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We have identified an electroencephalographic (EEG) based statistical classifier that

correctly distinguishes children with histories of Protein Energy Malnutrition (PEM) in the

first year of life from healthy controls with 0.82% accuracy (area under the ROC curve).

Our previous study achieved similar accuracy but was based on scalp quantitative

EEG features that precluded anatomical interpretation. We have now employed BC-

VARETA, a novel high-resolution EEG source imaging method with minimal leakage

and maximal sparseness, which allowed us to identify a classifier in the source space.

The EEGs were recorded in 1978 in a sample of 108 children who were 5–11 years

old and were participants in the 45+ year longitudinal Barbados Nutrition Study. The

PEM cohort experienced moderate-severe PEM limited to the first year of life and

were age, handedness and gender-matched with healthy classmates who served as

controls. In the current study, we utilized a machine learning approach based on the

elastic net to create a stable sparse classifier. Interestingly, the classifier was driven

predominantly by nutrition group differences in alpha activity in the lingual gyrus. This

structure is part of the pathway associated with generating alpha rhythms that increase

with normal maturation. Our findings indicate that the PEM group showed a significant

decrease in alpha activity, suggestive of a delay in brain development. Childhood

malnutrition is still a serious worldwide public health problem and its consequences

are particularly severe when present during early life. Deficits during this critical period

are permanent and predict impaired cognitive and behavioral functioning later in life. Our

EEG source classifier may provide a functionally interpretable diagnostic technology to

study the effects of early childhood malnutrition on the brain, and may have far-reaching

applicability in low resource settings.
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INTRODUCTION

Childhood malnutrition continues to be a serious health problem
worldwide and is the primary cause of morbidity and mortality
in children under 5 years of age (UNICEF et al., 2017). Protein
Energy Malnutrition (PEM) in particular is prevalent among
infants aged 6 months to 5 years old and critically impacts
brain and cognitive development (Morgane et al., 1993; Galler
et al., 1996; Black et al., 2017). The Barbados Nutrition Study
(BNS) is a unique 45+ year longitudinal cohort study that
has followed individuals with histories of moderate-severe PEM
limited to the first year of life and healthy controls who were
classmates of the PEM participants. This study has documented
cognitive and behavioral problems (Galler et al., 1983a,b, 2010)
including poor attention, impaired school performance and
increased conduct disorder as well as depressive symptoms
over the lifespan. Recent evidence suggests that early childhood
malnutrition leads to epigenetic changes that impact the next
generation (Peter et al., 2016).

We recently recovered EEG data that was collected in BNS
participants in 1977–1978 at ages 5–11 years. EEG analyses using
qEEGt (Taboada-Crispi et al., 2018) showed the following results
in study participants with histories of childhood malnutrition:
(1) increased theta activity (3.91–5.86 Hz) in electrodes T4, O2,
Pz and in the supplementary motor area (SMA); (2) decreased
alpha1 (8.59–8.98 Hz) in fronto-central electrodes and sources
of widespread bilateral prefrontal area; (3) increased alpha2
(11.33–12.50 Hz) in temporo-parietal electrodes as well as in
sources in central-parietal areas of the right hemisphere; and (4)
increased beta (13.67–18.36 Hz), in T4, T5, and P4 electrodes
and decreased in bilateral occipital-temporal regions of PEM
versus control groups. Earlier EEG studies in children with
histories of childhood malnutrition (e.g., Bartel et al., 1979)
similarly found increased slow wave rhythms (theta band),
as well as decreased alpha. The effect of early malnutrition
on brain maturation and delayed brain development has
also been reported in animal models of early malnutrition
(Bronzino et al., 1999).

Studies directly examining brain function in individuals
with histories of childhood malnutrition are limited. Although
neuroimaging techniques such as MRI have been used to identify
a neural signature of early PEM (Ivanovic et al., 2002), these
techniques are not feasible for the development of scalable
screening programs in low resource settings where PEM is
most prevalent. They are also costly and have the disadvantage
of low throughput.

Consequently, attention has shifted to EEG studies for
identifying brain signatures of malnutrition. A prime
candidate for this purpose is tomographic quantitative
electroencephalography (qEEGT), which quantifies the EEG
rhythms via its frequency spectrum—the power in the signal at
each frequency bin and each channel. However, standard EEG
studies have limitations, especially because of their reliance on
scalp recording which is problematic for pinpointing anatomical
substrates, physio-pathological explanations and the relationship
to the animal literature. It is therefore preferable to carry out EEG
Source Imaging (ESI) (He et al., 2019) for increased biological

validity. Our earlier report (Taboada-Crispi et al., 2018) partially
addressed these issues by:

1. Employing z spectra: each log spectral value has the age
appropriate mean and divided by the age appropriate
standard deviation (as encoded in regression equations
obtained from the first wave of the Cuban Human
Brain Mapping Project) (Szava et al., 1994). This ensured
correction for normal brain age related variance.

2. Utilizing our novel machine learning technique (Bosch-
Bayard et al., 2018) to identify a stable neural signature with
high classification accuracy of EEGs to distinguish children
with PEM versus controls.

3. Interpreting the neural signature by identifying their
anatomical substrate differences with our ESI method
Variable Resolution Electrical Tomography (VARETA)
(Bosch-Bayard et al., 2001).

However, Taboada-Crispi et al. (2018) were not able to develop a
classification procedure for malnutrition based on ESI measures.
This was due to the extremely large number of highly correlated
variables produced by VARETA. This method is based on
a Bayesian inference structure which does not have a built-
in variable selection procedure. To overcome this type of
limitation we developed a new ESI method that guarantees sparse
sets of active sources: Brain Connectivity Variable Resolution
Electromagnetic Tomographic Analysis (BC-VARETA) (Paz-
Linares et al., 2017, 2018, 2019; Gonzalez-Moreira et al., 2018). By
leveraging the graphical lasso procedure (Friedman et al., 2010),
we simultaneously estimate source activity and connectivity, thus
producing a much sparser and decorrelated set of measures. This
research paves the way for classification procedures based on
EEG source spectra. For a recent review on ESI and connectivity
see He et al. (2019).

In the current paper, we report the results of using
BC-VARETA ESI to document the effects of early childhood PEM
on brain function. We used BNS archival EEG data collected at
ages 5–11 years (Ahn et al., 1980; Galler et al., 1983a,b) to identify
a stable machine learning classification scheme to distinguish
children with PEM versus controls based on EEG source spectra.

MATERIALS AND METHODS

Barbados Nutrition Study Sample
The two nutrition groups were selected as follows:

1. PEM: Children born between 1967 and 1972 in Barbados
and diagnosed with protein-energy malnutrition (PEM) in
the first year of life (n = 129, 52 females, 77 males);

2. Controls: Healthy classmates (n = 129, 52
females, 77 males), matched by age ± 3 months,
gender and handedness.

Inclusion criteria for PEM and control children were, as follows:
(1) birth weight > 2500 g; (2) Apgar score > 8 at birth; (3)
no birth complications; and (4) no encephalopathic events in
childhood. The PEM group experienced a single episode of Grade
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II or III PEM (Gomez et al., 2000) in the first year of life based
on clinical diagnosis at the time of admission to the Queen
Elizabeth Hospital. The control group met the same inclusion
criteria as the PEM group but did not have a history of PEM.
Final selection was based on parental consent and access to birth
and preschool health records. All PEM children were enrolled in
a national program (NIP- Nutrition Intervention Program)- that
provided subsidized food, maternal nutrition education, regular
home visits, a pre-school nursery, and health care from the
time of hospital discharge until 12 years of age (Ramsey, 1979),
ensuring that no child had further episodes of malnutrition.

Written informed consent was obtained from all participants.
Approval for this study was granted by the Ethics Committee
of the Ministry of Health, Barbados, the Judge Baker Children’s
Centre Human Research Review Committee (Assurance No.
FWA 00001811) and the Massachusetts General Hospital IRB
(2015P000329/MGH). Participants were compensated for their
time and travel to and from the BNS research center.

EEG Data Acquisition and Preprocessing
A complete description of the EEG procedures has been
previously reported in Taboada-Crispi et al. (2018). Briefly,
EEGs were recorded in 1977–1978 when the BNS children
were 5–11 years of age by trained staff at the Barbados
Nutrition Centre, who were blinded to the child’s nutritional
history. A designated room was available for EEG recording. All
participants were instructed to sit in a comfortable half recliner
chair and to close their eyes but not to fall asleep. A custom-
designed digital electrophysiological data acquisition and analysis
system (DEDAAS) was constructed by Prof. E. Roy John at the
Brain Research Labs, NYU (Thatcher and John, 1977) and was
used to acquire the EEG data. The DEDAAS front-end consisted
of 24 solid-state EEG amplifiers. The output of the amplifiers was
fed through a 12-bit A/D converter with a sampling frequency
(fs) of 100 Hz into a PDP-11 minicomputer that calibrated the
amplifiers and checked the electrode impedances automatically.
Simultaneous monopolar recordings were obtained of the 10/20
International Electrode System (Fp1, Fp2, F3, F4, C3, C4, P3,
P4, O1, O2, F7, F8, T3, T4, T5, T6, FZ, CZ, and PZ) system, all
referenced to linked earlobes. Data was stored on digital tape at
the Brain Research Lab, New York University until 2016 when
it was shared with our group (courtesy of Prof. Leslie Prichep).
A total of 258 digital resting state EEG recordings were collected
but only 137 raw EEGfiles were recovered in 2016 for the analysis.
The original raw dataset was converted to EEGLAB (Delorme and
Makeig, 2004) and PLG1 format for further processing.

Two neurophysiologists carried out quality control using
visual inspection via time and frequency domain tools. Artifacts
derived from oculo-motor and facial movements were eliminated
use the AAR plug-in from the EEGLAB 13.6.5b toolbox described
by De Clercq et al. (2006) and Gomez-Herrero et al. (2006).
In sum, 29 recordings displayed somnolence and were excluded
from this study, leaving a final dataset of 108 recordings
(of the original 258).

1http://www.neuronicsa.com

Source Space Analysis Using
BC_VARETA
Source Imaging Technique

For the usable data, 1 min of artifact free EEG was obtained
for all channels and was divided into quasi-stationary segments
that were 2.56 s long. This yielded a total of k = 1, · · · ,T = 24
windows. Each windowwas subjected to a Fourier transform each
frequency ω, and segment kandyielded a vector of complex Fourier
coefficients Vk(ω). In the current report, we attempt to estimate
the sources of these vectors.

As noted in the introduction, we used Variable Resolution
Electrical Tomography (VARETA) as the Electrophysiological
Source Imaging (ESI) technique in our previous study on
malnutrition (Taboada-Crispi et al., 2018). VARETA has been
extensively used in clinical studies (Bosch-Bayard et al., 2001)
but has two main disadvantages for using its features as
variables for classifiers: lack of sparseness and also “activation
leakage”– the spillover of estimated activity from the actual
active cortical voxels to other sites due to unavoidable ESI
reconstruction errors.

We overcame these problems in the current report using
another ESI, the Brain Connectivity VARETA or BC-VARETA
(in place of VARETA), which consisted of two stages:

1. “Screening” of the entire voxel space to retain only those
voxels with possible activation. This is carried out with our
new method for activation detection via model evidence
maximization of the non-linear-univariate ENET-SSBL
model (Paz-Linares et al., 2017). In the cited paper we
reported that this new technique produced activation maps
with the highest sparsity and least leakage of many state-of-
the-art ESI methods.

2. The second stage consisted of an improved estimation
of activation, achieved with simultaneous estimation
of source connectivity (Paz-Linares et al., 2018, 2019).
This approach substantially improves the connectivity
estimation as well as source activity due to their mutual
interdependence.

We now formally summarize this second stage for ease of
reference. Scalar quantities are denoted by lower case capital
letters (x), vectors by lowercase bold ones (x), and matrices are
indicated by bold upper-case notation (X). Observed quantities
will be denoted by Latin script and latent variables by Greek
script. The usual conventions are followed: e.g., xT, X−1 are,
respectively the transpose of a vector and the inverse of a matrix.
Since we are working in the frequency domain we assume that
all vectors x are considered as complex (x ∈ C

p), and distributed
as independent random vectors with a Circularly Symmetric
Complex Multivariate Normal probability density function, that
is x ∼ NC

q (µ, 6) with dimension q, mean µ, and covariance
matrix 6

The frequency domain resting state EEG is modeled as:

vk (ω) = L ιk (ω) + ek (ω) (1)

where vk (ω) ∈ C
m is the complex EEG Fourier coefficient vector

of dimension m, frequency ω and the kth segment. Also ek (ω) is
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the corresponding sensor noise while L is the lead field matrix
defined on the cortical surface for q. Finally, the sources of
the EEG are denoted by the vector ιk (ω) ∈ C

q, where q is
the number of sources. Since processing of each frequency ω

is independent this argument will be dropped henceforth. The
model is additionally specified by the following hierarchical
Bayesian model for each subject:

a) vk ∼ NC
q

(
L ιk, σ

2
e R

)

b) ek ∼ NC
q

(
0, σ2eR

)

c) ιk ∼ NC
q

(
0, 2−1

ιι

)

d) 2ιι ∼ e−λ||2ιι||1

(2)

In Equation [2 (a) and b] codify the observation equation
(1) with the sensor error variance σ2e R and R known.
Line c) specifies a prior distribution for the sources with a
covariance matrix 2−1

ιι = 6ιι with the inverse covariance
(or Precision matrix2ιι and cross-spectral matrix 6ιι.
2ιιis also known as the matrix of partial covariances and
is usually assumed independent in most current. The
novel feature of BC-VARETA is that it estimates 2ιιin a
data-driven fashion by assuming it is, in turn, a sample
from a Gibbs distribution with general penalty function
P

(
2ιι

)
, here an L1 norm. All parameters are estimated

via Expectation Maximization optimization of the model
evidence. In summary BC-VARETA finds estimators of the
Estimators of the cross-spectra 6̂ιι (ω) for each frequency.
The diagonals of these matrices are the power spectra in the
sources. Further technical details are in the cited papers and the
software is available at https://github.com/CCC-members/BC-
VARETA_Toolbox.

Specific Source Analysis

BC-VARETAwas used to analyze the artifact-free EEG dataset for
each participant to obtain the log source spectra at each of 6003
cortical sites and all 48 frequency components within a range
of 0.1–19 Hz. These were then summarized by averaging over
the areas of the AAL atlas of the MNI (Mazziotta et al., 2001).
An approximate Lead Field matrix used for the source-space
analysis for all subjects was obtained with Brainstorm software2

for 19 sensors defined on the 10–20 system and co-registered
using the MNI Average Brain template subject anatomy. This
approach of using an average lead field (across the sample) was
experimentally tested (Valdés-Hernández et al., 2009) resulting
in the most convenient tool in research studies demanding
EEG source localization when MRI are unavailable. The atlas
employed by us to identify the neural structures is available as
a toolbox for SPM at http://www.gin.cnrs.fr/AAL2. To further
summarize the number of frequencies and reduce the final
number of variables, we grouped the bins of frequencies using
the broad band parameter, according to the IFCN Guidelines
(Nuwer, 1997) and proposed the following frequency bands:
delta (1.5–3.9 Hz), low theta (4–5.4 Hz), high theta (5.8–7.4 Hz),
low alpha (7.5–9.4 Hz), high alpha (9.5–12.5 Hz), low beta
(12.8–14.9 Hz), and high beta (15–19.14 Hz).

2https://neuroimage.usc.edu/brainstorm/

Stable Sparse Biomarkers Detection
(SSB)
The EEG spectral signatures obtained from BC-VARETA are
used here to identify biomarkers that discriminate between the
two nutrition groups using the EEG activity. In what follows we
denote the spectral estimators for each frequency band/location
as si,j i = 1, · · ·N; j = 1, · · · p, where N is the total number
of subjects and p is the total number of features (potential
biomarkers) to be explored. For this purpose, we use the SSB
methodology (Bosch-Bayard et al., 2018; Chiarenza et al., 2018)
which is a classification procedure that extract a minimal set
of features, in a high dimensional problem, by providing a
classification equation with a high predictive power and stability.
SSB specially deals with the case where the number of variables is
high (p = 294,147 in our case) and the number of observations is
relatively small (n = 108). In such p> >N situations it is possible,
by chance, to achieve classification equations with spuriously
high accuracy. Nevertheless, slight changes in the training set can
lead to quite different feature selection and classification rates.

To protect against this problem, the sparse stable biomarker
(SSB) proceeds in two steps.

First Step: Selection of a Stable Set of Predictors

This is done by a resampling methodology that repeatedly and
randomly splits the data (in our case 500 times) with 70% of the
data in a training set and 30% in a test set. With the generation
of each random pair of training and testing sets the following
operations are carried out:

(A) The indfeat procedure (Weiss and Indurkhya, 1998)
winnows out promising classification variables in the training set.

(B) An even smaller set of predictors is selected from the
training set by means of the elastic net regression (GLMNet)
(Hastie et al., 2016) to select a classification equation (Zou and
Hastie, 2005; Friedman et al., 2010). The model is described by
the equation (3):

min
ϕ0∈R,ϕ∈R

[
1

2N

N∑

i=1

(
yi −ϕ0 − xTi ϕ

)2
+ λPγ (ϕ)

]
(3)

Here N is the number of subjects, xi ∈ R . xi,j = log
(
si,j

)
xi ∈ R

observations of subject i, and yi ∈ R is the label group of subject i;
ϕ0 ∈ R, ϕ ∈ R are the model parameters; γ is the regularization
parameter; p is the number of variables in the model; and

Pγ (ϕ) = (1 − γ)
1

2
||ϕ||22 + γ||ϕ||1 (4)

The penalty Pγ in equation (4) is known as the elastic-
net norm (Zou and Hastie, 2005). To understand its behavior,
note that the ||ϕ||22 norm induces regressions that behaves well
for high dimensional regressions but that tend to spread out
coefficient weights among highly correlated variables. On the
contrary, the ||ϕ||1 norm produces the “lasso regression” which is
indifferent to highly correlated predictors and tries to select only
one thus inducing sparsity. The elastic-net reaches a compromise
between the ridge and the lasso, the relative contributions being
determined by the γ and λ parameters. Since these parameters are
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selected by cross-validation (based on the test set), in any specific
case, the sparsity of the solution will be data-driven. The set of
predictor variables selected at this repetition is recorded.

Finally, after all repetitions, a stable set of predictor variables
is obtained by retaining only those variables that are selected in at
least 50% of repetitions.

Second Step: Evaluation of the Stable Predictor Set

In a totally independent set of resampling experiments, the
sensitivity and specificity of the classification equation is
evaluated. In an earlier report (Bosch-Bayard et al., 2018), a ROC
methodology was introduced which also guarantees stability and
robustness. Again, the total sample is repeatedly and randomly
split into two samples 70% of the data for the training set and 30%
for the out of sample test set. For each repetition the following
operations are carried out:

(A) A GLMENT classifier is obtained from the training set as
using a similar procedure as in the first step (B) above.

(B) The area (AUC) and partial areas under the ROC curve
(pAUC) is calculated on the training set and stored.

The AUC and pAUC values are used to generate kernel empirical
distribution functions for these measures. We use the median
of these distributions as an estimate of the true underlying
measures accuracies of the classification procedure. In the
case of the pAUC, these are evaluated for the False Positive
Ratios 0.1 and 0.2 and transformed to the standardized partial
Area under the ROC curve (spAUC) as described by McClish
(1989) to facilitate comparisons. Note that SSB described in this
section is not to be confused with the ENET-SSBL procedure
(Paz-Linares et al., 2018).

Age Adjusted Classifier and
Interpretation
Note that in our previous report in the BNS participants
(Taboada-Crispi et al., 2018), gender and age were included as
covariates in the EEG analyses. However, only age was found
to be significantly correlated with the EEG and is therefore the
primary covariate included in the analysis described below. In
our previous work with VARETA we pre-process the log source
spectra by the z-transformation: to partial out the variability due
to normal age changes. Normative data is not yet available for
BC-VARETA. Instead, we obtained an age adjusted classifier by
introducing both age and the interaction (product) of age and log
source activity as potential biomarkers.

min
ϕ0∈R,ϕ∈R

[
1

2N

N∑

i=1

(
yi −ϕ0 − xTi ϕ − agei x

T
i ψ

)2
+ λPγ (ϕ, ψ)

]

(5)

Where the notation is the same as in equation (3) with the
additional parameter vector ψ which represents the slope of the
age-dependent classifier, with agei the age of subject i.

Since the SSB procedure provides the biomarkers and their
coefficients in the classification equation, we performed an
additional t-test analysis between the two groups, using the

contrast malnutrition (PEM) versus Control group in order to
determine the direction of the group differences. In this case, the
negative sign indicated lower activation of PEM and the positive
indicated higher activation of the PEM group. This last analysis
in included for illustrative purposes only and is not part of the
classification procedure.

RESULTS

Demographic Characteristics of the
Sample
Table 1 summarizes the demographic characteristics of the
study participants. There were no nutrition group differences
in gender, age or handedness. The table shows significant
differences between the PEM and control groups in IQ, academic
performance and ecology at 5–11 years, as previously reported in
the full sample (Galler et al., 1983a,b). This subsample retains the
age/sex balance of the original 1977-1978 cohort.

Age Adjusted Classification of PEM vs.
Control Children Using BC-VARETA
Sources
A linear mixed-effects model testing influence of age and sex
on the source variables (Chung et al., 2010) showed no effect
of sex but did show a significant effect of age. To deal with this
an age-adjusted classifier was developed and is described below.
The regions and frequency bands selected as stable classifiers are
listed in Table 2. The third and fourth column show the % of
times selected as a classifier during the randomization procedure
for the age-independent coefficients. The fifth and sixth column
show the same information for the age-dependent coefficientsψ .

Figure 1 shows the ROC analysis of the age-adjusted
classification procedure based on these coefficients BC VARETA
to distinguish between the EEGs of both groups (PEM vs.
Control). Note that this is the same EEG dataset reported
(Taboada-Crispi et al., 2018). As can be seen the classification
accuracy is quite high with the using EEG sources calculated
with the VARETA procedure. As can be seen the classification

TABLE 1 | Demographic characteristics of the sample.

PEM Control t-test/χ2 p-value

N 46 62

Males [N (%)] 28 (60.9) 34 (54.8) 0.39 0.531

Age (years)

- Males 8.5 ± 1.9 8.6 ± 1.7 0.14 0.888

- Females 7.9 ± 2.0 8.5 ± 1.9 1.01 0.318

Handedness [N left (%)] 4 (8.7) 3 (4.8) 0.65 0.456

Childhood Ecology −1.14 ± 0.89 −0.14 ± 0.81 6.01 <0.0001

WISC Full-Scale IQ 88.9 ± 12.9 105.2 ± 11.9 6.62 <0.0001

School Performance (1–5) 3.1 ± 1.06 4.3 ± 0.88 6.20 <0.0001

Data are presented in mean ± SD or %; Age (in years at the moment of the EEG

recordings). The differences between groups were tested using Chi-square and

t-test.
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TABLE 2 | Regions and frequency bands selected as stable classifiers.

Region of AAL atlas EEG Frequency Band % times selected as classifier Regression Coefficients

φ ψ φ ψ

Middle Temporal Gyrus Left (MT.L) High Theta θH 78.72 75 −0.28 −0.02

Inferior Frontal Gyrus Orbital Right (IFO.R) Low Alpha αL 54.55 −0.006

Lingual Gyrus Right (LING.R) Low Alpha αL 50.6 228.26

Cuneus Right (CUN.R) High Alpha αH 75 81.71 0.18 0.03

Pre-Central Gyrus Right (PRECG.R) High Alpha αH 60.82 51.22 −1.18 −0.06

Lingual Gyrus Right (LING.R) High Alpha αH 52.44 53.66 198.02 31.29

Superior Temporal Gyrus Left (ST.L) Low Beta βL 50.59 −0.20

Middle Occipital Gyrus Right (MO.R) Low Beta βL 75.42 53.33 −0.094 −0.006

Superior Medial Gyrus Left (SMG.L) Low Beta βL 57.83 53.57 −0.19 −0.013

Inferior Temporal Gyrus Left (ITG.L) High Beta βH 76.4 56.25 −0.19 0.009

From left to right: anatomical region, frequency band% times selected as a classifier, and the actual regression coefficients of the elastic net classifier. φ Are the coefficients

for each variable for those independent of age, and ψfor those that reflect the interaction with age.

FIGURE 1 | Classification accuracy of the age-adjusted PEM vs. Control Classifier. ROC analysis of the age-adjusted classification between Children with PEM and

Controls based on the BC-VARETA. Electrophysiological Source Imaging techniques. On the left, (A) the full ROC curve, on the right (B–D) the probability density

functions (estimated from the resampling cross validation) of the area under the ROC curve (AUC) for the full curve (B–D) the standardized partial AUC (spAUC) at

0.1, and 0.2 false positive ratio cut-off points respectively.

accuracy is quite high with the area under the curve 0.82.
The figure also shows that the estimated probability density
for the AUC values from the randomized subsamples is
quite far away from 0.5 (chance classification). This is also
true for the standardized partial area under the ROC curve
(spAUC) at both the 0.1 and 0.2 false positive rate cut-
off points.

Figure 2 compares the resampling-based probability densities
for the AUC and spAUC as in Figure 1 for the age adjusted
classification based on BC-VARETA sources and superimposed,
for purposes of comparison, the same curves for the classifier
based on scalp qEEG measures previously presented in

Taboada-Crispi et al. (2018). Both are very high, with a slight
advantage for the scalp-based qEEG measures.

The actual effectiveness of the classification is shown in
Figure 3 with the boxplot of the individual classification scores

ti = ϕ0 + xTi ϕ + agei x
T
i ψ =

p∑

j=1

xi,j dj
(
agei

)
(6)

Which is based on the age adjusted elastic net classifier (5). Note
that dj

(
agei

)
is the age-adjusted regression coefficient.
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FIGURE 2 | Comparison of scalp based and source-based BC-VARETA classification accuracy. As in Figure 1, the probability density functions of the AUC are

shown for the full curve (left), the spAUC at 0.1 (center), and at 0.2 (right) false positive probability cut-off points. The blue (solid) lines correspond to the

age-adjusted BC-VARETA classifier, while the red (dashed) lines correspond to the scalp qEEG based classifier. The scalp-based classification performed slightly

better than the classifiers at the sources.

FIGURE 3 | Classification scores produced by the age-adjusted classifier for PEM and Control Groups. Boxplot showing the scores ti of subjects for both groups

using the individual classification scores. G1 is Malnutrition group (PEM) and G2 Control group.
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There is a clear separation provided by the stable age-adjusted
classifier. Note that this classification is based on the test set, not
the training set for the median value of the AUC curve density.

Figure 4 shows the values of the coefficients (also in
Table 2). In this figure positive for both coefficients indicate
that increased activity (taking into consideration age or not)
drives the score toward the control group. Due to the disparity
in the values of the coefficients a square root transformation
and rescaling of the alpha activity in the right lingual gyrus
were applied. Thus, classifier is dominantly driven by low and
high alpha activity in the right lingual gyrus, which is part of
the occipital lobe.

Figure 5 (two upper rows) displays t-test comparisons
(threshold selected by permutations) between the source activity
of PEM vs. control groups. Areas colored in blue indicate
negative values, for those frequency bands and structures in
which PEM has significantly less activation than control. Red
indicates significant positive t statistics, where PEM has excess
activation when compared with controls. This figure is only
shown to allow comparison with similar results using VARETA
(Taboada-Crispi et al., 2018).

The areas selected by the age-adjusted classifier are shown in
the lower two rows of the figure. Note that all the areas included
in the age-adjusted classifier are significant other than the lingual
gyrus hi-alpha which is just below the permutation threshold.

DISCUSSION

Classification Accuracy
In this paper we report a new classification procedure that
uses source activity estimated using the BC-VARETA procedure,

to delineate neural effects of exposure to protein energy
malnutrition (PEM) in the first year of life. As seen in Figure 1,
the area under the ROC curve is well above chance level.
Importantly, it is necessary to limit the False Positive Rate (FPR)
to either 0.1 or 0.2 to obtain consistent and high classification
rates. Such low FPRs are of practical importance, since in
screening programs an excess of false positives might overload
health systems. The good performance of our classifiers at low
FPR protects against this.

An Alternative View of Frequency Bands
and Source Locations
The regression coefficients inTable 2 are interpreted, not in terms
of the log transformed power at the sources but in terms of the
power. If one takes the exponent of the classification equation (6)
then the classification score is the product of terms:

exp (ti) =
∏

j=1:p

s
dj(agei)
i,j (7)

with ti the classification score for subject i, si,j the spectrum
for i in frequency band/anatomical location j. Note that this
(7) is a product of the source activations with the age-
dependent regression coefficients dj(agei) as exponents. This
formula provides a data-driven generalization of previous power
ratios that were previously popular. For example, the α/ϑ ratio
for any given sources is obtained by setting the dα(agei) = 1, and
dθ(agei) = −1, irrespective of the data.

The resulting classifier is mainly driven by alpha activity in
the right lingual gyrus. The signs of the age dependent regression
coefficients indicate that low and high alpha activity in this area
contribute to classification of nutrition status in the first year

FIGURE 4 | Scatterplot of the coefficients of the age-adjusted classification regression equation. The regression coefficients for each frequency band and source

anatomical region included in the age-adjusted classifier. Axis transformed by a sqrt root function to improve visualization. On the horizontal axis the coefficient φj for

the interaction with age and on the vertical axis the age intendent coefficients ψj . This is the same information as in Table 2. Note that due to the disparity of scales

the alpha activities in the lingual gyrus were also further divided by a factor of 100.
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FIGURE 5 | Brain areas and frequencies contributing to the discrimination between PEM and Control. The two rows above show the regions by frequency bands

with significant t-test group differences (threshold corrected by permutations) contrasting PEM vs. Control. Highlighted are those areas with a t-test in a range of

exceeding (red) and below (blue) the permutation selected threshold for p < 0.05. The two lower rows show the brain regions and frequencies selected as

biomarkers. There is a quite good correspondence between the two independent results, except that no biomarker was selected in the Delta band by the

classification procedure.

of life. Specifically, low alpha values in the lingual gyrus are
an indicator of a history of PEM. This is in agreement with
the significant differences between the two nutrition groups, as
confirmed by t-tests (Figure 5).

Comparison With the Previous Classifier
Using Scalp qEEG Variables
We previously used the Sparse Stable Biomarker (SSB)
selection method to obtain a classifier to differentiate between
PEM/Control for this same data set (Taboada-Crispi et al., 2018).
In our earlier paper, the potential biomarkers were the log EEG
spectra at the scalp (topographical level) which yielded an AUC
of 0.83, nearly equivalent to our current result. Due to the use of
a randomization sampling scheme, the estimates vary somewhat,
ranging from 0.81 to 0.86 for the qEEG classifier.

As mentioned previously, it was impossible to use a source-
based classifier in Taboada-Crispi et al. (2018) due to the high
dimensionality and correlation of VARETA sources, a limitation
which we have overcome in the present paper. The new classifier
achieves similar accuracy compared to that reported previously,
allowing us to now identify the areas that most differentiate
PEM from controls with high confidence. However, our classifier
selects the minimal subset needed to accurately identify children
with early malnutrition and this is only a small portion of the

widespread areas affected by PEM. As such, a more complete
analysis follows.

Physiological Interpretation of
PEM-Control Differences
The neurophysiological impairments associated with early
PEM can be permanent, often accompanied by widespread
neurological disturbances involving sensory-motor activity,
learning, memory, consciousness, cognition and emotion
(Guedes, 2011). The BNS study is unique because the participants
experienced a single episode of malnutrition limited to the first
year of life. In order to identify all areas affected by malnutrition,
t-tests at the source level (threshold corrected by permutations)
compared participants with PEMwith Controls (Figure 5). Many
frequency bands/areas identified in this study were previously
reported (Taboada-Crispi et al., 2018).

Notably, there are widespread changes in alpha activity; alpha
is decreased in previously malnourished participants in the right
inferior fronto-orbital area, and increased in the right precentral
gyrus. However, a novel finding is the marked decrease of
alpha activity in the right lingual gyrus for the PEM group
made possible only by the improved localization capability of
BC-VARETA. This is the single feature which predominantly
accounts for individual classification of participants. These
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findings lend further support to our hypothesis (Taboada-Crispi
et al., 2018) that early PEM impacts timely cortical myelination
thereby causing a delay in the development of the alpha rhythm.
This conclusion is supported by several lines of evidence:

1. Cortical rhythmic activity depends critically on thalamo-
cortical pathways and the inhibitory feedback of the
thalamic reticular nucleus (Llinás and Steriade, 2006). This
has been modeled in detail previously (Valdes et al., 1999;
Valdes-Sosa et al., 2009). These models predict an increase
in the peak alpha frequency dependent on the set of
parameters defining the thalamo-cortical loop. The specific
role of axonal delays is also considered in Douglas and
Douglas (2019).

2. A previous study of 300 normal subjects from the Cuban
Human Brain Mapping Project database showed that the
peak alpha frequency in normal subjects depends on
the microstructure of thalamo-cortical pathways in the
optic radiation, thus supporting our neural mass model
explanation (Valdés-Hernández et al., 2010).

3. Extensive normative studies by our group have shown
that the peak alpha frequency increases from the high
theta band to the typical alpha band over the lifespan
(5–97 years). This is valid both for scalp EEG (Alvarez
Amador et al., 1989) and sources (Bosch-Bayard et al.,
2001). These changes in alpha are most pronounced in the
first years of life.

4. Studies of myelin development resulting from longitudinal
studies have demonstrated that normal brain development
involves a linear increase in white matter from childhood
to adulthood especially in the optic radiation (Almli et al.,
2007; Laule et al., 2007; Dean et al., 2014). See especially
Figure 5 FA changes for the OR in Dubois et al. (2014). For
a review of related studies see Tau and Peterson (2010).

5. In the current study, PEM took place during the first year
of life, the most significant period of myelination. This may
have life-long lasting effects on alpha rhythm development,
as evidenced by a slower peak alpha frequency.

Limitations
This study has several limitations:

1. The variables explored as classifiers are the source log
Spectra estimated by BC-VARETA. An essential, but
still difficult problem is the full incorporation of partial
coherences (brain network information) in addition to
source activations as classification variables. This will
conceivably improve classification accuracy greatly. While
the calculation of partial coherences is inherent to BC-
VARETA, their use is challenging due to the need for
Riemannian classification procedures mandated by the
estimated quantities (Li et al., 2009).

2. Due to the novelty of the BC -VARETA technique and
the statistical challenges involved with this procedure, a
comprehensive calculation of multinational age dependent
norms is being developed and will be tested in the future.

FIGURE 6 | Conceptual model to study EEG sources as mediators. The

current paper is part of a program to determine EEG biomarkers signaling

neural mediators on the long-term effect of PEM in the first year of life on

childhood cognitive performance. The solid arrows indicate confirmed paths:

Nutrition- > cognitive variables (Galler et al., 1983a,b); Nutrition - > EEG (this

paper). Dashed arrow indicates paths to be confirmed.

3. Importantly we are analyzing data in fixed frequency
bands. Methods based on individualized moments of the
spectra or decompositions into peaks (Pascual-Marqui
et al., 1988; Valdés et al., 1992) could further serve to
enhance the accuracy of the classification scheme since it
would focus on peak alpha frequency. However, we have
already shown elsewhere that the less computer intensive
approach using fixed spectral bins can serve as a screening
procedure for further analysis.

4. In Taboada-Crispi et al. (2018) we showed that visual
inspection of the EEG by experts provided additional
information about brain states in both PEM and
control groups. These evaluations were based on
“grapho-elements” (such as “sharp waves” whose shape
exhibits non-linearly determined time/frequency phase
relationships). A non-linear set of features obtained at the
source level also needs to be explored in order to quantify
this type of assessment (Valdes et al., 1999).

5. This study is only the first step in building a disease
progression model in which EEG variables are explored
as potential mediators of the long-term cognitive and
behavioral outcomes of childhood malnutrition. Such
a model could incorporate other environmental factors
to identify individual trajectories of the evolution of
brain states. Our immediate research agenda is shown
in Figure 6 for detecting the mediation (through altered
brain function) of the effect of early malnutrition on
cognitive outcomes. With this paper we have identified the
link: Nutritional status - > Functional alteration in brain
structures. The analysis of the full model will be carried out
in future studies.

CONCLUSION

The effects of Protein Energy Malnutrition in the first year
of life can be detected by an age-adjusted classifier based on
the logarithms of the EEG source spectra. Basing the classifier
on the source spectra allows for an anatomic interpretation
of the classifier’s variables—in this case alpha activity in the
lingual gyrus. Thus, we provide evidence that EEG sources
can be an important component to consider as mediators in
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disease progression models that ultimately could provide lifelong
predictions of cognitive development to optimize cost/effective
health interventions.
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