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Abstract. This study focuses on trying to understand why the range
of experience with respect to HIV infection is so diverse, especially as
regards to the latency period. The challenge is to determine what as-
sumptions can be made about the nature of the experience of antigenic
invasion and diversity that can be modelled, tested and argued plau-
sibly. To investigate this, an agent-based approach is used to extract
high-level behaviour which cannot be described analytically from the set
of interaction rules at the cellular level. A prototype model encompasses
local variation in baseline properties contributing to the individual dis-
ease experience and is included in a network which mimics the chain
of lymphatic nodes. Dealing with massively multi-agent systems requires
major computational efforts. However, parallelisation methods are a nat-
ural consequence and advantage of the multi-agent approach. These are
implemented using the MPI library.
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1 Introduction

The objective of this study is to understand why the range of experience with
respect to HIV infection is so diverse. In particular, the work aims to address
questions relating to variation in length in individual latency period. This may
be very long (for relatively low success of antipathetic mutation) in one individ-
ual, compared to another with much higher mutation levels.
The indications are that the observed variation lies in the priming and initial
level of fitness of the immune response of the individual, together with the vari-
ous factors influencing this [1]. If such “priming patterns” can be recognised, or
even predicted, then in the long term we may have a way of “typing” an individ-
ual and targeting intervention appropriately. Unfortunately, understanding how
the immune system is primed by experience of antigenic invasion and diversity
is non-trivial [1]. The challenge is to determine what assumptions can be made
about the nature of the experience, can be modelled, tested against clinical data
and hence argued plausibly. The aim is to understand how the cell interactions
lead to the observed endpoints.
The immune response is dynamic and includes growth and replenishment of cells
and in-built adaptability, through mutation of its defences to meet new threats.



It also includes aspects of cell mobility, which may be captured, by means of
defining movement and affinity of cell-types in a defined spatial framework. In
particular, this will enable study of variation in viral load and the way in which
host response may lead to degradation of protection.
To investigate these questions, an “agent-based” approach is chosen, as a means
of inferring high-level behaviour from a small set of interaction rules at the cel-
lular level. Such behaviour cannot be extracted analytically from the set of rules
[1], but emerges as a result of stochastic events, which play an important part
in the immune response [2].
The initial model consists of functional units, called agents, with designated
properties which mimic the operation of a single lymph node. This test-case pro-
totype, however, includes all known interactions contributing to cell-mediated
immunity and the local evolution of the virions. The antibody-mediated response
has not been considered initially, because the cell-mediated arm plays a domi-
nant role in repelling attack. The agents implemented represent Th (helper, or
CD4) and Tc (cytotoxic, or CD8) lymphocytes, Antigen Presenting Cells, and
virions. The computational structure of the numerical experiments is based on
inheritance from a common C++ class designed to deal with features such as the
mobility and then each class includes specific attributes and methods to imple-
ment specific properties of each cell type. The lymph node itself is modelled as
a matrix, in which each element represents the physical neighbourhood of a cell
type, (in terms of its agent neighbours). The frequency with which an infected
cell will produce a new virion is used as the simulation time-step. At each time
step, agents can move from one matrix element to another, and interact with
the other agents present in their physical neighbourhood (i.e. with cell types in
the same neighbourhood).
Current development is focused on increasing the number of lymph nodes, which
involves millions of agents, requiring major computational effort and parallelisa-
tion methods. These are, however, a natural consequence and advantage of the
multi-agent approach [3]. The aim is to extend the size and complexity of the
systems modelled to something approaching realism.

2 A complex biological mechanism

2.1 The immune response against a viral attack

Immunity can be defined as all mechanisms which allow the body recognition of
that which belongs to its system and consequently tolerate it, and recognise what
does not and fight to eradicate it. The immune system is complex and involves
various types of cells. When a foreign element is recognised, it can be dealt with
in two different ways: the immune response can be non-specific or specific. A
non-specific response is based upon the fact that the foreign element does not
show, at its surface, the antigens characterising the cells belonging to the body.
This is the response that has to be diminished when transplants are carried
out. In contrast, the specific response is based on the accurate recognition of



foreign antigens. This response can be cell-mediated or antibody-mediated. The
second one, also known as humoral response, is carried out by B lymphocytes
and mainly targeted at bacterial attacks. We present here a few details about
the cell-mediated response, targeted more specifically at viral attacks and taking
place in lymphatic nodes. More details about the immune system can be found
in specialised journals and immunology courses, such as [4].
The effector cell, in the cell-mediated response, is the Tc lymphocyte. However,
it cannot act on its own, needing a chain reaction to achieve activation The first
step is carried out by Antigen Presenting Cells which recognise foreign biological
entities and start presenting these antigens at their surface. It will then encounter
Th lymphocytes. If a Th cell encounters an APC presenting an antigen, which it
has been specifically designed to recognise, it activates itself. The Th cells main
function is then to coordinate the immune response by activating specific Tc
cells.

2.2 The HIV expansion strategy

HIV virions use the Th cells described above as hosts to multiply themselves, as
detailed in [5]. The gp120 glycoprotein of the virion envelope first attaches itself
to the CD4 receptor, characteristic of these immune cells. Then the virion fuses
with the lymphocyte using gp41 and the viral RNA is freed into the cell. The
viral reverse transcriptase copies the RNA into DNA and integrates it into the
cellular DNA. To be successful, this integration has to take place in activated
cells. More details about this process can be found in [6]. An important aspect is
the high rate of mutation: there is on average a transcription error every 10.000
nucleotides. Since the HIV genome contains about 10.000 nucleotides, this means
there is on average a single difference between two “brother virions”. All these
mutants of course have various fates. On the one hand, most of them will result,
for instance, in the suppression of an enzyme, and will be unsuccessful. On the
other hand, a mutation can be successful and, for instance, modify the envelope
glycoprotein, thus allowing the new virion to temporarily escape from the im-
mune system.
The macroscopic evolution of the disease is divided into three phases. The first
one corresponds to the typical immune response against a viral attack. The pro-
duction of lymphocytes specific to the viral strains is launched, and within a few
weeks, all the original strains are eradicated. The mutation rate here becomes
critical. It has allowed the appearance of new strains, which have not been de-
tected by the organism yet, and can therefore develop freely. As soon as a strain
becomes too intrusive, its detection probability increases and it is eradicated.
During this second phase, there are no symptoms. This is known as the latency
period, and can last up to ten years. The immune system is heavily loaded, and
the destruction of each strain also implies the destruction of the infected cell.
A time comes when the immune system cannot cope with the ever increasing
number of strains or remain viable, given a strong decrease of the number of the
Th cells. During this last phase, known as AIDS (acquired immunodeficiency



syndrome), the whole immune system is diminished and opportunistic diseases
start appearing, leading to the death of the patient.

3 Simple rules to control the agents

3.1 The agent-based approach

There is no unique definition of what an agent is. However, Wooldridge and
Jennings proposed in [7] a definition which is widely accepted and specifies char-
acteristics that an agent must have. An agent has to be autonomous: it can act
without any intervention and has some control over its actions and its internal
state. It has a social behaviour: it can interact with other agents thanks to a
specific language. It can also react: the agent has the ability to scan part of
its environment and change its behaviour to take advantage of it. The agent is
proactive: it not only reacts to its environment but also acts and takes initiatives
so as to satisfy goals. Building on this definition an agent-based model is a model
in which the key abstraction elements are agents.
Obviously, each agent has only a limited knowledge of the world in which it
evolves, and communication between agents is therefore an important aspect of
this approach. This communication is sometimes referred to as linguistic actions,
as opposed to non-linguistic actions which are modifications of the environment.
Interaction between agents is not limited to communication: they have to share
their environment. This implies that agents’ actions have to be coordinated. Of
course coordination does not mean cooperation: a good competitor maximizes
his advantage by coordinating his actions according to the others’ decisions.
It also does not imply reciprocity of action: a car driver can go past another
and coordinate this safely without the second driver knowing it. The key factor
when choosing a coordination strategy is the size of the agent population. If every
agent can interact with every other one, the number of interaction pairs increases
quadratically with the population size. If interaction can occur between several
agents instead of pairs, the coordination overhead increases exponentially and
can easily exceed the computing facilities [8]. Developing a coordination strat-
egy is therefore both essential and difficult. In many cases, managing to avoid
conflicts and blocks is itself an important achievement. This gives us the oppor-
tunity to put the emphasis on the main drawback of this approach: it is highly
resource-consuming. However, the approach also provides a solution as it is often
combined with parallel methods. We develop this idea later on (section 4.2).
This approach being generic, it has been used in various fields. It has for in-
stance been used for aerial traffic planning [9], vehicle monitoring [10] and even
to manage chirurgical intensive care units [11]. It has also been extensively used
in Natural Sciences, as it provides a very intuitive way to model systems: biolog-
ical entities are implemented as agents, and interactions between them are dealt
with through linguistic and non-linguistic actions among the agent population.
In particular, the immune system itself is a discrete system in which the individ-
ual behaviour of every cell adds to create to high-level behaviour of the whole
system. A simple set of local rules can therefore provide an accurate model of



this complex system. This is the approach we have chosen to take.
As we have seen earlier, most of the immune response against HIV is taking
place in the lymphatic nodes. The world we model need only be a network of
such nodes. The communication inside the network will be discussed later (sec-
tion 4.1). Each node is implemented as a matrix. Each element of the matrix
correspond to a physical neighbourhood. All the interactions between the agents
therefore happen inside this local element and there is no need to consider sur-
rounding matrix elements as would be done if using Moore or Von Neumann
neighbourhoods [12].

3.2 The implemented features

There are several platforms supporting generic agent-based environments, such
as Swarm [REF]. However, due to the high number of agents we plan to simulate,
we think it is more efficient to have an approach fully dedicated to this particular
environment, and therefore optimized. Because of the very detailled knowledge
of the cell interactions, we are using a bottom-up approach: we first specify in
detail the individual parts of the system (here, the agents), we then link them
together to form layer componants (here, the lymphatic node), which are in turn
linked until a complete system is formed (here, the lymphatic network).
As noted earlier, this study focuses on the cell-mediated response. Thus, we first
need to implement three types of cells, corresponding in the code to three types
of agents: Th and Tc lymphocytes, and Antigen Presenting Cells (APC). Of
course, we also need a fourth type of agent to model the virions. Each type is
implemented into the code using a specific C++ class.
Interestingly, even if all four types of cells have totally different roles, they have
a common feature that we want to take into account, i.e. their mobility. This
is implemented by another class. This class is then inherited by the four types
described above. It also implements other basic properties such as the age of the
agents and allow us to have the four agent classes contain only specific features;
an advantage of object-oriented programming.
An agent coding a virion only has one specific attribute in the model, its viral
strain. In order to prevent the code from allocating too much memory for each
agent, the viral strain is only coded as an integer which links to the corresponding
strain in an array containing all the useful properties of the strain (e.g. lympho-
cytes which recognize it, immunogenicity, etc.). The agent has a short-term and
partial knowledge of its environment. It is partial in the sense that it is only
knows whether there are Th cells in its physical neighbourhood (i.e. the matrix
element). It is short-term in the sense that it has no memory of the evolution of
the number of lymphocytes. This knowledge is the only piece of information it
needs, since its unique objective is to infect a Th cell. Therefore, the typical be-
haviour of a virion in the model can be given as the following triptych, repeated
until a lymphocyte is infected: the agent moves, scans its environment looking
for a Th cell, and if possible infects the immune cell.
A Th agent has three specific attributes in the model: an integer coding its sur-
face antigens, another integer coding its “activation state” and a third integer



coding its “infection state”. Once again, it has no memory of its environment
and the only part it knows of it is reduced to the presence, or not, of Tc agents.
If the agent is neither activated nor infected, both integers coding the states are
set to zero, and the agent’s objective is only to be ready to answer an attack.
There is therefore no particular action, apart from moving. The objective of an
activated agent is to activate Tc cells. Its “activation state” is set to the value
coding the viral strains which activated it, so that it can communicate on the
threat. If the agent is infected, it produces new virions belonging to the strain
coded in its “infected state”, or to a new one if there is a mutation.
A Tc agent has four specific attributes: its surface antigens, its “activation state”,
its “expansion state” and its “memory state”, all implemented as integers. The
Tc agents also have a short-term and partial view of their environment: each
looks only for agents having the antigens corresponding to the strain which ac-
tivated it, and destroys them. When activated, an agent multiplies itself during
an expansion phase, corresponding to a non-zero “expansion state”. After an
immune response, a small amount of the Tc agents will become memory cells:
their “memory state” will keep track of the strain they fought, the reactivation
will be easier, and if reactivated, the expansion phase will be more productive.
An APC agent only has one specific attribute, its “presenting state”, coded as
an integer. As long as the agent is not presenting any antigen at its surface, the
integer stays at zero, and the agent’s behaviour is focused on moving and look-
ing for “foreign” entities in its physical neighbourhood, in order to get antigens
to present. Then, the “presenting state” codes the strain corresponding to the
antigens, and the agents starts looking for Th agents in order to activate them,
if they are geared recognise this particular antigen.
Another aspect of the implementation chosen is the allocation of the agents.
Memory allocations are among the slowest operations on a computer, and here,
we have a model in which thousands of agents are created and destroyed every
iteration. Dynamic allocations would make the program too slow. The approach
we have chosen is to have, in each matrix element, a static allocation of the
maximum number of agents we want to implement. Then, an agent moving from
an element to another is coded as the transfer of its attributes from one static
memory slot to another. Every agent being small and with few attributes, this
gives satisfying results.

3.3 How to deal with stochastic events?

In this model, most methods and functions have to include random number gen-
eration. This is due to the fact that many aspects of the real-life system involve
stochastic events. More details can be found in [2], but here are a few examples.
First, an aspect we have to deal with is the process by which new lymphocytes
are created. A lymphocyte can only recognize a specific set of antigens so, to pro-
tect itself against any attack, the body has to generate thousands of “variations”
between lymphocytes. This has to be implemented using random numbers. Like-
wise, we noted that one of the most decisive features of the virions is their high



mutation rate, and this implies another use of random numbers. Finally, there
is no sensible way to deal with mobility unless we include stochasticity.
Stochastic events are essential to this work and a reliable random number gen-
erator is needed. A full-scale model will involve millions of agents in very long
simulations. Therefore, the generator also has to be very efficient. As parallel
aspects are involved, it would also be a plus for the generator to include such
features. There are many generators available, and good ones can also be de-
signed explicitely (see e.g. [13]). However, due to our model requirements, what
is needed here is a top-quality parallel generator, and we chose to use the Scalable
Parallel Random Number Generators library (SPRNG) [14]. This library incor-
porates recent, state-of-the-art, developments in the mathematics and computer
science of parallel pseudorandom number generation. It an efficient library with
an existing, active, user base, ensuring high standards. It allows the streams to
be also absolutely reproduced, for computational verification, independent of the
number of processors used in the computation and of the loading produced by
sharing of the parallel computer. Using it, we can be confident we will produce
statistically significant results at a very low computing cost.

4 Interactions between the lymphatic nodes

4.1 Sharing knowledge and transferring agents

The immune system is organised so that every lymphatic node is a small defence
unit in which the immune response is taking place. There is no need for the
response to take place in every node, which is why we built our model as a
network of independent matrices (putting the emphasis on the local model of the
node). The only physical exchange between lymphatic nodes happens through
the recirculation and the mobility of cells which go from one node to another.
Each node in the model therefore needs an entry point and an exit point. If,
when moving inside the node, an agent reaches the exit point, it is removed
from the node and put into a transfer list. The list is dealt with at the end of
the iteration. In the meantime, other agents move, interactions take place, as
time passes. This accounts for the time it takes the agent in real-life to commute
between two nodes. The way in which agents are transferred between the nodes
mimics the transfer between matrix elements: we consider only attributes, rather
than the agent itself. Thus, an entry in the transfer list contains the type of the
agent, its attributes, and its destination. At the end of the iteration, all lists are
put together and the moving agents are transferred to the entry point of their
destination node.
The other aspect of the communication between our nodes is inherent to our
implementation. Since we decided not to put all the strain properties into each
agent, we need a way to code them somewhere and make them available to all
the agents, wherever they are in the model. These are important properties,
and must not be neglected. For instance we need to know, for each strain, which
lymphocytes will recognise it for sure and which lymphocytes might recognise it.
One characteristic is that when a lymphocyte from the second category recognise



the strain, it moves from the second into the first. This is critical to the realism
of the model, since it allows us to introduce some adaptability and emergent
behaviour. One answer could have been to create a linked list containing the
strains active in the current simulation. The obvious advantage is to limit the
size allocated to the strains to what is actually needed. However, it has one major
drawback which makes it pointless in our case, namely that the high mutation
rate means a large number of strains, increasing as the simulation continues.
The bigger the list, the longer it will take to get the properties for a particular
strain and since this list has to be accessed thousands of times in every iteration,
this process would slow the whole program down. We therefore decided to have
an array of strains. This array is large (i.e. tens of thousands of strains) and
represents potential strains for the simulation to be implemented. Considering
that a strain in the array can account for various strains in real life (if they differ
on properties we do not code explicitely), we are confident this should give us
enough diversity.

4.2 Parallelisation efforts

When the program is running at full scale, each node contains hundreds of thou-
sands of agents. In real life, a human body contains about a thousand lymphatic
nodes. Matching this value is a long-term objective and may not be achievable,
but even with fifty nodes, we would have to deal with millions of agents. The
time-step of the program is about fifty seconds, so about six million iterations
are needed for a 10-year simulation. Running such a program on a single com-
puter would take months, and not even have enough memory might be available
to initialize all the matrices. If we also consider the fact that we have to run
several simulations to statistically assess the role of each parameter such as the
mutation rate, a parallel approach makes even more sense.
The approach we develop here is to mimic the immune system, in the sense that
each lymphatic node will be computed by a different computer (also called node)
on a cluster. As the lymphatic nodes are mainly independent from each other,
this is the best way to take advantage of the parallel option. Moreover, the local
model is already known to run on a single computer so approximate expecta-
tions on performances are known also. This type of spatial parallelisation has
been studied in [15] for Monte-Carlo simulations. The main disadvantage in that
study is the communication overload. Here, most of the communication taking
place on the cluster is the transfer of agents from one node to another. Using the
list process described above, this is kept to a minimum. This parallel approach
is implemented using the Message-Passing Interface (MPI) [16, 17]. It is under
validation on a cluster composed of a Dell PowerEdge 1750 acting as the master
node and sixteen of these machines acting as slaves. More important clusters
will also be used for full-scale runs.
The most difficult part here is to deal with the updates of the array containing
the strain. On the one hand, if we keep only one array (on the main node of the
cluster) it would lead to excessive communication: each agent would have to ask
for the viral strain properties at each iteration. On the other hand, having an



array linked to every node would impose a process to make sure that at every
instant all arrays contain the same information, for all the strains. Using MPI
advanced features, this can be done through “collective communication”.
This approach provides an intuitive way to combine the parallel computing fea-
tures with a process which mimics the immune system. The transfer of the agents
is currently being optimized. This will allow us to then run full-scale simulations.
Our objective is to first reproduce the three-phase evolution of the disease and
then alter the parameters (mobility, viral load) to study how they affect the
latency period length.

5 Conclusion

The objective of this study is to understand why the range of experience with
respect to HIV infection is so diverse, addressing in particular questions relating
to variation in length in individual latency period. To investigate these questions,
an “agent-based” approach is chosen, as a means of inferring high-level behaviour
from a small set of interaction rules at the cellular level as well as including
stochastic events.
The model developed mimic the immune system, as it is organised as a network
of matrices, each of them corresponding to a lymphatic node. Matrix elements
can host several agents, of four different types, accounting for virions, Th and
Tc lymphocytes, and Antigen Presenting Cells. Thus, it is possible to model the
HIV spreading strategy and the cell-mediated immune response.
Because the system we study is so complex, millions of agents are needed, and
it is not possible to run the model on a single computer. Therefore, parallel
methods are implemented. Using MPI, every lymphatic node is allocated to a
different computer on a cluster, and “collective communication” is used to share
knowledge common to all nodes.
This parallel implementation is currently being tested and the first results should
be available in the coming months.
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