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Abstract

We present an epidemic model capable of describing key features of the Covid-19

pandemic. While capturing several qualitative properties of the virus spreading, it

allows to compute the basic reproduction number, the number of deaths due to the

virus and various other statistics. Numerical integrations are used to illustrate the

adherence of the evolutions described by the model to specific well known real

features of the present pandemic. In particular, this model is consistent with the well

known relevance of quarantine, shows the dramatic role of care houses and accounts

for the increase in the death toll when spatial movements are not constrained.

Keywords: Age and Space Structured SIR Model; Differential Equations in Epidemic

Modeling; Covid-19 Modeling

1 Introduction

Our aim here is to present a model that contains key features of the Covid-19 outbreak. It

uses as starting point the classical SIR class of models, see [1, Sect. 13.5] but is thoroughly

adapted to the present day pandemic. Indeed, its key features are:

• Infected individuals are distinguished between Infective (I) and Hospitalized (H). The

former ones do spread the disease, while the latter ones, hospitalized or in quarantine,

don’t. We thus consider the four populations of Susceptible (S), Infective (I),

Hospitalized (H) and Recovered (R) individuals.

• The four densities S, I , H , R depend on time t ∈R+, on age a ∈R+ and on a space

coordinate x ∈R
2. S(t,a,x) (respectively I(t,a,x), H(t,a,x), R(t,a,x)) quantifies the

individuals of type S (respectively I , H , R) that at time t are of age a and are sited at

position x.

• Infection is propagated in space: S individuals can be infected by I individuals of all

ages, provided they are at the same time at a distance less than a given threshold. H

individuals do not infect anyone.

• S, I and R individuals move in the space domain with a time, age and space dependent

velocity. H individuals are not assumed to move. A further distinction of S

(respectively I and R) individuals according to their different destinations is also

possible, through further distinction into subclasses of the various populations.
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Figure 1 Number of confirmed Covid-19 cases in different European countries, scaled to the Italian

population, as a function of time. Along each horizontal axis, time is measured in days starting January 22nd,

2020, each country compared to Italy being delayed by the amount indicated in each top left corner. The

numbers of cases are taken from [2], the populations’ data from [3]

• At a given time, age and space dependent rate, infective individuals are hospitalized or

constrained to quarantine, thus entering the H population. Both infective and

hospitalized individuals recover or die at time, age and space dependent rates.

Before passing to the rigorous description of themodel, we recall that different countries

reacted toCovid-19 in different ways. Nevertheless, the initial stages of the virus spreading

are quantitatively quite similar in the different countries, once they are correctly scaled

with respect to the overall population: their only difference is essentially a time delay, see

Fig. 1. These striking similarities definitely justify the search for a unique model able to

describe the initial virus spreading.

As is well known, different countries are taking different measures to contrast the pan-

demic. Key differences typically concern the strength of lock down, constraining individ-

uals’ movements and contacts at different levels. In the model presented below, these dif-

ferences can be covered through ad hoc choices of a function, namely ρ , that can describe

various types of contagion. We describe below the effects of different quarantine poli-

cies, from the pandemic evolution point of view. As a further example, we show some

effects of care houses, that is of places where the virus spreads faster, in accelerating the

infection, also in the case where only one age class is present in the care house. A further

feature specific to the present model, is the spatial structure.With a numerical integration

we show that people’s movements may well speed up the pandemic. In this connection,

we note the possible interest in further extending the model presented below to possibly

cover also some of the consequences of the pandemic at the economic/industrial/financial

levels.

Below, we use the model here introduced to describe qualitatively relevant features of

the Covid-19 pandemic. At a quantitative level, the use of the present model relies on the

availability of reliable data, which is not always possible. In this connection, we refer for

instance to [4] for the description of a method able to cope with uncertain data.

We stress our interest in providing qualitative information, able to compare various

strategies to contrast the infection. We present a realistic framework comprising all those
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features that are presently undoubtedly relevant in the pandemic diffusion: age, move-

ments, quarantine, infection “at a distance”, . . .

For completeness, we refer to [5] for a different approach to the modeling of the Covid-

19 pandemic, also based on integro–differential equations. Differently from the model

therein, herewedonot resort to delayed terms, partly using the standard coupling between

the different equations describing the passage between different populations. A related

work considering an epidemic model with age structure and immigration is described

in [6].

The next section is devoted to a rigorous formulation of the model, of its key approx-

imations and of its main properties. Then, by means of numerical integrations, we show

key qualitative properties of the solutions, which agree with well known properties of the

Covid-19 pandemic. In these integrations, the various functions entering the model defi-

nitions are chosen in agreement with publicly available data.

2 Themodel

A population lives in a region X ⊆ R
n and is subject to an infective disease. Clearly, we

typically set n = 2, but also the case n = 1 can be of use in a simplified framework.

Throughout, S = S(t,a,x) is the number of susceptible individuals at time t ∈R+, of age

a ∈ R+ at position x ∈ X . When infected, susceptible individuals enter the I population,

i.e., they first turn into being infected and infective, possibly asymptomatic. These indi-

viduals are then hospitalized or set into quarantine at a rate κ = κ(t,a,x) and, when this

happens, we label them as H =H(t,a,x). Both I , respectively H , individuals may possibly

recover at rates ϑ = ϑ(t,a,x), respectively η = η(t,a,x), entering the population labeled as

R = R(t,a,x). We keep the R population distinct from the S one, assuming that those who

recover are immune to any further infection. A different assumption, namely that those

who recover are not immune, amounts, for instance, to add further terms coupling the

last equation to the previous ones in (1).

S (respectively I and R) individuals move in space with the assigned velocity vS =

vS(t,a,x) (respectively vI = vI(t,a,x) and vR = vR(t,a,x)). Depending on the geographical

scale at which the present model is applied, it might be of use to exploit crowd dynamics

models, see for instance [7]. At a different scale, vS, vI and vR may also describe the collec-

tive movements of relatively large sets of individuals heading towards regions less hit by

the pandemic.

Independently of the movements’ scale, when individuals of the same type, say S, follow

different routes, we distinguish S into different components, say S1,S2, . . . , and we assign

them the different velocities vS1 , vS2 , . . . , following a usual approach in crowd dynamics,

see for instance [8]. However, this latter distinction introduces a non trivial formal com-

plexity, with no relevance at the level of the present initial description and we leave the

corresponding technical details to a later work.

The disease is transmitted by I individuals to S ones that are, at any given time, geo-

graphically close, independently of age.
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We are thus lead to the model

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∂tS + ∂aS + divx(vSS) +µSS = –(ρ ⊗ I)S,

∂tI + ∂aI + divx(vII) +µII = (ρ ⊗ I)S – κI – ϑI,

∂tH + ∂aH +µHH = +κI – ηH ,

∂tR + ∂aR + divx(vRR) +µRR = +ϑI + ηH .

(1)

Here, the term κI describes the speed at which I individuals are hospitalized or put into

quarantine. Similarly, the term ϑI is the speed at which I individuals recover, while hospi-

talized individuals recover with a rate ηH . As usual, for A = S, I,H ,R, µA is the mortality

of the individuals of type A. All the above parameters, in particular the mortality rates, are

time, age and space dependent.

In (1), for merely typographical reasons, we use the abbreviation

(ρ ⊗ I)(t,a,x) =

∫

R+

∫

X

ρ(t,a,α,x, ξ )I(t,α, ξ ) dξ dα. (2)

This key term is the rate at which susceptible individuals get infected. The function ρ

plays a fundamental role, for it describes the dynamics of the disease transmission. Vari-

ous properties of the function ρ have a clear counterpart on the real characteristics of the

virus spreading. Depending on the particular scenario that is under consideration, differ-

ent choices of ρ are due. However, the following key property is essential:

Virus transmission Assume that δ is the smallest distance satisfying

‖x – ξ‖ > δ �⇒ ρ(t,a,α,x, ξ ) = 0, (3)

x and ξ being positions in X . Then, δ represents the maximal distance at which the virus

can be transmitted. Clearly, the speed of the infection is infinite, within the distance δ.

Note that it is very reasonable to consider also situations where the above bound δ is age

and/or space dependent. Indeed, this allows the specific consideration of environments

where individuals of different ages have different behaviors, such as schools.

Note that a careful choice of the function ρ allows the description of the different scales

at which the disease can be transmitted. Scaling conveniently the dependence of ρ on

‖x – ξ‖, (3) allows, for instance, to account both for the more probable infection at low

distance and for that, less probable, caused by tiny droplets that can cover relatively high

distances.

Moreover, suitable choices of ρ may well describe various specific situations. For in-

stance, the dependence of ρ on the age variables a and α allows to consider situations

in which contagion is restricted—or more/less prominent—among individuals of specific

ages, for instance of the same age.
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Model (1) needs to be complemented with initial and boundary data, say

(a,x) ∈R+ ×X , (t,x) ∈R+ ×X , (t,a, ξ ) ∈R+ ×R+ × ∂X

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

S(0,a,x) = So(a,x)

I(0,a,x) = Io(a,x)

H(0,a,x) =Ho(a,x)

R(0,a,x) = Ro(a,x)

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

S(t, 0,x) = Sb(t,x),

I(t, 0,x) = Ib(t,x),

H(t, 0,x) =Hb(t,x),

R(t, 0,x) = Rb(t,x),

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

S(t,a, ξ ) = S∂ (t,a, ξ ),

I(t,a, ξ ) = I∂ (t,a, ξ ),

H(t,a, ξ ) =H∂ (t,a, ξ ),

R(t,a, ξ ) = R∂ (t,a, ξ ),

(4)

which have to be chosen according to the specific situation under study. The only general

constraint to be imposed on these data, besides obvious minimal regularity conditions

necessary from the analytic point of view, is that newborns, corresponding to a = 0, are

mostly in the S population. In other words, while the analytic well posedness is completely

independent of this requirement, we expect that in every realistic application we have

∀(t,x) ∈R+ ×X , Ib(t,x) =Hb(t,x) = Rb(t,x) = 0. (5)

As it is well known, in the case of general balance laws, assigning and understanding the

role of the boundary condition along the spatial boundary ∂X requires particular care,

see [9–11]. Here, though not strictly necessary form the analytic point of view, we assume

the individuals’ velocities to be assigned are time, age and space dependent functions, so

that boundary data are essential whenever the velocities point inward X , while they are

neglected when velocities point outward.

A relevant time dependent statistics commonly used to quantify the spreading speed of

the disease is the basic reproduction number [12, Sect. 10.2], typically denoted byRo:

Ro(t) =
(average infection rate× number of susceptibles at time t)

(average recovery rate at time t)
.

Above “average” refers to both age and space averages. In the present dynamic setting, this

index needs to be time dependent. Moreover, the presence of 2 different populations of

ill individuals, namely the infective (I) and the hospitalized (H) ones, allows for the intro-

duction of two indexes inspired by Ro. The first one, say Ro, considers only the infective

ones while the latter, sayQo, comprises also the hospitalized ones:

Ro(t) =

∫∫ ∫∫

ρ(t,a,α,x, ξ )I(t,α, ξ )S(t,a,x) dα dξ dadx
∫∫

(κ + ϑ +µI)I(t,a,x) dadx
,

Qo(t) =

∫∫ ∫∫

ρ(t,a,α,x, ξ )I(t,α, ξ )S(t,a,x) dα dξ dadx
∫∫

((ϑ +µI)I(t,a,x) + (η +µH )H(t,a,x)) dadx
,

(6)

where we shortened κ = κ(t,a,x), ϑ = ϑ(t,a,x), η = η(t,a,x), µI = µI(t,a,x) and µH =

µH (t,a,x).
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The above definitions are justified by the following necessary and sufficient conditions,

that hold provided the inflow/outflow in/fromX vanishes and provided no newborn is ill:

Ro(t)≶ 1 ⇐⇒
d

dt

(∫∫

I(t,a,x) dadx

)

≶ 0,

Qo(t)≶ 1 ⇐⇒
d

dt

(∫∫

(

I(t,a,x) +H(t,a,x)
)

dadx

)

≶ 0.

The proofs amount to elementary applications of the Divergence Theorem and, hence, are

omitted.

In otherwords,Ro(t) describes the instantaneous variation of the number of infective (I)

individuals at time t, whileQo(t) describes that of the total number of ill (I+H) individuals.

Thus, R0 measures the danger of being infected, while Q0 measures the overall effect of

the disease spreading, coherently with (3).

For completeness, we note that the above definitions can be slightly simplified neglecting

the mortality terms, obtaining

R̃o(t) =

∫∫ ∫∫

ρ(t,a,α,x, ξ )I(t,α, ξ )S(t,a,x) dα dξ dadx
∫∫

(κ(t,a,x) + ϑ(t,a,x))I(t,a,x) dadx
,

Q̃o(t) =

∫∫ ∫∫

ρ(t,a,α,x, ξ )I(t,α, ξ )S(t,a,x) dα dξ dadx
∫∫

(ϑ(t,a,x)I(t,a,x) + η(t,a,x)H(t,a,x)) dadx
.

These latter simplified expressions still give useful information, since

R̃o(t) < 1 �⇒
d

dt

(∫∫

I(t,a,x) dadx

)

< 0,

Q̃o(t) < 1 �⇒
d

dt

(∫∫

(

I(t,a,x) +H(t,a,x)
)

dadx

)

< 0.

We remark that on relatively short time intervals (up to, say, a year or so), the difference

betweenR0 and R̃0 (or betweenQ0 and Q̃0) is likely to be negligible.

As a further remark, note that under assumption (5), the instantaneous variation in the

total population in the region X is

d

dt

∫

X

∫

R+

(S + I +H + R) dadx

=

∫

X

Sb dx [newborn]

+

∫

∂X

∫

R+

(vSS + vII + vRR) · ν dadξ [inflow/outflow]

–

∫

X

∫

R+

(µSS +µII +µHH +µRR) dadx [deaths], (7)

where ν = ν(ξ ) is the inward normal at ξ to ∂X and the boundary data Sb measures new-

borns, see (4). The equality (7) clearly shows the role of the mortality rates µS,µI ,µH ,µR.

An obvious consequence of (1) is that, for the epidemic to arise, it is necessary that

infective individuals are either present or enter the domain X . Indeed, if Io(a,x) ≡ 0 and

I∂ (t,a, ξ )≡ 0, then the whole population remains forever untouched by the virus.
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A key structural property of (1) is that the first two equations are independent of the

latter two. Once S and I are known, the explicit forms of H and R are available through,

for instance, a mixing of [13, Lemma 4.10] and [14, Lemma 3]. Formally, system (1) is a

system of balance laws in several space dimensions. For these kind of partial differential

equations, a general well posedness theory is still missing. However, the different equa-

tions are coupled through the source terms, similarly to the cases considered in [8, 15]

where well posedness is obtained, as well as the stability with respect to the parameters

defining the equation, see [16].

Different costs are related to the pandemic. First, the total number of deaths due to the

disease on the time interval [0,T], say D(T), is probably the most relevant one:

D(T) =

∫ T

0

∫

R+

∫

X

(

µI(t,a,x)I(t,a,x) +µH (t,a,x)H(t,a,x)
)

dxdadt.

We do not enter here the issue of assigning the cause of the death to the virus in presence

of other health problems.

On the other hand, we can also consider a more general cost comprising, for instance,

also the expenses that the health systemmust sustain. Therefore, we refer to the cost func-

tional

C(T) =

∫ T

0

∫

R+

∫

X

C
(

t,a,x, I(t,a,x),H(t,a,x)
)

dxdadt.

Above, the explicit dependence of C on t,a,xmay account for the peculiarities that differ-

ent time periods, ages or regions may have.

The many policies or strategies that can be adopted to confine the infection enter ρ

and the various parameters in (1). Besides, a quite natural choice is to use as control the

function κ , since it describes the rate at which infective individuals are confined.

Before passing to simplified versions of (1), we note that generalizations and extensions

are also possible. First, each population can be split into females and males, for instance.

On long time intervals, the introduction of growth functions, accounting for the different

aging of the different populations, might also be considered.

Hopefully, a particularly hot topic in the next future will be the strategy to adopt when

a vaccine will be available. From the modeling point of view, this amounts to insert vacci-

nation in the present model, following the framework in [17].

Finally we recall that, in system (1), recovered individuals cannot be infected again. The

mostly unfortunate case where this assumption were false would amount to the introduc-

tion of further terms on the right hand sides.

2.1 Simplified versions

While the model (1) looks quite general, in its use on a time scale of, say, a year or less,

the terms ∂aS, ∂aI , ∂aH and ∂aR, typically describing the aging of the population, can be

neglected. Then, (1) reduces to the system of partial differential equations

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∂tS + divx(vSS) +µSS = –(ρ ⊗ I)S,

∂tI + divx(vII) +µII = (ρ ⊗ I)S – κI – ϑI,

∂tH +µHH = +κI – ηH ,

∂tR + divx(vRR) +µRR = +ϑI + ηH ,

(8)
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where the age variable a can be considered as a parameter. Note that, as in the general

case, the latter two equations can be explicitly solved, as soon as a solution to the system

consisting of the former two equations is available.

If moreover we neglect the spatial velocity, i.e, we set vS = vI = vR = 0, then system (8)

becomes

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Ṡ +µSS = –(ρ ⊗ I)S,

İ +µII = (ρ ⊗ I)S – κI – ϑI,

Ḣ +µHH = +κI – ηH ,

Ṙ +µRR = +ϑI + ηH ,

(9)

where the dot symbol stands, as usual, for the time derivative. In the latter system, also

the space variable x plays the role of a parameter.

3 The numerical algorithm

The numerical integration of the simplified model (9) amounts to the approximate so-

lution of ordinary differential equations where age (a) and space (x) play the role of pa-

rameters. The integral coupling in the right hand side of the first two equations of (9) is

computed by means of a quadrature formula at each time step. Then, it is added to the

other terms in the right hand side of (9) and an approximate solution is obtained using

the exact solution to the linear (or, more precisely, affine) ODE consisting of the left hand

sides alone. This stratagem allows to comply with the global balance (7) of all the popu-

lations, while ensuring that the approximate solutions are non negative. For the sake of

completeness, we specify that all meshes are fixed and uniform. The age boundary a = 0

as well as the geographic boundary in the x variable need no specific treatment, since the

convective term is here absent.

The integration of the PDE system (8) requires far more attention. Here, the convective

terms are all approximated through the classical Lax–Friedrichs scheme [18, Sect. 12.5].

We use dimensional splitting [18, Sect. 19.5] to combine the movements in the 2 space di-

mensions. A further splitting is used to cope with the various source terms [18, Sect. 17.1].

The time step is chosen adaptively, with a CFL number [18, Sect. 4.4] of 0.95.

A technical issue is worth a specific remark. The presence of the non local term ρ ⊗ I ,

see (2), requires the computation of an integral over all the spatial domain at each time

step. The use of a suitably refined spatial mesh makes these computations quite demand-

ing, in particular for what concerns computational time and, at a minor extent, memory

requirements.

Numerical methods specifically devoted to conservation, or balance, laws with non lo-

cal terms have been thoroughly developed in recent years. This development was often

motivated by specific applications, ranging for instance from supply chains [19, 20], to

the cutting of metal plates with laser beams [21, Sect. 4.2], to mixed hyperbolic–parabolic

predator–prey systems [22].

4 The role of quarantine

We now show that the presented model, though in the simplified form (9), does capture

the relevance of the quarantine. Throughout, we use the parameters computed in the

Appendix, in particular we refer to the mortalities in Table 1 therein. We integrate three
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instances of (9) differing exclusively in the values attained by κ . Recall that this parameter

quantifies the speed at which infective individuals are confined to quarantine.

In the first case, we set κ ≡ 0, then we use κ as defined in (20), in the third integration

we use 10 times the value of κ in (20) and in the latter integration we use 20 times the κ

in (20).

We detail the choices of the initial datum (4):

So(a,x) = [3.125χ
[0,40[

(a) + 4.688χ
[40,60[

(a) + 3.125χ
[60,80[

(a)

+ 1.563χ
[80,+∞[

(a)]χ
[–40,40]×[–40,40]

(x);

Io(a,x) = 8χ
{x : |x1+20|+|x2–20|<0.5}

(x) + 32χ
{x : |x1–3|+|x2+2|<0.25}

(x)

+ 80χ
{x : |x1–38|+|x2–36|<0.4}

(x) + 4χ
{x : |x1+10|+|x2+20|<0.3}

(x)

+ 28χ
{x : |x1–28|+|x2+9|<0.6}

(x);

Ho(a,x) = 0;

Ro(a,x) = 0.

(10)

The dynamics of infection is described by the function ρ whichwe here select as follows:

ρ(t,a,α,x, ξ ) = 0.005χ{

(x,ξ ) : ‖x–ξ‖<1.5
}(x, ξ ).

This choice amounts to allow infection to pass from infective to susceptibles only provided

that individuals are less than 1.5 apart. The transmission of the disease takes place inde-

pendently of the age and of the absolute positions, the only constraint being the vicinity

of infective and susceptibles. We also choose that the transmission of the disease is inde-

pendent of time.

The effect of quarantine is well captured even by the simplified model (9). When κ is

0, no quarantine occurs and the virus spreads the fastest, see Fig. 2. Higher values of κ

mean that more individuals are quarantined/hospitalized, slowing down the spreading of

the virus. As κ increases, S individuals take more time to get infected, see Fig. 3. Clearly,

with lower values of κ , the disease spreads more rapidly, so that the number of infectives

is far higher, see Fig. 4, and less individuals recover, see Fig. 5. Moreover the total number

of deaths decreases as κ increases, see Fig. 6. The present model, being age structured,

accounts also for age differences in the death toll due to different quarantine levels.

Note the counter-intuitive effect according to which the highest value of κ does not

correspond the highest peak in the map t →
∫∫

H(t,a,x) dadx. Indeed, higher values of

κ reduce the total number of infected people which, as a consequence, may well lead to a

reduction in the number of isolated individuals, see Fig. 2.

Note that higher values of κ not only lead to lower values of t →
∫∫

I(t,a,x) dadx, but

also move the peak of this function to the right. From the practical point of view, this is

likely to correspond to a lighter exploitation of intensive care units, a key aspect from the

public health point of view.
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Figure 2 Total number of isolated individuals as a function of time, according to (9), in the four cases, from

left to right: κ = 0, κ as in (20), 10κ and 20κ . Remarkably, in the latter case the peak of the map

t →
∫∫

Hdadx is lower than on the preceding case. Indeed, a high value of κ reduces the number of

infectives and, as a consequence, may also reduce the total number of individuals in quarantine

Figure 3 Total number of susceptible individuals as a function of time, according to (9), in the four cases,

from left to right: κ = 0, κ as in (20), 10κ and 20κ . The increase in the infectives’ isolation speed slightly

lengthen the time necessary for susceptibles to be infected

Figure 4 Total number of infective individuals as a function of time, according to (9), in the four cases, from

left to right: κ = 0, κ as in (20), 10κ and 20κ . It is evident that quarantine sharply reduces the amount of

infective individuals

Figure 5 Total number of recovered individuals as a function of time, according to (9), in the four cases, from

left to right: κ = 0, κ as in (20), 10κ and 20κ . The increase in the quarantined individuals leads to a decrease of

the infected ones and, hence, also of those that recover

Figure 6 Total number of deaths due to the pandemic as a function of time, according to (9), in the four

cases, from left to right: κ = 0, κ as in (20), 10κ and 20κ . Here, the effect of quarantine is evident, sharply

reducing the death toll. Note also the slightly different effects on the different age classes

This “slowing” effect is evident also in Fig. 7: lower values of κ result in a shorter time

interval whereR0 exceeds 1. However, the values attained by this index may cause an ex-

cessive stress on intensive care units. On the contrary, higher values of κ lead to a longer
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Figure 7 Value of theR0 index, as defined in (6), as a function of time, according to (9), in the four cases,

from left to right: κ = 0, κ as in (20), 10κ and 20κ . The effect of quarantine is evident: increasing values of κ

result in longer periods whereR0 exceeds one, but with lower values of the index. This typically results in a

more bearable stress on the health system

period whereR0 exceeds 1, but with values that suggest a minor stress on the health sys-

tem.

5 Residential care homes

A recurrent problem in several countries has been the propagation of Covid-19 in care

homes. Here, we simulate this phenomenon, showing that the presence of a less controlled

area, though containing only one age segment, not only directly suffers from the pandemic,

but may well accelerate the virus propagation in the care homes’ neighborhoods.

To this aim, we now integrate (9) with the parameters, in particular the mortalities, de-

tailed in the Appendix and with the following initial datum:

So(a,x) = [3.13χ
[0,40[

(a) + 4.69χ
[40,60[

(a) + 3.13χ
[60,80[

(a)

+ 3.13χ
[80,+∞[

(a)]χ
[–20,20]×[–20,20]

(x)χ
R2\(C1∪C2)

(x)

+ 1.56χ
[80,+∞[

(a)(χ
C1

(x) + χ
C2

(x));

Io(a,x) = 20χ
[40,80[

(a)χ
[0,20]×[35,40]

(x);

Ho(a,x) = 0;

Ro(a,x) = 0,

(11)

where the two care homes C1 and C2 are located at

C1 = [–10, 10]× [10, 20] and C2 = [–35,–25]× [–30,–20]. (12)

In these regions, only one age class, namely the oldest one, is present and, mostly, less

protective measures are adopted.We describe this underestimation of the dangers related

to the virus through the function ρ :

ρ(t,a,α,x, ξ ) =
(

8× 10–5 + 2.5× 10–3χ
C1∪C2

(x)
)

χ{

(x,ξ ) : ‖x–ξ‖<5
}(x, ξ ). (13)

Note that in C1 and C2, ρ is about 30 times larger than outside these regions. This choice

accounts for the easiness with which, tragically, contagion diffused in some Care Homes.

At time t = 0, the S population is (approximately) uniformly distributed in [–40, 40] ×

[–40, 40]. In C1 and in C2 only members of the oldest age group (i.e., a > 80) are present,
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Figure 8 Contour plots of the initial datum as a function of the space variable for the “Care Homes”

integration. Note that the total distribution of the S population is approximately uniform, while a small groups

of infected individuals are present in the top part of the graph. Neither H nor R individuals are now present

Figure 9 Contour plots of the solution to the “Care Homes” integration at time t = 3. Note the fast spreading

of the disease in C1 as defined in (12). From there, the virus spreads even faster

Figure 10 Contour plots of the solution to the “Care Homes” integration at time t = 7. Note that the care

house C2 , as defined in (12), is reached by the virus through a very small amount of I individuals, so small that

it is not highlighted with the current scale. Indeed, contrary to the impression suggested by these figures, the

model (9) does not allow for any propagation at a distance greater than δ = 5, as specified in (13)

Figure 11 Contour plots of the solution to the “Care Homes” integration at time t = 10. The front of the

pandemic clearly spreads from the top right towards the bottom left of the domain and now the care house

C2 , as defined in (12), acts as an epidemic outbreak, opening a second front and accelerating the pandemic in

the lower left part of the domain

see Fig. 8. Quickly, at time t = 3, the virus reaches the first care home C1, see Fig. 9. As a

consequence, the pandemic accelerates and, at time t = 7, also C2 is widely infected, see

Fig. 10. This further accelerates the spreading, with C2 clearly acting as a further source

of infection, see Fig. 11. At time t = 10, the two fronts of the pandemic propagation are

evident: the first one due to the initial presence of infected individuals, the second one

emanating from C2. Finally the situation at time t = 13 is plotted in Fig. 12.
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Figure 12 Contour plots of the solution to the “Care Homes” integration at time t = 13. The front of the

pandemic for the I population spreads from the care house C2 , as defined in (12)

Figure 13 Total amount of individuals of the four populations over all the domain and all age classes, as a

function of time, with reference to the “Care Homes” integration. Remarkably, the initial tendency of the I

population is towards a reduction but, as soon as the virus reaches C1 , at about t = 2, this tendency is reverted

and the pandemic accelerates

Figure 14 R0 , left, andQ0 , middle, indexes as a function of time in the simulation of the “Care Homes” case.

The epidemic outbreaks in C1 and C2 are clearly visible. Right, the total number of deaths due to the

pandemic, as a function of time, also separated in the 4 age classes. As expected, the oldest fraction of the

population pays the highest toll

In Fig. 13, we see the total amounts of individuals of all ages and over all the domain.

Note, in particular, that the initial trend of the I population is towards a decrease. Never-

theless, the outbreak of the pandemic in the first care home C1 is able to invert this trend

and the total number of infected individuals starts to grow.

Finally, remark that although the two care homes are rather small with respect to the

whole domain, the spreading of the virus in C1 and in C2 is very clearly caught by the in-

dexesR0 andQ0 defined in (6), see Fig. 14. Indeed, the two care homes actually accelerate

the contagion in the neighboring areas. A further expected consequence is the soaring

number of casualties in the highest age classes, confirmed in Fig. 14.

As a general remark, we stress that this integration well captures the dangerous con-

sequences that the pandemic may have on localized areas where the disease propagation

is not sufficiently hindered. Indeed, the positions of the two “Care homes” are undistin-

guishable when looking at the population density distribution at time t = 0, see Fig. 8.

Nevertheless, as soon as infection reaches these regions, it spreads therein quite quickly,

see in particular the two rightmost diagrams in Fig. 9, where a hole in the S density and

a sharp increase in the I density clearly correspond to the propagation of the disease in

a care home. In the subsequent Fig. 10, this phenomenon is even more evident: the sec-
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ond care home is fully infected without any apparent contagious wave reaching it. Clearly,

once a care home is infected, it acts as a further source of infection for the neighboring

regions. However, this effect is better accounted for when introducing also movements in

space.

6 The effects of spatial movements

The spatial structure present in (1) allows to describe the relevant effects that the move-

ments of individuals may have on the spreading of the virus.

We imagine an urban area with commuters focusing in a fictitious city center every

morning and going back home in the evening. Slightly out of the commuting area, a group

of infected individuals initiate the spreading of the virus. The pandemic turns out to be

dramatically enhanced by the commuters’ movements.

More precisely, we use model (1) in the form (8), with no age structure, on the domain

[–2.1, 2.1] × [–2.1, 2.1], with an initial datum corresponding to a uniform distribution of

S individuals, with density 206 1
Km2 as detailed in the Appendix, in [–2, 2] × [–2, 2] and a

20 times smaller density of infective ones in a corner:

⎧

⎪

⎨

⎪

⎩

So(x) = 206χ
[–2,2]×[–2,2]

(x), Ho(x) = 0,

Io(x) = 10.3χ
[–1.9,–1.5]×[–1.9,–1.5]

(x), Ro(x) = 0.
(14)

The movement of the commuters is imitated through the vector field

v(t,x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

–2(‖x‖2 – (7/4)2)xχ
‖x‖≤7/4

between 06:00 and 09:00,

0 between 09:00 and 17:00,

2(‖x‖2 – (7/4)2)xχ
‖x‖≤7/4

between 17:00 and 20:00,

0 between 20:00 and 06:00,

(15)

which has a period of 1 day.

The function ρ depends only on the space variables x and ξ and is chosen as

ρ(t,a,α,x, ξ ) = χ{

(x,ξ ) : ‖x–ξ‖<0.05
}(x, ξ ). (16)

The other parameters are age–averages of the quantities chosen in the Appendix, namely:

µS = µR = 2.87× 10–5
1

day
; η = 0.115

1

day
;

κ = 0.320
1

day
;

µI = µH = 1.44× 10–2
1

day
; ϑ = 0.420

1

day
.

(17)

As a comparison, we consider the same situation but with the vector field (15) replaced

by 0. The initial datum is the same in the two cases and is depicted in Fig. 15. Note that the

initial distribution of infected individuals is out of the residential area of the commuters.
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Figure 15 Initial datum assigned to (8) in the two cases with and without commuters. The commuting area is

the circle centered at the origin with radius 1.75. From left to right, the S, I, H and R populations

Figure 16 Contour plots of the solution to (8) at time, above, t = 4.71 and, below, t = 4.72, roughly

corresponding to 5 p.m. of the 4th day. Above, the case with the commuters’ movement (15), below the case

with no movement. Apart from the spreading of the virus in the bottom left corner, the S distribution in the

line above is symmetric w.r.t. the origin, while on the line below it is uniform. Here, differences in the virus

spreading due to daily travelers are becoming evident

Therefore, as long as the virus does not reach the circle centered at (0, 0) with radius 1.75,

that is for the first 3 days, the two evolutions roughly coincide.

Each morning, the focusing of all individuals not in quarantine in the center increases

the total individuals’ density therein. Thus, during working hours, i.e., between 09:00 and

17:00, the higher density in the center eases the virus propagation. In Fig. 16, we see the

first effects of the daily travelers: they clearly speed up the virus propagation. At about

5 p.m. of the 4th day, a group of infected individual is present in the city center. Later,

in the evening, infection is propagated back near to the homes of the commuters. The

periodicity in these daily travels boosts virus propagation, see Fig. 17, where the infected

area in the commuters’ case is considerably larger than that with no movement.

The two graphs of the Ro index confirm the previous remarks. During working hours,

when the S and I individuals are concentrated in the center, the diffusion of the pandemic

is evidently amplified, see Fig. 18. Towards the end of the time interval, the value of Ro

falls below 1 since most of the population is, or was, infected.

As a compendium of the two different evolutions, the graph of the total numbers of

deaths in Fig. 19 is dramatically clear. The movement of commuters doubles the number

of casualties.

Finally, we remark that different choices of the vector field (15) can easily increase the dif-

ference in the death toll. Indeed, assume, for instance, a movement allowing the infective

individuals to wander all around the region under consideration. In such a configuration,

the movement dramatically amplifies the infectivity of the virus. The setting considered
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Figure 17 Solution to (8) at time, above, t = 6.75 and, below, t = 6.76, roughly corresponding to 6 p.m. of the

4th day. Recall that the vector field (15), used in the integration above, is 1 day periodic. Above, the combined

effect of 6 days of commuting clearly results in a higher level of infection

Figure 18 Value of theRo(t) index corresponding to the solution to (8) on a 12 days time interval. The

commuters’ movements clearly boost the spreading of the virus

Figure 19 Numbers of deaths due to the virus, as a function of time, according to the solution to (8) in 12

days. The daily workers’ movements double the number of casualties

above was chosen to be reasonably realistic and, nevertheless, still shows the relevance of

individuals’ movements in the spreading of the virus.

7 Conclusions

The key novelties in the model presented above are the non local integral term represent-

ing the transmission of infection and the explicit consideration of a segment of the pop-

ulation confined to quarantine. The resulting model consists of an initial boundary value



Colombo et al. Journal of Mathematics in Industry           ( 2020)  10:22 Page 17 of 20

Table 1 Mortalities

Age class [0, 40[ [40, 60[ [60, 80[ [80, +∞[ See

Total Deaths in 2018 7893 38,896 182,282 404,062 [24]

Residents in 2018 24,421,783 18,640,004 13,215,186 4,207,000 [23]

µS(a) =µR(a) = 8.85e-7 5.72e-6 3.78e-5 2.63e-4 (18)

Covid-19 deaths (up to 15.03): 4 55 746 892 [25]

Covid-19 deaths (up to 22.03): 12 209 2309 2488 [26]

Covid-19 cases (up to 15.03): 2953 7729 9561 4636 [25]

Covid-19 cases (up to 22.03): 6891 18,547 21,743 10,514 [26]

µH(a) =µI(a) = 2.90e-4 2.03e-3 1.83e-2 3.87e-2 (19)

problem for a system of partial differential equations where the independent variables are

time, age and the space coordinates.

Appendix: Parameters’ choices

We detail here the procedures adopted to select the values of the parameters used.

In the integrations, we are inspired by average Italian data, scaled to the square

[–50, 50] × [–50, 50], with a total population of about 2 millions inhabitants, approxi-

mating the average Italian population density of 206 1
Km2 .

As common experience shows, age plays a role in the evolution and consequences of

the Covid-19 infection. Therefore, we distinguish 4 age classes (in years): [0, 40[, [40, 60[,

[60, 80[ and [80,+∞[. We recall that the total population is distributed among these age

classes, following [23], with the coefficients:

age class [0, 40[ [40, 60[ [60, 80[ [80,+∞[

density distribution 0.404 0.308 0.218 0.0700

The estimation of all quantities related to the I population is intrinsically quite difficult.

These individuals are infective but not isolated, therefore they may be unknown to any

agency, as they may well be unaware of their status. It is generally believed that their num-

ber exceeds the official number of positive tests, but very little seems to be known about

the other parameters specific to the I population, such as mortality, for instance.

Mortalities. Remark that here our aim is to capture qualitative features or compare dif-

ferent strategies to cope with the pandemic, rather than obtain quantitatively correct fore-

casts. Therefore, we are more interested in the ratios among the different mortalities,

rather than in their absolute values. Dimensionally, mortalities are measured by 1
day

.

The mortalities µS and µR are computed, in each age interval, so that

(365 day)µ[individuals in a class] = [deaths in that class in 2018], (18)

while to compute the values of µH we used

(7 day)µ

⎡

⎢

⎣

infected individuals

in an age class

between 15.03 and 22.03

⎤

⎥

⎦
=

[

deaths in that age class

between 15.03 and 22.03

]

. (19)
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In the above computations leading to the estimates of the mortalities, we assumed that

all those who are aware of being infective belong to the H population, meaning that they

do not infect anyone.

Here, we setµI = µH . Indeed, the I population both comprises asymptomatic individuals

that hardly realize being infected, as well as those who are not taken care of. In the average,

we arbitrarily assume that their mortality is as big as that of the isolated individuals.

Transitions between populations. The parameter κ = κ(t,a,x) measures the rate at which

infective individuals are “blocked”, i.e., hospitalized or set to quarantine. Due to the above

recalled nature of the I population, we estimate κ as being generally larger thanµI . Indeed,

we expect that infective individuals usually become known and, hence, isolatedwell before

their conditions get too bad. Moreover, we expect that κ is bigger at higher ages, since the

presence of infective individuals that are not aware of their status (and, hence, are not

isolated) might be larger at lower ages. Thus, we choose κ as being only age dependent

and, more precisely, we seta

κ(t,a,x) = 0.1χ
[0,40[

(a) + 0.2χ
[40,60[

(a) + 0.4χ
[60,80[

(a) + 0.8χ
[80,+∞[

(a). (20)

Recall that κ plays a key role in the control of the epidemic and a paragraph below is

devoted to show its relevance.

The parameter ϑ is the speed at which infective individuals recover. It is realistic to

assume that this happens at a rate faster than the death rate and, what is more relevant,

faster for younger individuals. Thus, neglecting the dependence on time and space, we set

ϑ(t,a,x) = 0.8χ
[0,40[

(a) + 0.4χ
[40,60[

(a) + 0.08χ
[60,80[

(a) + 0.02χ
[80,+∞[

(a).

Finally, η is the speed at which hospitalized individuals recover. We get from [27] the

total number of individuals that recovered on March 23rd, namely 7342 out of a total H

population on that day of 63,927, so that we set

η(t,a,x) = 0.115
1

day
.

Note that the parameter η correctly turns out to be an average of the values attained by ϑ .

The use of an age or, possibly, also time and space dependent η is well within the capabil-

ities of Model (1).
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