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PREFACE

Nomenclature

Throughout this thesis bold letters indicate vectors (lower

case) or matrices (upper case). The term blade axis refers to

an imaginary line in the blade which has the shape of a tropo-

skien; this is not to be confused with the rotor axis, about

which the blades spin.

a aspect ratio of the area swept by the blade

A unsteady aerodynamic force matrix

b semichord of the blade cross-section

b intrinsic binormal unit vector

c curvature of the deformed blade

curvature of the undeformed blade

C centrifugal force matrix M + K0
0

e
a

dimensionless distance from blade axis to the midchord of

a cross-section (positive aft) in semichords.

e
m

dimensionless distance from the blade axis to the center

of gravity of a cross-section (positive aft) in

semichords.

e
r

dimensionless radius of gyration of a cross-section about

the blade axis (in semichords)

EA stiffness constant for blade extension

EI stiffness constant for bending in the plane of the blade.

g growth rate coefficient of the oscillations.

gs structural damping coefficient

G gyroscopic matrix

GJ torsional stiffness constant

h semispan of the blade



(-1)1/2

k. (j=1,2,3) stiffness ratios

K. (j=0,1,2,3,4) stiffness matrices

k* reduced frequency tiqn

m mass per unit length of the blade

m* mass density ratio m/ffpb2

M mass matrix

M0 centrifugal force matrix

n order of the characteristic equations

n number of discretization intervals

n intrinsic normal unit vector

p characteristic exponent w('ig + 1)

p* dimensionless characteristic exponent p(mh
4
/EI)

P tension in the undeformed spinning blade

P* dimensionless tension P /u22h2

q torsion of the blade axis

q. vector of cubic splines for the jth variable

dimensionless rotation rate Moth4 /EI)1/2

s arc-length along the deformed blade with origin at mid-

span

s arc-length along the undeformed blade with origin at mid-_

span

s* dimensionless arc-length s/h

t time

t intrinsic tangent unit vector

u vector of generalized coordinates

x. (j=1,2,3) coordinates of the undeformed blade axis

Y. (j=1,2,3)displacementsinthex.directions

angular displacement of a cro!--section about the local

tangent

G. (j=2,3) Euler angles describing the orientation of a

cross-section



w frequency of oscillation

rotor spin rate (radians/sec)

p density of air



AN AEROELASTIC ANALYSIS OF THE DARRIEUS WIND TURBINE

I. INTRODUCTION

The Darrieus wind turbine is a vertical axis wind powered

turbine which has blades formed in the shape known as a trop-

oskien. Figure 1 shows a Darrieus wind turbine with three

troposkein-shaped blades. A troposkein is the theoretical shape

taken by a perfectly flexible rope with the ends fixed to a

spinning shaft. This term was coined by Blackwell (Reference 1)

from the greek words tropos (turning) and skeinion (rope). The

original concept of this wind turbine dates back to 1931 when

G. J. M. Darrieus patented it (Reference 2), although the idea

was apparently independently developed by South (Reference 3)

in the early 1970's.

Figure 1. A Three-Bladed Darrieus Rotor
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The advantage to troposkein-shaped blades is that the

spinning blades are not subjected to bending stresses caused by

centrifugal forces, since they have precisely the shape that

centrifugal forces would like them to have. Hence the blades

are theoretically in pure tension. This is a significant advan-

tage because long, slender blades such as these can easily de-

velop large bending stresses, which tend to fatigue the blade,

particularly in view of the cyclical nature of the operation of

a typical wind turbine. Thus, for example, helicopter blades

tend to have relatively short life-spans on account of fatigue.

One of the contributing factors to the short fatigue life

of helicopter blades is vibration. While a certain amount of

vibration in helicopter blades is due to the engine, an equally

important source is the interaction of the blade with the sur-

rounding air. Under some circumstances, vibrations induced by

aerodynamic forces can lead to a catastrophic condition known

as flutter. The study of the conditions under which an elastic

body flutters is one of the concerns of the field known as

aeroelasticity.

The aeroelastic stability of the Darrieus wind turbine has

received little attention in the literature, primarily because

it was not seriously considered as an alternative to the more

conventional horizontal axis wind turbine until the early

1970's. The horizontal axis wind turbine, on the other hand,

is similar to a helicopter rotor and although significant dif-

ferences exist between them, the extensive research which has

been done on helicopter rotors over the past thirty years has

provided a solid foundation for the aeroelastic analysis of

horizontal axis wind turbines. Unfortunately, no such back-

ground exists for the Darrieus rotor, so a more basic approach

is necessary.
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This study then is concerned with the aeroelastic stab-

ility of the Darrieus wind turbine with a view towards iden-

tifying the parameters which are most important in designing flut-

ter-free blades. Because of the complex geometry of the Darrieus

blades it was deemed necessary to use a computer model of the dy-

namic behavior of the blade; this is in contrast with the only

other aeroelastic study of the Darrieus blade (Reference 4) in

which simplified equations were developed which resulted in a

closed-form analytical solution for the flutter speeds. The scope

of the present study is somewhat broader and more detailed.

One of the fundamental questions which an aeroelastic study

such as this tries to answer is : how fast can the Darrieus be spun

without causing the blades to flutter? Perhaps a more important

question in terms of preventing flutter instabilities is: what

causes the blade to flutter? Once the mechanism behind the flutter

instabilities is known it is of interest to see the effects of

varying some of the parameters which describe the model, such as

stiffnesses and mass of the blade. Answering these questions is one

of the primary objectives of this study.

As mentioned before, a computer model was used to investigate

the behavior of the Darrieus blade; no experimental models such as

wind tunnel models, were used, nor were the results of any tests

available. The primary reason for the lack of available data on

flutter in actual working models is that flutter is exceedingly

difficult to test for experimentally, largely due to the destruc-

tive nature of flutter. These two types of investigation, model or

prototype testing and computer modelling, have somewhat different

purposes, although they can complement one another. With computer

modelling it is usually hoped to gain insight into the phenomenon

being studied, rather than actual numbers, whereas model testing is

usually concerned with ensuring that a particular configuration is
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free from flutter. That is, the results of a computer study can

apply to a wide variety of configurations, while a model test is

limited to one particular configu .ion. The purpose of this study

then is not to analyse a particular Darrieus wind turbine, but

rather to investigate Darrieus wind turbines in general in regards

to aeroelastic stability.

Due to the lack of previous analyses of the Darrieus wind tur-

bine, it was necessary to derive equations of motion from basic

principles. This is the subject of chapter II and appendix A. The

techniques commonly used to solve flutter equations were found to

be inadequate in this case, possibly because of the presence of

gyroscopic forces. Thus a considerable amount of effort went into

developing a method which worked well in this case. The technique,

based on the continuation methods of structural mechanics, is

described in chapter III and appendix B. Results are presented in

chapter IV and conclusions in chapter V.

Throughout this thesis, equations are numbered consecutively

within each section; thus equation 11.2.25 refers to equation (25)

in section 11.2.
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II. EQUATIONS OF MOTION

II.1 Basic Assumptions

In this chapter linear equations governing the motion of a

single Darrieus blade spinning at a constant rotation rate in

still air are developed. The equations of motion are derived

by developing expressions for the kinetic and potential energy

and the aerodynamic forces per unit length of the blade span.

An integration along the blade span results in the total kin-

etic and potential energies and the generalized forces on the

blade, which may then be used in Lagrange's equations to arrive

at equations of motion.

The cross-section of the blade is assumed to be uniform

along the blade span, with the shape of a symmetric airfoil.

Furthermore, this cross-sectional shape is assumed to remain

undistorted during any motion of the blade. Hence the position

and orientation of each element of the blade may be described

using four variables: three displacements and one rotation.

These four variables are functions of time and distance along

the blade, and completely describe the configuration of the

blade during any motion.

By retaining only terms which are quadratic or lower order

in the displacements, the expressions for kinetic and potential

energy will result in equations of motion which are linear in

the displacements. In the expressions for aerodynamic forces

it is necessary to retain only linear terms in the displace-

ments, or equivalently, quadratic terms in the expression for

the virtual work of these forces.
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These expressions are differential forms involving partial

derivatives with respect to the distance along the blade (s)

and time. From these expressions it is possible to develop

partial differential equations of motion using Lagrange's equa-

tions. In order to obtain a numerical solution of the equations

of motion, the spatial dependence is commonly eliminated by

discretizing the spatial variable, resulting in ordinary rather

than partial differential equations. This method is usually

referred to as Galerkin's method (Reference 5). Alternatively,

we could discretize the partial differential expressions for

kinetic energy, potential energy and the aerodynamic forces

before applying Lagrange's equations; this technique is some-

times referred to as the assumed modes method (Reference 5),

although because of the close connection between this method

and the finite element method it has also been termed the ab-

stract finite element method (Reference 6). These two approa-

ches are completely equivalent, but the second approach is much

less cumbersome, hence less prone to error. For this reason we

use the second method to develop equations of motion in ordin-

ary differential form. We therefore need only write expressions

for kinetic energy, potential energy, and the aerodynamic

forces on a differential element of blade, substitute the dis-

cretizing functions, and integrate along the blade to obtain

expressions involving derivatives with respect to time only.

Application of Lagrange's equations results in a system of lin-

ear ordinary differential equations describing the motion of

the blade. By making the usual assumption of harmonic motion

these equations are reduced to a system of complex algebraic

characteristic equations known as the flutter equations

(Reference 7).
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11.2 Geometry

Before deriving equations of motion it is first necessary

to describe the blade in geometric terms and define sets of

coordinate systems which will make the derivations easier. In

addition, we make some assumptions regarding the geometry of

the blade.

The undeformed blade is assumed to have the theoretical

shape known as a troposkien (Reference 1), with a uniform

cross-section along the blade span. The cross-sectional shape

is that of a thin, symmetric airfoil with chord length 2b.

Furthermore, it is assumed that there is a reference line,

hereafter referred to as the blade axis, which remains fixed

relative to the blade during any blade motion. This axis is

assumed to pass through each cross-section at a fixed point on

the chord or line of symmetry of the cross-section. The point

of intersection of the axis with a cross-section is referred to

as the axis location, and is defined by the distance between

this point and the mid-chord of the cross-section. Since the

cross-section is constant along the blade and the axis passes

through the same point at each cross-section, the axis of the

undeformed blade is a plane curve. Stricly speaking, it is the

undeformed blade axis which has the shape of a troposkien.

The position of a point on the undeformed axis is

described by a vector x with components xi, x2, and x3 in the

xl, x2, and x3 directions, respectively, as shown in figure 2.

x
1

is a unit vector parallel to the wind turbine spin axis,

while x
2
is a unit vector which lies in the plane of the

undeformed blade and intersects the blade axis at the semi-span

of the blade. Thus the undeformed blade lies in the x
1
-x

2

plane. x
3

is a unit vector
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Figure 2. x Coordinate System
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perpendicular to the xl-x2 plane. The xl-x2-x3 coordinate

system is thus fixed to the reference frame of the undeformed

blade and therefore rotates with the blade.

If we denote the arc-length along the axis with origin at

the blade semi-span by s, then the axis can be described

parametrically by x(s). A point on the axis of the deformed

blade is described by a vector

x(s,t) = x(s) + y(s,t) (1)

where y(s,t) is a postion vector relating a point on the de-

formed blade axis to the corresponding point on the undeformed

axis, hence is a function of time and the position on the

blade. In component form

y(s,t) = yi(s,t)xl + y2(s,t)x2 + y3(s,t)x3 (2)

It will prove useful in the sequel to introduce two ad-

ditional coordinate systems which are based on the geometry of

the undeformed and deformed blade axes. These are the so-called

intrinsic coordinate systems for space curves (Reference 8).

An arbitrary curve in space has associated with it a set

of mutually perpendicular unit vectors known as the tangent,

normal, and binormal vectors. If the curve is described in par-

ametric form by

x(s) = xl(s)xl + x2(s)x2 + x3(s)x3 (3)

then the unit tangent vector is defined by

t(s) = x'(s) = xi(s)xl + x(s)x2 + x3(s)x3 (4)



The unit normal vector is defined by

n(s) _ 1
--c ti(s)

where c2 = t' -t' is the curvature at s. Finally, the unit bi-

normal is defined by

10

(5)

b(s) = t X n = (n' + ct) (6)

where q = n'b is known as the torsion of the curve. The fol-

lowing equations, known as the Frenet formulas, describe the

rates of change of these vectors:

t' = cn

n' = qb ct

b' = - qn

(7)

Applying these definitions to the undeformed blade axis we

define an intrinsic coordinate system with base vectors t, n,

and b. Likewise, at each point on the deformed axis we define

an intrinsic coordinate system with base vectors t, n and b.

Figure 3 shows the intrinsic base vectors at a typical section

of the undeformed and the deformed blade. In addition to the

displacement y, we allow sections of the blade to rotate about

the tangent vector; this rotation is described by the angle 9

between the blade chord and the binormal vector (see figure 3).

The position and orientation of a section of the blade is com-

pletly described by the intrinsic base vectors and 9. It re-

mains to derive expressions for the base vectors in terms of

the displacements (y); to this end we introduce a sequence of

Euler angles (9
2'

9
3
) relating the undeformed and the deformed



Figure 3. Intrinsic Base Vectors
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Figure 4. Euler Angles Describing the

Orientation of a Section



axis orientations as shown in figure 4.

The axis of the undeformed blade lies in the xl-x2 plane,

so that

t(s) = xl(s) = xl(s)x + x'(s)x
-1 1 2 2

Furthermore, the normal vector

_
T
1 1

t1(s) = (21!;(2)xl + x(s)x2)

and the binormal vector

b(s) = t(s) x n(s) =
1

x"x1)x
c -1-2 -1-2 3

Note that since b = x
3'

c = x"x' x'x"
-1-/ -1-2'

and b' = 0. Differentiating the relationship

tt = x14 2 + 202 2 = 1-

results in

)(Ix" + x'x" = 0
-1-4 -2-2

which allows us to write (12) as

x
,2

1
c = x'x" x" =

xi

- -2-1 x' -4 x'
2 -2

and, using (10), (13), and (14) it is easily verified that

13

(9)

(10)

(12)

(13)

(14)

(15)



n = xix x1 xi

2

Thus in terms of the x coordinates,

0 0

gl

'2

14

(16)

(17)

The base vectors t, n, and b for the deformed blade axis

may be written in terms of the Euler angles and the t, n, and b

vectors as

1

t

b

cos9
2
cos9

3
sin9

3
-sin9

2
cos9

3

-cos 92 93
sin cos9

3
sine

2
sin0

3

sin9
2

0 cos9
2

which for small angles may be written as

e-t

b

1 9
3

-9
2

t

-9
3

1 0

9
2

0 1 b
L

"Th

t

(18)

(19)

Evidently the Euler angles (9
2' 3

) are functions of the dis-

placement vector y; we next develop explicit expressions for 92

and 93 in terms of the displacements. From the definition of



the tangent vector,

d

t (Ts"(1.
y) = rs-(x + y)(

ds
)

-1
= (t + v1)(Af.) -I

ds

Recalling the fact that the tangent vector has unit length,

ds
)

2
= 1 + 2ty' + yly1

and writing

Y(s) 371x1 372x2 373x3

(31Y1 +2y2)t +
2(1372)11

37312-'

5,1(s) = yixi + yIx2 + y3x3

(Ely; 213i2)t (x3'21 3Yr2)11 Yib

results in

, ,
(ds)2

1 + 2(xiyi + X2372) +
,2

Y2
2

Y3
2

ds

15

(20)

(21)

which expresses the elongation of the deformed blade axis in

terms of the displacements. Substituting (22) into (20) and

linearizing yields

t = t + (2s.371 2Ely2)n

Comparing (19) and (24) we conclude that

9 y'
2 3

(22)

(23)

(24)

(25)
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Hence the transformation from the undeformed intrinsic base

vectors to the deformed base vectors is

r
t

n

b

1

-(1qYi 2qY2)

21
xl2 y' - x'1 y'

1

-yi

0 1

or in terms of the xi, x2, x3 base vectors,

t

n

b

16

(26)

t

n

b

T
11

T
12

T
12

T
22

2s?i

T
13

0

-1

xl

x
2

x

(27)

where

T
11

= x' + x'(x:syi p
4 2

T12 2c-i(1(2Y1 IciY2)

T22 ?!;Y2)
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11.3 Strain Energy

The potential energy of the blade consists of strain

energy due to linear elastic deformations. Expressions for the

elastic strain energy will be derived using engineering beam

theory; that is, it is assumed that plane cross-sections which

are initially normal to the axis tangent remain plane and

normal to the axis tangent. This hypothesis, known as the

Euler-Bernoulli hypothesis, implies that a cross-section of the

blade which is initially in the plane of the intrinsic normal

and binormal vectors remains in the plane of the normal and

binormal vectors of the deformed blade axis. In addition, we

allow plane sections to rotate about the tangent to the axis

through an angle O. Thus the strain energy of the blade will

consist of strain energy due to elongation of longitudinal

fibers and twisting of the blade about the local tangent. For

the torsional strain energy we use St-Venant's theory which

states that the torsional strain energy is proportional to the

square of the rate of twist with respect to s.

Although others have treated the problem of strain energy

in a curved beam, there are two characteristics which have

apparently not been previously accounted for: centrifugal

forces due to spinning, and the troposkien shape. Ojalvo

(Reference 9) treated out-of-plane and twisting vibrations in

inextensible, incomplete (semi-circular) rings. Fettahlioglu

and Mayers (Reference 10) dealt with in-plane bending and axis

extension in beams of constant curvature, and Archer (Reference

11) studied the in-plane vibrations of inextensible, incomplete

rings. In order to include the effects of axis extension,

centrifugal forces and the geometry of the troposkien-shaped

blade, it is therefore necessary to develop an expression for
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the strain energy from basic principles.

Apart from the strain energy induced by vibratory

deformations, the spinning blade will have a certain strain

energy due to centrifugal forces. Ideally, these centrifugal

forces will result in strictly axial deformations in the

troposkien-shaped blade. Indeed, the fact that the troposkien

shape results in no bending moments (in the absence of

vibration) is one of the prime advantages to this shape. Here

we assume that the undeformed spinning blade is in a state of

pure tension, so the extension of a fiber in the vibrating

blade is the sum of the extension due to the initial

centrifugal tension (P(s)) and the extension due to the

displacement and twist of the section (y,G).

The strain energy per unit length of the blade due to

elongation of blade fibers and torsion about the axis will have

the form

V'(s) = if E(e
0

+ e)
2
dA + 0,1.9

t

2

r

= ff Ee
2

0
dA + 255 Ee0e dA + fj Ee

2
dA + GJ9t

2
(1)

where E is the modulus of elasticity, e0 is the elongation due

to centrifugal tension, e is the elongation of a fiber, G is

the shear modulus, J is the St-Venant torsion constant, 9t is

the twist rate, and the integrals are over the cross-sectional

area of the blade. Once again, ()' denotes differentiation

with respect to s, the arc-length along the undeformed blade

axis. The first integral on the right-hand side of (1) is not

a function of the displacements, hence will not appear in the

equations of motion. It will prove useful in deriving an

expression for the potential energy in terms of the
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displacements to investigate the form of (1) and make further

assumptions regarding the strain energy in the blade.

The most important assumption we make regarding the strain

energy is that the blade is very thin relative to both the span

and the radius of curvature at any point on the blade. We

therefore assume a linear distribution of strain throughout the

cross-section. Locating the fibers relative to the axis by a

vector

R(s) = 22n + p3b

allows us to write the elongation of a fiber in the form

(2a)

e = el + e2p2/h + e323/h (2b)

where h is the blade semi-span. Furthermore, if we locate the

blade axis such that

ff E.E2dA = ff Ep3dA = f f Ep2p3dA = 0

and define

ff ER22dA = EI

ff EnclA = k1EI

k
2

= EI/GJ

EA = k3EI /h2

F(s) = ff Ee0dA

(2c)

(2d)



20

where EI is the stiffness constant for in-plane bending, k1 is

the ratio of out-of-plane to in-plane bending stiffnesses, P is

the tension, and k3 is the ratio of axial to in-plane

stiffnesses, then the strain energy expression (1) may be

written as

Vt(s) = 2Pe
1

+ k
3
EIe

1

2
+ EIe

2

2
/h

2

+ k
1
EIe

3
/h

2
+ k

2
ETA

t

2 (2e)

From this equation we see that if the potential energy is to

contain no higher than second order terms in the displacements,

then el may have quadratic displacement terms, but e2 and e3

must be linear. Moreover, the twist rate must also be linear

in the displacements.

To derive an expression for the elongation of an arbitrary

fiber, consider the following four arcs as shown in figure 5:

1) an arc along the undeformed blade axis with arc-length s.

2) an arc along a fiber in the undeformed blade which

intersects a cross-section at x + p and has arc-length sl".

3) an arc along the deformed blade axis with arc-length s.

4) an arc along the same blade fiber as in 2) in the deformed

blade with arc-length s+.

The extension of an arbitrary fiber is then given by

de 2 de 2 ds ds 2
2e = (

CT'S-

1 = (
ds

) (
ds

)

2

ds+
) 1

The derivatives in this expression may be evaluated by

considering the tangent vectors to the arcs in (2 4) above.

(3)



DEFORMED BLADE AXIS

UNDEFORMED BLADE AXIS/g'

Figure 5. Blade Fibers
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2) Undeformed blade fiber

The intersection of an arbitrary blade fiber with a cross-

section in the undeformed blade is located by

x+(s) = x(s) + p x + p2n_ + p_3b_

Thus the tangent vector to the fiber is

ds ds
d (x+) = +

ds+
) = t(1 -

2)(V+)ds+ ds

Since t+t+ = 1,

ds 2

= (1 cp7)-2 = 1 + 2222+)
ds

(4)

(5)

(6)

where it is assumed that cE2 is much less than 1; that is, the

radius of curvature of the blade is much larger than the

section thickness.

3) Deformed axis

Equation (11.2.23) expresses the second of the derivatives

in terms of the displacements:

ds
)

2
=(ds 1 + 2(xlyi + xyp

Yi2 Y 2 2 Y32

4) Deformed blade fiber

(7)

A fiber which intersects a cross-section in the undeformed

blade at x+ = x + p will intersect the cross-section in the

deformed blade at

x+ =x+y+ p (8)
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where p locates the intersection relative to the deformed blade

axis. The assumption that plane cross-sections remain plane

and perpendicular to the blade axis implies that

p = (p2cose p3sin8)n + (p3cos0 + p2sine)b = p2n + p3b (9)

The tangent to the deformed blade fiber is defined as

t+ a
+ ds N -1+

+ ds Y

= (t
AR

)(
ds+

)

ds ds

Recalling the transformation (11.2.26) and neglecting the

effect of axis elongation (i.e.
Is

= 1),
ds

d ds -1

ds ds'I)2u
p3b)(T;)

.
ds

p2n p2(xyl xiy)t + p3(b + yit) }

= p2ct 1:4(xyi xlypt

p2(31371 1371

P (xly' x'y')cn
2 2 1 4 2

+ pi(b + yit) + p3(31t + yicn)

Making use of equations 11.2.14 and 11.2.15,

x{

x
u 1 1

2371
1;72

4 x
12S2
Y1

x1372

(10)



3-4 (31-1Y;

= s(Lciyi

Retaining only linear terms in 9,

P2 22 R39

111 = at
'2 Ea'

P3 P3 229

Pi P29'

Neglecting terms according to (2),

LIP -

ds P3 91R 2221- LE39 jr EP2()IlYi E?Pl-

- P.2(17
sE2(2sYi ?inn

E.291k 2,337L L23y3a

So that

ds+
( )t+ ' 1 c_21 2239 ?5YPds

22(2iY1 LciYP 2337
} t

239' 22.2(2sY1 LciYP s23Y3
} n

24

(12)

( 13 )

(14)

(15)
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Hence, using the fact that t+ has unit length,

(ds+ )2

'

= 1 - 2c2.2 + 2cp.39 + 2s22(xiYi 2Y)
(16)

22-2(xYY 2,1Y2) .23Y

Substituting (6), (7), and (16) into (3) and again neglecting

terms according to (2) results in

, ,

2e = y'
2

+
1 Y2

2

4. Y3

2

+ 2c(xiy1 + xy2).p.2 + 2(xly Lcy1).2.2

+ 2(c9 + 4)23

Comparing (17) with (2b) we conclude that

,2 ,2 ,2
e1 y1

Y2 Y3

(17)

e2 = 2hc*(xiyi + xyp + 2h(xiy xyy)

e3 = 2(c*0 + hyp

where c* = ch is the dimensionless blade curvature.

The rate of twist of the blade about the axis can be

obtained by considering a unit vector which is fixed relative

to a cross-section. The rate of change of m with respect to s

is given by

dm

ds
=

t
tXlit
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Without loss of generality we can assume the vector is in the

direction of the chord and coincides with the binormal when the

blade is undeformed:

m = sine n + cos9 b = On + b (18)

Neglecting elongation of the axis, the rate of change of this

vector with respect to s is

dm

ds
= In O(qb ct) - qn = Ott x (b On)

= O
t
(n + Ob)

(19)

where q is the torsion of the deformed axis. From the n

component of (19) we conclude that the twist rate is

a = q + 9' (20)

Now from the Frenet formulas

q = 92

ds
(21)

Recalling equation 11.2.26, neglecting elongation of the axis

and retaining only linear displacement terms,

q = --(y't + b)(n (xly' x'yl)t
ds 2 1 4 2

= + cy3n)-11 (22)

cy3



Thus the twist rate is

Q'
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(23)

The total strain energy per unit length can now be written as

2h
2
VI

EI k2(c*y3 he' )2

Ph
2

,2 ,2 Ph
2

-ET
(y1

Y3 ) (IciYi

(24)

+ k3(Eiyi + x2y2)2 + ki(y + c9)2

+ x37.7)2 + Zhc*(xly 3q)77)

c*(LciYi x2y2)2

where c* = ch is the dimensionless curvature.
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11.4 Kinetic Energy

An expression for the kinetic energy of the blade can be

derived by writing the kinetic energy per unit length at a

typical cross-section, then integrating along the blade span

for the total kinetic energy. This section then is concerned

with deriving an expression for the kinetic energy per unit

length of blade span.

A typical section of the blade, as shown in figure 3, will

have a mass center on the chord-line of the section, located

relative to the axis by be (b - On), where b is the semichordm
of the blade section. Assuming the cross-section has the shape

of a thin airfoil we can neglect the rotary inertia about the

chord-line and let the rotary inertia about the axis tangent

and normal be mb
2
e
2
, where m is the mass per unit length of the

blade and be is the radius of gyration of the cross-section.

The kinetic energy for a typical section will then have the

form (Reference 12)

1"(s) = + be i.4 x Gn)
b2e2(42 42\

(1)
2'

where

9 = (Qx1 4)t (Qx2 + 83b (2)

is the angular velocity of the section and

9 y'
2 3

93 = 3sy1 xly

(3)
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are the Euler angles defined in section 11.2. The velocity of a

point on the deformed axis is

x = 51x1 + (Y2 S/373)x2 + Q(x2 +y2)x3 + 53x3

(1(11 2372 Q1c.2Y3)t
(x251

x1572 CiElY3)u

- C(x2 + y2)b + ir3b (4)

When (2), (3), and (4) are substituted into (1), a number of

terms result which are linear in the displacements (y1, y2, y3,

and 9). These terms appear as constants in the final equations

of motion, thus contribute only to the equilibrium

configuration of the blade. That is, the linear terms are

related to the static deflections of the blade due to

centrifugal forces. Since these deflections will have little

influence on the vibration characteristics of the blade, the

linear terms in the kinetic energy expression will be ignored.

As with the potential energy, we also ignore terms which are

higher than quadratic in the displacements; hence the kinetic

energy will be strictly quadratic in the displacements and

derivatives of the displacements. The kinetic energy expression

may thus be written as
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2

mT
.2

= y
1

.2

+5722

.2

+573-3

2

42(3'233 Y32) Q

2

(Y3 Y2

2)

+ bem { xlyly3 + x2y2y3 3q5714 + x15729

S-2( )2)73}73 x15734+ x294 + x2y3Y3 (5)

+ x19573 + )qy3Y3)

+
2
(x1 1937 + x'y'y ) }

2 2 3 2

2 2 2 .

3

2
+ b e

r
(9 + y' )

Note that this equation consists of terms which have no time

derivatives, only one time derivative, and terms with two time

derivatives. It will prove useful to write the kinetic energy

in the form

where

= T + +
0 1 2

2 ,

ms22 u
T, y2 + y3

2
+ bem(xly29 + 2s?2yi)

consists of terms associated with centrifugal forces,

(6a)

(6b)



g4-71 372573 Y35r2

+ bem(x19 + Icy3)S73

+ bem(x2y3 x2y3)373

+ bem(x29 xiy3)4

is associated with coriolis forces, and

2 .2 .2 .2

m
T2 = y

1
+ y2 + y3

+ be (xY + x'Ym 1 1 2 2 3

+ bem(x1572 xY1)4

2 2/. 2 .2
+ b e y' + )

r 3

consists of terms quadratic in the velocities.

31

(6c)

(6d)
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11.5 Aerodynamic Forces

A Darrieus blade spinning in still air will experience

drag forces opposing the spinning motion, but no aerodynamic

forces normal to the line of direction (lift forces). The

absence of lift forces is due to the fact that the Darrieus

blade has a symmetric airfoil section which is at zero angle of

attack in the absence of wind or deformation of the blade.

Vibration of the blade, however, causes an angle of attack with

respect to the surrounding air, thereby inducing lift forces in

the plane of the blade. In addition, the air causes a moment on

the blade which tends to twist the blade about the axis. The

study of such interactions between the unsteady aerodynamic

forces on the one hand and the elastic and inertia forces of

the structure on the other hand is known as aeroelasticity.

Under certain conditions these forces can cause the vibrations

to become unstable, a potentially serious problem known as

flutter. It is the purpose of this section to derive expres-

sions for the unsteady aerodynamic forces acting on a harmon-

ically vibrating blade with a view towards finding the

conditions under which the blade will flutter.

Unsteady aerodynamics is a very difficult phenomenon to

treat mathematically, primarily due to the fact that in

general, motion of the structure at one point induces aero-

dynamic disturbances which are felt at all other points of the

structure. Indeed, one of the few cases where explicit expres-

sions for the aerodynamic forces on an airfoil have been ob-

tained is the classic solution of Theodorsen (Reference 7) for

the lift and moment acting on a two-dimensional airfoil section

oscillating at zero mean angle of attack in a steady, incom-
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pressible fluid stream. In the two-dimensional problem, it is

assumed that there is no aerodynamic interaction between ad-

jacent sections of the airfoil; this assumption is evidently

valid in the case of a straight wing of infinite span with the

fluid flowing perpendicular to the axis. Since the Darrieus

blade is neither straight nor infinitly long the two-

dimensional assumption is not strictly valid in this case.

Despite this fact, it is reasonable to assume that each section

of the Darrieus blade acts as a two-dimensional section for the

following reasons:

1) relative to the thickness of the airfoil section, the

blade has a small curvature and is very long. In addition,

the ends of the blade have very low velocity, hence small

aerodynamic forces.

2) since the blade is symmetric about the mid-span, there

will be no flow along the blade near the mid-span, which

is the region of highest velocity, hence the greatest

aerodynamic forces. The lack of flow along the span of the

blade reduces the three-dimensional nature of the problem

to interactions due to the curvature of the blade.

Perhaps a more important consideration is the fact that

the vibrating blade will shed vortices which, in the absence of

wind, will interfere with the next blade. Here it is assumed

that the vortices will dissipate entirely before the next blade

passes; that is, we assume the airstream to be free from turb-

ulence.

Theodorsen's solution for the unsteady aerodynamic forces

on a thin, two-dimensional airfoil assumes that the section

moves in pitch (9) and translation (z) as shown in figure 6.

Moreover, the motion is assumed to be steady-state and harmonic



I

0

U

Figure 6. Aerodynamic Forces on a Two-Dimensional Airfoil Section
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with frequency w. Thus the motion of the airfoil section may be

represented in the complex form

Z = Z,e
io t

= ^

110e

in which z
0

and A
0

are complex amplitudes and, as usual, it is

tacitly agreed that the actual motion is represented by the

real part of these expressions. In a steady airstream with vel-

ocity U the aerodynamic forces on the section will consist of a

lift force acting perpendicular to the airstream, and a moment

about the pitch axis, as illustrated in figure 6. As shown in

References 7 and 13, the lift may be written as

where

L = Trpb(L
1

+ L
2

+ L
3

)

L
1
= b(be

a
4 i)

(la)

(lb)

is the lift due to the apparent mass of the section, ea is the

distance from the axis to the midchord divided by the semi-

chord,

L
2

= bU4

represents lift due to circulation caused by rotation of the

airfoil, and

L3 = 2UC(k) [ UG - z + b(1/2 ea)4]

(1c)

(id)
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is the lift due to the apparent angle of attack, modified by a

dimensionless factor C(k) which accounts for the time lag

between motion of the airfoil and the resulting change in the

vorticity distribution and accompanying lift. C(k)9 known as

Theodorsen's function, is complex valued, thus accounting for

the phase shift between the oscillatory motion and the lift

force. Theodorsen's function depends only on the real,

dimensionless parameter k = wb/U, known as the reduced

frequency, and may be expressed in terms of modified Bessel

functions as

K
1
(ik)

C(k)
(2)K

0
(ik) + K

1
(ik)

The following rational approximation to Theodorsen's function,

given in reference 13, will be used here

C(k) = 1 -
0.165 0.335

0.0455 .

1 1
0.3 .1 -

(3)

Note that when k = 0, C = 1; this is the so-called quasi-steady

case, sometimes used to simplify the resulting expressions for

aerodynamic forces when the reduced frequency is small.

According to Theodorsen's solution, the moment about the

axis is

where

M = eaLl b(1/2 + e
a
)L

2
+ b(11 ea)L3 + M

1

M = I
'TIP

b46
1 -7

(4a)

(4b)
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is due to the apparent moment of inertia. From equation (4a) it

is apparent that Li acts at the mid-chord, while L2 acts at the

3/4 chord and L
3

acts at the 1/4 chord.

These expressions for lift and moment may be applied to

the Darrieus by setting

z
x2y1 21Y2

U = fbc
29

resulting in

Trpb

7Tpb

= h(ea4 + x/Y72 x}.71) + Q12b9

+ 2Qx2C(k)(xIST2 x2 .71 + Qx29 + 12b9 + eae)

= eab(ea4 + x2y
1)

b3-
b(1/213 + ea)Qx20 9

+ (b - 2ea)Qx2C(k)(xiir2 3qYI + Qx29 + %be + ea4)

(5)

(6)

(7)

Recalling equation 11.2.17, the generalized forces acting

on the generalized coordinates yl, y2, y3, and 9, respectively,

are

f'(s) = x2L'
1

f2(s) = xiL'

(8a)

(8b)



f3(s) = 0

f4(s) = m'
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(8c)

(8d)

The expressions (6) and (7) for the lift and moment assume

that the motion is steady and harmonic. Thus solutions to the

equations of motion are, strictly speaking, only valid at

neutral stability (flutter) points. This limitation is per-

fectly acceptable here, since we are primarily concerned with

the conditions under which the blade is neutrally stable.
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11.6 Boundary Conditions

Boundary conditions for the Darrieus blade consist of the

geometric and force compatability conditions at the ends of the

blade, at the points where the blade is fastened to the rotor

axis. In this study it is assumed that the blade is pinned to

the rotor axis, thus allowing the transmission of force in all

three directions, moment about the x
1

and x
2
axes, but no

moment about the x
3
axis. In terms of the displacements the

geometric or essential boundary conditions are

Yk(±11't)
0

9(+h,t) = 0

y3(+111t) = 0

k = 1, 2, 3

(1)

while the natural boundary conditions of zero moment about the

x
3
axis at the ends leads to

1372 L4377 ac_?P
s=+h

= 0 (2)
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11.7 Blade Shape

In this section we derive equations describing the

troposkien shape. The troposkien shape is defined as the shape

of a perfectly flexible, inextensible rope which is spinning in

the absence of gravity. It will be shown that this shape is

independent of the spin rate; moreover, the shape is a function

only of the height-to-width ratio, hereafter referred to as the

aspect ratio of the blade. A set of ordinary differential equa-

tions which describe the troposkien shape can be derived using

the previously derived expressions for potential and kinetic

energy (suitably modified to model a perfectly flexible rope)

in conjunction with Lagrange's equations.

The kinetic energy for a spinning rope is simply

T' = 1/2d22(x
2

+ y
2
)
2

With E = G = y3 = 0, the potential energy (equation 11.3.24)

becomes

V' = 1/2P(371
1

2
+ y22) 2 ) + P(xly'

/
+ x'y

2
)

Thus the Lagrangian for the spinning rope is

2L' = 2(T' V') = mQ2(x2 + y2)2 2P(xiyi + )q,yp

,

P(Y1 4- Y2

2

The Euler-Lagrange equations in this case have the form

6 L'

(1)

(2)

(3)

d ,a1,1
= 0 j = 1, 2 (4)



Substituting (3) into (4) and setting yl = y2 = 0 results in

the following two ordinary differential equations for xl, x2

and P:

+ pxy = 0

Ilia

2
x
2

+ P'x'
2

+ Px"
2

= 0

41

(5a)

(5b)

Since these two equations contain three unknowns it is neces-

sary to add at least one more equation; recalling equation

11.2.13,

,2 ,2

211 -)12

Denoting the aspect ratio by a, the boundary conditions for

this system of three ordinary differential equations are

xl(0) = x(0) = x2(h) = 0

xl(h) = ax2(0)

x;(0) = 1

(5c)

(6a)

(6b)

(6c)

Thus we have a two-point boundary value problem for xl, x2 and

P between s = 0 and s = h; the lower half of the blade can be

completed by symmetry. A common technique for solving such a

system of equations is the shooting method (Reference 14),

whereby the differential equations are integrated starting at

one end, say s = 0, using guesses for the missing initial con-

ditions. The differences between the final values and the act-

ual boundary conditions are then considered to be functions of



42

the guessed initial conditions; hence the problem is reduced to

the solution of a system of nonlinear equations for the missing

initial conditions.

In order to recast the problem as a shooting problem it is

first necessary to put the differential equations into first

order form. To this end let

s* = s/h

zi(s*) = x!(s *) = xl/h

z
2
(s*) = xl(s) = zi(s*)

z3(s*) = x/i(s*) = x2(s)/h

z
4
(s*) = x(s) = zi(s*)

z
5
(s*) = P* = P/mQ

2
h
2

and write equations (5) as

qz2 + z5z2 = 0

z3 + qz4 + z5z4 = 0

2
z
2

2
+ z

4
1 = 0

with boundary conditions

zi(°)
0

zi(s*) = x1(s)

zi(s*) = x2(s)

(7a)

(7b)

(7c)

(8a)
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z4(0)
0 (8b)

z3(1) = 0 (8c)

z1(1) = az3(0) (8d)

z2(0) (8e)

Differentiating (7c) gives

z2z + z4z4 = 0 (7c)

which, when substituted into (7a) and (7b) results in

zi z3z4 (9)

2
z4 = z

2
z
3
/z

5
(10)

Thus in a form suitable for numerical integration the equations

are

zi = z
2 (11a)

= z2z3z4/z5 (11b)

zi z4 (11c)

,

z4 z22z3/z5 (lid)

z3z4 (lie)



In addition, the curvature can be written as

c* = he = hx"
4

= z2z3/z5

44

(12)

Considering the boundary conditions we see that (8a), (8b), and

(8e) are initial conditions, (8c) is a final condition, and

(8d) involves both initial and final conditions. At this point,

the shooting method assumes that a good guess is available for

the missing initial conditions, namely

z
3
(0) = u

1

z5(0) = u2

Clearly the final values are dependent on the values ul and u
2

chosen for the missing initial conditions; this dependence is

expressed by defining functions

yul,u2) = zi(1) az3(0) = zi(1) aul

(14)

f2(u1,u2) = z
3
(1)

Note that the evaluation of these functions requires integrat-

ing from s* = 0 to s* = 1 using the current value of u
I

and u
2

as the missing initial conditions. This system of two nonlinear

equations in two unknowns can be solved numerically using any

of a variety of algorithms (Reference 15). Results for an as-

pect ratio of 1 are shown in figure 7.

The rotation rate of the Darrieus blade is limited by the

strength of the blade material in tension. If the yeild strain

of the material in tension is



where

e
y

= a = P*r /k
3

r
2

=
2 mh

4

EI
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and the maximum value of P* from figure 7 is approximately .46,

then the maximum dimensionless rotation rate is

r
2

= 2.2k e
max 3 y
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Figure 7. Troposkein Shape Functions
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11.8 Discretization

At this point in the development of equations of motion,

we have expressions for kinetic energy, potential energy and

generalized forces, each of which are functions of time and

arc-length along the blade axis. If applied to these expressions,

Lagrange's equations would result in partial differential equa-

tions of motion. Since the aim here is to derive equations

suitable for numerical study, it is necessary at some point to

discretize the spatial variable s. For our purposes it is most

convenient to discretize the kinetic energy, potential energy,

and generalized forces at this point.

Virtually all discretization methods for linear systems

start by assuming the following form for the displacements:

Yi(syt) = hePtuTql(s*)

Y2(s9t) = hePt14q2(s*) 4

y3(s,t) = hePt4c13(s*)

e(s,t) = ePtu4g4(s*)

where uk is a complex vector of generalized coordinates,

(cic (1.c qick)T
(k=1,2,3,4)

(1)

(2)

is a vector of discretization functions, s* = s/h, and the

usual assumption of harmonic motion with complex characteristic

exponent p has been made. It is tacitly assumed, of course,

that the actual displacements are represented by the real part
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of these complex quantities.

There are two aspects to projection methods such as Gal-

erkin's or the Rayleigh-Ritz method: the inner-product used,

and the choice of basis function. Here the inner-product is

simply

(f,g) = f f(s*)g(s*)ds* (3)

Possibilities for the basis functions are many; we could use,

for instance orthogonal functions such as the Chebyshev poly-

nomials or trigonometric functions. The only requirements on

the functions is that they be twice continuously differentiable

(since the potential energy contains second derivatives) and

that they meet the boundary conditions. Currently very popular

are local basis functions, each of which is defined only on a

subinterval of the interval of interest. One such type of fun-

ction is the Hermite cubic polynomial, which results in the

finite element method (Reference 6). The primary advantages to

using locally defined basis functions are 1) it is generally

much easier to satisfy boundary conditions with local functions

than with globally defined functions, 2) the resulting coeff-

iecient matrices tend to be highly banded, and 3) local func-

tions tend to have better numerical properties, as illustrated

by the well-known Runge phenomenon (Reference 16). Hermite

cubics are twice differentiable, although the second derivative

is not continuous at the ends of each subinterval. We could use

Hermite cubics even though it would mean integrating across the

second derivative discontinuities (this is exactly what is done

in the finite element method), but it turns out that by using

piecewise cubic polynomials which do have continuous second

derivatives results in the same degree of approximation with
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fewer functions (i.e. fewer subintervals). The main drawback

to adding the extra continuity is that the functions are not as

local; that is, they are non-zero over more subintervals than

the Hermite cubics, resulting in larger bandwidths in the coef-

ficient matrices and more complexity in meeting the boundary

conditions. Adding second derivative continuity results in a

so-called cubic spline (Reference 16).

A cubic spline is the mathematical representation of the

elastic ruler used by draftsmen, also known as a spline. A

draftsmen's spline is used to draw smooth curves by holding the

spline down with weights at various points along the curve

called knots, and bending the spline to produce the desired

curve. Modeling the spline as a beam simply supported at the

knots results in a series of cubic polynomials, each defined

between two knots. Although the first and second derivatives

of this representation will be continuous even at the knots,

the third derivative will have discontinuities at the knots.

This set of piecewise cubic polynomials thej-40,is a cubic spline

in the mathematical sense. It can be shown that any cubic

spline can be expressed as a linear combination of the cardinal

basis or B-splines (Reference 16). If we divide the interval (-

1,1) into n equal subintervals with knots at

s. = h + j = 0, 1, 2,...n, (4)

there will be n + 3 B-splines which are non-zero over this in-

terval. The situation is illustrated in figure 8 for four sub-

intervals. In the case of equal subintervals, each B-spline is

defined as



B.(s*)

3
v .
J -2

2 3
+ 3v. + iv. 3v.

J-1 J-1 J-1

2 3

1 + 3vj+1
J

+ 3v.
+I

+ 3v.
j+1

3
V.
3+2

04 v. 1

0 'v.
J-1

-1<v. c0
J+I

v. 1

otherwise

where 'v. = n(s* s.)/2. Table 1 gives values of B. and its

derivatives at the knots.

TABLE 1
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(5)

si_2 s
J-I

s. s.
j+l

s.
j+2

B. 0 1/4 1 0

3

B! 0 3n/8 0 -3n/8 0

0 3n2/8 -3n2/4 3n
2
/8 0
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Before applying the B-splines to our problem it is

necessary to take into consideration the boundary conditons.

That is, we want to define the discretization functions as

linear combinations of the B-splines such that the boundary

conditions are met. Each boundary condition reduces the number

of functions by one, hence for the variables yl, y2 and B,

which are required only to have zero displacement at the ends,

there will be n + 1 splines, while y
3
will have n 1 due to

the requirement of zero slope at the

verified that combinations of the B-splines

boundary conditions are

a) zero displacement (y1, y2, and 0)

ends. It

1, 2, 4

1, 2,

(j = 3,

1, 2, 4)

1, 2, 4)

1, 2, 4)

(y3)

is easily

which meet the

4,...n-1)

3,....n-2)

(6a)

(6b)

(6c)

(6d)

(6e)

(7a)

(7b)

q
k
(s*) = B

0
4B

-1
k =

q
2
(s*) = B

o
- 4B

1
k =

qi(s*) = B.

(k =

(k =qi(s*) = B
n

- 4B
n+1

n+1
(s*) = B

n
4B

n-1
(k =

b) zero displacement and zero slope

1
q3(s*) = B_1 - 11130 + B1

B.ql(s*) = B (j = 2,



-1
1/213 + B(s*) = B

n+1 n-1
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(7c)

The two types of discretization functions a) and b) are illus-

trated for four intervals in figure 9. Note that each function

has been normalized so that the maximum value is 1.

Substitution of equation (1) into equation 11.3.24 results

in an expression for the potential energy per unit length in

terms of the generalized coordinates. Likewise, substitution

into equation 11.4.6 results in the discretized kinetic energy,

and substitution into 11.5.6 and 11.5.7 yeilds the discretized

aerodynamic forces. An integration with respect to s* then

results in matrix expressions for the potential energy, kinetic

energy, and the aerodynamic forces. The terms of these matrices

are presented in Appendix A. A typical term of the potential

energy in this form is

T ,2 2pt
k
2
(c*u

3
q3 u4q4) e

= k2 tu
T
(c*

2
q'q'

T
)u u

T
(cqq )u

2 3 3 3 3 3 4 4

T( T( T)

u4c*(14(13T)u3 u04(141114
}

The terms within parentheses are matrix functions of s* which

can be numerically integrated from s* = 1 to s* = 1 to give

the total potential energy in the following form:

where

(8)

2h

EI
V = u

T
(r

2
Ko + k1K1 + k2K2 + k3K3 + K4)uePt (9)
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S.

a) functions for yl, y2, and 9

S.

b) functions for y3

Figure 9. Discretization Functions



u

Matrix K
0 arises from the blade tension terms in the strain

energy and is associated with centifugal stiffening of the

blade; hence it is multiplied by the dimensionless rotation

rate

r =
EI
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(10)

Matrices K0, K
1,

K2, K3, and K
4

contain the strain energy terms

for out-of-plane bending, twisting, stretching, and in-plane

bending, respectively.

Two problems which arise when discretizing a curved beam

such as this is that a) there are no longer rigid body

displacement modes which do not induce in-plane bending and

stretching, and b) there are no longer allowable in-plane dis-

placement patterns which do not induce stretching

(Reference 17). This can be seen by considering expressions for

the additional curvature

c(s) L'M 2s2y1 2J2s1Y1 2(2Y2)

and for the axial stretch

e(s) = Iiyi +

The general rigid body in-plane displacement of the

unconstrained blade is

(12)

(13)



yr
(dl -

orx (dr orx N r r

1 32 1 2 3-1)7c2 Ylx1 Y2x2
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(14)

r
where dl, d

2'
and 9

3
are arbitrary constants. By substituting

(14) into (12) and (13) it is easily verified that this dis-

placement pattern yields no in-plane bending or stretching.

Note that yr is not representable by cubic polynomials, due to

the presence of xi and x2. Thus when yi and y2 are discretized

with cubic polynomials it is no longer possible to exactly rep-

resent rigid body displacements. Likewise, due to the presence

of x
1

and x
2
in the expressions for additional curvature and

extension it is not, in general, possible to represent zero-

extension bending displacement patterns. Most solutions to this

problem involve approximating xi and x2 with low-order poly-

nomials (Reference 17); here we take a different approach and

approximate the additional curvature and extension with cubic

splines. That is, we let

c(s*) = cTq(s*) (15)

e(s*) = eT41(s*) (16)

.

where q = (B_1
B0 B1

Bn4.1)
T
is a vector of cubic splines

with no end conditions. By approximating the curvature as cubic

functions of the generalized coordinates ul and u2, the rigid

body mode and zero-extension bending conditions will auto-

matically be satisfied. Thus we need to express the

coefficients c and e in terms of u
1
and u2. Since there are n +

3 coefficients (elements of c or e) and 2n + 2 "unknowns" (u
1

and u
2
), expressing c and e in terms of and u2 will neces-

sarily be an approximation; here we choose to approximate in a

least-squares sense. To this end multiply (13) and (14) by q
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and integrate from s* = -1 to s* = 1. This results in the fol-

lowing linear expressions for the coefficients c and e in terms

of ul and u2:

where

Qc = Clul + C2u2

Qe = Elul + E2u2

Q =
f

qq
T
ds*,

(17)

(18)

(19)

the so-called Cram matrix, is positive definite and symmetric

(Reference 16), and

Cl = (cx'qq '1 T x'2 qq1 "T)ds*
1

C2
(,c 1

,

(12 c2"2
T

21 (12 )ds

*

E1
xTd

s*
1 -0(11

, -
E2 = 12qq2

T
ds*

,40

are (n+3,n+1) real matrices. The additional curvature can now

be written as

c(s*) = q T (s*)Q-1C
1

u
1

+ qT(s *)Q 1C
2
u
2

and the extension as

e(s*) = qT(s*)Q lE u +
T
(s* - IE

1 1 q 2u2

(24)

(25)



Recalling the definition of the Gram matrix (19) the strain

energy due to additional curvature then becomes

2h

EI Vc f c
2
(s*)ds*

=
T-T -T -1 T T -T

ult'lQ QQ
Cluj. + ulCIQ QQ

-1
C2u2

T T -
+ u2C2T Q

-T
QQ

-I
Cluj.

T
+ u2C2Q QQ

-1
C2u2

and the strain energy due to extension becomes

2h
--V

e
= k

3
f e

2
(s*)ds*

EI

T T -

ulE1TQ

-T

QQ

-1

Elul ulE1Q

T

QQ

-1

E2u2

+ uTETQ -TQQ
-1
E
1
u
I 2

+ u
T
E-T Q TQQ

-1
E2u2

2 2
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(26)

(27)

Thus matrix

K
3

K
3

in equation (9)

T -1 T -1
E

1
Q E

1
E
1
Q E

2

-1
E
2
QE Q

-1
E
1

T
E
22

0 0

0 0

has the form

0 0

0 0

0 0

0 0

(28)

and matrix K
4

becomes
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C
I

T
Q
-1

C
I

C
I

T
Q
-1
C
2

0 0

-1 T -1
C
2
Q C

I
C
2
Q C

2
0 0

4= (29)

0 0 0 0

0 0 0 0

The discretized kinetic energy may be written as

2h

EI
T = u

T
(p*14 + p*rG + r2M

0
)uePt

(30)

where M is a real, symmetric matrix arising from the quadratic

velocity terms, G is a real, skew-symmetric matrix of coriolis

or gyroscopic terms arising from terms linear in the

velocities, and M
0
is a real, symmetric matrix of centrifugal

force terms. The dimensionless characteristic exponent

p* . mh
4

EI

can be written in terms of the frequency of oscillation and

growth rate

mh
4

p* =toClig +

(31)

(32)

While this definition of growth rate (g) may seem awkward, it

corresponds to the traditional way in which damping rates are

measured in the flutter literature; this point will be

discussed further in a later section.



Finally, the aerodynamic forces become

2

EI m* Au
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(33)

where A is a complex matrix of aerodynamic terms, the elements

of which are nonlinear functions of the reduced frequency

k* = w4Q, and

m* = m

TIPb
2

( 3 4 )

is the mass density ratio.

The order of each of the above matrices is equal to the

sum of the number of splines used for each variable; thus the

order is

n = (n + 1) + (n + 1) + (n 1) + (n + 1)

n = 4n + 2 (35)

Using the discretized expressions for kinetic energy, pot-

ential energy, and aerodynamic forces, and considering

Lagrange's equations results in a system of n complex charac-

teristic equations known as the flutter equations:

Du = 0 (36)

where
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D = p *2M + p*rG + r2(M
0

+ K
0

)

r2
+ k1K1 + k2K2 + k3K3 + K4

T-ItT
A

Solutions to these equations are sufficient to determine the

stability of linear motions of the Darrieus blade.
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III. SOLUTION TECHIQUE

III.1 Form of the Equations

The stability of linear motions of the Darrieus blade

spinning in still air is determined by solutions to the system

of complex algebraic equations

where

and

Du = p*2M + p*rG + r2C

2

(1 igs)K
m**

A(k*) u = 0,

K = k
1
K
1
+ k2K2 + k3K3 + K4

C = M + K0,
0'

(1)

known as the flutter equations. This system of equations is

quadratic in the characteristic exponent (p*) and rotation rate

(r), linear in the stiffness ratios (k1, k2, and k3) and gen-

eralized coordinates (u), and nonlinear in the so-called

reduced frequency (k*). Note that the reduced frequency is not

necessarily an independent parameter since we can write

= Im(p*) (2)

In the next chapter the results of four types of solution

to (1) will be presented:

a) free-vibration solutions at zero rotation rate obtained
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by setting the density of air and the rotation rate to

zero in (1)

b) free-vibration solutions at non-zero rotation rates

obtained using a few of the low-frequency mode shapes

obtained in (a) as generalized coordinates,

c) flutter stability solutions using generalized

coordinates as in (b),

d) variations in the neutral-stability rotation rates with

system parameters.

Free-vibration solutions at zero rotation rate involve a

generalized symmetric eigenvalue problem, for which there are

fast, reliable solution techniques (Reference 1). Solutions to

(b), (c), and (d) on the other hand are much more difficult to

obtain, as there are no reliable methods available.

The aerodynamics matrix A is a nonlinear function of the

reduced frequency k*, and as such must be evaluated for each

value of k* which is required in the solution process. Since it

is not generally known beforehand which vp4ues of k* will be

needed, the usual procedure is to compute A at a few values of

k*, then interpolate for intermediate values (Reference 20).

Here we evaluate A at a number of values of k* between 0 and

10, then compute cubic spline interpolants for each term,

resulting in four complex matrix spline coefficients per

interval between 0 and 10. The real and imaginary parts of each

term of A are interpolated individually as real functions of

the real variable k*.



111.2 Free-Vibration at Zero Rotation Rate

At zero rotation rate in a vacuum the flutter equations

reduce to

(p *2M + = 0,
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(1)

which is a symmetric generalized eigenvalue problem for the n

pair of eigenvalues and eigenvectors (pt, u ). Provided M is

positive definite, the eigenvalues will all be real and

negative, hence the frequencies will all be positive (Reference

19). In addition, the eigenvectors are necessarily real and

satisfy the orthogonality relations

u.M4
k

= 0 k j (2)
j

Solutions to the eigenvalue problem (1) are easily obtained

using, for example, routines in the EISPACK library

(Reference 21).

A common method for reducing the order of the flutter

equations for subsequent analyses is to use the free-vibration

eigenvectors as a basis for generalized coordinates; that is,

set

u = Uz (3)

where U is an (n,m) matrix of the eigenvectors of (1)

corresponding to the m lowest frequencies, and z is a new set

of generalized coordinates. Transforming to the new generalized
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coordinates results in

D*z = DTDUz = 0 (4)

This process of reducing the order of the equations is known as

modal analysis (Reference 5). In practice it is usually

sufficient to use a small number of free-vibration modes to

reduce the flutter equations. The effect of using different

number of modes will be discussed in a later section.

There have been doubts expressed as to the validity of

using normal modes of the non-rotating structure as generalized

coordinates in a rotating structure (Reference 22). Clearly, if

all normal modes were used (m = n), there would be no error

introduced; the fear is that a very large number of normal

modes need to be retained if the normal modes are of the non-

rotating structure. In Reference 23, Meirovitch shows that

these doubts are unwarrented because the free-vibration

frequencies of a rotating structure satisfy a stationarity
4

principle similar to Rayleigh's quotient. Thus the convergence

characteristics of a rotating structure with regard to the

number of normal modes used in the reduction will be similar to

those of the non-rotating structure. Numerical experiments with

the Darrieus flutter problem using both rotating and non-

rotating-blade modes have confirmed Meirovitch's theory. In

this study it has proven to be advantageous to use modes of the

non-rotating blade as generalized coordinates, both from a

computational standpoint and by the fact that modes of the non-

rotating blade have no gyroscopic coupling between the in-plane

and out-of-plane motions, hence the modes are purely in-plane

or out-of-plane, making interpretation of the flutter results

much easier.



A further reduction in the order of the problem is

realized by noting that due to the symmetry of the blade about

the x
2
axis, the motions of the blade may be split into

symmetric and antisymmetric modes. More precisely, a symmetric

mode is one in which

Yi(s,t) = yl(-s,t),

y2(s,t) = y2(-s,t),

y3(s,t) = y3(-s,t),

e(s,t) = 9(-s,t),

whereas an antisymmetric mode is one in which

yi(s,t) = yi(-s,t),

y2(s,t) = -y2(-s,t),
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(5)

(6)

y3(s,t) = -y3(-s,t),

9(s,t) =

The corresponding symmetric (U ) and antisymmetric eigenvectors

(1:1

a
) not only satisfy the M-orthogonality property (2), but

also satisfy

Ustla . 0
(7)
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That is, the set of symmetric eigenvectors is orthogonal (in

the ordinary sense) to the set of antisymmetric eigenvectors.

Thus we may split the reduced problem (4) into symmetric and

antisymmetric problems, resulting in a substantial savings in

effort in subsequent analyses.
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111.3 Solutions at Non-Zero Rotation Rates

The problems posed in (b), (c), and (d) in section 2 above

are essentially the same: to solve a system of non-linear

equations for a range of values of a parameter of the system.

In (b) and (c) the parameter is the rotation rate and the

equations are nonlinear functions of the characteristic

exponent; the parameter in (d) can be any of the system

parameters such as mass density ratio or stiffness ratios.

By far the most common method of solution of flutter

equations (at least in the United States) is known as the V-g

method. In the V-g method the solution is assumed to consist of

steady harmonic oscillations; that is, p* is assumed to be

imaginary. The structural damping coefficient (g
s

) is then

assumed to be such that the oscillations are steady and

harmonic; for decaying oscillations this requires g
s

to be

negative, while for growing oscillations gs must be positive.

Normally the structural damping coefficient must be positive to

be physically meaningful, so in a V-g solution this added

structural damping is reffered to as artificial or added

structural damping. The V-g solution proceeds by dividing the

flutter equations by p*
2

resulting in

1 4- igs 1
M +

T*
G + *K A(k*)

m*k*
2

(1)

where co* = Im(p*). For a particular value of k* this is simply

a complex generalized eigenvalue problem in which (1 + igs)/w*

is the eigenvalue. Having computed the eigenvalues, the

corresponding rotation rate is simply r = w*/k*. This process

is repeated for a number of values of k* in the range of

interest. Points of neutral stability are then determined by
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interpolating the results to find rotation rates where gs = 0.

There are a number of disadvantages to the V-g solution

technique. The most serious in our case is the fact that a V-g

solution has little physical significance unless g
s

is small;

when gs becomes large not only does the damping lose physical

meaning, but the corresponding generalized coordinates also

tend to become unrealistic, making it difficult to interpret

how a particular mode shape changes as the rotation rate is

increased (Reference 24). As we shall see later, the behavior

of the mode shape with rotation rate is very important in

understanding the cause of flutter in the Darrieus blade.

It is generally agreed that far more meaningful results

are obtained using the so-called p-k solution technique. In the

p-k method the characteristic exponent is assumed to be complex

and no artificial damping is assumed. The flutter equations are

thus viewed as a system of nonlinear algebraic equations to be

solved over a range of rotation rates for the characteristic

exponent and generalized coordinates. The real part of the
44,

characteristic exponent then may be interpreted as the rate of

growth of the oscillations. More specifically, since we have

defined

2Re(p)_

it can be shown (Reference 24) that

g = ln(a.
j+1 j

/a.)/n

where a
j+1

/a is the ratio of amplitudes of successive cycles

of oscillation. It can also be shown that g corresponds closely

in value to the g
s
which would be obtained in a V-g solution,



70

provided g is small. Appendix B contains an example of the

difference in results obtained using the V-g and p-k methods.

The most serious disadvantage to the p-k formulation of the

flutter equations and the reason that this method is not often

used is that this formulation involves the solution of a system

of nonlinear equations, for which there are no solution

techniques which are as reliable as the eigenvalue solution

techniques used with the V-g formulation. For this reason it

was necessary to develop a method by which the p-k formulation

of the flutter equations could be solved as reliably as

possible.

The method used here to solve the p-k formulation of the

flutter equations is known as a continuation method. A

continuation method is merely a method for solving a system of

nonlinear equations which depends on a parameter; that is, each

value of the parameter results in a different set of nonlinear

equations to solve. Starting with a known solution, solutions

to the problem at each increment of the par
4
ameter is obtained

using, for instance, Newton's method with the solution at the

previous step as an initial guess. If the parameter is taken to

be the rotation rate, the solution is a p-k flutter solution

for the neutral-stability points; the same method may be used

to compute variations in the neutral-stability rotation rates

with a system parameter such as mass density ratio or

stiffness. Appendix B contains a description of the method used

to compute solutions to problems (b), (c), and (d).
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111.4 Computer Program

Computer programs were written to carry out the

calculations described in previous sections. In this section we

give a brief outline of the programs.

The calculations were divided into two separate programs

to take advantage of the two very different computers which

were available: a) a CDC 175 and b) a PDP 11/70. The CDC 175

is a very fast, high capacity machine, whereas the PDP 11/70 is

a small mini-computer with limited memory. Thus the program for

the CDC was written to perform the calculations which required

large amounts of memory, and the PDP was used for those

calculations which could be done with limited memory.

Basically, the calculations were divided as follows:

A) CDC program

1) the locations of points for Gauss numerical integration

(Reference 25) of the flutter macces are calculated.

2) integrate equations 11.7.11 for the values of the blade

shape parameters at the Gauss integration points.

3) form matrices M, G, C, K K2, K3, and K
4

by

integrating the expressions given in appendix A using 4

point Gauss quadrature over each interval.

4) evalutate the aerodynamics matrix at a specified number

(usually 4) values of reduced frequency k*

5) compute natural frequencies and eigenvectors at zero

rotation rate using equation 111.2.2.

6) use the eigenvectors computed in (4) to reduce the

matrices computed in (2) and (3)
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7) compute coeffiecient matrices of the spline interpolant

which interpolates the aerodynamics matrices.

8) write the reduced matrices onto a file for transfer to

the PDP computer.

B) PDP program

1) read the file created with program A.

2) read a file of execution options

3) compute natural frequencies of the spinning blade by

setting l/m* = 0 and using the method of appendix B.

4) perform a p-k flutter solution by computing p* and u at

intervals of r.

5) using the neutral-stability points found in (4),

compute solutions varying m*, kl, and k2

Although the accuracy of the PDP 11/70 is limited by a word

length of only 16 bits, the accuracy and stability of the

solution process was found to be quite acceptable. The LINPACK

library along with the BLAS (Reference 26) were used

extensively with double precision accumulation of inner-

products in the PDP version of the BLAS.



IV. RESULTS

IV.1 Parameters

The flutter equations

C

Du = p*
2
M + p*rG + r

2
C

+ (1 + igs)(kIKI + k2K2 + k3K3 + K4)

2

m*
A(k*)
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u = 0 (1)

contain a number of dimensionless parameters, allowing us to

present the results of solutions to (1) in dimensionless form.

This has the advantage that the results presented will apply to

a one-parameter family of Darrieus wind turbines, rather than a
4,

particular configuration. The parameters contained explicitly

in the flutter equations are:

1)
jmh 4

characteristic exponent p* = welg + i)
EI

ir
2) rotation rate r = 2 -1-h-11

EI

4

3) reduced frequency k* = w/2

4) chordwise to flatwise stiffness ratio kJ.

5) torsional to flatwise stiffness ratio k
2

6) axial to flatwise stiffness ratio k
3

7) density ratio m* = m

111310

2
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8) structural damping gs

Implicit in (1) are the following parameters:

1) aspect ratio a = xl(h)/x2(0)

2) cubic spline intervals n

3) radius of gyration (in semichords) er

4) axis to midchord distance (in semichords) e
a

5) axis to center of gravity (in semichords) em

6) semichord b* = b/h

Of these parameters, a number will remain fixed for all cases

presented here unless otherwise noted; they are

a) aspect ratio a =

b) semichord b* =

1

.02

c) radius of gyration e
r

. .5

d) density ratio m*
14i

= 50

e) cubic spline intervals n = 15

f) chordwise/flatwise stiffness ratio k
1

= 50

g) torsional/flatwise stiffness ratio k
2

1

h) axial/flatwise stiffness ratio k
3

10
6

i) axis to midchord e
a

.5

j) axis to c.g. e
m

0

k) structural damping gs 0
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1V.2 Accuracy and Convergence

As a means of verifying the equations of motion used in

this study a comparison was made with results published for the

in-plane and out-of-plane vibrations of semi-circular arcs.

Ojalvo (Reference 9) presents natural frequencies of the out-

of-plane vibrations of a circular arc clamped at the ends,

while Archer (Reference 11) presents natural frequencies for

the in-plane vibrations of a clamped semi-circular arched beam.

For this comparison it was necessary to replace the definition

of the troposkien blade shape with that of a circular arc, and

change the boundary conditions to clamped. Both of these

differences involve only minor changes to the computer program

used to generate the results. The results of this comparison

are presented in Table 2 (also included are natural frequencies

computed for the corresponding troposkien-shaped arc). Note

that the results for out-of-plane vibrations compare better

than the in-plane vibrations; this is due to the problem of
.4,

discretizing curved beams as discussed in section 11.8.



TABLE 2. Natural frequencies of a circular arc

4
mh

wj EI
with k

1
= 5, k

2
= 1
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i present study Ref. 1 Ref. 2 troposkein

1 9.022 9.018 9.002

2 10.96 10.81 11.81

3 24.84 23.81 27.15

4 26.19 26.18 26.89

5 46.66 44.24 46.92

6 56.06 55.94 ' 57.03

7 77.16 67.86 71.44

8 98.55 100.2 98.88

A solution to the problem of extensiolial deformations

induced by in-plane bending of a curved beam was presented in

section 11.8. The technique presented involved discretization

of the strains in additon to the displacements. Of interest is

how this technique effects the convergence of the natural

frequencies with respect to the number of spline intervals

used. Figure 10 illustrates the convergence behavior of the

first 10 natural frequencies with and without discretization of

the strains. Clearly the convergence is much better with

discretization of the strains.
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IV.3 Zero Rotation Rate

The primary interest in solutions at zero rotation rate is

in reducing the size of the problem for subsequent analyses of

the spinning blade. As mentioned in 111.2, the reduction

involves computing a few low-frequency normal modes of the

blade at zero rotation rate, then using these modes in

conjunction with generalized coordinates for analyzing the

general case. Also mentioned was the fact that the normal

modes consist of symmetric and antisymmetric modes, and that

the flutter equations can be split into equations for symmetric

and antisymmetric motion.

Solution of the eigenvalue problem

(p*2M + k)u = 0, (1)

where K = k1K1 + k2K2 + k3K3 K4, yeilds n pair of natural

frequencies and eigenvectors for the non - Stating blade.

Equations 11.8.1 and 11.8.10 then allow us to transform the

eigenvectors to physical displacements of the blade. Figure 11

illustrates the first few symmetric and antisymmetric normal

modes at zero rotation rate. Note that the torsional

displacements (9) in the out-of-plane modes are not all to the

same scale. Considering the symmetric modes (figure 11(a)), it

can be seen that mode 1 is an in-plane bending mode, while mode

2 is an out-of-plane bending and torsion mode, modes 3 and 4

are in-plane bending modes, and mode 5 is a torsion mode. The

antisymmetric modes (figure 11(b)) consist of two in-plane

bending modes followed by an out-of-plane bending mode (mode

3), two more in-plane bending modes (4 and 5), and finally a



MODE 1

MODE 4

30°

MODE 2

79

90°

MODE 5

Figure 77a. Normal Modes of the Non-Rotating Blade

Symmetric Modes

MODE 3



MODE 1

MODE 4

MODE 2

MODE 5

79a

-90° 0

MODE 3

90°

-90° 0

MODE 6

Figure lib. Normal Modes of the Non-Rotating Blade

Antisymmetric Modes

900



80

torsion mode. For the reduction to normal-mode generalized

coordinates, these 5 symmetric modes and 6 antisymmetric modes

were found to be sufficient for flutter analyses. The reason

for using 6 antisymmetric modes instead of 5 as in the

symmetric case is to include the torsion mode (mode 6). It

will prove convenient in subsequent discussions to refer to the

j
th

generalized coordinate (either symmetric or antisymmetric)

as GCj.

A point regarding symmetric mode 2 should be made since

the displacement patterns in this mode appear anomolous.

Intuitively one might expect y3 and 9 to have similar

displacement patterns, and indeed they do for all but this

particular mode. Not only are the displacement patterns for y3

and 9 different in this mode, but 9 has a reverse twist very

much like symmetric mode 5, which has a much higher frequency.

The fact that this behavior is possible can be proven with the

following experiment: bend a piece of thin metal or plastic
4,

such as strapping material into a semi-circular arc and fasten

the ends to a board; then by pushing out-of-plane on the center

of the arc a displacement pattern similar to the second

symmetric mode will result. The amount of reverse twist depends

on the ratio of out-of-plane stiffness to in-plane stiffness.



IV.4 Free-Vibration of the Spinning Blade

Free-vibration frequencies of the spinning blade can be

computed by setting the air density to zero, resulting in

(p*
2
M + p*rG + r

2
C + = 0

81

(1)

The presence of the gyroscopic matrix G prevents us from

solving this equation as a generalized eigenvalue problem.

Meirovitch (Reference 27) shows how gyroscopic equations such

as this can be treated as a 2n
th

order generalized eigenvalue

problem with 2n pure imaginary complex conjugate eigenvalues

(p*). A more convenient approach here is to use the same

technique which will be used for flutter analyses, as outlined

in Appendix B. Figures 12(a) and 12(b) show the natural

frequencies of the spinning blade for symmetric and

antisymmetric motions, respectively. At low rotation rates the

natural frequencies depend primarily on tile
4
blade stiffnesses;

as the spin rate increases centrifugal and coriolis forces

effectively stiffen the blade, increasing the natural

frequencies. At very high spin rates the frequencies become

directly proportional to the rotation rate as can be seen by

dividing (1) by r
2
, which for large r results in

(w2M + wG + C)u = 0 (2)

where w = p*/r. This eigenvalue problem yields the asymptotic

frequencies:

p. = w.r (j = 1, 2, .. n) as r
J J
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Particularly significant in figure 12 is the fact that the

frequencies of some modes increase more rapidly than others,

resulting in frequency curves which cross. For instance, the

frequencies of symmetric modes 1 and 2 cross at a dimensionless

rotation rate of about 6.5. The reason for the different rates

of increase in frequency is that the in-plane bending modes,

such as symmetric mode 1, are effected much more by centrifugal

forces than the out-of-plane bending modes, such as symmetric

mode 2. It is interesting to note that instabilities are

possible in a conservative
gyroscopic system such as this, and

that a necessary condition for such instability is the

coalescence of free-vibration frequencies (References 28 and

29); however, no instabilities were
encountered in the free-

vibration case even with the frequency crossing seen in figure

12.

Free-vibration mode shapes of the spinning Darrieus blade

likewise exhibit characteristics
peculiar to gyroscopic

systems. For instance, an in-plane bend* vibration mode such

as symmetric mode 1 will, due to gyroscopic coupling, induce

motion out-of-plane. This behavior can be seen in a plot of the

generalized coordinates for the free-vibration modes. Figure 13

shows the generalized coordinate amplitudes for symmetric modes

1 and 2 and antisymmetric mode 1. The generalized coordinates

are normalized so that the sum of the squares of the amplitudes

is one. At zero rotation rate
symmetric mode 1 (figure 13(a))

consists of generalized coordinate 1, the first in-plane

symmetric bending mode. As the rotation rate increases

gyroscopic coupling increases the imaginary part of GC2, the

out-of-plane bending mode. Recalling that in the complex
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representation of harmonic motion the physical displacement is

obtained by multiplying the complex generalized coordinate by

ePt (using equation 11.8.1) and taking the real part, we

conclude that the free-vibration mode shape which corresponds

to a real value of GC1 plus an imaginary value of GC2 must

consist of bending in the x3 direction (symmetric normal mode

2) followed 1/4-cycle later by bending in the negative x2

direction as in symmetric normal mode 1 (figure 11). That is,

GC2 leads GC1. At the point where the frequency curves for

modes 1 and 2 cross, approximately 6.5, the phase relationship

between GC1 and GC2 suddenly changes by 180 degrees. This

phenomenon can be explained by considering a simple spring-mass

system with a harmonically-varying force. If the frequency of

the forcing function is below the natural frequency of the

spring-mass system, the response is in-phase with the force,

whereas if the frequency is above the system's natural

frequency the response is 180 degrees out-of-phase. If we think

of the gyroscopic forces as the forcing function and GC2 as the

spring-mass system, we see that this behavior is completely

analogous. This behavior will prove to have important

consequences in regards to the aeroelastic stability of the

spinning blade.
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IV.5 Stability of the Spinning Blade

Stability of the spinning blade can be determined from the

flutter equations by simply examining the sign of the real part

of the characteristic exponent: negative implies stable motion

and positive implies instability. It should be pointed out

that, strictly speaking, solutions to the flutter equations are

valid only when the real part of the characteristic exponent is

zero, implying steady harmonic oscillations. This is due to the

fact that the aerodynamic forces were derived under the assump-

tion of harmonic motion; it is generally agreed, however, that

reasonable results are obtained even when the oscillations are

growing or decaying (Reference 24).

Figure 14 shows the variation in growth rate of the oscil-

lations with rotation rate for symmetric and antisymmetric

motions. Recall that the growth rate is defined as

2Re(p)
g (1)

where Re(p) is the real part of the complex characteristic

exponent p. Each curve represents a different mode of

oscillation, known as an aeroelastic mode. At zero rotation

rate the aeroelastic modes are just the normal modes of the

blade. Figure 14 therefore illustrates the stability of motion

in each aeroelastic mode. Typically, as the spin rate

increases the growth rate becomes increasingly negative,

indicating stable oscillations; at some point the growth rate

for one of the modes begins increasing until it finally crosses

the zero axis; at this point the oscillations are said to be

neutrally stable, since the motion is neither growing nor
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decaying. These neutral stability points are also referred to

as flutter points. Further increase in rotation rate causes the

oscillations to grow, usually resulting in a catastrophic

failure of the blade. Figure 14(a) shows that symmetric

aeroelastic modes 1 and 2 flutter at dimensionless rotation

rates of about 44 and 8, respectively. These two modes will be

termed S1 and S2 for further discussion. In the antisymmetric

case, figure 14(b) shows that aeroelastic mode 1 flutters at a

rotation rate of about 27; for purposes of discussion this mode

will be referred to as Al. These three modes, Si, S2 and Al

then are the most important modes of the system; the study of

these modes will occupy the majority of the remainder of this

chapter.

Mode S1 corresponds to normal coordinate 1, the first

symmetric in-plane bending mode of the non-rotating blade. As

shown in figure 14(a), S2 is quite stable up to about r = 40,

at which point the growth rate rapidly changes sign, becoming

increasingly unstable at higher rotation rates instead of
to

stabilizing as S2 does. Since the growth rate (g) as defined

here is approximately equal to the structural damping

coefficient which would have to be subtracted from the system

to result in steady harmonic oscillations as in a V-g flutter

solution, we can conclude that this mode would be effected very

little by the addition of structural damping.

To gain insight into the flutter mechanism it is helpful

to study the variation in the mode shape with rotation rate.

The mode shape at any rotation rate is merely the sum of the

normal modes from figure 11 times their respective generalized

coordinates times ePt, bearing in mind that at any instant it

is the real part of this complex mode shape which gives the

physical configuration of the blade. The variation in mode
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shape with rotation rate can therefore be visualized from plots

of the generalized coordinate amplitudes as functions of

rotation rate. Figure 15 illustrates the real and imaginary

amplitudes of the generalized coordinates for aeroelastic mode

S1 for a range of rotation rates. The generalized coordinates

have been normalized in the following manner: at zero rotation

rate the index of the generalized coordinate with the largest

amplitude, say j
max'

is determined; the generalized coordinates

at any rotation rate are then normalized so that the sum of

squares of the magnitudes equals one and the imaginary part of

generalized coordinate jmax is zero. This figure should be

compared with figure 13, the generalized coordinates for this

mode in free-vibration. Note that in the free-vibration case

the generalized coordinates are either pure real or pure

imaginary, unlike non-gyroscopic systems where the generalized

coordinates are always real; thus in a gyroscopic system the

degrees of freedom may oscillate in-phase or 90 degrees out-of-

phase with one another, whereas in a non-gyroscopic system the

degrees of freedom all oscillate in-phase. With the addition

of aerodynamic forces the phase differences are arbitrary;

indeed, this phase difference between degrees of freedom is

crucial to the stability of the system.

Referring to Figures 11 and 15 it can be seen that as the

rotation rate is increased, gyroscopic coupling between in-

plane and out-of-plane motion causes the contributions of the

out-of-plane bending mode (GC2) and twisting mode (GC5) to

increase. Note that the imaginary part of GC1 is always zero,

on account of the normalization convention mentioned above.

Below r = 6, the imaginary part of GC2 is positive while the

real part is negative, so GC2 is said to lead GC1, since in a

cycle of oscillation the displacement pattern in figure 11
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corresponding to GC2 (normal mode 2) occurs before the

displacement pattern corresponding to GC1 (normal mode 1). In

the vicinity of r = 8 the imaginary part of GC2 suddenly

changes sign, thus lagging GC1. As in the free-vibration case

the cause of this abrupt change in phase is the increased

centrifugal stiffening on the in-plane bending mode (GC1) and

the accompaning crossing of the natural frequency curves seen

in figure 12. In order to see what effect the aerodynamic

forces have on the stability of the system, consider a section

of the blade at mid-span, as shown in figure 16. The section

has an effective angle of attack determined by the rotation

rate and the velocity in the x
2
direction of approximately

Y2
a = 9 +

Stx
2

91

The lift induced by a positive effective angle of attack is in

the negative x2 direction. If the lift force is in phase with

the velocity in the x
2
direction it will tend to destabilize

the system; since the phasing of the lift is dependent on the

phasing of y2 and 9, it is the phasing between y2 and 9 which

determines the stability of the oscillations. Note that this

discussion applies to other sections of the blade with the

velocity in the x2 direction replaced with the velocity normal

to the section. This view of the aerodynamic forces is greatly

oversimplified, nevertheless it is the dominant mechanism

controlling the aeroelastic stability of the blade.

In the case of aeroelastic mode Si, it can be seen that

the phasing between the in-plane and out-of-plane motion below

r = 8 is such that instability is possible; that is, the

phasing is similar to the motion represented in figure 16. The

reason this mode is stable below r = 8 is that the amplitude of



92

the twist in GC2 never becomes large enough to cause a positive

effective angle of attack. Above r = 8 the phasing between GC1

and GC2 is such that an instability caused by interaction

between these two coordinates is not likely. On the other

hand, the amplitude of the twisting mode (GC5) steadily

increases with a phase difference between GC1 and GC5 which

makes instability possible. The amplitude of GC5 increases

because of the gyroscopic coupling between the in-plane motion

and the out-of-plane component of GC5. Finally, at a rotation

rate of about 40, the effective angle of attack becomes

positive over enough of the blade span to destabilize the

motion.

The fact that GC5 is what destabilizes mode S1 can be

further clarified by considering the work done by the

aerodynamic forces as the blade goes through one cycle of

oscillation. The advantage to measuring the influence of

degrees of freedom on the stability of a system by the work

done is that work is independent of any scaling of the

coordinates; thus it is not necessary, for instance, to compare

the amplitudes of angular deflections with linear

displacements. Moreover, since work is a real, scalar

quantity, the influence of phasing is automatically accounted

for. A derivation of the expression for the work done on a

fluttering system is contained in Appendix C. Figure 17 shows

the work done (W
jk
) on the system during one cycle of

oscillation of each of the generalized coordinates (GCj) by

forces induced by displacements in the generalized coordinates

(GCk). Negative work indicates a stabilizing force, while

positive work indicates destabilization. Thus the work done on

GC1 by aerodynamic forces induced by displacement in GC5 are

destabilizing, while the work done on GC1 by forces induced by



0

wi

destabilizing

W
35

stabilizing

W11

t

flutter

20 40

Rotation Rate

60 80 100

Figure 17. Work on the System Mode S1

=

Z=, 0

8

oc

-1

I 0 4. 1 i l orr T
1 11 1 1 1 1

2

REAL

IMAGINARY

.0

mol

I I 1 1 1 1 1 1 1 I 1 1 1 t 1 1 1

10 100

ROTATION RATE

Figure 18. Generalized Coordinate Amplitudes

for Mode S2



94

GC1 are stabilizing. A flutter instability which is due

primarily to the interaction of two generalized coordinates is

known as binary flutter.

Mode S2 corresponds to the first out-of-plane bending

normal mode (GC2) of the non-rotating blade. Figure 14 shows

that although this mode becomes unstable at a relatively low

rotation rate, the instability is comparitively mild, as

evidenced by the low growth rate. Evidently this mode would not

flutter if the structural damping coefficient were greater than

about .03. It is, however a potentially dangerous mode in

regard to the fatigue life of the blade since even with

sufficient structural damping to prevent flutter this mode will

have a relatively large gust response due to the low level of

damping. Once again, looking at a plot of the generalized

coordinate amplitudes (figure 18) we see that gyroscopic

coupling between the out-of-plane bending mode (GC2) and the

in-plane bending mode (GC1) increase the amplitude of GC1. As

in mode Si, there is a sudden change in the phase relationship

between GC1 and GC2, caused by the crossing of the natural

frequencies of the corresponding free-vibration modes at about

r = 8. The difference here is that, due to the higher frequency

of oscillation, GC2 lags GC1 below r = 8, and leads GC1 above r

= 8, opposite to the situation in Sl. In this case the sudden

phase change puts the two generalized coordinates in an

unstable relationship, as evidenced by the change in sign of

the growth rate (figure 14). The amplitude of GC1 does not

continue to grow with increasing rotation rate, however,

probably due to the fact that the frequency of the in-plane

bending mode is increasing more rapidly than the out-of-plane

bending mode (figure 12), resulting in decreased response to

the lower-frequency oscillation of mode S2. At higher rotation
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rates the amplitude of GC5 increases and serves to stabilize

the motion further. This can be seen in figure 19 where the

work on the system over one cycle of oscillation of mode S2 is

presented. Here we see that the work done on GC2 by aerodynamic

forces induced by motion of GC1 are destabilizing, while GC5

and GC1 are stabilizing.

Mode Al is characterized by antisymmetric in-plane

bending, primarily GC1, coupled gyroscopically with the first

antisymmetric out-of-plane bending and twisting mode (GC3). At

zero rotation rate aeroelastic mode Al consists entirely of the

first in-plane bending mode (GC1), as shown in figure 20. As

was the case with mode Sl, gyroscopic forces increase the

amplitude of the out-of-plane bending and twist up to a point

where the effective angle of attack over enough of the blade

span becomes positive, resulting in a sudden change from

stability to instability as the rotation rate is increased.

Mode Al flutters at a considerably lower rotation rate than Si,

however, making it potentially more dangerous. A plot of the

work done (figure 21) shows that the out-of-plane bending mode

is destabilizing throughout the range of rotation rates, while

GC1 is stabilizing.
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1V.6 Variation of Parameters

Now that we have looked at the causes of flutter

instabilities in the Darrieus blade it is of interest to see

what effect certain of the parameters have on the flutter

rotation rates. In this section the effects of varying the

location of the blade axis relative to the center of mass, the

density of the blade, and the torsional and chordwise

stiffnesses. In addition, the effect of assumptions in the

aerodynamic model are examined.

Although the aerodynamic model used for this study

accounts somewhat for the influence of shed vortices, it does

not include such effects as the influence of the wake of

previous blades or the aerodynamic interaction between sections

of a blade. An indication of the sensitivity of the model to

the aerodynamic theory is given by comparing the behavior of

the model with and without the influence of shed vortices. The

so-called quasi-steady aerodynamic theory is obtained from the

theory used here by using a constant reduced frequency of zero;

that is by setting Theodorsen's function to 1 in the

expressions for aerodynamic forces (see section 11.5). Figure

22 shows the results of the two theories for modes Sl, S2, and

Al. The fact that the differences are minor suggests that the

neglected aerodynamic effects are probably not significant.

This is supported by the fact that the generalized coordinate

amplitudes are not greatly different with or without

aerodynamic forces, suggesting that it is primarily the

gyroscopic forces which determine the phase relationships which

in turn determine the stability.

A parameter which is found to be very important in the
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study of the flutter of airplane wings is the location of the

center of mass relative to the quarter-chord (also known as the

aerodynamic center), and the elastic axis. To study this effect

in the Darrieus, the blade axis was moved to the 3/4 chord,

with the mass center on the 14 chord. The results of this shift

are shown in figure 23 for modes Si, S2, and Al. The offset

apparently has little effect on modes S1 and Al. On the other

hand, mode S2 flutters at a rotation rate which is about 30

percent higher than with the axis on the 4 chord. Thus as far

as the two most important modes (S1 and Al) are concerned, the

locations of the mass center and elastic axis are of minor

importance. This fact was also observed in Reference 4.

Another parameter which is important in the classical wing

flutter problem is the density of the wing, or the density

ratio m*. Since the blade density appears in the dimensionless

rotation rate we might be tempted to conclude that the flutter

rotation rate is proportional to the inverse square-root of the

blade density; although it turns out that this conclusion is

nearly correct, we cannot use the fact that the density appears

in the dimensionless rotation rate as a justification since

changing the blade density also changes the density ratio m*,

which effects the aerodynamic forces. It is therefore necessary

to study the effect of changes in the density ratio. Figure 24

shows the variation in flutter rotation rate with density ratio

for modes Si, S2, and Al. Note that instead of the usual

nondimensionalization of rotation rate we use

r

m*

This plot can therefore be viewed as the effect of varying the

blade density at a constant value of air density. Also shown
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are the same modes with the addition of structural damping.

With no structural damping the flutter rotation rates plot as

nearly straight lines with slopes of -1/2; thus we may conclude

that the flutter rotation rate is approximately proportional to

the inverse square-root of the blade density. Moreover, this

conclusion is not changed significantly for modes S1 and Al

with the addition of a small amount of structural damping.

Mode S2, on the other hand, shows a drastic change in

sensitivity to density ratio with the addition of structural

damping. This is not surprising however in view of the lightly

damped nature of mode S2 as shown in figure 14.

Perhaps the most important parameters determining the

stability of the Darrieus blade are the stiffness ratios k1 and

k2. Recall that k1 is the ratio of out-of-plane or chordwise

bending stiffness to in-plane bending stiffness, and k2 is the

ratio of torsional to in-plane stiffness. These two parameters

were varied over a wide range and the corresponding flutter

rotation rates computed using the same basic solution technique

as outlined in Appendix B. Since changing the stiffness

parameters can be expected to make significant changes in the

normal modes of the blade, it was felt necessary to modify the

set of non-rotating normal modes used as generalized

coordinates in the stability calculations of the previous

section. Instead of the 5 symmetric and 6 antisymmetric modes

used previously, 9 symmetric and 9 antisymmetric modes were

used. For both the symmetric and antisymmetric cases these

modes consisted of 6 in-plane bending modes and 3 out-of-plane

bending and twisting modes. In addition, 3 more symmetric and 3

antisymmetric modes were created from the 3 out-of-plane normal

modes. These 3 additional modes consisted of the torsional

portion of the 3 out-of-plane normal modes, with all other
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displacements set to zero. The purpose in adding these 3

degrees of freedom was to allow changes in the coupling between

out-of-plane bending and twist, changes which are bound to

occur with variations in the stiffness parameters. Numerical

experiments with this set of 12 generalized coordinates

confirmed that they represent the structure very well over the

range of stiffness parameters used.

The results of these variations are presented in figures

25, 26, and 27 for modes Si, S2, and Al, respectively. In each

figure is shown a) the results of varying k1 holding k2

constant, and b) the results of varying k2 holding k1 constant.

Each curve represents neutral stability: rotation rates above

the curves are unstable, and below the curves are stable

regions. Figure 25(a) shows the effect of varying the chordwise

stiffness for four different values of torsional stiffness for

mode Si. Looking at figure 25(a) we see that for low values of

k
2
(.01 or .1), the critical flutter speed increases with

increasing chordwise stiffness. On the other hand for higher

values of k
2

(1 or 5) it is desirable to have k
1
relatively low

to avoid flutter. Figure 25(b) shows the effect of varying k2

for three values of k1. For a particular value of kl, say 10,

this mode is completely stabilized if k
2
is greater than a

certain value, about 1 in this case.

There is a great deal of similarity between the behavior

of mode SI and mode Al, shown in figure 27, except that the

critical rotation rates for Al are lower than Si. Thus

adjusting the stiffness parameters to increase the flutter

speed for one mode will have much the same effect in the other

mode.

The effect of varying the stiffness parameters on mode S2

has a much different effect, as shown in figure 26. Recall that



104

mode S2 has a relatively mild instability at a rotation rate of

about 8 (k
1

= 5 and k
2
= 1) which could be removed with the

addition of a small amount of structural damping. Evidently

this instability is relatively mild over the range of stiffness

parameters studied here, as no instability was found with the

addition of a structural damping coefficient of .03. Figure 26

shows that this mode is generally unstable at lower rotation

rates for lower values of the stiffness parameters. In the last

section we saw that the cause of flutter in this mode was the

crossing of frequencies of the in-plane bending and out-of-

plane bending modes due to the stronger centrifugal stiffening

of the in-plane mode. Reducing the torsional and chordwise

stiffnesses then results in lower frequencies for the out-of-

plane mode, hence the in-plane mode frequency crosses at a

lower rotation rate. Unlike modes Si and Al, this mode does not

have regions in the k
1
-k

2
plane which are flutter-free.
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V. CONCLUSIONS

In previous sections it has been shown that small

oscillations in the Darrieus wind turbine can, under certain

conditions, become unstable. Although this study considered

only a single Darrieus blade spinning in the absence of wind,

stability in this case is clearly a prerequisite for stability

in the case of a multi-blade turbine spinning in the presence

of wind.

The primary cause of the flutter instabilities was shown

to be the gyroscopic coupling between motion in the plane of

the blade and motion perpendicular to the plane of the blade.

The strength of this coupling is directly dependent on the spin

rate of the turbine. Furthermore, the nature of the gyroscopic

coupling, particularly the phase difference between in-plane

and out-of-plane motions, is dependent on the frequency of the

oscillations, which in turn is also depenent on the rotation

rate. The phase difference between the in-plane and out-of-

plane motions was shown to have a decisive influence on the

stability of small oscillations of the blade.

Three modes of oscillation were identified as the primary

flutter modes of the Darrieus. The mode which becomes unstable

at the lowest spin rate is a mildly unstable mode which is very

similar to the second symmetric free-vibration mode of the

spinning blade, which consists of out-of-plane bending and tor-

sion coupled with in-plane bending. Because this instability is

very mild, it is easily stabilized with a small amount of
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structural damping; this is not to say that this mode is of no

concern, however. Even with enough structural damping to allev-

iate the flutter problem, it is likely that oscillations caused

by, for instance, gusts would decay relatively slow. These

lighly-damped oscillations could shorten the fatigue life of

the blade.

As the rotation rate is increased, the second unstable

mode encountered is comparatively violent. This mode was ident-

ified as being very close to the first antisymmetric free-

vibration mode of the spinning blade. Although this instability

occurs at a rotation rate which is roughly three times as great

as the first flutter mode, it is potentially more dangerous

since it is evidently not stabilized by structural damping.

The third flutter mode was identified as a symmetric

torsion mode coupled with in-plane bending. Although for the

nominal case studied here this mode flutters at a rotation rate

approximately 60 percent higher than the second mode, at

certain combinations of in-plane, out-of-plane, and torsional

stiffnesses, the flutter rotation rates for these two modes

become nearly equal. Like the second mode, this flutter mode

also occurs abruptly and leads to violently unstable oscil-

lations.

The fact that in all three instabilities the modes were

identified as being close to free-vibration modes suggests that

instabilities in the Darrieus are caused more by inertia

forces, particularly the gyroscopic forces, than aerodynamic

forces as in classical airplane wing flutter. This conclusion

was supported by showing the effect of varying the ratio of

blade mass to air mass.

As mentioned above, it is the phasing between in-plane and

out-of-plane motions which plays a decisive role in the sta-
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bility or instability of the Darrieus blade. This phasing is

largely dependent on the frequency of the oscillations by way

of the gyroscopic coupling. The fact that in-plane motions are

effected much more by centrifugal forces than out-of-plane

motions causes abrupt changes in the phasing in both free-

vibation modes and the corresponding aeroelastic modes. This is

the primary cause of the second instability; the cause of the

other two is the increased gyroscopic coupling as rotation rate

is increased. Both of these mechanisms were shown to be be

strongly influenced by the in-plane, out-of-plane and torsional

stiffness of the blade. Moreover, these flutter modes were

shown to be relatively independent of the location of the mass

center and elastic axis in a cross-section of the blade.
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APPENDIX A. MATRIX TERMS

In this section the terms of the various matrices arising

from discretization of the strain energy, kinetic energy, and

aerodynamic forces will be listed. In section 11.8 the flutter

equations were written as

p *2M + p*rG + r2C

2

+ k1K1 + k2K2 + k3K3 + K4 A(k*) u = 0 (1)

Each of these matrices is the result of substituting the

discretized variables y1, y2, y3 and 0 into the expressions for

potential energy, kinetic energy, and aerodynamic forces, and

integrating from s* = - 1 to s* = 1. Each matrix has a form

which is typified by the mass matrix:

M = f M'ds*

where

M11
m
12 K13 K14

M21
m
22

m
23 1424

M' (2)

M31
m
32

m
33

m
34

M41 1(4242 43 M44

Mij is an (n., n.) rectangular matrix relating inertia forces

on the i
th

variable to displacements of the j
th

variable,
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n
1
= n + 1

n
2

= n + 1

n
3

= n 1

n4 = n + 1,

and n is the number of spline intervals.

It will prove useful to look at what happens to the

various matrices when Lagrange's equations are used to derive

the equations of motion. In general the Lagrangian for a linear

system has the form

L = T V = 1/2zTlik + zTBz + 1/2z
T
Cz ZzIltz

which, when substituted into Lagrange's equation

results in

+ MT)z + (B BT)z + 11(C + CT)z + 1-1(K + KT)z = 0

Thus we see that M, C, and K are symmetric matrices and

G = (B B
T

) is skew-symmetric. These properties will be taken

into account below in writting expressions for the matrix

terms.

The mass matrix M arises from kinetic energy terms which

are quadratic in the velocities. The terms of M..
ij

are given

explicitly by



118

M13 Ilemb*xtiqlqi

M14 1/2emb*xn11414

M21 M12

M22 (12(12

,

M23 I'leui)*xn12(13

T

M
24

= lie b*x' q
m 1

*q
2 4

T

M
31

= M
13

M
32

= M
23

M33

T 2b*2,,T
33 3 3 r 3 3

= 0

M
41

= M
14

M
42

M
T

24

M
43

M
T

34

M44
T

44 r '104

The gyroscopic matrix

G= Gicis*
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where the terms of G' are

G'
11 1

= G'
2 1

= G'
3 1

= G'
4

= 0

G21
2

= G'
2 2

= G'
4

= 0

G23 = 2q2q;'

G
31

=0

G32 = G
23

G33
2e b*x*4(14n

T

q 41T)33 m 2 3-3 -33

G
34

= 2e b*x10
m 1 41 3(14

G
41

= G
42

= 0

G43 = G
T

34

T T
G44 = emb*qq4q4 (emb*xIq4q4) = 0

The matrix of centrifugal force terms is

C = M
0

+ K
0

= C'ds*

where the terms of C' are

C = P*q
T

11 1

q
1

C12 C13 C14
=0
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C
21
=0

, ,T

C22C c12(12 P*(12(12

,T
C23 = 1/2emb*q1q2q3

C = 1/2e b*Xic'cl q
24 m 1 2 4

T

C
31

= C
13

C
32

C
23

C n T +
33 '13'13 '3'13

C34 = 0

C
41

C
14

C=
42

C2

C
43

C
34

C
44

= 0

The stiffness matrix

K = k1K1 + k2K2 + k3K3 + K4 = Kids*

where the terms of K' are

K
11

= x* '
2
qu

"T
2c*T xr(ci g"T

1" 0 1

T)
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*2 ,2 ,T *,2 ,T
+ c xt qlq, + k3xl

x-,101,g7g,f + c*(x1,02gice xv2ceiciT)

K12 T

2 T
c* xT xrql(12 k3x1rx/rgitlT

K
13

= K
14

= 0

K
21

= K
12

K
22

=
_ ,2 q"

q2
T

+ c'x1 'x2 *kq 'qT
+ q q

2

TN

c*2x 2g 2g

22 2 3 2 2

T

K
23

= K
24

= 0

K
31

= K
13

= 0

K
32

= K
23

= 0

K33 = k1g3g3T + k2c*2q3q3T

T ,T
K34 = k c*q k c*q'a

434 1 414 2 3.

K
41

= K
14

= 0

K
42

= K
T

24
= 0

K
43

= K
34

*2

(104
T ,fliT

K44 'lc
+

-2(14'4
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Finally, the terms of the aerodynamic matrix are

C
2A

11
= - x*' L_1(* b*xlel 2k*xIC(10-.1

2 2

CA
12 2

= x*' Lk*
2
b*xt + 2k*xlic'x2C(k)] qlq2

A
13

=0

A
14 2

= x*'[k* 2b*e
a

+ k*x*2b*

T
+ 2x*

2
C(k) + k*b*(1/2 + ea)]

(11(14

A21
= xi'

2
Ck*2x*'13* + 2k*xIxIIC(k) q2q,

A
22

= - x'[k* 2
x11 130* + 2k*x*2 C(k)] q2q2

1

A
23

=0

A
24

= x*'[ik* 2 b*e
a 2 2

+ k*x*b* + x*
2
C(k)

1

+ k*(1/213* ea)] (12(14

A
31

=A32 =A33 =A34 =0

A41 2
x*'[k*2e

a
b*2 + 2b*(1/2 e

a
)k*x*2 C(k) I q4qT

A42 = xt'Ck*2eab*2 + 2b*(1/2 e
a
)k*qC(k)]q2c1T2

A
43

= 0

A44 k*2(e:" "3/8)q4c4
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T

+ k* C2x2b*(1/2 ea)(1/2 + ea)C(k) b*2(11 + ea)_)(14q4

+ b*(11 ea)xeC(k)q

Theodorsen's function is a complex-valued function of the so-

called reduced frequency k = Wb/C2x
2'

hence the terms of A are

in general complex. Note also that steady harmonic motion has

been assumed in deriving the aerodynamic forces, as discussed

in section 11.5.

In terms of these matrices the kinetic energy , potential

energy and generalized forces may be written as

T.,

T = limp
2
h3 J1412 + -pmh

3
u
T
Gu

T Q2
+ mh

3
u nou

EI
V =

2h
u
T
(k

1
K

1
+ k

2
K
2
+ k3K

3
+ K4)u

s-42mh3__T,

u Thu

f = 7P22bh4Au

Substituting these expressions into Lagrange's equation and

dividing by EI/h then results in (1).
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APPENDIX B. FLUTTER EQUATION SOLUTION TECHNIQUE

Perhaps the most commonly used method for solving the

flutter equations is the so-called V-g technique (Reference

24). The most attactive feature of the V-g method is the fact

that it consists of solving a number of eigenvalue problems,

for which there are very efficient techniques. There are, how-

ever, several disadvantages to the V-g method, most of which

are related to the fact that in the V-g method the flutter

equations are formulated as an eigenvalue problem, which places

severe restrictions on the form of the equations. For our pur-

poses the biggest drawback is that V-g solutions often give

poor indications of the response of a system except at the

critical flutter point; in order to explain the cause of the

flutter instabilities it is necessary to have a reasonably

clear picture of the behavior of the critical modes all the way

from zero rotation rate up to the critical flutter speed. It is

generally agreed (References 24, 30, and 31) that a superior

formulation of the flutter equations is the so-called p-k form-

ulation, in which the characteristic exponent p is solved for,

rather than the added structural damping coefficient. The dif-

ficulty with the p-k formulation is that it involves the sol-

ution of a system of nonlinear equations. The techniques avail-

able for the solution of nonlinear equations are far less rel-

iable than those for solving the V-g eigenvalue problem. More-

over, the cost of a p-k solution is likely to be much greater

than the corresponding V-g solution simply because a V-g sol-

ution tracks all n aeroelastic modes simultaneously, whereas in

a p-k solution each mode must be tracked individually.

An example of the problems encountered in solving the Dar-

rieus flutter equations using the V-g technique is shown in
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figure 28. The V-g solution not only shows far greater levels

of damping before flutter, but also exhibits a physically

unrealistic loop-back accompanied by a rapid change in the

mode. The V-g mode began at zero rotation rate as mode 1, but

switches during the loop to become mode 2 at flutter, unlike

the p-k solution curve which shows no such drastic changes.

This type of behavior, while not typical of a V-g solution, is

not uncommon either; Hassig (Reference 24) gives a similar

example.

Various authors have proposed methods which overcome some

of these difficulties. Hassig (Reference 24) discussed the dif-

ferences between the V-g method and the so-called "British" or

p-k method and presented a method based on computing roots of

the determinant of the dynamic matrix. Mantegazza (Reference

30) differentiates the flutter equation with respect to vel-

ocity and uses an initial-value ordinary differential equation

solver to compute the solution curve; this type of continuation

method will be discussed in the next section. The fundamental

difference between the V-g method and methods such as presented

in Reference 30 is that instead of viewing the flutter

equations as an eigenvalue problem, they are treated as a set

of nonlinear algebraic equations, allowing far more general

definitions of the terms in the flutter equations. In this ap-

pendix we discuss a class of methods which have been developed

in several fields for the solution of nonlinear equations,

known collectively as continuation methods.

Continuation methods are a class of methods for the sol-

ution of nonlinear equations which have been used extensively

in nonlinear structural mechanics, among other fields. In gen-

eral, continuation methods are used to compute solutions to

systems of underdetermined nonlinear equations over a specified
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range. In structural mechanics the underdetermined system is a

result of imbedding an exactly determined system of equations

in a one-parameter family of equations for which a known sol-

ution exists when the parameter is zero, while the solution to

the original pro blem exists at some other value of the para-

meter. Using discrete steps in the parameter and solving the

nonlinear equations at each step results in a series of non-

linear equations which are solved using a predictor-corrector

process, analagous to the predictor-corrector methods used to

solve initial-value ordinary differential equations.

The interest in solving the flutter equations is usually

to find the critical flutter speed, at which point the body

experiences self-sustained neutrally stable oscillations, due

to the interaction with the fluid; also of interest is how this

flutter speed varies with changes in certain of the system

parameters. Both of these problems are amenable to solution

using the contination methods. The purpose of this appendix

then is to give a brief review of continuation processes in

general, to describe a new contination process, and to show how

it may be applied to solutions of the flutter equations.

The Linear Flutter Equation

The problem of primary interest here is the linear flutter

equation

D(p,r)u = r = 0 (1)

where r is the residual vector. Commonly the interest is in

finding values of the variables p, r, and u such that p is
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purely imaginary, indicating neutral stability of the system.

Often it is also necessary to analyze the variation of these

neutral-stability points with a system parameter such as the

fluid density or an element of the stiffness matrix. These two

types of solution will be termed NS (neutral stability) and PV

(parameter variation) solutions.

Since (1) is linear and homogeneous in u it is necessary

to eliminate the trivial solution u = 0. This is usually done

by adding a normalization equation of the form

r
n+1 3

= e.0 1 = 0 (2)

where ej is the jthcolumn of the identity matrix.

The flutter equations may be formulated as an equivalent

real system of 2n equations in the 2n+3 unknowns r, 1, g,

Re(u), and Im(u). The main reason for doing this is because the

terms flutter equation are not, in general, analytic functions

of complex variables. The rotation rate, for instance, is not

a complex variable, and the aerodynamic matrix is not an

analytic function of p.

Continuation Methods

Continuation methods deal with problems of the form

y(x) = 0

y(x0) = 0

where y is in R
m
, x is in R

m+1
, and x

0
is a known solution.

(3) is therefore an underdetermined system of nonlinear equa-

(3)
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tions which has, in general, an infinity of solutions. Sol-

utions to 34) are curves in m+l-dimensional space.

Starting with the known solution x0, continuation methods

usually compute solutions at increments of the continuation

parameter using a predictor-corrector process similar to those

used in the solution of ordinary differential equations.

Indeed, ODE solvers are commonly used to compute solutions to

continuation problems of the form (Reference 14)

z(x;t) = 0

x = x(t)

x0 x(°)

(4)

where z and x are in Rm and t is a parameter. In many cases it

is possible to transform a problem which is in the form (3)

into this form; for example, as mentioned earlier Mantegazza

(Reference 30) does this with the flutter equations by setting

t = V (or r in our case). Differentiation of (4) with respect

to t then yeilds

dz/dt = Jx'(t) zt (5)

where J is the Jacobian matrix of partial derivatives of z with

respect to x and zt is the partial of z with respect to t. The

solution curve is then described by solutions to the system of

ordinary differential equations

x'(t) = J-lzt(x,t) (6)

x(0) = x0
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which can be computed using any of the ODE solvers. As an

example of this technique, a common method for solving (3) is

to pick an arbitrary vector xo and define

z(x,t) = y(x) + (t-1)y(x0) (7)

Note that when t = 0, xo is a solution to z(x,t) = 0, while at

t = 1, the solution to (7) is also a solution to (3).

Differentiating (7) with respect to the continuation parameter

t results in the initial-value problem

x'(t) = -J-1(x)Y(x0) (8)

which can be integrated from t = 0 to t = 1 using any of a

number of methods (Reference 25). The desired solution to (3)

is obtained when t = 1.

There are, however important differences between

continuation problems and initial-value ODEs. The most

important difference, as pointed out by Rheinboldt (Reference

32), is that with ODE solvers the error in the solution at each

point on the curve is dependent upon the solution errors at all

previous points on the curve, hence on the size of each

previous step in the continuation parameter; in a continuation

process this is not the case since the error at each point is

dependent only on the termination criteria for the corrector.

The step size in a continuation method is therefore limited

only by the convergence properties of the corrector, and in

general it is desirable to use as large a step-size as possible

while still obtaining convergence in the corrector process.
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Parameterization of the Underdetermined System

To some extent the choice of the parameter t depends on

the requirements of the problem. Some problems contain a

variable which would appear to be a natural choice for t. For

instance, in nonlinear structural mechanics (Reference 32) the

interest is in solutions to equations of the form

K(x)x = p

where K is the (n,n) nonlinear stiffness matrix, x is an n-

vector of generalized coordinates, and p is the load vector.

This equation is usually recast in the form

K(x)x(t) = tp

x(0) = 0

(9)

( 10 )

That is, the continuation parameter t is chosen as a scalar

multiplier of the load vector and the solution is found when

t = 1. The main problem with this formulation is that there

may be points on the solution curve where x'(t) is unbounded;

that is, the solution curve might contain limit points or

bifurcation points.

In the case of the flutter equations a natural choice for

the continuation parameter for an NS solution is the rotation

rate, and for a PV solution the system parameter which is

varied. Here again, however, it is possible that the solution

curve may contain limit points with respect to r or p, so we

are interested in other choices for the continuation parameter

which do not have this potential problem.

A parameter which avoids the problem of limit points is
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the arc-length along the solution curve (References 32, 33).

Since we compute solutions at discrete points on the solution

curve we can only compute approximations to the arc-length

segments as the norm of the secant vector

= x.10.1 xi(

where xic is the solution on the kth increment along the curve.

The fact that t
k+1

= (8
k+1

s
k+1

)1/2 is only an approximation to

the arc-length is not important since we are not usually

concerned with the actual values of the arc-length; it is

merely a convenient continuation parameter. By using arc-length

as the continuation parameter t, x1(t) becomes the tangent to

the solution curve, which for flutter solution curves is almost

always well-behaved.

The tangent vector is the vector v
k

such that

Jkvk = 0

vkvk = 1

vk_ivk 0

Hence v
k

lies in the null space of J
k

, the Jacobian matrix

evaluated at xk. The condition (12c) ensures that the tangent

vector has the same orientation relative to the curve that the

previous tangent vector had. Thus an additional piece of

information required to start the process is an approximate

starting tangent vector which determines the direction along

the curve the solution will trace. Usually it is sufficient to

set vo = ±ej with the sign and the index j chosen to reflect
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the desired direction along the curve.

The tangent vector given by (12) is unique provided J
k

has

rank m; if the Jacobian has rank less than m it is still

possible to compute a tangent vector, although it will not

necessarily be unique; this problem is discussed in more detail

below.

From a known solution point x
k'

an approximation to the

next solution point is obtained from the Euler predictor

0 0
xkl.1 - ak + tkvk

(13)

iwhere t
k

is the desired arc-length
for this step and v

k
is the

tangent to the solution curve at xk. Using the predicted value

of x
k+1'

a correction process is applied to compute the

solution x
k+1

. The approximate arc-length
for this step then

is given by (11).

A New Corrector Process

Dropping subscripts and
concentrating on the corrector

process, we are faced with the problem of finding a solution to

the underdetermined system of equations y(x) = 0 using x0 = x
k

+
k

as an initial guess to the solution a*. Normally this

system of m equations in m+1 unknown is augmented with an

(mwst equation of the form e.x = 0, which fixes the value of

one of the variables for the corrector iterations. The

resulting (m+l)st order system can then be solved using, for

instance, Newton's method, which in our notation may be written

as



xi+1 = xi - J-1(xi)y(xi)
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(14)

Here we choose to solve the underdetermined system

directly, rather than augmenting the equations. Naturally since

the underdetermined system has an infinity of solutions it is

necessary to somehow restrict the solution; this added

flexibility is perhaps the most attractive feature of this

method. Denoting the Jacobian matrix evaluated at x1 by Ji and

y(x1) by y', a linear approximation to y at x' is

y(xi+h) = yi + J1h (15)

As in Newton's method we require the next iterate to satisfy

Jih = yi (16)

h = x
i+1

x

This underdetermined linear system has an infinity of

solutions; indeed, if h satisfies (16) and v is in the null

space of J1, then h + av also satisfies (16) for any a. A

natural choice for h is the shortest vector (in some sense)

which satisfies (16). That is, we want to pick the h which

solves the minimization problem (dropping superscripts)

minimize Oh

h

subject to Jh =---y

Using a lagrange multiplier 1 we can rewrite the problem as

(17)



minimize hth 21T(Jh + y)

h

subject to Jh = - y
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(18)

A necessary condition for a minimum is that the derivative with

respect to h be

".

I J
T

zero.

h

This requirement

0

leads to

.1 0 1 (19)

which has the solution

'
I -J

T
(JJ

T
)
-1
J JT (J-1J

T
)

(20)

1
_-/

(J-1JT)-1J
_(JuT)-1

,-Y

Thus the shortest h which satisfies (16) is

T -1 T.
h = J (J J )

-1
y (21)

and the corrector iteration process (with superscripts) is

x
i+1

= x
i

+ h
i+1

= xi - JT (JJ
T

)

-1
y
i

(22)

Note that if both x and y are in Rm, the iteration reduces to

Newton's method.

Computational Aspects

Computationally speaking, the corrector process in the

form (22) requires far more work than the Newton iteration
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(14). In order to make the iterations (22) more efficient, we

introduce the QR decomposition of the Jacobian (Reference 25).

Any (m,n) rectangular matrix may be decomposed into the product

of an (m,n) matrix Q, the columns of which are orthonormal,

times an (n,n) upper-triangular matrix R. Also, in the case

where m n, there is associated with the QR decomposition an

(m,m-n) matrix N, the columns of which span the null space of

X; that is

X = 4.11

XN = 0

For our purposes we write

J
T
E = QR = n1

R

( 2 3 )

(24)

where E is a permutation matrix which reflects column pivoting

done during the decomposition for numerical stability, and n is

the null space vector. The relationship between the null space

vector n, which is a by-product of the QR decomposition, and

the tangent vector defined by (12) can be seen by writing

RTQTn = ET Jn = 0

from which we conclude that v = + n, where the sign is chosen

to satisfy (12c).

Substituting (24) into (22) and using the fact that E is

an orthogonal matrix and the columns of Q are orthonormal,

h = Q(Q
T -1

R
-T

E
T
y = QR

T
E
T
y (26)
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The additional effort involved in this iteration procedure over

Newton's method comes from the fact that the QR decomposition

requires approximately twice as many operations as the LU

factorization normally used with Newton's method. However, the

QR facorization offers the advantage that it is more stable

than the LU factorization. If pivoting is used in the

factorization it is possible to isolate singularities in the

Jacobian; if the rank of J is r n, matrix R will have the form

R =

R
11

R
12

0 0

where R
11

is (r ,r) upper-triangular, and (24) becomes

JTE
[Q1 141

(27)

(28)

where the null space matrix N now has n r + 1 columns. Thus

it is possible to continue the iterations using (11R11 instead

of QR and the vector h defined by (26) is still the shortest

vector which satisfies (16). In this rank-deficient case the

tangent vector is no longer unique, due to the fact that the

null space matrix has (n -r +l) columns. A natural condition to

place on the tangent vector to ensure uniqueness in this case

is to pick the vector which is closest to the tangent vector

from the previous step; that is we pick the tangent vector as

the projection of the previous tangent vector onto the current

null space. This leads to (Reference 26)

v
k 1

= 1.-cNN
T
v
k

(29)

where c is a normalizing factor chosen to satisfy (12b) and the

sign is chosen to satisfy (12c).
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Step Size Selection

Perhaps the most important, yet at the same time the most

difficult aspect of a continuation process is the choice of the

predictor step size tk. If the step size is too large the

corrector iterations may not converge or may converge to the

wrong root, while small steps require extra computational

effort. Recently Den Heijer and Rheinboldt (Reference 37)

presented a set of algorithms both for the case of a Newton

corrector, and for the general corrector process. We present

here a somewhat modified version of the step-length algorithm

for the general corrector process as presented in Reference 37.

Evidently what is needed in a step-length algoritm is a

way to tell if the corrector is likely to converge from a

predicted point, which in turn requires that we can estimate

the distance between the predicted point and the solution. An

estimate of the distance between the predicted point and the

solution in the case of the Euler predictor (13) is simply

given by the norm of the third term in the Taylor's series

expansion of x(t) about the previous solution

d = 1/4t2 x"(t) = 1/2t21 vt(t)II (30)

If the rate of change of the tangent vector is approximated by

it'(t) -I. -2- (v - s )

tk k tk k

then for a desired distance d° between the predicted and

corrected solutions

(31)



t
0

=
d°tk

k4-1 ,1

2(1 -
tk

vTk s,)

= ft
k
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(32)

If we knew the convergence radius for the corrector we could

use it for d° and thus obtain the maximum permissible step-

size. Here we take a sligthly different approach and attempt to

pick a step-size which will result in a pre-selected number of

iterations. If the number of iterations required on the

previous step was i
k

and the distance between the predicted and

converged solutions was dk, then by setting

AO
i
M A

U U

k
k

(33)

the number of iterations at each step will tend to be im

provided the convergence behavior is the same at each step. In

order to stabilize the step-length selection process it is

necessary to limit the change in step-size by requiring that

1/b < f < b (34)

where b is some number greater than 1, say 2 or 3. Furthermore,

if the curvature is small, the distances d
k
will tend to become

small, and the step-length algorithm will tend to be the ratio

of two small numbers. Recognizing that (30) represents only an

approximation to the distance between the predicted and

corrected solutions, we allow for error in this quantity by

introducing a lower threshold on the quantity

q = (1
tk k

sTv
k

)11

or equivalently, on the angle between the secant and tangent

(35)
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0
d
0
tk

tk +l 1 max (q, qmin)

Updating the QR Factorization
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(36)

Rather than evaluate and decompose the Jacobian with each

iteration, it is more usually economical to use the QR factors

for more than one iteration. Implicit in the changes in x and y

with each iteration is information about the Jacobian, and

changes in the Jacobian. Exploiting this information to modify

the Jacobian so that it more closely approximates the true

Jacobian is the idea behind the update or quasi-Newton methods.

Update methods modify the Jacobian its factors using low-

rank matrices for computational convenience. Broyden (Reference

34) gives a number of rank-one and rank-two update formulas

suitable for square matrices. Since we are working here with a

rectangular Jacobian the choice is limited to a rank-one

formula of the form

J
i+1

= J
i

+ ab
T

(37)

where a is in Rm and b is in Rm+1. It can be readily verified

that choices for a and b which satisfy the so-called "divided

difference" requirement

J
i+1

h = y
i+1

y
i

(38)



are

a - qy ,
ilyiTyi,

141

b = h. (39)

Rather than modify the Jacobian it is more economical to modify

the QR factors directly. Substituting (35) and (37) into (24)

Ji+1T E = QR + ETbaT = CQ v)
0
-

+ Ica
T

where v = Q v TETI
h. Next, using a sequence of Givens

rotations we can pick an orthogonal matrix G such that

Gv = we
l'

where e
1

is the first column of the identity matrix.

Thus

+1T
Ji E = QGT [CR] + e a

T

0

From the properties of the Givens transformations (Reference

26) it is easily shown that GR is in upper-Hessenberg form, and

therefore the matrix GR + e
1
a
T

is also in upper-Hessenberg

form. Now we pick another sequence of Givens transformations

which comprise a matrix H such that H(GH + els
T

i) is upper-

triangular, hence is the updated R factor. The updated Q

factor is then QG
T
H
T

.

Application to the Flutter Equation

The continuation process described in the preceding

sections can be used for either NS or PV solutions of the

flutter equations by setting



142

Re(r1)

wri)

y(x) = .

Re(r2n+i)

Im(r2n+1)

where in the case of an NS solution

g

Re(u1)

Wu].)

=

Re(u
n

Im(u
n

and for a PV solution in which some parameter w, such as mass

density or a stiffness parameter, is varied over a specified

range,



X =

r

w

Re(u1)

Im(u1)

Re(un)

Im(un)
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Although we do not treat the case of nonlinear flutter here we

note in passing that this case is readily accounted for by

writting

y(x) = D(p,r,u)u

In the case of a neutral-stability solution, the Jacobian

matrix has the form

J = CD
1
u D2u D3u

where D
1,

D
2

and D
3

are the partials of D with respect to r,(01

and g, respectively.

Starting points for the continuation process in an NS

solution are found by solving the free-vibration eigenvalue

problem at r = 0,

(p2ki + R)u = 0
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This generalized eigenvalue problem yeilds n pair of

eigenvalues and eigenvectors, each of which may be used as the

starting point for a continuation solution curve. Normally, the

aerodynamics matrix is only defined within certain ranges of

reduced frequency (k*). Solutions outside these ranges, for

instance from zero velocity up to the minimum velocity, can be

obtained by using a fixed value of the aerodynamics matrix

evaluated at the nearest valid point. Starting points for PV

solutions are the neutral-stability points found in an NS

solution.
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APPENDIX C. WORK AND ENERGY

For an oscillating conservative system the integral of the

total energy leads to the law of the conservation of energy

(Reference 38). On the other hand, for a nonconvservative

system such as a fluttering system the energy integral leads to

an equation relating the change in total energy of the system

to the work done on the system by external forces. Here we take

external forces to mean internal damping forces as well as

external aerodynamic forces. The rate of decay or growth of

oscillations depends on the rate at which work is done on the

structure by the surrounding air. If the net work done on the

system by the air over one cycle of oscillation is positive,

the amplitude of the oscillations will grow, while if the work

is negative the oscillations will decay. At the same time the

kinetic and potential energies of the system are changing in

response to the work done by external forces. An analysis of

the mechanism by which work is done on the system can give

insight into the causes of flutter. Two aspects of the analysis

of the work done on the system are the genesis of the forces

and the way in which these forces contribute to the total work.

The external forces associated with linear flutter

equations are always homogeneous and linear in the generalized

coordinates, hence there is a one-to-one correspondence between

the external forces and the generalized coordinates which give

rise to them. Thus by identifying which forces cause the

flutter instability we can further identify the generalized

coordinates which give rise to these destabilizing forces.

In general, motion of the system involves displacements in
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each of the generalized coordinates. Thus the total work on the

system may be broken down according to the contributions of the

external forces acting through displacements of each of the

generalized coordinates. Some of these contributions may be

positive and therefore destabilizing, while others may be

negative or stabilizing. While it is the sum of all the

contributions to the total work which determines whether or not

the motion is stable or unstable, the individual contributions

show which generalized coordinates are responsible for

absorbing or dissipating energy to the airstream.

The total energy of the system, taken here to be the sum

of the kinetic and potential energies, can likewise be broken

down into contributions from each of the generalized

coordinates. If the generalized coordinates are completely

uncoupled the change in energy associated with each generalized

coordinate is stricly due to a change in the amplitude of

oscillation of that coordinate; on the other hand if the

generalized coordinates are coupled an additional part of the

change in energy associated with a particular coordinate will

be due to changes in amplitudes of the other coordinates. In

either case the total change in energy is due to changes in the

amplitudes of oscillation of the generalized coordinates, and

is therefore related to the rate of growth or decay of the

oscillations and the complex vector of generalized coordinate

amplitudes obtained in the solution of the flutter equations.

Expressions for Work and Energy

In Reference 39 Crisp derived expressions for the work

done by aerodynamic forces on a linear system undergoing steady
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oscillations (flutter); here we extend this to include systems

in which the oscillations are growing or decaying. It is

customary when discussing periodic solutions to linear systems

to use the complex representation of the generalized

coordinates and forces, where it is understood that it is only

the real part which is of interest. At a particular rotation

rate the flutter equations may be written as

(p211 pG + 10u = + igslOu

= f(u)

in which f is a complex vector representing nonconservative

forces due to the aerodynamics and structural damping, the

generalized coordinates as functions of time are given by

(1)

z(t) = Re(nePt) (2)

and p = w(lIg + i) is the characteristic exponent. For a

differential change in the coordinates the work done on the

system by these forces is

dW = Re(ydz1 + Re(f2)dz2 +...+ Re(fn)dzn

= (Re(f
1
)z

1
+ Re(f

2
)z

2
+ + Re(f

n
)z
n
)dt

and the work done on the system between time t1 and t2 is

W =

(3)

(4)



where

Wjk
= jr Re(z.F z

k
)dt

j jk

is the work done on the system by the nonconservative forces

resulting from displacement of the kth coordinate acting

th
through displacement of the j coordinate, and

F = - + igsK)

is a matrix relating the generalized coordinates to the

nonconservative forces. Substituting (2) into (5) and

integrating over one cycle of oscillation results in

4gW.k

2Im(ujFikuk)

e
2ng

-1

+ gRe(u.5Fjkuk)

+ gRe(yikuk)

where ( ) indicates complex conjugate. At flutter, g = 0 and

(7) reduces to

Wj nim(uj Fj uk)
k k (8)
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(5)

(6)

(7)

which is equivalent to the result in Reference 39.

Each term Wjk in (7) may be interpreted as the

contribution to the total work done on the system by forces

arising from a displacement in the k
th

coordinate, acting on

th
the j coordinate through one cycle of oscillation. Thus, for

example in figure (17) the total work on the system in
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aeroelastic mode S1 is primarily due to forces induced by

coordinates 1, 3, and 5. The resulting work on coordinate 1 due

to forces induced by motion in coordinate 5 (W15) is

destabilizing, while the work on coordinate 1 due to forces

induced by motion in coordinate 1 (W
11

) is stabilizing.


