ⊙ Z(2) ⊙ · · · ⊙ Z(M)))‖2
2

= ‖x̂ − vec(B(1)(Z(1) ⊙ Z(2) ⊙ · · · ⊙ Z(M)))‖2
2,

(17)

as both the Frobenius norm and the L2 norm are the sum of

all elements squared.

‖x̂ − vec(B(1)(Z(1) ⊙ Z(2) ⊙ · · · ⊙ Z(M)))‖2
2

= ‖x̂ − (I ⊗ B(1))vec(Z(1) ⊙ Z(2) ⊙ · · · ⊙ Z(M))‖2
2,

(18)

as the property vec(BZ) = (I ⊗ B)vec(Z) holds Neudecker

(1969).

Using vec(Z(1) ⊙ Z(2)) = (I ⊙ Z(1)) ⊗ I · vec(Z(2))

(Roemer 2012) and let ˆZ(i−1) = Z(1) ⊙ Z(2) ⊙ · · · ⊙ Z(i−1)

and ˆZ(i) = Z(i) ⊙ · · · ⊙ Z(M) the following holds:

‖x̂ − (I ⊗ B(1))vec(Z(1) ⊙ Z(2) ⊙ · · · ⊙ Z(M))‖2
2

= ‖x̂ − (I ⊗ B(1))(I ⊙ ˆZ(i−1)) ⊗ I · vec( ˆZ(i))‖2
2

(19)

Using vec(Z(1) ⊙ Z(2)) = I ⊙ (Z(2)(I ⊗ �)) · vec(Z(1))

(Roemer 2012) and let ˆZ(i+1) = Z(i+1) ⊙ · · · ⊙ Z(M):

‖x̂ − (I ⊗ B(1))(I ⊙ ˆZ(i−1)) ⊗ I · vec( ˆZ(i))‖2
2

= ‖x̂ − (I ⊗ B(1))(I ⊙ ˆZ(i−1)) ⊗ I

· I ⊙ (
ˆZ(i+1)(I ⊗ �)) · vec(Z(i))‖2

2

(20)
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Let ẑ
(i) = vec(Z(i)) be a vectorisation of Z(i), this

becomes:

‖x̂ − (I ⊗ B(1))(I ⊙ ˆZ(i−1)) ⊗ I

· I ⊙ (
ˆZ(i+1)(I ⊗ �)) · ˆz(i)‖2

2

(16)

We then compute the partial derivative of (16) with respect

to ˆz(i):

∂‖x̂ − A ˆz(i)‖2
2

∂ ˆz(i)
= 2AT (A · ˆz(i) − x̂), (21)

where A = (I ⊗ B(1))(I ⊙ ˆZ(i−1))⊗ I · I ⊙(
ˆZ(i+1)(I ⊗�)).

The partial derivative of (15) with respect to Z(i) is

obtained by matricising (21).

To efficiently compute the above mentioned operations,

Tensorly (Kossaifi et al. 2016) has been employed.

4 Proof of Concept Experiments

We develop a lighter version of our proposed network, a

proof-of-concept network (visualised in Fig. 3), to show that

our network is able to learn and disentangle pose, expression

and identity.

In order to showcase the ability of the network, we lever-

age our newly proposed 4DFAB database (Cheng et al. 2018),

where subjects were invited to attend four sessions at differ-

ent times in a span of five years. In each experiment session,

the subject was asked to articulate 6 different facial expres-

sions (anger, disgust, fear, happiness, sadness, surprise), and

we manually select the most expressive mesh (i.e. the apex

frame) for this experiment. In total, 1795 facial meshes from

364 recording sessions (with 170 unique identities) are used.

We keep 148 identities for training and leave 22 identities

for testing. Note that there are no overlapping of identities

between both sets. Within the training set, we synthetically

augment each facial mesh by generating new facial meshes

with 20 randomly selected expressions. Our training set con-

tains in total 35900 meshes. The test set contains 387 meshes.

For each mesh, we have the ground truth facial texture as well

as expression and identity components of the 3DMM model.

4.1 Disentangling Expression and Identity

We create frontal images of the facial meshes. Hence there

is no illumination or pose variation in this training dataset.

We train a lighter version of our network by removing the

illumination and pose streams, a proof-of-concept network,

visualised in Fig. 3, on this synthetic dataset.

4.1.1 Expression Editing

We show the disentanglement between expression and iden-

tity by transferring the expression of one person to another.

For this experiment, we work with unseen data (a hold-out

set consisting of 22 unseen identities) and no labels. We first

encode both input images xi and x j :

Fig. 3 Our proof-of-concept network is an end-to-end trained auto-

encoder. The encoder E extracts latent variables corresponding to

expression and identity from the input image x. These latent variables

are then fed into the decoder D to reconstruct the image. A separate

stream also reconstructs facial texture from zid . We impose a multilinear

structure and enforce the disentanglement of variations. In the extended

version a) the encoder also extracts a latent variable corresponding to

pose. The decoder takes in this information and reconstructs an image

containing pose variations
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Original
Image Expression Our Recon

Our Exp
Edit

Ground
Truth

Original
Image Expression Our Recon

Our Exp
Edit

Ground
Truth

Fig. 4 Our network is able to transfer the expression from one face to another by disentangling the expression components of the images. The

ground truth has been computed using the ground truth texture with synthetic identity and expression components

Input

Ground
Truth

Recons-
truction

Fig. 5 Given a single image, we infer meaningful expression and identity components to reconstruct a 3D mesh of the face. We compare the

reconstruction (last row) against the ground truth (2nd row)

E(xi ) = zi
exp, zi

id ,

E(x j ) = z
j
exp, z

j

id ,
(22)

where E(·) is our encoder and zexp and zid are the latent

representations of expression and identity respectively.

Assuming we want xi to emulate the expression of x j , we

decode on:

D(z
j
exp, zi

id) = x j i , (23)

where D(·) is our decoder. The resulting x j i becomes our

edited image where xi has the expression of x j . Figure 4

shows how the network is able to separate expression and

identity. The edited images clearly maintain the identity

while expression changes.

4.1.2 3D Reconstruction and Facial Texture

The latent variables zexp and zid that our network learns are

extremely meaningful. Not only can they be used to recon-

struct the image in 2D, but also they can be mapped into the

expression (xexp) and identity (xid ) components of a 3DMM

model. This mapping is learnt inside the network. By replac-

ing the expression and identity components of a mean face

shape with ˆxexp and ˆxid , we are able to reconstruct the 3D

mesh of a face given a single input image. We compare these

reconstructed meshes against the ground truth 3DMM used

to create the input image in Fig. 5.

At the same time, the network is able to learn a mapping

from zid to facial texture. Therefore, we can predict the facial

texture given a single input image. We compare the recon-

structed facial texture with the ground truth facial texture in

Fig. 6.

4.2 Disentangling Pose, Expression and Identity

Our synthetic training set contains in total 35900 meshes. For

each mesh, we have the ground truth facial texture as well

as expression and identity components of the 3DMM, from

which we create a corresponding image with one of 7 given
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Input

Ground
Truth

Recons-
truction

Fig. 6 Given a single image, we infer the facial texture. We compare the reconstructed facial texture (last row) against the ground truth texture

(2nd row)

Original
Image Pose Our Recon

Our Pose
Edit

Ground
Truth

Original
Image Pose Our Recon

Our Pose
Edit

Ground
Truth

Fig. 7 Our network is able to transfer the pose from one face to another by disentangling the pose, expression and identity components of the

images. The ground truth has been computed using the ground truth texture with synthetic pose, identity and expression components

poses. As there is no illumination variation in this training

set, we train a proof-of-concept network by removing the

illumination stream, visualised in Fig. 3a, on this synthetic

dataset.

4.2.1 Pose Editing

We show the disentanglement between pose, expression and

identity by transferring the pose of one person to another.

Figure 7 shows how the network is able to separate pose

from expression and identity. This experiment highlights the

ability of our proposed network to learn large pose variations

even from profile to frontal faces.

5 Experiments in-the-Wild

We train our network on in-the-wild data and perform sev-

eral experiments on unseen data to show that our network is

indeed able to disentangle illumination, pose, expression and

identity.

We edit expression or pose by swapping the latent expres-

sion/pose component learnt by the encoder E [Eq. (6)] with

the latent expression/pose component predicted from another

image. We feed the decoder D [Eq. (7)] with the modified

latent component to retrieve our edited image.

5.1 Expression, Pose and Identity Editing in-the-Wild

Given two in-the-wild images of faces, we are able to transfer

the expression, pose of one person to another. We are also

able to swap the face of the person from one image to another.

Transferring the expression from two different facial images

without fitting a 3D model is a very challenging problem.

Generally, it is considered in the context of the same person

under an elaborate blending framework (Yang et al. 2011) or

by transferring certain classes of expressions (Sagonas et al.

2017).

For this experiment, we work with completely unseen data

(a hold-out set of CelebA) and no labels. We first encode both

input images xi and x j :

E(xi ) = zi
exp, zi

id , zi
p

E(x j ) = z
j
exp, z

j

id , z
j
p,

(24)

where E(·) is our encoder and zexp, zid , z p are the latent

representations of expression, identity and pose respectively.
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Original
Image

Expres-
sion

Our
Recon

Our Exp
Edit B & W

Wang
et al

(2017b)
Original
Image

Expres-
sion

Our
Recon

Our Exp
Edit B & W

Wang
et al

(2017b)

Fig. 8 We compare our expression editing results with Wang et al. (2017b). As Wang et al. (2017b) is not able to disentangle pose, editing

expressions from images of different poses returns noisy results

Assuming we want xi to take on the expression, pose or

identity of x j , we then decode on:

D(z
j
exp, zi

id , zi
p) = x j i i

D(zi
exp, zi

id , z
j
p) = xi i j

D(zi
exp, z

j

id , zi
p) = xi j i

(25)

where D(·) is our decoder.

The resulting x j i i then becomes our result image where

xi has the expression of x j . x j i i is the edited image where

xi changed to the pose of x j . xi j i is the edit where xi ’s face

changed to the face of x j .

As there is currently no prior work for this expression edit-

ing experiment without fitting an AAM (Cootes et al. 2001)

or 3DMM, we used the image synthesised by the 3DMM

fitted models as a baseline, which indeed performs quite

well. Compared with our method, other very closely related

works (Wang et al. 2017b; Shu et al. 2017) are not able to

disentangle illumination, pose, expression and identity. In

particular, Shu et al. (2017) disentangles illumination of an

image while Wang et al. (2017b) disentangles illumination,

expression and identity from “frontalised” images. Hence

they are not able to disentangle pose. None of these methods

can be applied to the expression/pose editing experiments

on a dataset that contains pose variations such as CelebA. If

Wang et al. (2017b) is applied directly on our test images,

it would not be able to perform expression editing well, as

shown by Fig. 8.

For the 3DMM baseline, we fit a shape model to both

images and extract the expression components of the model.

This fitting step has high overhead of 20 s per image. We then

generate a new face shape using the expression components

of one face and the identity components of another face in the

same 3DMM setting. This technique has much higher over-

head than our proposed method as it requires time-consuming

3DMM fitting of the images. Our expression editing results

and the baseline results are shown in Fig. 9. Though the base-

line is very strong, it does not change the texture of the face

which can produce unnatural looking faces shown with orig-

inal expression. Also, the baseline method can not fill up

the inner mouth area. Our editing results show more natural

looking faces.

For pose editing, the background is unknown once the

pose has changed, thus, for this experiment, we mainly focus

on the face region. Figure 10 shows our pose editing results.

For the baseline method, we fit a 3DMM to both images and

estimate the rotation matrix. We then synthesise xi with the

rotation of x j . This technique has high overhead as it requires

expensive 3DMM fitting of the images.
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Original
Image Expression Our Recon

Our Exp
Edit Baseline

Original
Image Expression Our Recon

Our Exp
Edit Baseline

Fig. 9 Our network is able to transfer the expression from one face to another by disentangling the expression components of the images. We

compare our expression editing results with a baseline where a 3DMM has been fit to both input images

Original
Image Pose Our Recon

Our Pose
Edit Baseline

Original
Image Pose Our Recon

Our Pose
Edit Baseline

Fig. 10 Our network is able to transfer the pose of one face to another by disentangling the pose components of the images. We compare our pose

editing results with a baseline where a 3DMM has been fit to both input images

123



754 International Journal of Computer Vision (2019) 127:743–762

Original
Image Identity Recon Our Id Edit

Original
Image Identity Recon Our Id Edit

Fig. 11 Our network is also able to transfer the identity of one image to another by disentangling the identity components of the images

Figure 11 shows our results on the task of face swapping

where the identity of one image has been swapped with the

face of another person from the second image.

5.1.1 Quantitative Studies

We conducted a quantitative measure on the expression edit-

ing experiment. We ran a face recognition experiment on 50

pairs of images where only the expression has been trans-

ferred. We then passed them to a face recognition network

(Deng et al. 2018) and extracted their respective embeddings.

All 50 pairs of embeddings had cosine similarity larger than

0.3. In comparison, We selected 600 pairs of different people

from CelebA and computed their average cosine similarity

which is 0.062. The histogram of these cosine similarities

is visualised in Fig. 12. This indicates that the expression

Fig. 12 Histogram of cosine similarities on 600 pairs of “non-same”

people from CelebA

editing does conserve identity in terms of machine percep-

tion.
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Original
Image Expression Our Recon.

Without
ML Loss

With ML
Loss

With ML,
Adv Loss

With ML,
Adv, Veri

Loss Baseline

Fig. 13 Ablation study on different losses (multilinear, adversarial, verification) for expression editing. The results show that incorporating

multilinear losses indeed helps the network to better disentangle the expression variations
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Original
Image Pose Our Recon.

Without
ML Loss

With ML
Loss

With ML,
Adv Loss

With ML,
Adv, Veri

Loss Baseline

Fig. 14 Ablation study on different losses (multilinear, adversarial, verification) for facial pose editing. The results show that incorporating

multilinear losses helps the network to better disentangle the pose variations

5.1.2 Ablation Studies

We performed a series of ablation studies. We first trained

a network without multilinear losses by simply feeding

the concatenated parameters p = [z pose, zexp, zid ] to the

decoder, thus the training of the network is only driven by the

reconstruction loss and pseudo-supervision from 3DMM on

pose, expression and identity latent variables, i.e., z pose, zexp

and zid . Next, we started to incorporate other losses (i.e., mul-

tilinear losses, adversarial loss, verification loss) step by step

in the network and trained different models. In this way, we

can observe at each step how additional loss may improve

the result.

In Figs. 13 and 14, we compare the expression and pose

editing results. We find that the results without multilinear

losses shows some entanglement of the variations in terms

of illumination, identity, expression and pose. In particular,

the entanglement with illumination is strong, examples can

be found in second and ninth row of Fig. 13. Indeed, by

incorporating multilinear losses in the network, the identity

Tewari et al
(2018)

Tran and Liu
(2018) Ours

Fig. 15 Texture reconstruction compared with Tewari et al. (2018),

Tran and Liu (2018). Tewari et al. (2018), Tran and Liu (2018) have been

trained with images of higher resolutions of 240 × 240 and 128 × 128

respectively. In comparison our model has only been trained with images

of size 64 × 64 pixels

and expression variations are better disentangled. Further-

more, the incorporation of adversarial and verification losses

enhances the quality of images, making them look more
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Fig. 16 Expression interpolation

Fig. 17 Identity interpolation

realistic but do not contribute in a meaningful way to the

disentanglement.

5.1.3 Discussion on Texture Quality

It has to be noted that our baseline 3DMM method Booth et al.

(2017) does not change facial texture. It directly samples the

original texture and maps it to a 3D face. Hence, the texture

quality is exactly the same as that of the original image as

no low-dimensional texture representation is used. In terms

of texture quality, direct texture mapping has an edge over

our proposed method which models the texture using a low-

dimensional representation. But direct texture mapping is

also prone to artefacts and does not learn the new expression

in the texture. Looking at Fig. 9 column 2, rows 4, 5 and

7, we observe that the texture itself did not change in the

baseline result. The eyes and cheeks did not adjust to show a

smiling or neutral face. The expression change results from

the change in the 3D shape but the texture itself remained the

same as in the input. Low-dimensional texture representation

does not have this issue and can generate new texture with

changed expression.

Generally methods similar to ours which estimate facial

texture is not able to extract the same amount of details as the

original image. Figure 15 visualises how our texture recon-

struction compares to state-of-the-art works which have been

trained on images of higher resolutions.

5.2 Expression and Identity Interpolation

We interpolate zi
exp / zi

id of the input image xi on the right-

hand side to the zt
exp / zt

id of the target image xt on the

left-hand side. The interpolation is linear and at 0.1 interval.

For the interpolation we do not modify the background so

the background remains that of image xi .

For expression interpolation, we expect the identity and

pose to stay the same as the input image xi and only the

expression to change gradually from the expression of the

input image to the expression of the target image xt . Fig-

ure 16 shows the expression interpolation. We can clearly

see the change in expression while pose and identity remain

constant.

For identity interpolation, we expect the expression and

pose to stay the same as the input image xi and only the
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Source ŝ
source

Shu et al
(2017)

ŝ
source

Ours
Target

Recon-
struction ŝ

target
s

transfer Result

Shu et al (2017)

Ours

Shu et al (2017)

Fig. 18 Using the illumination and normals estimated by our network,

we are able to relight target faces using illumination from the source

image. The source ŝ
source

and target shading ŝ
target

are displayed to

visualise against the new transferred shading strans f er . We compare

against Shu et al. (2017)

identity to change gradually from the identity of the input

image to the identity of the target image xt . Figure 17 shows

the identity interpolation. We can clearly observe the change

in identity while other variations remain limited.

5.3 Illumination Editing

We transfer illumination by estimating the normals n̂, albedo

â and illumination components l̂ of the source (xsource) and

target (xtarget ) images. Then we use n̂
target

and l̂
source

to

compute the transferred shading strans f er and multiply the

new shading by â
target

to create the relighted image result

xtrans f er . In Fig. 18 we show the performance of our method

and compare against Shu et al. (2017) on illumination trans-

fer. We observe that our method outperforms Shu et al. (2017)

as we obtain more realistic looking results.

5.4 3D Reconstruction

The latent variables zexp and zid that our network learns

are extremely meaningful. Not only can they be used to

reconstruct the image in 2D, they can be mapped into the

expression (xexp) and identity (xid ) components of a 3DMM.

This mapping is learnt inside the network. By replacing the

expression and identity components of a mean face shape

with ˆxexp and ˆxid , we are able to reconstruct the 3D mesh

of a face given a single in-the-wild 2D image. We compare

these reconstructed meshes against the fitted 3DMM to the

input image.

Input
Jackson

et al (2017)
Feng et al

(2018) Ours Input
Jackson

et al (2017)
Feng et al

(2018) Ours

Fig. 19 Given a single image, we infer meaningful expression and identity components to reconstruct a 3D mesh of the face. We compare our 3D

estimation against recent works (Jackson et al. 2017; Feng et al. 2018)
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Fig. 20 Comparison of the estimated normals obtained using the pro-

posed model vs the ones obtained by Wang et al. (2017b) and Shu et al.

(2017)

Table 1 Angular error for the various surface normal estimation meth-

ods on the Photoface (Zafeiriou et al. 2013) dataset. We also show the

proportion of the normals below 35◦ and 40◦

Method Mean ± Std against

Woodham (1980)

< 35◦ (%) < 40◦ (%)

Wang et al. (2017b) 33.37◦ ± 3.29◦ 75.3 96.3

Shu et al. (2017) 30.09◦ ± 4.66◦ 84.6 98.1

Proposed 28.67◦ ± 5.79◦ 89.1 96.3

The results of the experiment are visualised in Fig. 19. We

observe that the reconstruction is comparable to other state-

of-the-art techniques (Jackson et al. 2017; Feng et al. 2018).

None of the techniques though capture well the identity of

the person in the input image due to a known weakness in

3DMM.

5.5 Normal Estimation

We evaluate our method on the surface normal estimation

task on the Photoface (Zafeiriou et al. 2013) dataset which

has information about illumination. Assuming the normals

found using calibrated Photometric Stereo (Woodham 1980)

as “ground truth”, we calculate the angular error between

our estimated normals and the “ground truth”. Figure 20 and

Table 1 quantitatively evaluates our proposed method against

prior works (Wang et al. 2017b; Shu et al. 2017) in the nor-

mal estimation task. We observe that our proposed method

performs on par or outperforms previous methods.

5.6 Quantitative Evaluation of the Latent Space

We want to test whether our latent space corresponds well

to the variation that it is supposed to learn. For our quan-

titative experiment, we used Multi-PIE (Gross et al. 2010)

as our test dataset. This dataset contains labelled variations

in identity, expressions and pose. Disentanglement of vari-

ations in Multi-PIE is particularly challenging as its images

are captured under laboratory conditions which is quite dif-

ferent from that of our training images. As a matter of fact,

Table 2 Classification accuracy results: we try to classify 54 identities

using zid , 6 expressions using zexp and 7 poses using z p . We compare

against standard baseline methods such as SIFT and CNN

Features Identity (%) Expression (%) Pose (%)

SIFT and visual bag of

words, K = 50

14.60 58.33 55.50

SIFT and visual bag of

words, K = 100

18.71 59.36 59.46

Standard CNN model 94.68 96.54 98.78

Ours (zi dent i t y,

zex pression, z pose)

88.29 84.85 95.55

Table 3 Identity classification accuracy results: we classify 54 identi-

ties using zid with and without verification loss

Features Identity (%)

Without verification loss 87.94

Ours (zi dent i t y) 88.29

Without verification loss (frontal only) 99.96

Ours (zi dent i t y, frontal only) 99.98

Top performing values are given in bold

Table 4 Classification accuracy results in comparison with Wang et al.

(2017b): as Wang et al. (2017b) works on frontal images, we only con-

sider frontal images in this experiment. We try to classify 54 identities

using zid versus C, 6 expressions using zexp versus E and 16 illumi-

nation using zill versus L

zi dent i t y (%) C (Wang et al. 2017b) (%)

Identity

Accuracy 99.33 19.18

zex pression (%) E (Wang et al. 2017b) (%)

Expression

Accuracy 78.92 35.49

zi l luminat ion (%) L (Wang et al. 2017b) (%)

Illumination

Accuracy 64.11 48.85

Top performing values are given in bold

the expressions contained in Multi-PIE do not correspond to

the 7 basic expressions and can be easily confused.

We encoded 10,368 images of the Multi-PIE dataset with

54 identities, 6 expressions and 7 poses and trained a lin-

ear SVM classifier using 90% of the identity labels and the

latent variables zid . We then test on the remaining 10% zid

to check whether they are discriminative for identity clas-

sification. We use 10-fold cross-validation to evaluate the

accuracy of the learnt classifier. We repeat this experiment

for expression with zexp and pose with z p respectively. Our

results in Table 2 show that our latent representation is indeed
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Fig. 21 Visualisation of our

Zexp and baseline Z0 using

t-SNE. Our latent Zexp clusters

better with regards to expression

than the latent space Z0 of an

auto-encoder

Fig. 22 Visualisation of our Z p

and baseline Z0 using t-SNE. It

is evident that the proposed

disentangled Z p clusters better

with regards to pose than the

latent space Z0 of an

auto-encoder

discriminative. We compare against some standard baselines

such as Bag-of-Words (BoWs) models with SIFT feature

(Sivic and Zisserman 2009) and standard CNN. Our model

does not outperform the standard CNN model, which is fully

supervised and requires a separate model for each varia-

tion classification. Still our results are a strong indication

that the latent representation found is discriminative. This

experiment showcases the discriminative power of our latent

representation on a previously unseen dataset.

As an ablation study, we test the accuracy of the iden-

tity classification of zid from a model trained without the

verification. The results in Table 3 show that though adding

the verification loss improves the performance, the gain is

not significant enough to prove that this loss is a substantial

contributor of the information.

In order to quantitatively compare with Wang et al.

(2017b), we run another experiment on only frontal images

of the dataset with 54 identities, 6 expressions and 16 illu-

minations. The results in Table 4 shows how our proposed

model outperforms (Wang et al. 2017b) in these classification

tasks. Our latent representation has stronger discriminative

power than the one learnt by Wang et al. (2017b).

We visualise, using t-SNE (Maaten and Hinton 2008), the

latent Zexp and Z p encoded from Multi-PIE according to

their expression and pose label and compare against the latent

representation Z0 learnt by an in-house large-scale adversar-

ial auto-encoder of similar architecture trained with 2 million

faces (Makhzani et al. 2015). Figures 21 and 22 show that

even though our encoder has not seen any images of Multi-

PIE, it manages to create informative latent representations

that cluster well expression and pose (contrary to the repre-

sentation learned by the tested auto-encoder).

6 Limitations

Some of our results do still show entanglement in the varia-

tions. Sometimes despite only aiming to change expression

only, pose or illumination have been modified as well. This

happens mainly in very challenging scenarios where for

example one of the image shows extreme lighting conditions,

is itself black and white or displays large pose variations.

Due to the dataset (CelebA) we used, we do struggle with

large pose variations. The proof of concept experiments do

show that this is possible to be learned with a more balanced

dataset.
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7 Conclusion

We proposed the first, to the best of our knowledge, attempt

to jointly disentangle modes of variation that correspond to

expression, identity, illumination and pose using no explicit

labels regarding these attributes. More specifically, we pro-

posed the first, as far as we know, approach that combines

a powerful Deep Convolutional Neural Network (DCNN)

architecture with unsupervised tensor decompositions. We

demonstrate the power of our methodology in expression

and pose transfer, as well as discovering powerful features

for pose and expression classification. For future work, we

believe that designing networks with skip connections for

better reconstruction quality and which at the same time can

learn a representation space where some of the variations are

disentangled would be a promising research direction.
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