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An Age-Based Inspection and Replacement Policy
for Heterogeneous Components

Philip A. Scarf, Cristiano A. V. Cavalcante, Richard A. Dwight, and Peter Gordon

Abstract—This paper considers a hybrid maintenance policy for
a single component from a heterogeneous population. The compo-
nent is placed in a socket, and the component and socket together
comprise the system. The -population of components consists of
two sub-populations with different failure characteristics. By sup-
posing that a component may be in a defective but operating state,
so that there exists a delay time between defect arrival and compo-
nent failure, we consider a novel maintenance policy that is a hy-
brid of inspection and replacement policies. There are similarities
in this approach with the concept of “burn-in” maintenance. The
policies are investigated in the context of traction motor bearing
failures. Under certain circumstances, particularly when the mix-
ture parameter is large, and the distribution of lifetimes for the two
component types are well separated, the hybrid policy has signifi-
cant cost savings over the standard age-based replacement policy,
and over the pure inspection policy. In addition to the cost metric,
the mean time between operational failures of the system under the
hybrid policy can be used to guide decision-making. This mainte-
nance policy metric is calculated using simulation, and using an
approximation which assumes that operational failures occur ac-
cording to a Poisson process with a rate that can be calculated in a
straightforward way. The simulation results show good agreement
with the approximation.

Index Terms—Age based replacement, delay time, inspection
maintenance.

ACRONYM

MTBOF mean time between operational failures

NOTATION

component age at defect arrival

probability density function (pdf) of

cumulative distribution function (cdf) of

delay time from defect arrival to subsequent failure

probability density function (pdf) of
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cumulative distribution function (cdf) of

mean delay time

age at failure, so that

interval between inspections

number of inspections during the inspection phase

age at preventive replacement during the wear-out
phase
cost of preventive replacement

cost of failure

cost of inspection

cost of a renewal cycle (r.v.)

length of a renewal cycle (r.v.)

expected cost of a renewal cycle

expected length of a renewal cycle

long run cost per unit time

pdf of components from sub-population

mixing parameter

characteristic life for components from
sub-population
shape parameter of pdf of components from
sub-population
mean time between operational failures

probability that a replacement cycle ends with
failure

I. INTRODUCTION

C ONSIDER a system comprising a single component, and
a socket, which together provide some operational func-

tion (see [1]). Further, suppose that the distribution of time to
failure for the component follows a mixture distribution so that
the -population of components comprises a sub-population of
weak components, and a sub-population of strong components.
The weak components have a short characteristic life, and give
rise to early failure. The strong components have a long char-
acteristic life, and are the subject of wear-out. What then is a
suitable maintenance policy for such a system, when the new,
replacement component is taken from the mixed population?
Finkelstein & Esaulova [2] argue that periodic policies do not
take account of systematic changes that occur in the pattern
of components’ aging from a mixed population. We propose
a policy which is a hybrid of inspection maintenance and age
based replacement: inspections are carried out over the early life
of the system; preventive replacement is carried out during later
life.

0018-9529/$26.00 © 2009 IEEE
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We will consider a system for which failure implies imme-
diate cost-consequences. In this context, for inspection to be vi-
able, we suppose that a defect may arise prior to failure, and
that these defects are detectable at inspection. Thus, we suppose
that the system can be in one of three states: good, defective, or
failed. Following Christer [3], we call the time lapse between
defect arrival and failure due to this defect the delay time. The
cost-optimal hybrid policy can be determined given the costs of
inspection, preventive replacement, and failure; knowledge of
the -distribution of the time to defect arrival; and knowledge of
the -distribution of the delay-time. Age based replacement [4]
is a special case of the hybrid policy. A pure inspection model
(periodically inspect over the system life, and replace if defec-
tive) is also a special case.

The model we propose is related to burn-in maintenance.
In this policy, components are subjected to a burn-in test, a
process used to improve the quality of products or systems
after they have been produced [5]. The implication is that the
-population of components produced are heterogeneous, and

poor quality components (with short operational lives) will be
screened during the burn-in. This early life screening will be
analogous to the inspection phase of the hybrid maintenance
model that we propose. Burn-in maintenance modeling is con-
cerned with determining, in combination, optima for the burn-in
time, and the subsequent preventive maintenance policy for the
operational phase [6], [7]. The burn-in process is not always
suitable because a long burn-in period may be impractical.
Our model is different in that both inspection and preventive
replacement will be carried out during the operational phase.

Murthy & Maxell [8] proposed a policy for maintenance
during the operational phase which is a mixture of age-re-
placement policies. This policy involved an additional test that
could be performed to determine the nature of the component
(whether it is type , weak, or strong, say), and then preventively
replaced components of type at age . Our model does not
require the performance of such a test.

We suppose that the lifetime distribution for a component
follows a mixture distribution. Such a mixture is illustrated
in Fig. 1. Mixtures of this kind do not necessarily have an
increasing failure ( -hazard) rate function [10]–[14], and a
bathtub shaped hazard is one possible form [9]. Note that the
fitting of mixture distributions to failure data will be prob-
lematic. This is because data will often possess an underlying
structure that is not immediately apparent due to, for example,
inspections, left and right censoring, or heterogeneity. It would
be unfortunate to fit a two-parameter Weibull distribution to
failures that arise from a mixture, and then adopt an age-based
replacement policy based on the fitted two-parameter Weibull
because the implied critical replacement age would be inap-
propriate for both sub-populations of components [8]. A full
discussion of the fitting of Weibull distributions to data in this
context is given in Jiang & Murthy [15].

Our failure model should be distinguished from a combined
policy that addresses competing failure modes in a component.
For example, given that a component possesses two failure
modes, one might consider inspection as an appropriate inter-
vention for one mode of failure, and age-based replacement as
appropriate for a second mode of failure. The combination of

Fig. 1. Mixed distribution � �. Underlying Weibull distributions,
���� � �� � � ���� �� � ��, and ���� � 	
� � � �� �������,
mixing parameter � � ��	.

these policies (inspection, and age based replacement) appears
to be like the policy presented in this paper, but is in fact not
designed to address the notion that a component arises from a
mixed population of weak and strong components. The failure
time distribution for a competing risks model is different from
that for a mixture. On the other hand, if we assume that all
components can fail according to failure mode 1, and some (a
proportion) can also fail according to a second failure mode
2, then these latter components can be viewed as weak. The
-population as a whole is then a mixture of the weak and

strong, and the failure time distribution is the same as ours in
principal, but with a subtly different form.

The layout of this paper is as follows. We first explicitly state
our assumptions. Then we specify the policy, and calculate the
long-run cost per unit time of the policy. We also discuss the reli-
ability implications of the policy by considering the distribution
of time between operational failures. The policy is illustrated
using an example relating to the maintenance of traction motors
used on the trains of a commuter railway. Finally, we present
the conclusions of this work.

II. ASSUMPTIONS

1) , where , and
respectively follow Weibull distributions with character-
istic lives , , and shape parameters , .

2) Components may be in one of three states: good, defective,
or failed.

3) The system is in the failed state iff the component is in the
failed state.

4) The delay time, , is -independent of the time to defective
arrival, .

5) Inspections are perfect in that any defects present will be
identified.

6) Defective components are replaced at inspection instanta-
neously, and the average cost of replacement of a defective
component is .

7) At the critical replacement age , preventive replacement
of a component is instantaneous, and again costs

.
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8) Failed components are immediately apparent, cause op-
erational failure of the system, and are replaced instanta-
neously with cost .

9) The cost of inspection is .
10) At replacement (whatever the state of the replaced compo-

nent), the system is restored to the as-new state.

III. THE HYBRID MAINTENANCE POLICY

To reduce early failures, the system is inspected with fre-
quency during the inspection phase up to age . A com-
ponent will be replaced at the time of the th inspection if it is
defective; it will be replaced on failure; and it will be replaced
preventively at if it survives to this age. The objective of in-
spection is to prevent early-life failures of weaker components.
Inspections act as a natural, operational burn-in process, because
the weak components will fail much earlier than strong com-
ponents. The objective of preventive replacement, which takes
place over a much longer time-scale, is to reduce wear-out fail-
ures in later life.

Failures are anticipated by a defective state. In the good and
defective states, the system is operational. The notion of a de-
fective state allows us to model inspections: if the delay-time is
zero (two-state failure model), then, given our assumption that
component failures lead to immediate operational failure, in-
spection is futile. Note that the model might be extended to con-
sider a mixed population of delay-times, a proportion of which
are zero [16]. This effectively relaxes the perfect inspection as-
sumption because it implies that a proportion of failures cannot
be prevented by inspection. We do not consider this model here
however.

The decision variables in the model are , , and . These
are all age-related, so that on replacement, the inspection phase
begins again. Thus, the maintenance model is analogous to age-
based replacement. The as-new replacement assumption implies
that we can use the renewal-reward theorem, and hence the
long-run cost per unit time, as an objective function.

Within this framework, the length of a renewal cycle (time
between renewals), , can take different values, and

(1)

if , . Thus,
for example, , and the component is replaced at first
inspection, if . Also,

(2)

if , ;

(3)

if ; and

(4)

if .

The cost incurred in a cycle is given by

if
if
if
if .

(5)
Developing (1)–(4), we have that when the expected

renewal cycle length is

In the same way, developing (5), we have that when ,
the expected cost per cycle is

Using the above expressions for and , the optimal
hybrid policy of inspection up to age , and replacement at
age for components from a heterogeneous population, can be
determined by minimizing the long-run cost per unit time:

with respect to , , and .
The expressions simplify when to
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and

Expressions for , and in the case could also
be derived by noting that the hybrid policy reduces to age-based
replacement with critical age . Then, we have that

, and ,
where , and so .

Also, when (so that ), we have a pure
inspection model with replacement at failure, or at inspection
when a defect is found; and , and will have particular
forms

and

Note the hybrid inspection and replacement policies that have
been developed to date [17] are based on the notion of increasing
defect arrival rate, and minimal repair. For these policies, in-
spections will tend to be carried out with increasing frequency
as the component reaches the critical age for replacement. This
is in direct contrast to the policy developed in this paper.

IV. DISTRIBUTION OF THE TIME BETWEEN OPERATIONAL

FAILURES

For any system subject to some maintenance policy, it is in-
teresting to determine the distribution of the time between oper-
ational failures. This distribution may be regarded as the system
reliability [18]. For a simple system and policy, this distribution
can be derived. For age replacement, for example, quantiles of
the distribution can be explicitly obtained [19]. For the hybrid
policy in this paper, the distribution of the time between opera-
tional failures may be obtained by Monte Carlo simulation (for
a given set of parameter and policy values). We can also use the
following approximation. The probability that a cycle (replace-
ment interval) ends in failure, , is given by

Fig. 2. Weibull plot for traction motor bearing failures. For a single �-popula-
tion of components, this implies � � ���, and � � �� ����	.

Fig. 3. Histogram of bearing failure times for 39 traction motors.

For small and , and large , this probability will be small so
that failures are rare events. Over some interval of time, , the
number of cycles is approximately , where is
the expected cycle length. All intervals are -independent, and
so the number of failures in will have (approximately) a
Poisson distribution with rate . Thus,
the times between operational failures are (approximately) ex-
ponentially distributed with mean

(6)

The measure, , the mean time between operational failures
(MTBOF), might be used in conjunction with some cost crite-
rion (here the long-run cost per unit time), in a multiple criteria
approach of the policy [20]. For example, given a reliability re-
quirement expressed in terms of the MTBOF (say ),
we can determine those policies for which this is true. That is,
find that subset of the region such
that . Then, we can find the minimum cost policy in
this subset. A reliability constraint could also be expressed in
terms of some quantile of the distribution of the times between
operational failures. Thus we may require for
specified , and , assuming .

V. CASE STUDY/NUMERICAL EXAMPLE

Scarf et al. [19] consider the lifetimes of bearings in 375V d.c.
traction motors used by a commuter railway, and investigated
preventive replacement policies for these bearings. The railway
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Table I
OPTIMUM HYBRID POLICY FOR VARIOUS VALUES OF COST PARAMETERS, AND FAILURE MODEL PARAMETERS

company uses 2296 traction motors (typically 32 per train), and
over a period of study observed 39 bearing failures. These are
shown in a Weibull plot, Fig. 2.

A histogram of bearing failure times is shown in Fig. 3. It
is plausible that these failures are early life failures of bearings
that arise from a mixed population; that is, we suppose that we
are observing failures of the weak components only here. Fur-
thermore, inspections and replacement may account for the re-
duced number of failures at ages 1, 2, 3, and 4, so that the mix-
ture parameter is somewhat more than 39/2296. Plausible values
may be in the range to . We will assume a
mixture with two sub-populations of bearings; the weak com-
ponents with a Weibull distribution of time to defect (time in
good state) with characteristic life (years), and shape
parameter ; and the strong components with a Weibull
distribution of time to defect (time in good state) with character-
istic life , and shape parameter . Note that the pa-
rameters of the distribution of defect arrival time for the strong
components are not based on the data here. The motors were pre-
ventively replaced at 7 years (this was the maintenance policy
of the railway); therefore, we would expect to see only very few
failures of long-lived (strong) components. An exponential dis-
tribution was arbitrarily chosen for the delay times, with mean

(year). As the time to failure is the sum of the time to
defective state plus the delay time, the actual failure time dis-
tribution (for weak components) will have a characteristic life
of approximately 3 years. The variance of time to failure will
of course be larger than that of the underlying time to defect
arrival.

A hybrid maintenance policy for such a heterogeneous pop-
ulation of bearings is now investigated. For the purpose of this
investigation, we take the preventive replacement cost as our
unit of cost , and consider a range of inspection and
failure replacement costs. The results are shown in Table I. In

this table, the long run cost per unit time of the optimum policy
is . The time unit is taken to be one year, although this is ar-
bitrary. Minimum costs for the age based policy, ,
and pure inspection policy, , are also shown
along with the corresponding optimum values of the decision
variables, , and , respectively.

As can be observed in Table I, when the sub-populations
are well separated (large or small ), a hybrid policy with

is optimal. Two phases are then apparent: the early
inspection phase, and the later non-inspection wear-out phase.
As becomes smaller, and the sub-populations are less dis-
tinct, then , and it is optimum to inspect over the
entire life. When the cost of inspection is varied, the optimum
policy behaves as expected: lower inspection costs lead to more
inspections. Also, a longer mean delay time leads to more in-
spections, and vice versa, implying that inspections are only ef-
fective if there is sufficient delay between defect arrival, and
consequent failure. The long run cost per unit time is presented
in Fig. 4 (as a function of the age at preventive replacement),
and Fig. 5 (as a function of the time between inspections during
the inspection phase). Cost savings with respect to simpler poli-
cies can be observed in Table I. The saving with respect to pure
age-based replacement
is between 5%, and 10%. The saving with respect to pure in-
spection is larger.

Figs. 6–9 consider the MTBOF. Fig. 6 indicates that inspec-
tions should be spread over the life of the weak items; moderate
values of the time between inspections are the most effective,
and also, from Fig. 5, most cost effective. In Fig. 7, we observe
that the MTBOF is higher for moderate values of the age at pre-
ventive replacement than for larger values of . This result is
true because, for , if we preventively replace at moderate

, then the new replacement component may be a weak item
which can lead to early failure. Consequently, it would be better
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Fig. 4. Long run cost per unit time, � ����� ��, as a function of age at
preventive replacement, � , for � � � � � �, � � � �� � �,

� � � � � �, � � 	 � �, � � 
 � �, � � � �������.
� � � � ���. Parameter values: � � ���, � � �, � � �, � �
��
 � � 
, 	 � �
�, � � �, � � ��, � � ���
.

Fig. 5. Long run cost per unit time, � ����� ��, as a function of inspec-
tion interval, �, for � � � � � �, � � � �� � �, � �

�� � �,� � 	 � �,� � 
 � �,� � � �������.� held
at the optimum value specific for each value of � (for � � 
, � � ����	).
Parameter values: � � ���, � � �, � � �, � � ��
 � � 
, 	 � �
�,
� � �, � � ��, � � ���
.

Fig. 6. For hybrid policy, MTBOF, �, against inspection interval, �, for � �
� �������,� � 	 � �, � � 
 � �,. � � ����	. Parameter
values: � � ���, � � �, � � �, � � ��
 � � 
, � � ���, 	 � �
�,
� � �,� � ��,� � ���
. MTBOF calculated using simulation of 10,240
cycles.

(lower cost, and higher reliability) to continue operating with
the existing component, because, given that the existing com-
ponent has survived to a moderate age, it is likely to be a strong

Fig. 7. For hybrid policy, MTBOF, �, against age at preventive replacement,
� , for � � � � � �,� � � �� � �,� � � �������,

� � 	 � �, � � 
 � �. � � ����. Parameter values: � � ���,
� � �, � � �, � � ��
 � � 
, 	 � �
�, � � �, � � ��,
� � ���
. MTBOF calculated using simulation of 10,240 cycles.

Fig. 8. For the hybrid policy, MTBOF, �, against age at preventive replace-
ment, � (with � � � � ����, � � � � 
) for various values of the
mixing parameter, �, in the time to defect arrival distribution: � � � � �;

� � ���
 � �; � � ��� �������. Parameter values: � � �, � � �,
� � ��
 � � 
, 	 � �
�, � � �, � � ��, � � ���
. MTBOF
calculated using the approximation (6), � � ��� �
.

Fig. 9. Histogram of the distribution of time between operational failures for
� � ����	, � � ���, � � 
. Parameter values: � � ���, � � �,
� � �, � � ��
 � � 
, 	 � �
�, � � �, � � ��, � � ���
.

item with large mean time to failure. In short, for the mixed de-
fect arrival (and hence failure) distribution, the failure hazard at
moderate ( here) is larger than the failure hazard for larger

( here). The size of this effect increases with the value
of , the mixing parameter (Fig. 8). A simple age based replace-
ment policy will also display this behavior for a mixed failure
distribution. Fig. 9 shows the distribution of times between oper-
ational failure for one simulation. Fig. 10 compares the MTBOF
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Fig. 10. For hybrid policy, MTBOF, �, against age at preventive replace-
ment, � (with � � �����, � � �) for two cases: MTBOF calculated
by simulation 	 
; MTBOF calculated using the approximation (6),

� � �	� 
�� 	 
. Parameter values: � � ���, � � �, � � ��,
	 � �� 	 � �, 
 � ��, � � �, � � ��, � � ����.

calculated using simulation, and that calculated using the expo-
nential approximation. This latter figure would appear to con-
firm that the approximation for the MTBOF (6) is a good one.

VI. SOME OBSERVATIONS

A policy for which has a decreasing fre-
quency of inspection; as the component ages, it is optimal to
inspect less often. This decreasing inspection frequency may
mirror maintenance practice. Other policies with decreasing fre-
quency of inspection may be of interest (e.g. ), par-
ticularly if components arise from a mixture of more than two
sub-populations.

Block type policies could be investigated, but the analytical
calculation of the long-run cost per unit time will be difficult.
Also, hybrid block-type policies for multi-component systems
could be considered. If a series system comprises components
from a heterogeneous population, then, with shared set-up costs
for inspection and preventive replacement, a hybrid block policy
may be cheaper than individual (or collective) hybrid age-based
policies for the components. It will be interesting to investigate
circumstances when this occurs.

A hybrid block type policy for a single component would
be to replace on failure, and preventively replace at times ,

; inspect at times , ,
; and replace defective components preventively at inspec-

tion. We might also consider a policy in which preventive re-
placements are time-based (block-type), but inspections are age-
based, inspecting at ages , , provided

, where is the time of the th inspec-
tion. In this policy, when a defective component is replaced at
inspection, the inspections are rescheduled from the time of (de-
fective) preventive replacement, but the subsequent preventive
replacement (at time ) is not rescheduled. In practice, when
there are multiple components in a system, the rescheduling of
the inspections following preventive replacement of a defective
component would not cause inspections to become unsynchro-
nized; instead it would imply that some components would con-
tinue to be inspected for longer. However, one could imagine
a policy in which, if 1 component is preventively replaced at
inspection, then the inspections of all components would be
rescheduled. Such a policy could also be investigated.

VII. CONCLUSION

A hybrid maintenance policy for a simple system with a
component from a heterogeneous population is proposed in this
paper. A limited number of maintenance models for this kind of
system have been developed to date. In particular, we consider
components that arise from a mixture of 2 sub-populations. The
first sub-population represents weak, low quality components
(or possibly poor installation of components); while the second
represents stronger, more long-lived components. The concept
of delay-time in inspection maintenance is combined with that of
age-based replacement in preventive maintenance into a hybrid
policy that mitigates early failures of weak components, and
extends the age at preventive replacement of strong components.
The behavior of the policy is investigated for various values of the
parameters of the underlying mixture, and costs of inspection,
preventive replacement, and failure replacement. This behavior
is as might be anticipated. Where the cost of failure is large, or
the proportion of weak components in the mixed population is
large, regular inspection in early life is recommended. Modest
cost savings over a naïve age-based replacement model that
assumes a single -population of components can be achieved.

While cost savings may be modest, improvement in the reli-
ability, as measured by the time between operational failures,
can be significant. Furthermore, because of the nature of the
failure hazard of the mixed population of components, broadly
speaking there exist values of the decision variables at which, si-
multaneously, the cost criterion is minimized, and the reliability
criterion is maximized.

If we relax the assumption regarding instantaneous replace-
ment, then an availability criterion could be used with or in place
of cost and reliability. It would be interesting to consider this in
the context of a safety critical preparedness or protection system
[21] in a future paper.

The policy mirrors maintenance practice in which preventive
maintenance, using this term in the general sense of failure pre-
vention, is more prudently applied to newer than to older sys-
tems. The similarity of the model to combined burn-in-replace-
ment policies is discussed. The hybrid maintenance policy can
be generalized and extended. Hybrid inspection and block re-
placement policies may be developed in a similar manner, al-
though the calculation of the long-run cost per unit time will be
more difficult. Extensions to repairable systems could also be
considered.

ACKNOWLEDGMENT

The authors are grateful to the anonymous referees whose
comments led to improvements in the paper.

REFERENCES

[1] H. Ascher and H. Feingold, Repairable Systems Reliability. New
York: Marcel Dekker, 1984.

[2] M. S. Finkelstein and V. Esaulova, “Why the mixture failure rate de-
creases,” Reliability Engineering and System Safety, vol. 71, no. 2, pp.
173–177, 2001.

[3] A. H. Christer, “Developments in delay time analysis for modeling
plant maintenance,” Journal of the Operational Research Society, vol.
50, no. 1, pp. 1120–1137, 1999.

[4] R. E. Barlow and F. Proschan, Mathematical Theory of Reliability.
New York: Wiley, 1965.

[5] J. H. Cha, S. Lee, and J. Mi, “Bounding the optimal burn-in time for
a system with two types of failure,” Naval Research Logistics, vol. 51,
no. 8, pp. 1090–1101, 2004.



648 IEEE TRANSACTIONS ON RELIABILITY, VOL. 58, NO. 4, DECEMBER 2009

[6] A. Drapella and S. Kosznik, “A short communication combining pre-
ventive replacement and burn-in procedures,” Quality and Reliability
Engineering International, vol. 18, no. 5, pp. 423–427, 2002.

[7] R. Jiang and A. K. S. Jardine, “An optimal burn-in preventive-replace-
ment model associated with a mixture distribution,” Quality and Reli-
ability Engineering International, vol. 23, no. 1, pp. 83–93, 2007.

[8] D. N. P. Murthy and M. R. Maxwell, “Optimal age replacement policies
for items from a mixture,” IEEE Trans. Reliability, vol. 30, no. 2, pp.
169–170, 1981.

[9] B. S. Dhillon, “A hazard rate model,” IEEE Trans. Reliability, vol. 28,
no. 1, pp. 150–154, 1979.

[10] R. E. Glaser, “Bathtub and related failure rate characterizations,”
Journal of the American Statistical Association, vol. 75, no. 7, pp.
667–672, 1980.

[11] P. L. Gupta and R. C. Gupta, “Ageing characteristics of the Weibull
mixtures,” Probability in the Engineering and Informational Sciences,
vol. 10, no. 4, pp. 591–600, 1996.

[12] R. Jiang and D. N. P. Murthy, “Mixtures of Weibull distribu-
tions—parametric characterization of failure rate function,” Applied
Stochastic Models and Data Analysis, vol. 14, no. 1, pp. 47–65, 1998.

[13] M. S. Finkelstein and V. Esaulova, “On an inverse problem in mixture
failure rates modeling,” Applied Stochastic Models in Business and In-
dustry, vol. 17, no. 2, pp. 221–229, 2001.

[14] H. W. Block, T. H. Savits, and E. T. Wondmagegnehu, “Mixtures of
distributions with increasing linear failure rate,” Journal of Applied
Probability, vol. 40, no. 2, pp. 485–504, 2003.

[15] R. Jiang and D. N. P. Murthy, “Modeling failure-data by mixture of 2
Weibull distributions: A graphical approach,” IEEE Trans. Reliability,
vol. 44, no. 3, pp. 477–488, 1995.

[16] A. H. Christer and W. Wang, “A delay-time based maintenance model
for a multi-component system,” IMA Journal of Management Mathe-
matics, vol. 6, no. 2, pp. 205–222, 1995.

[17] W. Wang and A. H. Christer, “Solution algorithms for a nonhomoge-
neous multi-component inspection model,” Computers & Operations
Research, vol. 30, no. 1, pp. 19–34, 2003.

[18] E. E. Lewis, Introduction to Reliability Engineering. New York:
Wiley, 1987.

[19] P. A. Scarf, R. Dwight, and A. Al-Musrati, “On reliability criteria and
the implied cost of failure for a maintained component,” Reliability
Engineering and System Safety, vol. 89, no. 2, pp. 199–207, 2005.

[20] A. T. Almeida, “Multicriteria modelling of repair contract based on
utility and ELECTRE I method with dependability and service quality
criteria,” Annals of Operations Research, vol. 138, no. 1, pp. 113–126,
2005.

[21] J. K. Vaurio, “Unavailability analysis of periodically tested standby
components,” IEEE Trans. Reliability, vol. 44, no. 3, pp. 512–517,
1995.

Philip A. Scarf is a professor of Applied Statistics at the University of Salford.
He obtained his Ph.D. in 1989 from the University of Manchester for work on
the statistical modeling of corrosion. He has published more than 20 articles
on the modeling of capital replacement, reliability, and maintenance in Reli-
ability Engineering and System Safety, Naval Research Logistics, Journal of
the Operational Research Society, European Journal of Operational Research,
IMA Journal of Management Mathematics, International Transactions in Op-
erations Research, and others. He also has research interests in extreme values,
crack growth, and applications of operational research and statistics in sports.
Professor Scarf is a Fellow of the Royal Statistical Society of the UK, and a
Fellow of The Institute of Mathematics and Its Applications (IMA) of the UK.
He serves as Editor of the IMA Journal of Management Mathematics.

Cristiano A. V. Cavalcante has an undergraduate degree in Mechanical Engi-
neering; and MSc, and Ph.D in Production Engineering from the Universidade
Federal de Pernambuco (UFPE), Recife, Brazil. Currently, he is a Lecturer in the
Department of Production Engineering at UFPE, and a member of the Research
Group on Information and Decision Systems (GPSID). His research interests
include optimal maintenance, maintenance policies, and multi-criteria decision
support.

Richard A. Dwight is a senior lecturer in Engineering at the University of Wol-
longong, NSW, Australia. He obtained his Ph.D. in 1999 from the University
of Wollongong for work in maintenance system performance measurement. He
has published papers on maintenance decision support systems, system safety,
and railway engineering in Reliability Engineering and System Safety, Journal
of the Operational Research Society, and Oil and Gas Processing Review. He
is President of the International Foundation for Research in Maintenance, and a
Member of Engineers Australia.

Peter Gordon has a Bachelor of Mechanical Engineering degree from the Uni-
versity of Auckland. He has over 30 years experience in management roles in
maintenance and engineering in the Australian Steel Industry. He is currently
assisting in the delivery of the Engineering Asset Management program at the
University of Wollongong.


	An age-based inspection and replacement policy for heterogeneous components
	Recommended Citation

	untitled

