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Abstract. In this paper we describe a novel technique for detecting
salient regions in an image. The detector is a generalization to affine
invariance of the method introduced by Kadir and Brady [10]. The de-
tector deems a region salient if it exhibits unpredictability in both its
attributes and its spatial scale.
The detector has significantly different properties to operators based on
kernel convolution, and we examine three aspects of its behaviour: invari-
ance to viewpoint change; insensitivity to image perturbations; and re-
peatability under intra-class variation. Previous work has, on the whole,
concentrated on viewpoint invariance. A second contribution of this pa-
per is to propose a performance test for evaluating the two other aspects.
We compare the performance of the saliency detector to other stan-
dard detectors including an affine invariance interest point detector. It
is demonstrated that the saliency detector has comparable viewpoint
invariance performance, but superior insensitivity to perturbations and
intra-class variation performance for images of certain object classes.

1 Introduction

The selection of a set of image regions forms the first step in many computer
vision algorithms, for example for computing image correspondences [2,17,19,20,
22], or for learning object categories [1,3,4,23]. Two key issues face the algorithm
designer: the subset of the image selected for subsequent analysis and the repre-
sentation of the subset. In this paper we concentrate on the first of these issues.
The optimal choice for region selection depends on the application. However,
there are three broad classes of image change under which good performance
may be required:
1. Global transformations. Features should be repeatable across the expected
class of global image transformations. These include both geometric and pho-
tometric transformations that arise due to changes in the imaging conditions.
For example, region detection should be covariant with viewpoint as illustrated
in Figure 1. In short, we require the segmentation to commute with viewpoint
change.
2. Local perturbations. Features should be insensitive to classes of semi-local
image disturbances. For example, a feature responding to the eye of a human face
should be unaffected by any motion of the mouth. A second class of disturbance is
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Fig. 1. Detected regions, illustrated by a centre point and boundary, should commute
with viewpoint change – here represented by the transformation H.

where a region neighbours a foreground/background boundary. The detector can
be required to detect the foreground region despite changes in the background.
3. Intra-class variations. Features should capture corresponding object parts
under intra-class variations in objects. For example, the headlight of a car for
different brands of car (imaged from the same viewpoint).

In this paper we make two contributions. First, in Section 2 we describe ex-
tensions to the region detector developed by Kadir and Brady [10]. The exten-
sions include covariance to affine transformations (the first of the requirements
above), and an improved implementation which takes account of anti-aliasing.
The performance of the affine covariant region detector is assessed in Section 3
on standard test images, and compared to other state of the art detectors.

The second contribution is in specifying a performance measure for the two
other requirements above, namely tolerance to local image perturbations and to
intra-class variation. This measure is described in Section 4 and, again, perfor-
mance is compared against other standard region operators.

Previous methods of region detection have largely concentrated on the first
requirement. So-called corner features or interest points have had wide appli-
cation for matching and recognition [7,21]. Recently, inspired by the pioneering
work of Lindeberg [14], scale and affine adapted versions have been developed
[2,18,19,20]. Such methods have proved to be robust to significant variations
in viewpoint. However, they operate with relatively large support regions and
are potentially susceptible to semi-local variations in the image; for example,
movements of objects in a scene. They fail on criterion 2.

Moreover, such methods adopt a relatively narrow definition of saliency and
scale; scale is usually defined with respect to a convolution kernel (typically a
Gaussian) and saliency to an extremum in filter response. While it is certainly
the case that there are many useful image features that can be defined in such a
manner, efforts to generalise such methods to capture a broader range of salient
image regions have had limited success.
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Fig. 2. (a) Complex regions, such as the eye, exhibit unpredictable local intensity hence
high entropy. Image from NIST Special Database 18, Mugshot Identification Database.
However, entropy is invariant to permutations of the local patch (b).

Other methods have extracted affine covariant regions by analysing the image
isocontours directly [17,22] in a manner akin to watershed segmentation. Related
methods have been used previously to extract features from mammograms [13].
Such methods have the advantage that they do not rely on excessive smoothing
of the image and hence capture precise object boundaries. Scale here is defined in
terms of the image isocontours rather than with respect to a convolution kernel
or sampling window.

2 Information Theoretic Saliency

In this section we describe the saliency region detector. First, we review the
approach of Kadir and Brady [10], then in Section 2.2 we extend the method to
be affine invariant, and give implementation details in Sections 2.3 and 2.4.

2.1 Similarity Invariant Saliency

The key principle underlying the Kadir and Brady approach [10] is that salient
image regions exhibit unpredictability, or ‘surprise’, in their local attributes and
over spatial scale. The method consists of three steps: I. Calculation of Shannon
entropy of local image attributes (e.g. intensity or colour) over a range of scales
— HD(s); II. Select scales at which the entropy over scale function exhibits a
peak — sp; III. Calculate the magnitude change of the PDF as a function of
scale at each peak — WD(s). The final saliency is the product of HD(s) and
WD(s) at each peak. The histogram of pixel values within a circular window of
radius s, is used as an estimate of the local PDF. Steps I and III measure the
feature-space and the inter-scale predictability respectively, while step II selects
optimal scales. We discuss each of these steps next.
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Fig. 3. The two entropy peaks shown in (a) correspond to the centre (in blue) and
edge (in red) points in top image. Both peaks occur at similar magnitudes.

The entropy of local attributes measures the predictability of a region with
respect to an assumed model of simplicity. In the case of entropy of pixel in-
tensities, the model of simplicity corresponds to a piecewise constant region.
For example, in Figure 2(a), at the particular scales shown, the PDF of inten-
sities in the cheek region is peaked. This indicates that most of these pixels are
highly predictable, hence entropy is low. However, the PDF in the eye region is
flatter which indicates that here, pixel values are highly unpredictable and this
corresponds to high entropy.

In step II, scales are selected at which the entropy is peaked. Through search-
ing for such extrema, the feature-space saliency is locally optimised. Moreover,
since entropy is maximised when the PDF is flat, i.e. all present attribute values
are in equal proportion, such peaks typically occur at scales where the statistics
of two (or more) different pixel populations contribute equally to the PDF esti-
mate. Figure 3(b) shows entropy as a function of scale for two points in Figure
3(a). The peaks in entropy occur at scales for which there are equal proportions
of black and white pixels present. These significant, or salient scales, in the en-
tropy function (analogous to the ‘critical-points’ in Gaussian scale-space [11,15])
serve as useful reference points since they are covariant with isotropic scaling,
invariant to rotation and translation, and robust to small affine shears.

Note however, that the peaks for both points in Figure 3(b) attain an almost
identical magnitude. This is to be expected since both patches contain almost
identical proportions of black and white pixels. In fact, since histogramming
destroys all local ordering information all permutations of the local patch do
not affect its entropy. Figure 2(b) shows the entropy over scale function for an
image patch taken from 2(a) and three permutations of its pixels: a linear ramp,
a random reordering and a radial gradient. The entropy at the maximum scale
(that of the whole patch) is the same for all permutations. However, the shape
of the entropy function is quite different for each case.

The role of Step III, the inter-scale unpredictability measure WD, is to weight
the entropy value such that some permutations are preferred over others. It is
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defined as the magnitude change of the PDF as a function of scale, therefore
those orderings that are statistically self-dissimilar over scale are ranked higher
than those that exhibit stationarity.

Figure 3(c) shows WD as a function of scale. It can be seen that the plot
corresponding to the edge point has a much lower value than the one for the
centre point at the selected scale value. In essence, it is a normalised measure of
scale localisation. For example, in a noise image the pixel values are highly un-
predictable at any one scale but over scale the statistics are stationary. However,
a noise patch against a plain background would be salient due to the change in
statistics.

In the continuous case, the saliency measure YD, a function of scale s and
position x, is defined as:

YD(sp,x) � HD(sp,x) WD(sp,x) (1)

i.e. for each point x the set of scales sp, at which entropy peaks, is obtained,
then the saliency is determined by weighting the entropy at these scales by WD.
Entropy, HD, is given by:

I HD(s,x) � −
∫

p(I, s,x) log2 p(I, s,x) dI (2)

where p(I, s,x) is the probability density of the intensity I as a function of scale
s and position x. The set of scales sp is defined by:

II sp �
{

s :
∂HD(s,x)

∂s
= 0,

∂2HD(s,x)
∂s2 < 0

}
(3)

The inter-scale saliency measure, WD(s,x), is defined by:

III WD(s,x) � s

∫ ∣∣∣∣ ∂

∂s
p(I, s,x)

∣∣∣∣ dI (4)

In this paper, entropy is measured for the grey level image intensity but other
attributes, e.g. colour or orientation, may be used instead; see [8] for examples.

This approach has a number of attractive properties. It offers a more general
model of feature saliency and scale compared to conventional feature detection
techniques. Saliency is defined in terms of spatial unpredictability; scale by the
sampling window and its parameterisation. For example, a blob detector im-
plemented using a convolution of multiple scale Laplacian-of-Gaussian (LoG)
functions [14], whilst responding to a number of different feature shapes, maxi-
mally responds only to LoG function itself (or its inverse); in other words, it acts
as a matched filter1. Many convolution based approaches to feature detection
exhibit the same bias, i.e. a preference towards certain features. This specificity
has a detrimental effect on the quality of the features and scales selected. In
1 This property is somewhat alleviated by the tendency of blurring to smooth image

structures into LoG like functions.
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contrast, the saliency approach responds equally to the LoG and all other per-
mutations of its pixels provided that the constraint on WD(s) is satisfied. This
property enables the method to perform well over intra-class variations as is
demonstrated in Section 4.

2.2 Affine Invariant Saliency

In the original formulation of [10], the method was invariant to the similarity
group of geometric transformations and to photometric shifts. In this section,
we develop the method to be fully affine invariant to geometric transformations.
In principle, the modification is quite straightforward and may be achieved by
replacing the circular sampling window by an ellipse: under an affine transfor-
mation, circles map onto ellipses. The scale parameter s is replaced by a vector
s = (s, ρ, θ), where ρ is the axis ratio and θ the orientation of the ellipse. Under
such a scheme, the major and minor axes of the ellipse are given by s/

√
ρ and

s
√

ρ respectively.
Increasing the dimensionality of the sampling window creates the possibility

of degenerate cases. For example, in the case of a dark circle against a white
background (see Figure 3(a)) any elliptical sampling window that contains an
equal number of black and white pixels (HD constraint) but does not exclude
any black pixels at the previous scale (WD constraint) will be considered equally
salient. Such cases are avoided by requiring that the inter-scale saliency, WD,
is smooth across a number of scales. A simple way to achieve this is to apply a
3-tap averaging filter to WD over scale.

2.3 Local Search

The complexity of a full search can be significantly reduced by adopting a local
strategy in the spirit of [2,19,20]. Our approach is to start the search only at seeds
points (positions and scales) found by applying the original similarity invariant
search. Each seed circle is then locally adapted in order to maximise two criteria,
HD (entropy) and WD (inter-scale saliency). WD is maximised when the ratio
and orientation match that of the local image patch [9] at the correct scale,
defined by a peak in HD. Therefore, we adopt an iterative refinement approach.
The ratio and orientation are adjusted in order to maximise WD, then the scale
is adjusted such that HD is peaked. The search is stopped when neither the scale
nor shape change (or a maximum iteration count is exceeded).

The final set of regions are chosen using a greedy clustering algorithm which
operates from the most salient feature down (highest value of YD) and clusters
together all features within the support region of the current feature. A global
threshold on value or number is used.

The performance of this local method is compared to exhaustive search in
Section 3.
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Fig. 4. WD as a function of x and scale for image shown in (a) at the y-position
indicated by the dashed line using standard sampling (b), and anti-aliased sampling
(c).

2.4 Anti-aliased Sampling

The simplest method for estimating local PDFs from images is to use histogram-
ming over a local neighbourhood, for example a circular region; pixels inside the
region are counted whilst those outside are not. However, this binary approach
gives rise to step changes in the histogram as the scale is increased. WD is es-
pecially sensitive to this since it measures the difference between two concentric
sampling windows. For example, Figure 4(b) shows the variation of WD as a
function of x and scale for the image shown in 4(a). The surface is taken at a
point indicated by the dashed line. Somewhat surprisingly the surface is highly
irregular and noisy even for this ideal noise-free image, consequently, so is the
saliency space. Intuitively, the solution to this problem lies with a smoother
transition between the pixels that are included in the histogram and the ones
that are not.

The underlying problem is, in fact, an instance of aliasing. Restated from a
sampling perspective, the binary representation of the window is sampling with-
out pre-filtering. Evidently, this results in severe aliasing. This problem has long
been recognised in the Computer Graphics community and numerous methods
have been devised to better represent primitives on a discrete display [5].

To overcome this problem we use a smooth sampling window (i.e. a filtered
version of the ideal sampling window). However, in contrast to the CG applica-
tion, here, the window weights the contributions of the pixels to the histogram
not the pixel values themselves; pixels near the edge contribute less to the count
than ones near the centre. It does not blur the image.

Griffin [6] and Kœnderink and van Doorn [12] have suggested weighting his-
togram counts using a Gaussian window, but not in relation to anti-aliasing.
However, for our purposes, the Gaussian poorly represents the statistics of the
underlying pixels towards the edges due to the slow drop-off. Its long tails cause
a slow computation since more pixels will have to be considered and also re-
sults in poor localisation. The traditional ‘pro-Gaussian’ arguments do not seem
appropriate here.
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Analytic solutions for the optimal sampling window are, in theory at least,
possible to obtain. However, empirically we have found the following function
works well:

SW (z) =
1

1 +
(

z
s

)n z =

√(
x′
√

ρ

)2

+ (y′√ρ)2. (5)

with n = 42 where x′ = x cos θ + y sin θ and y′ = y cos θ − x sin θ achieves
the desired rotation. We truncate for small values of SW (z). This sampling
window gives scalar values as a function of distance, z, from the window centre,
which are used to build the histogram. Figure 4(c) shows the same slice through
WD space but generated using Equation 5 for the sampling weights. Further
implementation details and analysis may be found in [9,10].

3 Performance under Viewpoint Variations

The objective here is to determine the extent to which detected regions commute
with viewpoint. This is an example of the global transformation requirement
discussed in the introduction.

For these experiments, we follow the testing methodology proposed in [18,
19]. The method is applied to an image set2 comprising different viewpoints of
the same (largely planar) scene for which the inter-image homography is known.
Repeatability is determined by measuring the area of overlap of corresponding
features. Two features are deemed to correspond if their projected positions differ
by less than 1.5 pixels. Results are presented in terms of error in overlapping
area between two ellipses µa, µb:

εS = 1 − µa ∩ (
AT µbA

)
µa ∪ (AT µbA)

(6)

where A defines a locally linearized affine transformation of the homography
between the two images and µa ∩ (AT µbA) and µa ∪ (AT µbA) represent the area
of intersection and union of the ellipses respectively.

Figure 5(a) shows the repeatability performance as a function of viewpoint
of three variants of the affine invariant salient region detector: exhaustive search
without anti-aliasing (FS Affine ScaleSal), exhaustive search with anti-aliasing
(AA FS Affine ScaleSal), and local search with anti-aliasing (AA LS Affine Scale-
Sal). The performance is compared to the detector of Mikolajczyk and Schmid
[19], denoted Affine MSHar. Results are shown for εS < 0.4.

It can be seen that the full search Affine Saliency and Affine MSHar features
have a similar performance over the range of viewpoints. However, from 40◦ the
anti-aliased sampling provides some gains, though curiously diminishes perfor-
mance at 20◦. The local search anti-aliased Affine Saliency performs reasonably
well compared to the full search methods but of course takes a fraction of the
time to compute.
2 Graffiti6 from http://www.inrialpes.fr/lear/people/Mikolajczyk/
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Fig. 5. Repeatability results under (a) viewpoint changes, (b,d) background perturba-
tions and intra-class variations for Bike images, (c) intra-class variations for car and
face images. Plots (b,c) are for similarity invariant and (d) for affine invariant detectors.

4 Performance under Intra-class Variation and Image
Perturbations

The aim here is to measure the performance of a region detector under intra-class
variations and image perturbations – the other two requirements specified in the
introduction. In the following subsections we develop this measure and then
compare performance of the salient region detector to other region operators.
In these experiments we used similarity invariant versions of three detectors:
similarity Saliency (ScaleSal), Difference-Of-Gaussian (DoG) blob detector [16]
and the multi-scale Harris (MSHar) with Laplacian scale selection — this is
Affine MSHar without the affine adaptation [19]. We also used affine invariant
detectors Affine ScaleSal and Affine MSHar. An affine invariant version of the
DoG detector was not available.
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4.1 The Performance Measure

We will discuss first measuring repeatability over intra-class variation. Suppose
we have a set of images of the same object class, e.g. motorbikes. A region
detection operator which is unaffected by intra-class variation will reliably select
regions on corresponding parts of all the objects, say the wheels, engine or seat
for motorbikes. Thus, we assess performance by measuring the (average) number
of correct correspondences over the set of images.

The question is: what constitutes a correct corresponding region? To deter-
mine this, we use a proxy to the true intra-class transformation by assuming
that an affinity approximately maps one imaged object instance to another. The
affinities are estimated here by manually clicking on corresponding points in each
image, e.g. for motorbikes the wheels and seat/petrol tank join. We consider a
region to match if it fulfils three requirements: its position matches within 10
pixels; its scale is within 20% and normalised mutual information3 between the
appearances is > 0.2. For the affine invariant detectors, the scale test is replaced
with the overlap error, εs < 0.4 (Eq. 6), and the mutual information is applied
to elliptical patches transformed to circles. These are quite generous thresholds
since the objects are different and the geometric mapping approximate.

In detail we measure the average correspondence score S as follows. N regions
are detected on each image of the M images in the dataset. Then for a particular
reference image i the correspondence score Si is given by the proportion of
corresponding to detected regions for all the other images in the dataset, i.e.:

Si =
Total number of matches

Total number of detected regions
=

N i
M

N(M − 1)
(7)

The score Si is computed for M/2 different selections of the reference image,
and averaged to give S. The score is evaluated as a function of the number of
detected regions N . For the DoG and MSHar detectors the features are ordered
on Laplacian (or DoG) magnitude strength, and the top N regions selected.

In order to test insensitivity to image perturbation the data set is split into
two parts: the first contains images with a uniform background and the second,
images with varying degrees of background clutter. If the detector is robust to
background clutter then the average correspondence score S should be similar
for both subsets of images.

4.2 Intra-class Variation Results

The experiments are performed on three separate data-sets, each containing
different instances from an object class: 200 images from Caltech Motorbikes
(Side), 200 images from Caltech Human face (Front), and all 126 Caltech Cars
(Rear) images. Figure 6 shows examples from each data set4.
3 MI(A, B) = 2(H(A) + H(B) − H(A, B))/(H(A) + H(B))
4 Available from http://www.robots.ox.ac.uk/˜vgg/data/.
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(a) (b)

Fig. 6. Example images from (a) the two parts of the Caltech motorbike data set with-
out background clutter (top) and with background clutter (bottom), and (b) Caltech
cars (top) and Caltech faces (bottom).

The average correspondence score S results for the similarity invariant de-
tectors are shown in Figure 5(b) and (c). Figure 5(d) shows the results for the
affine detectors on the motorbikes. For all three data sets and at all thresholds
the best results are consistently obtained using the saliency detector. However,
the repeatability for all the detectors is lower for the face and cars compared to
the motorbike case. This could be due to the appearances of the different object
classes; motorbikes tend to appear more complex than cars and faces.

Figure 7 shows smoothed maps of the locations at which features were de-
tected in all 200 images in the motorbike image set. All locations have been back
projected onto a reference image. Bright regions are those at which detections
are more frequent. The map for the saliency detector indicates that most detec-
tions are near the object with a few high detection points near the engine, seats
wheel centres, headlamp. In contrast, the DoG and MSHar maps show a much
more diffuse pattern over the entire area caused by poor localisation and false
responses to background clutter.

4.3 Image Perturbation Results

The motorbike data set is used to assess insensitivity to background clutter.
There are 84 images with a uniform background, and 116 images with varying
degrees of background clutter; see Figure 6(a).

Figure 5(b) shows separate plots for motorbike images with and without
background clutter at N=10 to 40. The saliency detector finds, on average, ap-
proximately 25% of 30 features within the matching constraints; this corresponds
to about 7 features per image on average. In contrast, the MSHar and DoG de-
tectors select 2-3 object features per image at this threshold. Typical examples
of the matched regions selected by the saliency detector on this data set are
shown in Figure 4.3.
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Fig. 7. Smoothed map of the detected features over all 200 images in the motorbike
set back projected onto one image. The colour indicates the normalised number of
detections in a given area (white is highest). Note the relative ‘tightness’ of the bright
areas of the saliency detector compared to the DoG and MSHarr.

Fig. 8. Examples of the matched regions selected by the similarity saliency detector
from the motorbike images: whole front wheels; front mud-guard/wheel corner; seat;
headlamp.

There is also a marked difference in the way the various detectors are affected
by clutter. It has little effect on the ScaleSal detector whereas it significantly
reduces the DoG performance and similarly that of MSHar. Similar trends are
obtained for the affine invariant detectors applied to the motorbikes images,
shown in Figure 5(d).

Local perturbations due to changes in the scene configuration, background
clutter or changes within in the object itself can be mitigated by ensuring com-
pact support of any probing elements. Both the DoG and MSHar methods rely
on relatively large support windows which cause them to be affected by non-local
changes in the object and background; compare the two cluttered and unclut-
tered background results for the motorbike experiments.

There may be several other relevant factors. First, both the DoG and MSHar
methods blur the image, hence causing a greater degree of similarity between
objects and background. Second, in most images the objects of interest tend to
be in focus while backgrounds are out of focus and hence blurred. Blurred regions
tend to exhibit slowly varying statistics which result in a relatively low entropy
and inter-scale saliency in the saliency detector. Third, the DoG and MSHar
methods define saliency with respect to specific properties of the local surface
geometry. In contrast, the saliency detector uses a much broader definition.
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5 Discussion and Future Work

In this paper we have presented a new region detector which is comparable to
the state of the art [19,20] in terms of co-variance with viewpoint. We have also
demonstrated that it has superior performance on two further criteria: robustness
to image perturbations, and repeatability under intra-class variability. The new
detector extends the original method of Kadir and Brady to affine invariance; we
have developed a properly anti-aliased implementation and a fast optimisation
based on a local search.

We have also proposed a new methodology to test detectors under intra-class
variations and background perturbations. Performance under this extended cri-
terion is important for many applications, for example part detectors for object
recognition.

The intra-class experiments demonstrate that defining saliency in the manner
of the saliency detector is, on average, a better search heuristic than the other
region detectors tested on at least the three data sets used here.

It is interesting to consider how the design of feature detectors affects perfor-
mance. Many global effects, such as viewpoint, scale or illumination variations
can be modelled mathematically and as such can be tackled directly provided
the detector also lends itself to such analysis. Compared to the diffusion-based
scale-spaces, relatively little is currently known about the properties of spaces
generated by statistical methods such as that described here. Further investiga-
tion of its properties seems an appealing line of future work.

We plan to compare the saliency detector to other region detection ap-
proaches which are not based on filter response extrema such as [17,22]
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