
53 

An Agent-based Approach to Service 

Management - Towards Service 

Independent Network Architecture 

Gzsli Hjalmtfsson 

AT&T Research 

600 Mountain Avenue, Murray Hill, NJ 07974, (908)582-5495, 

gisli@ research.att.com 

A. Jain 

AT&T Laboratories 

101 Crawfords Comer Rd, Holmdel, NJ 07733-3030, 

(908)949-5856, akj@hostare.att.com 

Abstract 

With deregulation of the telecom industry the intense competition for customers is 

driving service providers to offer new and sophisticated services at an increasing rate. 

Simultaneously, the Internet is attracting vendor creativity and putting a fatal pressure 

on the traditional telecom pricing structure. Whereas the telecom industry still leads in 

service quality, there is growing need for a cost effective architecture for network and 

service management comparable in responsiveness and flexibility to the Internet, yet 

capable of maintaining high service quality for increasingly complex services. 

Although autonomous agents have been proposed for networks and distributed 

systems, they have largely been considered as reasoning entities exhibiting some form 

of intelligent behavior. Viewed more as autonomous objects, however, agents provide 

a powerful abstractions even when the agents task is more mundane in nature. In 

particular, the ability to move from one location to another goes beyond the strong 

level of modularity provided by object orientation, by disassociating each autonomous 

agent from a particular location or environment 

In this paper we propose a new agent-based architecture for service management and 

provisioning. We describe an agent-based service environment and argue how such an 

environment supports rapid service creation and enables transparent services across 

authority domains. 

Keywords 

Service management, agents, active networking, network architecture, signaling 

A. A. Lazar et al. (eds.), Integrated Network Management V

© Springer Science+Business Media Dordrecht 1997



716 Part Six Intelligent Agents 

1 MOTIVATION 

As more players rush to become providers of communication services, the intense 

competition for customers is driving service providers to offer increasingly 

sophisticated services at accelerating rate. Although partially caused by deregulation of 

the telecom industry, the explosive growth of the Internet is fundamentally changing 

the landscape of communication, creating a new class of service providers that are 

putting fatal pressure on the traditional telecom pricing structure. The uniform service 

model of the Internet and localized control provides flexibility and responsiveness for 

service creation that is attracting vendor creativity. A key factor in this architecture is 

separation of responsibility and limited integration of service semantics into the 

underlying network. The network is responsible for delivering packets, the end systems 

are responsible for providing semantics to the packets delivered. 

In contrast, the telecom infrastructure is a tightly knit web of hardware and software, 

where service logic is interwoven with more primitive capabilities at all levels of the 

network. For example, the most successful enhanced service in telephony, the 1-800 

service, has connotation at all levels of abstraction. At the lowest level it represents 

indirect addressing, whereas at service level it means name resolution, load balancing 

and time-of-day sensitive routing. At the highest level it implies reverse charging. In 

addition to the blurring of concepts, the implementation is even more tightly coupled, 

with network element recording sensitive to reverse charging, and service level 

performing the indirect address resolutions. Whereas integration promotes 

performance, introducing new services becomes complex and costly, particularly since 

introducing a new service incurs cost for all existing services. Moreover, this rigid 

architecture causes long delays when introducing new services. Although some of this 

can be attributed to legacy, without decisive departure from current service 

architectures, newer transport networks will inherit this legacy (ATM Forum, 1995). 

However, when compared to the Internet, the telecom industry still holds a 

significant lead in service quality. For example, whereas Internet telephony has become 

available, its quality is comparable to what the phone network provided for 

international calls a decade or more ago. A similar difference holds for other 

multimedia applications. The availability of the phone network is unsurpassed 

(99.99999%). In essence, whereas the Internet excels in recovering from failures, the 

phone network hardly ever has them •. Moreover, although the Internet never 

completely blocks a connection, service is frequently too poor to be of value. In 

contrast the predictable high quality service of the phone network is offered with 

practically no call blocking. Whereas demands for high standards of quality are in part 

responsible for the tight integration, there is a growing need for cost effective 

architecture for service and network management comparable in responsiveness and 

flexibility to the Internet, yet capable of maintaining the high service quality of the 

telecom industry for increasingly complex services. 

• Although network elements may fail, there is a tremendous amount of hot sparing in the telecom world, 

thus hiding element failures from customers. Even at micro level every quantum of a conversation is 

treated reliably. 



An agent-based approach to service management 717 

We therefore seek an architecture that uniformly separates network management 

from service management, while offering customized support to dynamically created 

services. Uniformity and separation of responsibility provides flexibility and 

responsiveness. Since all services are treated the same, no new facilities are needed to 

add or enhance services. Separation of responsibility localizes the scope of 

modifications, physically, at abstract level, and in terms of component modification. 

Whereas a uniform service model simplifies service management, removing service 

semantics from network elements simplifies network management. Maintaining high 

service quality of increasingly complex services requires customized support, including 

the ability to intervene or control an ongoing conversation. Agents provide a powerful 

abstraction that provides customized support, while operating in a uniform 

environment. Separation of responsibility is achieved by the agent environment 

providing an opaque interface - the service semantics are encapsulated in the respective 

service agents; the network facilities support primitive and generic abstractions but are 

oblivious to services and their semantics. 

This paper is a paradigm paper centered on two themes. Uniformity and separation of 

responsibility bring flexibility and responsiveness. Customization and control provide 

service quality. Current network architectures trade one for the other but do not support 

both. We propose a new agent-based architecture for service management and 

provisioning, which is uniform and strongly separates service management from the 

low level network, yet provides sufficient customized control to maintain quality 

service. We show how this architecture, supports rapid service creation and real time 

provisioning while hiding the underlying network specifics. We furthermore argue how 

the agent-based architecture simplifies service management and enables transparent 

services across domains of authority. 

After discussing related work, we analyze in Section 3 how these themes translate 

into architectural requirements. In Section 4 we describe the agent-based architecture. 

A key component of this architecture is a uniform agent environment supported by a 

limited set of basic network primitives, that together act as an opaque interface 

separating the network proper from the service level. Services are implemented by 

autonomous service agents that encapsulate service semantics. We show how this 

architecture and the agent abstraction simplifies service management. Several 

examples of service agents are given: 

• elementary examples in Section 4.1, 

• an example of mobile services in Section 4.2.2, 

• an example of a call screening agent providing transparent service across 

domains in Section 4.2.3, and 

• a customer agent in Section 4.3 illustrating rapid service creation and its 

enhancement in Section 4.4. 

The paper concludes with a summary and discussion in Section 5. 

2 RELATEDWORK 

Although autonomous agents have been proposed for networks and distributed 

systems, they have largely been considered as reasoning entities exhibiting some form 



718 Part Six Intelligent Agents 

of intelligent behavior (Etzioni and Weld, 1994), (Genesereth and Ketchpel, 1994), 

(Lashkari, Metral, and Maes, 1994), (Magendanz, Rothermel, and Krause, 1996). 

However, viewed more as autonomous objects, agents provide a powerful abstraction 

for distributed computing and networking, even when the agents task is more mundane 

in nature. In particular, the ability to move from one location to another (Gray, 1996), 

(Gray, Kotz, Nog, Rus, and Cybenko, 1996), goes beyond the strong level of 

modularity provided by. object orientation, by disassociating each autonomous agent 

from a particular location or domain. 

The work herein is related to (Tennenhouse and W etherall, 1996), proposing the use 

of mobile agents to dynamically change network functionality. In comparison, our 

work is more aimed at complex services and service management and emphasizes 

separation of services from the underlying network. (Magendanz, Rothermel, and 

Krause, 1996), provides a taxonomy of intelligent agents for network management and 

discusses the potential of agent-based solutions for network and service management. 

Providing some of the functionality of agents, several projects are experimenting with 

Java (Arnold and Gosling, 1996) for service creation and management. In a related 

project we are working on mechanisms, implemented in a C++ library, to implement 

and support agents (Hja.J.mcysson and Gray, 1996). 

Other . management frameworks that share some of the objectives of our work, 

include CORBA (Spec., 1995), (Vinoski, 1993) and the TINA-C (Chapman, 1995), (de 

Ia Fuente, 1994), (Berndt and Minerva, 1995) effort. Whereas the CORBA effort 

focuses on enabling heterogeneous systems to inter-operate, by defining interfaces, 

services, and information exchange mechanisms, our proposal is an environment and a 

methodology to create and manage the services themselves. While the TINA 

consortium is addressing most of the issues we cover our approach differs 

substantially. In particular, this work draws on some of the work on open signaling 

(Lazar, 1994), (Lazar and Stadler, 1993), (Wu, 1996), (Hja.J.mtysson, 1997), on 

streamlining of signaling and management. 

3 MOVING SERVICE SEMANTICS OUT OF THE NETWORK 

In addition to the above arguments for removing service semantics from the network, 

the benefits of integration and service specific network optimizations are diminishing. 

The current phone network is engineered to support telephone conversations. 

Accordingly, engineering and controls make assumptions about call duration, 

bandwidth, and quality requirements to optimize interactive voice conversations. 

However, large proportion of the network capacity is currently used for other services, 

including data modems, facsimile and very short request-reply exchanges (e.g., credit 

card authorizations). Moreover, the telephone infrastructure transports most data 

traffic, including Internet traffic, on leased virtual private networks. Currently growing 

at much faster rate than telephony, the volume of these traffic classes already 

invalidates many of the phone-call-engineering assumptions. 

Furthermore, as resource capacity increases, radically changing assumptions about 

signaling bandwidth, database performance and processing capabilities, the need for 

tight integration is further reduced. Current signaling in the telecom world, conducted 



An agent-based approach to service management 719 

on a physically separate network, is static in topology and capacity is limiting both in 

terms of performance and flexibility. Furthermore large proportion of signaling is 

service related, thus representing service semantics within the network. Carrying 

service level signaling as an ordinary (guaranteed service) connection, strengthens the 

separation between the network and the service level, and enables service level 

signaling to scale up with transport capacity. Exploiting modem processing power and 

high speed networking, combined with algorithms to hide latency, out-of-network 

service management can perform competitively with existing signaling systems. 

A streamlined transport infrastructure, free of service semantics, with network 

signaling and control limited to element communication and primitive information 

exchange, amounts to a RISC like networking architecture. Each network component, 

and the network as a whole performs very basic and streamlined operations, accessed 

by higher levels through a very limited set of basic primitives (reduced instruction set). 

The service agents, playing the role of a smart compiler, translate service logic into 

series of primitive instructions. Such a network architecture is inherently flexible and 

promotes the use of commodity parts for processing and transmission, both of which 

steadily provide increased performance per unit cost. In contrast, customized facilities 

are becoming increasingly costly. 

3.1 Network infrastructure that contains no service semantics 

The challenge in building a network supportive of 

the service quality of the telecom world, still having 

a service model as flexible and responsive as the 

Internet' s, requires a uniform service environment 

maintaining strong separation of network and 

service level concerns, while enabling customized 

service control of network resources. Figure I 

depicts the two layers of such an architecture, the 

network level separated from the service level by a 

Service Level 

• Service Creation 

• Service Control 

Simple Interface ·.·-; ,. . : 

Transport Network 

• Network Control 

• Network Elements 

thin interface. This interface consists primarily of Figure 1 Moving Service 

basic primitives to network capabilities. The service Semantics out of the Network 

environment, in which services are created, 

controlled and performed, consists of an execution environment and virtual network 

defined by the network interface. Uniformity is achieved by making this environment 

uniform throughout the network infrastructure. 

Separation of network concerns from service concerns is achieved by limiting the 

interaction between the layers to the primitives defined by the interface. As a result, 

since the service level accesses network resources only through the interface 

primitives, the physical resources, the hardware and the software implementation, is 

hidden and of limited consequence to the service level. Conversely, since all services 

are treated the same by the network new services can be introduced or existing services 

enhanced without any new facilities or support from the network. This way, service 

and network management becomes independent, significantly reducing their respective 

complexities. 



720 Part Six Intelligent Agents 

Whereas service logic is moved up from the transport network infrastructure, the 

service level is supported throughout the network. Therefore, service logic exists 

throughout the network, customizing network control (still through the interface's 

primitives) for each service, to ensure highest service quality. In contrast, the 

traditional Internet service model relegates service semantics to the edges of the 

network, disabling service dependent inner network behavior. 

4 AGENTS PROVIDE NETWORK INDEPENDENCE 

To construct a uniform service environment enabling customized service control of 

network resources while maintaining strong separation of network and service level 

concerns, we propose an agent-based service level, with network resources hidden 

beneath an agent environment. Services are implemented in service agents, which 

encapsulate service semantics, including service specific data and the logic to interpret 

the data. The service agents operate in an agent environment which provides generic 

agent support - e.g., creation, destruction and execution of agents - plus access to the 

network primitives. Together, the network primitives and the agent environment 

provide an abstract network interface, separating services from the underlying network. 

Assuming that the generic agent support, and the limited set of network primitives is 

the same across the network, service agents see a uniform service environment. 

The agents themselves represent autonomous 

objects that are mobile within the environment. 

Beside the ability to move, the agents are not 

required or assumed to exhibit intelligent 

behavior. The service agents themselves can, 

however, be of arbitrary complexity, 

notwithstanding being composed of other 

components, or cooperating with objects or agents 

that exist outside the agent environment. Access 

to the network is limited to the primitive interface 

provided through the agent environment. In many 

ways therefore these agents can be viewed as a 

generalized processes, and the agent environment 
as an operating system, controlling access to the Figure 2 Separating the Network 

and the Service Infrastructure. 
underlying network hardware by limiting it to a 

small set of network primitives. 

In this framework, all services are implemented by a service agent. Moreover, all 

service semantics is contained and encapsulated within the agent. We distinguish a 

subset of service agents as customer agents, whose responsibility is primarily towards 

the service user. Whereas the goal of all service agents is to make a service available, 

the goal of a customer agent is to customize it for individual users. In particular, all 

user specific information - data, rules, or user supplied logic - is encapsulated in a 

corresponding customer agent. From the networks point of view all agents look the 

same. Conversely, seen through a service agent all networks look the same. In general, 

network interface agents, a generic low capability service agents, encapsulate 



An agent-based approach to service management 721 

network specifics; more elaborate service agents define a service, with customer 

agents providing customized user support. A service agent can execute at personal 

devices, customer premise or within the network, in any combination, provided that 

they provide an agent execution environment. This way the agent abstraction helps 

separating the service function from concerns about service location. 

4.1 Some Elementary Agents 

To make the discussion more concrete consider some examples of service agents, the 

most basic being a regular phone agent, a POTSt agent. Given a phone number (or in 

general a name) it establishes a phone connection, performing an indirect address 

resolution if needed. In particular, the agent will translate the name into an Internet 

address, or resolving a 1-800 name to a network address. Upon connection the agent 
identifies the type of receiving device (fax, voice mail, busy, no answer), thereby 

enabling enhanced service agents to react accordingly. Furthermore, the agent issues an 

indication upon call completion. While simple, this agent is already an enhancement of 

current POTS service. More importantly, the agent unifies telephony service, making it 

independent on transport technology (e.g., current phone network, Internet phone, etc.), 

while inviting other agents to build on it to provide an enhanced service. 

For a more elaborate example, consider a call forwarding service where incoming 

calls are forwarded to a set of destination depending on "caller" identification. Assume 
the service is implemented by a Forward-Agent, which uses a network primitive to 

forward a connection. When subscribing the customer supplies a list of names (e.g., 
phone numbers) and rules to determine whereto each name is to be forwarded. The 

customer specific information and logic is encapsulated in a "customer" agent, and 

stored in the network. Upon an incoming connection request, the customer agent is 
invoked, who then screens the incoming name, applies the customer rules and forwards 

the call. Assuming an agent environment and that a network primitive to forward a 
connection exist, this service can be provided without any service specific modification 
to the network or the agent environment. The service semantics is fully encapsulated 
within the Forward-Agent and the customer specific "helper" agent. 

In contrast, whereas the Internet service model would put such a service completely 
out of the network, the traditional telecom approach would involve modifications at all 

levels of the network. Unlike the Internet however, for performance, cost and customer 
service reasons it may be advantageous to offer the service from within the domain of 

the service provider. However, introducing new database(s) to store the list of numbers 

and their associated forward number, plus modifying the infrastructure to implement 

the service logic, affects existing services and results in growing complexity for 

network and service management. Instead, an agent approach encapsulates the service 

semantics - the data and the logic to interpret the data - in an agent that operates in a 

general purpose agent infrastructure accessing network facilities only through an 

interface to very basic primitives. 

t POTS - Plain Old Telephony Service 



722 Part Six Intelligent Agents 

4.2 Mobile Agents Enhance Service Management 

In addition service management benefits from enhanced modularity and separation 

from network management, the mobility of service agents support service management, 

by conceptually separating the service abstraction from location of execution, by 

simplifying resource allocation, and by enabling transparent services across service 

domains. Various "interface" approaches achieve the separation of service definition 

from service implementation, resulting in a growing set of interface primitives (e.g., an 

API). However, a major conceptual problem arises when a part of this interface is to 

be implemented in one location, e.g., inside the network, and the rest in another, say 

customer premise. For example, consider a service API provided at the network 

interface. Suppose a subset of services is moved locally to the customer premise (e.g., 

become available at a new local PBX). The conceptual problem is: what does this 

mean for the interface? One option is to say that the full interface is available locally, 

partially implemented locally and partially relayed to the network interface. An 

alternative is to say that there is a locally available interface for some services, but not 

for others, the locally available interface overriding a portion of the full interface 

residing at the network. Neither one is very elegant. Conceptually either the local 

interface is relaying requests to the network interface, or the two implementations are 

conceptually different and thus so are the interfaces. 

On more practical terms, after decades of debate about whether the network 

intelligence belongs inside, outside, or at the boundary of the network, the reality is 

that it appears at all of these locations. Whereas a home-office corporation may employ 

an answering machine and its only workstation, a large corporation may implement a 

rich set of services in their local PBX. Yet some other services may only be available 

from a service provider. Of course the users are indifferent to such details, assuming 

that the service is consistently delivered. Service agents provide a metaphor that 

captures this rather simply: offering a service at a different location conceptually 

corresponds to moving the agent. More generally service agents allow definition, and 

implementation of services independent of their domain of execution. Indeed, there is 

an increasing market for various services offered only within a local domain. 

4.2.1 Agents Enhance Resource Management 

Whereas transport capacity is largely managed below the agent environment, the agent 

abstraction enhances resource management through mobility, uniformity and 

encapsulation. In particular mobile agents facilitate load balancing by migrating agents. 

While objectives in a communication system may not require strict balancing of load, 

overloaded processing nodes recover by migrating agents to lightly loaded nodes in the 

network. In fact, to economize further on network resources an agent might be ejected 

to customer premise for processing. Service encapsulation within the service agent 

gives a conceptually convenient unit of relocation. Uniformity of the agent 

environment, reduces migration complexity, as simple cost measures are sufficient to 

select a destination of migration. In fact, a new service management dimension opens 



An agent-based approach to service management 723 

up with agent mobility as the service environment and service domains can be 

reconfigured rapidly. 

Agent mobility furthermore enhances service quality, as services are moved to where 

needed on demand. This improves service availability, and response seen by users as 

most of the time services are provided locally, still available globally. Moreover, 

migrating service to a local domain improves resource utilization without sacrificing 

service sophistication. In contrast, consider for example mobile communication. If a 

user from New Jersey, currently visiting California receives a call from across the 

street (in California of course), it would be desirable to most of the call processing 

locally. In particular minimizing transport resources implies routing the conversation 

instate. However, except for the most elementary services, where migrating the dumb 

state and leaving it to the Californian network provider to interpret the state is 

insufficient. Mobile service agents solve this problem as the agent encapsulates the 

state and the logic to interpret the state. 

The uniformity of the agent environment simplifies resource allocation and 

provisioning, as resources become interchangeable. Since databases become agent

bases, storing encapsulated agents, they are used as generic data stores, and thus 

equally suited for any agent. As mentioned above, same applies to processing units, all 

of which implement the generic agent environment. Apart from the current residency 

of agents at a particular node, every node appears equal to a service agent. Therefore, 

per service resource forecasting is not needed (or can be estimated more crudely) 

significantly reducing resource provisioning, and enhancing the scalability of the 

infrastructure. 

The service agent abstraction is valuable in maintaining the service itself, as service 

support updating service logic and the data that defines the service without interruption 

of service. Service agents are transportable autonomous program entities, inherently 

encompassing the concept of dynamically introducing and removing a code fragment 

into/from an executing program. Exploiting the encapsulation properties of agents, this 

is achieved while preserving program level type safety and maintaining service level 

abstractions. Honoring the agents conceptual integrity thus helps in resolving version 

problems resulting from and update in the code implementing a service. As a 

consequence, the agent abstraction supports service evolution on reasonably small 

component granularity, and helps solve the difficult problem of service maintenance. 

4.2.2 Transparent Service Across Domains 

Consider a new service that is offered only in a limited geographical area. Such 

limitations might be transient for new services, or could arise from market 

segmentation or operational reasons. For example, while the infrastructure for wireless 

services is being built, the intra-domain service support is physically limited to the 

region covered by the already deployed equipment. To provide maximum coverage, the 

service provider may therefore sub-contract (and resell) services from other network 

providers. Similarly, marketing strategies in foreign markets (or otherwise 

geographically segregated markets) may differ significantly, thus resulting in different 

services being supported in different parts of the infrastructure. Although owned by the 



724 Part Six Intelligent Agents 

same provider, each service is therefore supported only in some sub-domain. In either 

case, however, customers do not want to be inconvenienced, and expect the service 

they subscribe to be available even when they cross the domain boundaries. 

In spite of this desire, with current network architectures transparent service across 

segmented domains is not really an issue - it simply cannot be done. One reason for 

this is that current network architectures are not designed for heterogeneous support for 

sophisticated services. Currently, either relatively simple services are negotiated and 

standardized, and then offered throughout the network (and across multiple carriers); 

otherwise services are only available within a particular domain, and simply not 

available elsewhere. This remains true even when older switches/routers - supporting 

only a fraction of the latest standard - are inter-operable with newer switches, since 

typically the newer services are unavailable on paths using an old switch. 

Instead, consider the uniform agent environment. Rather than encompassing service 

semantics for all supported services, the agents ability to move and perform throughout 

the environment, provides for transparent services across domains. A service normally 

offered in one domain, is in fact universally available, by having the corresponding 

service agent migrate on demand. Heterogeneity arises as service agents reside 

primarily where their services are offered (or deemed likely to be needed by service 

management) but are not universally distributed throughout the network. 

4.2.3 An Example - Advanced Call Screening 

Consider an advanced call screening service, which beside offering call blocking 

allows the customer to have incoming calls be processed based on caller identification. 

Capabilities could include, redirecting to other numbers (e.g. secretary), redirecting to 

voice mail, or pass the call through all based on customer preference. While not 

inconceivable in the current network two difficult problems arise. The more general is 

the problem of added network complexity as databases and code must be changed 

within the network and potentially some additional (special) equipment added. Still, 

the more problematic is how to this type of service on more global scale. Provided that 

a service provider operates globally, it is only natural for a customer subscribing to a 

service in one region, say the US, to demand the same abroad, e.g., Europe while 

within the service region of the provider. However, for various reasons a service 

offered in on region may not be offered in others. 

Implementing this service in an agent environment, a call screening agent supports 

transparent service by migrating to where the service is requested. Unlike services like 

mobile, where state information (data) is migrated to where the mobile is registering, 

the agent brings not only data but also the knowledge of how to interpret the data. This 

removes the need for advance service provisioning, as the migration of the agent 

constitutes service provisioning on demand. Furthermore, since the agent only utilizes 

general purpose facilities, the marginal impact is negligible, and thus service specific 

resource provisioning is not required. 



An agent-based approach to service management 725 

4.3 Agents Support Rapid Service Creation 

The agent environment supports rapid service creation, as a new service does not 

require any new network support, nor coordination with other service or network 

providers. In particular a new service does not imply provisioning of service specific 

facilities - databases, or code - other than encapsulated within the respective service 

agent. Furthermore, a service provider could unilaterally introduce a service without 

any negotiations or announcements to other service providers. Still the new service 

would receive support comparable to any existing service. Indeed, a new player, 

potentially without any network infrastructure, could become a service provider simply 

by creating a new service agent and introducing it into the environment (of course 

financial settlements would need to be negotiated). 

To illustrate rapid service creation consider the following example service, which we 

will call "the panic button." Subscribers identify a list of phone numbers, in some 

order of preference, and can specify what constitutes a successful panic-resolution. As 
an example parents could leave a panic-button capable device (could be a cellular 

phone, smart card etc.) with their children. The ordered phone number list would 

contain, each parents work phone number, home number, number of friends and 

relatives. Upon a panic-call, the list is processed in order, either until successful or the 
list is exhausted. 

A traditional telecom solution would be to introduce a database to store the list of 

phone-numbers, and the processing logic for a panic-call. Panic-call processing then 
would involve identifying the customer (which could for example be the device 

identifier), fetching from the database the panic-list of phone numbers, and finally 

processing each of the numbers. Since, this new service may interfere with other 

services already in the network, careful system integration and service provisioning 
(and perhaps re-provisioning of some of the existing services) would have to be 

performed. 

An alternative would be to push all of the intelligence out of the network, and have a 
smart terminal, for example a PC, implement the service completely out of the 
network. Call processing in this framework is simply seen from the network as a series 
of call requests coming from the same source, the smart terminal providing all the call 
processing logic. While possible, it requires substantial processing capabilities of the 
terminal device and requires control information (e.g. about call completion status) to 

propagate out of the network. Whereas the latter requires standardized information 
exchange, the former translates into more costly equipment. 

Using a customer agent - a panic-agent on the panic-button device is used to 

implement this service. We assume that an POTS service agent exists, capable of 

processing regular phone calls, returning either a successful connection, or a 

completion indication (busy/no answer/voice mail). Upon a panic-call the panic-agent 

is invoked from the panic-button agent pool with the list of numbers. The agent then 

cooperates with the POTS service agent, processing each number on the list by issuing 

requests to the POTS-agent, and receiving back call completion information. 



726 Part Six Intelligent Agents 

The key advantages of the agent approach are: 

1. No service specific database or any other support needs to be provisioned 

before the panic-button service can be offered. Still, the service is able to 

take advantage of being executed within the network. In particular, internal 

network information is available to the customer agent. 

2. Given that a network supports the POTS service agent, the panic-button 

service can be offered by a third party network services reseller who has no 

control of the physical network or network resources. 

4.4 Out of Network Service Enhancement 

Although the above panic-button example could potentially be offered out-of-network, 

while non-traditional, the above example is still as an in-network service offering. This 

means that although storage and other resources are not customized for the service, 

they are committed and owned by the service provider and reside within the network. 

In this context, out-of-network service offering, therefore means that the service is 

offered without any network resources commitment or control except during execution. 

In particular the user data and the code to interpret it - i.e., the customer agent - is not 

retained within the network or the service providers domain, but is instead injected into 

the network from customer premises upon service request. Out-of-network services for 

example facilitate third party service provider owning no network infrastructure. 

To illustrate, out-of-network service enhancement, consider the following 

enhancement of the above panic-button service. Suppose now, that beside a POTS

service agent, an email service agent - an agent who accepts messages and delivers 

them to an Internet email address - becomes available in networks. Suppose an 

independent third party service provider decides to offer an enhanced "panic-button" 

service, by allowing the list of addresses to contain email addresses as well as phone 

numbers. Furthermore, since the service provider is not a network provider, the service 

will be offered as a small panic-device similar to a beeper. The service is implemented 

by an enhanced customer agent, which in addition to recognizing phone numbers 

recognizes email addresses. 

Upon a panic-call, the device establishes a connection to the network, and injects the 

customer agent, carrying the panic-list, into the network. Once within the network, the 

agent processing the panic list as, issuing requests to the POTS agent, or issuing a 

panic message to the designated email recipient with the help of the email service 

agent. After the agent completes the list, it is destroyed by the agent environment. 

Observe that as before, no service specific support or provisioning is needed. 

Moreover, the network maintains no persistent knowledge of this enhanced service, no 

data nor logic. Indeed, after the panic-agent is destroyed the network acts as if nothing 

had happened. 

In contrast a traditional network centric solution would require redesign of the 

supporting databases, and other provisioning, in addition to code modification. As for 

any new service, introducing the enhancement into the network could also cause 

potential interference with other existing services. 



An agent-based approach to service management 727 

5 SUMMARY AND DISCUSSION 

We have described an agent-based paradigm for service management, that exhibits the 

flexibility of the Internet while supporting customized high quality of the telecom 

world. We have proposed an architecture for this paradigm and shown how agents 

provide simple solutions to many complex service management tasks. The architecture 

factors services out of the network into a separate service layer, separated from the 

network by an opaque interface. Services are implemented by service agents, 

completely encapsulating service semantics, the data and the logic to interpret the data. 

In particular, the underlying network is free of service specific support. Instead, the 

service agents operate in a agent environment, accessing the network only through a 

limited set of basic primitives. The environment and the set of network primitives is 

the same across the network, resulting in a uniform view from the service agents. 

We have shown how the agent abstraction, the uniformity of the agent environment 

and the agents ability to move helps in reducing service management complexity. 

Specifically, the agent-based service environment supports rapid service creation and 

real time provisioning. Moreover, agent-based service management enables transparent 

services across domains of authority. The agent abstraction conceptually clarifies some 

common problem in service management, such as service migration to a local domain, 

and service maintenance. More generally, the ability of agents to move from one 

location to another goes beyond the strong level of modularity provided by object 

orientation, by disassociating each autonomous agent from a particular location or 

environment. The uniformity of the agent environment simplifies resource 

management, thereby reducing provisioning cost and signaling requirements, as 

network resources become interchangeable. 

This work is part of a larger project on lightweight networking aiming to streamline 

signaling, simplify network and service management, and exploit high level modeling 

abstractions at low levels of networking. In (Hja.Imtysson, 1997) we report on a 

lightweight call setup primitive and protocol, supporting both connection and 

connectionless service, while encompassing enough generality to facilitate arbitrary 

parameters on call setup. In particular, the light weight call setup supports the agent 

ideas contained herein. Although agents have been proposed before for networks and 

distributed systems, the low performance of agent-based systems have relegated them 

to tasks like user interfaces or web-searching, where performance is not a primary 

issue. We have developed a C++ library implementing agents, the agents themselves 

written in C++, compiled and run natively. This paper is a strand of a general theme 

investigating flexibility not only as a design goal but as a performance metric, with the 

aim to develop methods and metrics to quantify some of the guidelines of software 

engineering that postulate loose coupling and encapsulation. With the deregulation of 

the telecom industry and the omnipresence of the Internet, we believe that the ultimate 

performance of any communication architecture will hinge on its ability to handle 

service diversity and volatility. 

5.1 Acknowledgements 

Special thanks to Albert Greenberg for his help on the presentation of this work. 



728 Part Six Intelligent Agents 

6 REFERENCES 

K. Arnold and J. Gosling (1996) The Java Programming Language. Addison-Wesley, 

Reading, MA. 

ATM Forum 95-0221R2, (1995) Draft PNNI Signaling. 

H. Berndt and R. Minerva editors (1995) Definition of Service Architecture. TINA-C 

Baseline Document, Version 2.0. 

M. Chapman editor (1995) Overall Concepts and Principles of TINA. TINA-C Baseline 

Document, Version 1.0. 

The Common Object Request Broker: Architecture and Specification, Rev. 2.0 (1995) · 

0. Etzioni and D. Weld (1994) A Softbot-Based Interface to the Internet. 

Communications of the ACM, 37-7,72-6. 

L. A. de la Fuente editor (1994) Management Architecture. TINA-C Baseline 

Document, Version 2.0. 

M. R. Genesereth and S. P. Ketchpel (1994) Software Agents. Communications of the 

ACM, 37-7, 49-53 

R. S. Gray (1996) Agent Tel: A flexible and secure mobile-agent system. Proceedings 

of the Fourth Annual Tcl/rk Workshop (TCL 96), Monterey, California 

R. Gray, D. Kotz, S. Nog, D. Rus and G. Cybenko (1996) Mobile agents for mobile 

computing. Department of Computer Science, Dartmouth College. 

G. HjaJ.mtysson and R. Gray (1996) Dynamic Classes Enhance Maintainability of 

Critical Applications. AT&T Research Manuscript. 

G. HjaJ.mtysson (1997) Lightweight Call setup - Supporting connection and 

connectionless services. To appear at the International Teletraffic Congress ITC'97. 

Y. Lashkari and M. Metral and P. Maes (1994) Collaborative Interface Agents. 

Proceedings of AAA/'94 

A.A. Lazar and R. Stadler, (1993) On Reducing the Complexity of Management and 

Control of Future Broadband Networks. Proceedings of the Workshop on Distributed 

Systems: Operations and Management, Long Branch, NJ. 

A.A. Lazar (1994) A Research Agenda for Multimedia Networking. The Workshop on 

Fundamentals and Perspectives on Multimedia Systems, International Conference 

Center for Computer Science, Dagstuhl Castle, Germany. 

T. Magedanz, K. Rothermel, and S. Krause (1996) Intelligent Agents: An Emerging 

Technology for Next Generation Telecommunications? (1996) in Proceedings of 

INFOCOM'96, San Fransico, California, 464-472 

D. L. Tennenhouse and D. J. Wetherall (1996) Towards an Active Network 

Architecture. Computer Communication Review. 

S. Vinoski (1993) Distributed Object Computing with CORBA. C++ Report. 

D. Wu (1996) An Efficient Signaling Structure for ATM Networks. Proceeding of 

INFOCOM'96, San Francisco, 844-854 



An agent-based approach to service management 729 

7 BIOGRAPHY 

Gisli Hjalmtysson received a B.S degree in Applied Mathematics and Computer 

Science (1987) from University of Rochester, and M.S. (1992) and Ph.D. (1995) in 

Computer Science from University of California, Santa Barbara. 

Dr. Hjrumtysson joined AT&T Bell Laboratories, Murray Hill, in 1995, and is 

currently at AT&T Labs - Research. In 1993, he was a visiting scientist at Telecom 

Australia's, Telecom Research Laboratories in Melbourne. 

His current research is in performance evaluation of networks and information 

systems, lightweight signaling, active networking, and new opportunities resulting 

from the convergence of computer networking and traditional telecommunication. 


