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Abstract

Application software has been developed for analyzing and understanding a dynamic price change in the US wholesale power

market. Traders can use the software as an effective decision-making tool by modeling and simulating a power market. The

software uses different features of a decision support system by creating a framework for assessing new trading strategies in a

competitive electricity trading environment. The practicality of the software is confirmed by comparing its estimation accuracy

with those of other methods (e.g., neural network and genetic algorithm). The software has been applied to a data set regarding the

California electricity crisis in order to examine whether the learning (convergence) speed of traders is different between the two

periods (before and during the crisis). Such an application confirms the validity of the proposed software.

© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Human decision-making is vital for the growth of an

economy. Traders, who make various trading decisions,

consist of an important component in a market. The

bidding decision of a trader affects the profit of business.

Among many different markets, the wholesale power

market is a volatile market where a trader's bidding

decision may affect the gain of a utility firm. The power

industry is recently becoming competitive, unlike in the

past where it was controlled by monopolistic utilities.

A decentralized market environment is replacing the

traditional centralized-operation approach. This busi-

ness trend is called “deregulation of the electricity

market.” [The importance of the electric power industry

in research on decision support systems can be found in

the special issue of this journal ([15] Vol. 40, Issues 3–4)

organized by Oren and Jiang in 2005. The special issue

contains 16 articles under the title of “Challenge of

Restructuring the Power Industry” that have explored

analytical aspects of the electric power industry.]

The deregulation allows new players to compete for

providing wholesale electricity services by setting their

own prices in an auction format, rather than negotiating

with state regulators on a fixed price. Many wholesale

power markets are directed towards liberalization and

competition in the world. Along with the deregulation,

many corporate leaders and policy makers face a

difficulty in both predicting and understanding a price
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change of the wholesale electricity. The price change

occurs due to many uncontrollable factors such as a

change in weather condition, a demographic change and

different trading strategies among traders. Software

tools are needed for players in the power industry to

predict the price change, to understand such market

activities and to aid in their decision-making activities.

Many software systems have been developed for the

purpose of aiding a trader in a wholesale electricity

market. The shortcomings of existing systems are that

they do not incorporate a transmission system in these

algorithms and lack an estimation capability of the price

fluctuation of electricity. To overcome the methodolog-

ical difficulties, this study develops a decision support

system (DSS), referred to as “MAIS (Multi Agent

Intelligent Simulator)”, where software agents represent

market entities such as generators, wholesalers, a market

administrator, a network operator, and a policy regula-

tor. The software agents have their own trading ob-

jectives and strategies. They can adjust their trading

strategies in the simulation process based on previous

trading efforts' success or failure. They also constantly

observe current market price of electricity.

The proposed DSS provides a simulation-based nu-

merical capability. That is the purpose of this study.

This type of research is not present in the special issue

(2005) organized by Oren and Jiang. [See Sueyoshi

and Tadiparthi [28,29] for a detailed description on the

computer algorithm. Their research efforts are further

extended in [30] that can investigate how a capacity

limit on transmission influences the wholesale price of

electricity.]

The structure of this article is organized as follows:

The next section conducts a literature survey that indi-

cates the position of the proposed DSS by comparing

itself with other studies concerning on-line trading auc-

tions. Section 3 describes both the architecture of MAIS

and the software. Section 4 describes a market clearing

algorithm that is incorporated into the proposed simula-

tor. Section 5 documents the practicality of the proposed

simulator, using a data set regarding the California elec-

tricity market. A concluding comment and future exten-

sions are summarized in Section 6.

2. Previous works and existing software systems

Recently, Artificial Intelligence (AI) methods have

been employed predominantly to solve various problems

in decision making under uncertainty. Furthermore,

many software systems have been developed to aid trad-

ers in their decision making in power trading. This sec-

tion is subdivided into two parts. The first part surveys

AI techniques used in the construction of DSS. The

second part evaluates some of the software systems used

for electricity trading.

2.1. Artificial intelligence for decision support systems

Based on AI methods used, DSS can be classified

into the following categories:

2.1.1. Soft computing techniques

This group of techniques uses the concepts related to

rough set theory, fuzzy logic, neural networks and ge-

netic algorithms. Many researchers use fuzzy and rough

set theory as a basis for reasoning with existing data

[2,9,18,26,33]. Neural Networks (NN) have been wide-

ly used for prediction and classification. Wilson and

Sharda [34] use NN as an effective tool to predict bank-

ruptcy. See [22] for a discussion on various problems in

NN and the scope of improvements. Soft-computing

techniques can be combined with one another to form

hybrid approaches. Zeleznikow and Nolan [36] use a

combination of fuzzy reasoning and NN to build an

efficient DSS. Many research studies indicate that the

combination of rough sets and NN provided a better

analysis tool [3,8,35]. Combinations of Genetic pro-

gramming and rough sets are also successfully em-

ployed in classification problems [13].

2.1.2. Knowledge engineering techniques

With an increasing use of information systems in

organizations, knowledge management has become a

challenge in maintaining data. New data is stored as facts

and the knowledge base contains rules based on the facts.

These new requirements led to the creation of knowl-

edge-based systems and expert systems. Beynon et al.

[5] discussed expert systemmodeling as a new paradigm

in DSS. The use of knowledge-based systems can be

found in [16]. Expert systems have been developed

widely for the use of managers and decision-makers [7].

Sung and Lee [31] demonstrated the use of a knowledge-

based management system to price thousands of items

based on other constraints and policies.

2.1.3. Agent-based techniques

Agent-based modeling is widely used to represent

complex social systems. Agent-based systems have

been used for many applications that are ranging from

stock market trading [12] to financial portfolio man-

agement and logistics [32]. Bui and Lee [6] have

presented taxonomy for agent-based systems in decision

making. Liang and Huang [11] have proposed a three-

layered architecture of intelligent agents for electronic
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trading. See [4,17,25] for a detailed discussion on de-

sign and development of agent-based systems.

This study uses a combination of all the techniques

mentioned above to build an intelligent decision making

tool. The proposed software uses soft-computing tech-

niques such as probabilistic reasoning and reinforce-

ment learning. The software uses a knowledge-base to

fully utilize knowledge on a wholesale market of

electricity. Each player in the wholesale market is

represented by an intelligent agent.

2.2. Existing software for power trading

PowerWeb, developed at Cornell University, is

designed to understand various power markets with

human decision makers who interact with each other in a

web-based tool [37]. Generators are each modeled by a

human trader. This model considers a single uniform

auction in a Day Ahead (DA) market with a constant

demand. This software does not have flexibility to model

and simulate the behavior of a trader. This software

ignores Real Time (RT) and Long Term (LT) markets.

Agentbuilder uses software agents to buy and sell

electricity [1]. It utilizes decision theory and uses three

strategies for buying and selling. All these strategies are

described by smooth curves (monotonically increasing/

decreasing) that represent the bidding behavior of an

agent. The drawback of this model is that the agents

cannot adapt or change these bidding behaviors during a

simulation process. This model ignores the presence of a

system operator and implements only Dutch auction.

SEPIA (Simulator for Electrical Power Industry

Agents), developed at University of Minnesota, uses

adaptive agents and object oriented modeling techniques

[21]. These adaptive agents use discovery informatics to

develop and identify patterns in an environment. The

model uses evolutionary learning techniques like incre-

mental genetic algorithms. Even though the agents are

equipped with learning capabilities, the market is not

modeled to handle complex scenarios like an occurrence

of congestion on transmission. Furthermore, this software

does not consider auction markets like DA and RT. It only

considers the LT market.

MASCEM (Multi Agent Simulation system for

Competitive Electricity Markets) is a market simulator

that makes use of Open Agent Architecture (OAA) to

create a rule-based system [19]. The agent's bidding

strategies are represented by monotonically increasing/

decreasing functions. This design does not implement

the transmission system. The OAA does not provide for

inbuilt customized GUIs (Graphic User Interfaces).

EMCAS (Electricity Market Complex Adaptive Sys-

tem), developed at Argonne National Laboratory, uses a

complex adaptive system approach to represent agent

learning and adaptation. It tests regulatory structures

using genetic algorithms [14]. The agent's objectives are

characterized by a utility function. A shortcoming of this

tool is that it does not provide a predictive capability on

market dynamics.

Table 1 compares the software models described

above. Each model is evaluated from the perspective of

five capabilities: (a) Prediction (Estimation), (b) Trans-

mission, (c) Decision-making, (d) Analysis, and (e)

Intelligence. The proposed MAIS and the existing

software models can be functionally distinguished by

the following five capabilities: First, none of the existing

models (from PowerWeb to EMCAS) has a capability

to predict market price of electricity. Meanwhile, the

MAIS has an estimation capability to predict the price

fluctuation of electricity. Second, the existing software

models do not have a numerical capability regarding

how a capacity limit on transmission influences the

wholesale price of electricity. The MAIS incorporates

such a numerical capability. Third, most of the agent

models use a probabilistic model in order to investigate

agent's bidding decision and a monotonically increas-

ing/decreasing utility function to represent decision

making capability. Fourth, it is important to have an

analytical capability that can explore a power market by

changing parameters related to the market. Finally, AI

technique has to be incorporated for agent's adaptive

behavior.

Table 1

Comparison among different electricity trading software

Estimation Transmission Decision making Analysis Intelligence

PowerWeb No No Yes Yes No

Agentbuilder No No Yes No No

SEPIA No No No Yes Yes

MASCEM No No No Yes Yes

EMCAS No No Yes Yes Yes

MAIS Yes Yes Yes Yes Yes

Note: MAIS (Multi Agent Intelligence Simulator) is proposed in this study.
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Comparing the previous research works on on-line

trading and related software developments for the

power industry, this study identifies the following

unique features of MAIS: First, the wholesale power

market incorporated in the simulator is functionally

separated into two markets (DA and RT). Each trader in

the simulator can make his bidding decision in DA and

then make another decision in RT, depending upon the

win/lose result in the DA market. Thus, Two-Settlement

System (TSS) auctions are incorporated into the

proposed simulator. Such a research effort cannot be

found in the previous research works. Second, each

trader is designed to have his own learning capability.

The learning capability is based upon a sigmoid func-

tion that provides a winning probability from previous

bidding results. Such a learning capability cannot be

found in the previous research. Third, a zonal market is

represented by means of a transmission system in the

simulator. Finally, traders can communicate with each

other through a network capability incorporated into the

proposed software.

3. Multi agent intelligent simulator

The MAIS consists of many software agents that

interact with each other. They also interact with a power

market (as an environment) by observing a price fluc-

tuation of wholesale electricity.

Fig. 1 depicts the architecture ofMAIS. There are five

types of agents in MAIS: market administration, supply-

side, demand-side, network operation, and utility policy

making. The main objectives of an electricity market are

Fig. 1. Architecture of MAIS.
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to ensure the security of the power system, its efficient

operation and further to decrease the cost of electricity

through competition [23]. The market environment

typically consists of a pool market for DA and RT.

(Note that the proposed simulator does not include a

bilateral contract between a generator and a wholesaler

because the market price setting scheme is not clear.)

3.1. Market administrator

The electricity industry is functionally separated into

the four divisions: (a) generation, (b) transmission, (c)

distribution and (d) retailing. The MAIS incorporates a

pool market scheme where electricity-generating com-

panies submit their bidding amounts and prices, while

wholesale companies submit consumption bids. A

market operator, like ISO (Independent System Opera-

tor like PJM which controls the area of Pennsylvania–

New Jersey–Mainland), regulates the pool market using

a market clearing system to determine the market price

of electricity. The pool market is considered as an effi-

cient market scheme and a clearing tool for the market is

an auction mechanism [10,24].

The US wholesale power market is functionally

separated into a transmission market and a power ex-

change market. The US wholesale power exchange

market is further functionally broken down into a RT

market, an hour-ahead market, a DA market and a LT

market. Each market has unique features in terms of an

auction/exchange process and transmission agreement.

The software mainly focuses upon trading strategies

for both DA and RT markets, because the bidding be-

haviors of traders in both DA and RT have a close linkage

between them. Moreover, the two markets are important

in the investigation of a price fluctuation in the wholesale

power market. In this study, RT implies not only the real

time market but also the hour-ahead market, because the

two are functionally similar and decided on the same day.

All traders enter the market to correspond to actual power

flows. Hence, the aspect of financial speculation is very

limited in RT. Thus, RT can be considered as a physical

market. In the RT market, traders need to make their

decisions within a limited time. So, it can be considered as

a spotmarket in this study.Meanwhile, theDAmarket can

be considered as a financial market, because a decision for

the market is for the next day power delivery, so that there

is a time for making a decision based upon demand

forecasting and speculation.

Fig. 2 depicts the output window of a market mech-

anism controlled by a market administrator. The window

is divided into four graphs: DA Curve, RT Curve, Price

vs. Iterations, and Volume vs. Iterations. The DA Curve

shows a demand–supply curve in the DA market. The

RT Curve shows the market clearing scheme for RT. The

Price vs. Iterations graph depicts a price fluctuation,

during every run, in the DA and RT market. Volume vs.

Fig. 2. Computer monitor.
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Iterations exhibits a volume fluctuation and volume

share of DA and RT, which gives a simulation outline

on how much the volume fluctuates during a whole

simulation.

3.2. Supply-side agent

Generators form supply-side agents. They use a

knowledge base to store bidding values and results. The

knowledge base contains all previous data used by each

generator. An exponential utility function is used to

represent his risk-averseness behavior. Mathematically,

the utility function is expressed by 1−EXP(−ζ×Re-

ward). Here, ζ is the risk-aversion factor. The bidding

decision of the i-th generator (i=1, 2, …, n) is made by

an adaptive learning algorithm which can be specified

for DA and RT as follows:

(a) The i-th generator bids (sit
1, pit

1) for DAwhere sit
1 is

the bidding amount of power generation in

Kilowatt Hours (KWH) and pit
1 is the bidding

price measured by a unit price of electricity ($/

KWH). The superscript “1” indicates DA and the

subscript “t” indicates the t-th period of the power

delivery.

(b) The bidding amount is expressed by sit
1=αit× sit

m,

where αit (0≤αit≤1) is a bidding rate to express

the ratio of bidding amount of electricity to the

maximum generating capacity of the i-th gener-

ator and sit
m is the maximum power generation

capacity of the i-th generator.

(c) The bidding price is given by pit
1=MCit

1 / (1−βit).

Marginal Cost (MCit
1) of generation is defined as

an operations and maintenance cost of the

generating plant that is needed to supply the

immediate demand for electricity and is usually

listed on the web site of ISO. βit(0≤βitb1) is a

mark-up rate. The mark-up rate is used to express

a ratio of the bidding price from the marginal

cost. The mark-up rate reflects the trader's pricing

strategy.

(d) In RT market, the i-th generator bids (sit
0, pit

0) for

RT where sit
0 is the bidding amount of power

generation (KWH) and pit
0 is the bidding price that

is measured by per unit electricity ($/KWH). The

superscript “0” indicates RT. The bidding amount

(sit
0) is expressed as the remaining amount of power

that the generator can produce after the allocation

in the DA market (sit
0=sit

m−ŝit
1). The bidding price

( pit
0) is expressed in terms of the marginal cost

(MCit
0). It is given by pit

0=MCit
0 / (1−ηit). Here, ηit

(0≤ηb1) is a mark-up rate.

Fig. 3 depicts a computer monitor on which a user

can input the maximum supply and marginal cost either

in the form of a text file or a constant value. The data,

if supplied in a text file, should be in the form of a

“tab limited text file” with the first column repre-

senting the price and the second column representing

the quantity.

The user can either decide to include learning or not,

depending upon a simulation model he is trying to build.

If the user chooses an adaptive learning generator, he

can specify the knowledge accumulation period (b total

number of iterations) and the minimum probability of

success (a value between 0 and 1). Each generator has

a trader identification number. Optionally, the user can

also enter the names of the generators each one cor-

responding to the ID. The user can specify the num-

ber of generators of this kind of settings and create

them by pressing the “Create” button. This action will

create the specified number of generator agents in the

simulator.

The model assumes that all traders exhibit risk-averse

behavior and uses an exponential utility function to

represent such risk-averseness. The user can also enter

his choice of risk aversion factor.

3.3. Demand-side agent

Wholesalers form demand-side agents. As shown in

Fig. 1, the wholesaler has additional functional

capabilities in addition to those that are present in the

supply-side. The wholesaler needs to estimate a price

and forecast a load from the previous data. The bidding

Fig. 3. Generator creation wizard.
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decision of the j-th wholesaler ( j=1, 2, …, k) is made by

an adaptive learning algorithm, which can be specified

for DA and RT as follows:

(a) The j-th wholesaler bids (djt
1, pjt

1) for DAwhere djt
1

is the bidding amount of power (KWH). pjt
1 is the

bidding price of the wholesaler which is measured

by a unit price of electricity ($/KWH).

(b) The wholesaler uses his demand-forecasting

algorithm to predict the demand on a particular

day. Let ejt be the demand estimated by the j-th

wholesaler or ISO.

(c) The bidding amount (djt
1) is expressed by djt

1=δjtejt,

where δjt(0≤δjt≤1) is a bidding rate to express the

strategic reduction of each bid from the demand

estimate (ejt).

(d) The bidding price ( pjt
1) is expressed by pjt

1=λjtwjt
1.

Here, λjt(0≤λ≤1) is a decision parameter for

price adjustment from the estimated price. The

wholesaler predicts a price estimate (wjt
1) by using

an inverse function (IF) of demand, i.e. wjt
1=IF

(ejt).

(e) rjt is the real demand on the delivery period (t).

Then, the wholesaler needs to specify the demand

procured from the RT market in order to satisfy

the real demand that is computed by djt
0= rjt− d̂jt

1

the bidding amount for RT of the j-th wholesaler.

Fig. 4 depicts a computer monitor on which a user can

configure and create a wholesaler based on demand-side

agent. It specifies a real demand that is given in the

form of a text file or a formula. The user can select the

appropriate option. The user can choose a historical file

which contains previous consumptions for the whole-

saler. A historical data set on demand is plotted as a graph

to facilitate the visualization of the usage in the past. The

user can create his price estimation graph, as depicted

in Fig. 5. The yellow colored line segment represents

the price function for residential customers and the red

colored line segment represents the price function for

commercial customers. The slope of these lines and the

functions can be modified by changing the parameters in

the Price Estimation tab of Fig. 4. Since the wholesaler

has learning capabilities, the Learning tab shows the

different learning options available on a monitor. The

Learning algorithms are the same as available in the

supply-side agent. The parameters are the same as ex-

plained in the previous section. As depicted in Fig. 4,

there are four options for choosing a forecasting method

on a computer monitor. They are “Moving Average”,

“Exponential Smoothing”, “Random” and “Average”.

Choosing the respective option will prompt for the

corresponding required parameters. The user also needs

to enter the retail price (expressed in dollars) of the

wholesaler throughout this simulation. The exponential

Fig. 4. Wholesaler creation wizard.
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utility function expresses the risk-averse behavior of the

wholesaler. The user can input the risk aversion factor to

denote the level of risk-averseness of the wholesaler.

3.4. Network operator

The network operator manages a whole transmission

grid system. He is responsible to oversee that a load is

satisfied within each zone. A transmission control flow

algorithm is used to control the flow of electricity within

the grid system. The network operator executes the

market clearing algorithm to determine the market price

under a capacity limit on transmission. See Appendix A

that discusses the market clearing process under the

capacity limit on transmission.

Fig. 6 provides a graphical canvas for a user to design a

transmission system. The user can draw different ele-

ments in a wholesaler market with the help of a mouse.

The different generators and loads can be labeled on a

computer monitor. The transmission lines are drawn and

the limits can be specified. If no limit is specified, then it is

assumed that there is no limit on the link. The zones are

drawn using dotted red-colored lines.

Fig. 7 depicts a computer monitor that visually de-

scribes a dispatch scheduling process among generators.

The monitor is for the zone (2) which obtains electricity

from not only itself but also the other zones (e.g., Zones 1

and 3). For a visual description, Fig. 7 depicts a monitor

from 4 AM to 7 PM. The monitor depicts a dispatch

schedule of each generator on the 24-hour framework.

The number listed within each color indicates the amount

of generation. Fig. 8 depicts a computer monitor for a

total amount of daily-based generation for a specific zone

within the 24-hour framework.

3.5. Utility policy administrator

The administrator provides policy makers and federal/

local regulatory agencies with a set of tools to query and

modify (if necessary) policy rules related to the operation

of wholesale power trading. A user of the administrator

can query a market data set in order to observe whether

any of the participants behave inappropriately (e.g., the

execution of a market power). They also ensure a smooth

operation of the wholesale market of electricity.

4. Market clearing algorithms

The market clearing process incorporated in the

proposed simulator is structured by TSS. This type of

Fig. 5. Price forecasting function. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Computer monitor for grid system. (For interpretation of the

references to color in this figure legend, the reader is referred to the

web version of this article.)
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auction process is used by PJM. Fig. 9 depicts the TSS at

the t-th period that contains DA and RT along with these

market components (fundamentals):

4.1. Market clearing algorithm for DA

Let the pair (sit
1, pit

1) represent the bid submitted by

the i-th generator in the DA market. Let the pair (djt
1, pjt

1)

represent the bid submitted by the j-th wholesaler. The

market clearing algorithm at the t-th period is specified

as below:

1. Sort the pairs (sit
1, pit

1) in the ascending order with

respect to pit
1.

2. Calculate the cumulative supply for the i-th generator

(i=1…n). The cumulative supply is the sum of sup-

ply quantities (including its own supply) whose

corresponding bidding prices are less than the

bidding price of i-th generator. The cumulative

supply (CS) of the i-th generator is represented by

CS1it ¼
Pi

a¼1 s
1
at

� �

.

3. Sort the pairs (djt
1, pjt

1) in the descending order with

respect to pjt
1.

4. Calculate the cumulative demand for the j-th whole-

saler ( j=1…k). The cumulative demand is the sum of

demand quantities (including its own demand) whose

corresponding bidding prices are greater than the

bidding price of the j-th wholesaler. The cumulative

demand (CD) of the j-th wholesaler is represented by

CD1
jt ¼

Pj
b¼1 d

1
bt

� �

.

5. Find an equilibrium point by comparing the cumu-

lative supply (CS) with the cumulative demand (CD).

If there is the equilibrium point, go to step 6. If there

is no equilibrium point, the market clearing price is

set to 0 and no trading was possible in the DA

market. Go to step 8.

6. A projection of the equilibrium point on the Y-

axis gives the market clearing price p̂t
1 of the DA

market.

7. Allocate electricity for the t-th period. All generators

with pit
1≤ p̂t

1 can supply power (sit
1) to the DA market

with the market price p̂t
1 and all wholesalers with

pjt
1≥ p̂t

1 can receive power (djt
1) with the same market

price p̂t
1 from the DA market.

8. Stop.

4.2. Market clearing algorithm for RT

In RT market, only generators bid and wholesalers

have to accept the price decided by the market clearing

algorithm. Let (sit
0, pit

0) be the bid posted by i-th

generator in the RT market. Let djt
0 be the quantity

Fig. 7. Computer monitor for dispatch scheduling. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)
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required by the j-th wholesaler in the RT market. The

market clearing algorithm can be described as below:

1. Sort the pairs (sit
0, pit

0) in the ascending order with

respect to pit
0

2. Calculate the cumulative supply for each generator

(i=1 to n). The cumulative supply of i-th generator is

CS0it ¼
Pi

a¼1 s
0
at

� �

.

3. Calculate the aggregate demand of all wholesalers at

the t-th period. The total demand of the supply side is

CD0
t ¼

Pm
j¼1 d

0
jt

� �

.

4. If CD0
t V

Pn
i¼1 s

0
it, then go to step 5. Otherwise, go to

step 7.

5. The equilibrium point is determined via comparing

the cumulative supply (CS) by the total demand.

6. Allocate the electricity. Let p̂t
0 be the market clearing

price that is obtained from the equilibrium point. Then,

all generators with pt
0
b p̂t

0 can supply power (sit
0) for

price p̂t
0 to the RT market and all wholesalers receive

power (djt
0) for the same price p̂jt

0 from the RT market.

7. Stop.

4.3. Example

The difference between DA and RT is depicted in

Figs. 10 and 11. Fig. 10 visually describes the market

clearing mechanism for DA. In Fig. 10, ISO allocates the

generation amount (s1t
1 ) of the first generator to satisfy the

demand (d1t
1 ) of the first wholesaler. Such a power

allocation is continued until an Equilibrium Point (EP) is

found in DA. In Fig. 10 the equilibrium point is identified

as EP, where the five generators are used to satisfy the

demand required by the three wholesalers. Consequently,

p5t
1 (the bidding price of the fifth generator) becomes the

market clearing price (p̂t
1) for DA.

Fig. 11 depicts the market clearing mechanism for

RT. Wholesalers submit only their demands, but not

bidding prices, because the demand of end users must

be always satisfied. In Fig. 11, ISO accumulates the

generation amounts until the total demand is satisfied.

In the figure, Dt
0 is such a point and an equilibrium

point is identified as EP, where four generators are used

to satisfy the total demand required by wholesalers.

Consequently, p4t
0 (the bidding price of the four

generators) becomes the market clearing price (p̂t
0) for

RT.

5. Application

5.1. Structure of California electricity market

To document the practicality of the proposed MAIS,

this study applies the simulator to a data set regard-

ing the California electricity market from 1st April 1998

to 31st January 2001. The California electricity crisis

occurred during the observed period. The market is

divided into three zones for the purposes of pricing:

Fig. 8. Computer monitor for total generation.

Fig. 9. Two settlement system. Fig. 10. Equilibrium point in DA.
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NP15 is in the north, SP15 is in the south, and ZP26 is in

the center of the state. The central zone (ZP26) has only

2 transmission links, one to Northern path (NP15) and

one to Southern path (SP15). The Northern path and

Southern path are not directly connected to each other. If

they need excess electricity, they have to import it from

other states. The data set consists of all information such

as transaction time, transaction date, price at each zone

in DA and HA (hour-ahead) markets, unconstrained

price and quantity of the system, import/export

quantities in each zone and prices of various auxiliary

services. We obtain the data set on the California

electricity market from the University of California

Energy Institute web site www.ucei.berkeley.edu/data-

mine/uceidata/uceidata.zip). The California ISO does

not have RT trading as found in PJM, but it has HA

trading. Both are functionally the same, as mentioned

previously. Hence, RT is replaced by HA, hereafter, to

adjust our description to the California ISO. The DA

trading was stopped after 31st January 2001.

Table 2 describes the data set for the three California

wholesale zones (DA and HA). Each sample represents

hourly prices representing 24 h per day. SP-15 DA and

HA represent the hourly market price of southern zone

of California for DA market and HA market, respec-

tively, from 1st April 1998 to 31st January 2001. NP-15

DA and HA represent the hourly market price of

northern zone of California for DA and HA, respec-

tively, from 1st April 1998 to 31st January 2001. ZP-26

DA and HA represent the hourly market price of central

zone of California for DA and HA, respectively, from

1st February 2000 to 31st January 2001. For all the DA

markets, a maximum price of $2499.58 was observed at

7 PM on 21st January 2001. All the HA markets had a

maximum price of $750 starting from 26th June 2000. It

was observed that prices started rising steadily from the

summer of 2000.

5.1.1. Market composition

Since we cannot access information related to an

exact composition between generators and wholesalers

from 1998 to 2001, we use the information provided by

California Energy Commission on the web site for the

year of 2005. The web site (http://www.energy.ca.gov/

maps/electricity_market.html) provides an approxi-

mate composition of the generators. Thus, this study

considers that there are 964 generators in California

among which 343 are hydroelectric with 20% market

capacity, 44 are geothermal with 3% market capacity,

373 are oil/gas with 58% market capacity, 17 are coal

with 6% market capacity, 94 are wind with 4% market

capacity, 80 are WTE with 2% market capacity, 2 are

nuclear with 7% market capacity, 11 are solar with 1%

market capacity. Meanwhile, the wholesaler composition

is estimated from the web site: http://www.energy.ca.gov/

electricity/electricity_consumption_utility.html. There

are a total of 48 wholesalers. Pacific Gas and Electric

has 30% of the share, San Diego Gas & Electric has 7% of

the share, Southern California Edison has 31% of the

share, LA Department of Water and Power has 9% of the

share. Sacramento Municipal Utility District has 4% of

the share, California Department of Water Resources has

3% of the share, and other 41 utilities have a 12% share.

Self-generating agencies account for 4% of the share.

5.2. Evaluation criterion and alternate approaches

5.2.1. Evaluation criterion

An evaluation criterion is the estimation accuracy

(%) which is defined as

1�
1

N

X

N

t¼1

Real Market PriceðtÞ � Estimated Market PriceðtÞ

Average Real Market PriceðtÞ

�

�

�

�

�

�

�

�

:

Here, N stands for the number of evaluation periods.

This criterion is suggested by Shahidehpour et al. [23].

Fig. 11. Equilibrium point in RT.

Table 2

California market price

Market Mean Median Skewness Kurtosis

SP-15 DA 56.11 29.65 7.63 142.60

SP-15 HA 53.24 27.31 3.54 19.87

NP-15 DA 62.36 30.35 6.60 107.57

NP-15 HA 63.05 30.08 2.90 13.25

ZP-26 DA 106.00 65.98 6.10 89.68

ZP-26 HA 100.76 68.40 2.06 8.03
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5.2.2. Neural Network (NN)

The first alternative is NN whose use for price esti-

mation has been recommended by many researchers

(e.g., [23]). We use Radial Basis Function Neural Net-

works (RBFNN) to forecast themarket price of electricity.

[See, for example, MATLAB Neural Network Toolbox,

Version 6.1.0.450 Release12.1, that is listed in a web site:

http://www.mathworks.com/products/neuralnet/).] The

RBFNN is widely used for finding an approximation of

a non-linear function as well as for finding interpolation

values of a function that is defined only on a finite subset

of real numbers. As found in many NN methods, the

structure of the proposed use of NN is separated into

an input layer, an output layer and a hidden layer(s).

The hidden layer consists of neurons with a Gaussian

activation function. There is a non-linear mapping from

the input layer to the hidden layer and there is a linear

mapping from the hidden layer to the output layer.

The NN operation used for the comparison consists

of the following two steps: Training and Testing. For SP-

15DA, SP-15HA, NP-15DA, and NP-15HA, the first

6216 data points (259 days×24 h) are used for training

and the next 18,672 data points (778 days×24 h) are

used for testing. The most commonly used NN is a feed

forward NN because it uses less number of neurons. In the

case of a radial basis network, the number of neurons used

in the input layer and hidden layer is equal to the number

of input vectors. In this experiment, we use a radial basis

network because of its prediction accuracy. We create the

radial basis network with the function ‘newrbe’. We

initialize the bias to be 0.8326 (sqrt(− ln(0.5))), i.e., the

spread is set to 1.

The inputs of NN for predicting SP-15DA, NP-15DA,

ZP-26DA price are day-of-the-week, temperature, and

DA demand. When predicting the SP-15RT, NP-15RT,

ZP-26RT price, inputs of NN are day-of-the-week,

temperature, RT demand, and corresponding DA market

price. For each of these predictions, 1556 neurons (778

neurons in input layer+778 neurons in hidden layer) are

used. Even though a standard feed forward NNwould use

fewer neurons, we chose RBFNN because of its better

prediction capability and lesser training time.

5.2.3. Genetic algorithm (GA)

The other alternative is GA which has been rec-

ommended by Richter et al. [20]. GA Toolbox for

MATLAB, developed at the Department of Automatic

Control and Systems Engineering of The University of

Sheffield, UK, is used for this study [source:http://www.

shef.ac.uk/acse/research/ecrg/gat.html]. The parameters

used in the GA are specified as follows: population

size=168, crossover probability=0.8, mutation proba-

bility=0.001 and maximum generation=16,800. The

objective of each artificial trader is to maximize the total

profit obtained after n iterations. Therefore, the objective

function of the GA is to maximize the total profit

obtained by agents.

Each individual in the population is encoded by a 9-bit

binary number. This encoding represents the day-of-the

week (three bits), temperature (two bits), and demand (four

bits). The day-of-the-week may be any value in the range:

Monday through Friday. The temperature is divided

into three categories, Low, Mild, and High. The demand

(x) is categorized into eight divisions: (a) xbmean−3SD,

(b) mean−3SDbxbmean−2SD, (c) mean−2SDbxb

mean−SD, (d) mean−SDbxbmean, (e) meanbxb

mean+SD, (f) mean+SDbxbmean+2SD, (g) mean+

2SDbxbmean+3SD, and (h) mean+3SDbx. Here, SD

stands for a standard deviation of demand. The genetic

algorithm is initialized with a random population size of

168 (7 day-of-the week×3 temperature categories×8

demand categories) individuals. The maximum generation

is set to 16,800 as this termination condition produces the

best result for the above specified encoding. The crossover

probability and mutation probability are set to arbitrary

values of 0.8 and 0.001. It is observed that these variables

do not affect the performance of the genetic algorithm for

the data set used in this study.

5.3. Estimation results

There was no data about the capacity limit on Cali-

fornia transmission links. To determine a capacity limit

on the lines between zones, we calculate the difference

between import and export quantity to the whole market.

After observing the data set used for this study, a

transmission limit of 11,752 GWH (maximum difference)

was applied on the transmission link between central

zone and northern zone. The same limit was applied

between the transmission link between central and

southern zones, as well.

Table 3 summarizes the estimation accuracy of the

three approaches. The estimation accuracy regarding

each power zone is further separated into two: the one

before and the one during the California electricity crisis.

For example, SP-15 and NP15 have 18,312 and 6576

data points before the crisis and during the crisis,

respectively. Meanwhile, ZP-26 has the number of data

points before the crisis and during the crisis which are

2208 and 6576, respectively. The weighted average

estimation accuracy of each zone is computed by

[(average estimation accuracy before crisis)× (# of ob-

servations before crisis)+ (average estimation accuracy

during crisis)× (# of observations during crisis)] / (# of all
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observations before and during crisis). The average

(84.33%) of MAIS for all markets is computed by the

total weighted averages (=85.76%+…+89.12%) divid-

ed by 6 (the number of markets).

Finding 1 Table 3 indicates that the proposed MAIS

(average estimation accuracy=84.33%) esti-

mates the dynamic price fluctuation of elec-

tricity as well as the other two well-known

methods (GA: 29.99% andNN: 82.98%). This

result indicates that MAIS performs as well as

NN in terms of price estimation.

Finding 2 Richter et al. [20] have reported that GA

is useful only when the power market is

not volatile. The low estimation accuracy

(=18.20%) of GA in Table 3 is because there

is large price volatility during the California

electricity crisis. This study confirms their

finding on GA.

Finding 3 The average estimation accuracy of MAIS

before the electricity crisis is 90.35%, while

the estimation accuracy during the crisis is

73.06%. The difference can be found in NN,

as well. There is a big estimation gap between

the two periods. This indicates that there is a

significant difference between observed mar-

ket prices and MAIS estimates during the

electricity crisis period.

As a visual illustration, Fig. 12 compares the fluctu-

ation of observed electricity prices with the estimated

ones obtained by MAIS in the SP-15 (DA) before the

electricity crisis (before May 2000). Fig. 13 depicts such

a comparison during the crisis (after May 2000).

The difference (73.06% and 90.35%) in the estima-

tion accuracy of MAIS can be visually confirmed in

Figs. 12 and 13. Both figures compare the price fluc-

tuation of observed prices with that of the price esti-

mates in the two periods (before and during the crisis). It

is important to note that the price range of Fig. 12 (from

$25/MWH to $40/MWH) is much smaller than that of

Fig. 13 (from $30/MWH to $700/MWH).

5.4. Learning speed (convergence) of bidding rates and

mark-up rates

Figs. 14–18 depict the learning (convergence) speed

of the bidding rate and mark-up rates of the 121st

Fig. 12. Observed price of SP-15 (DA) and MAIS estimate (before crisis).

Table 3

Estimation accuracy (%) of three approaches (line limit: 11,752GWH)

Market Estimation accuracy

GA NN MAIS

SP-15 DA 10.12 [13.06] (1.95) 83.12 [88.37] (68.50) 85.76 [90.54] (72.45)

SP-15 HA 16.08 [21.26] (1.67) 80.40 [89.62] (54.72) 86.89 [91.90] (72.93)

NP-15 DA 15.55 [20.68] (1.26) 79.26 [82.19] (71.10) 75.19 [81.82] (56.72)

NP-15 HA 19.67 [26.25] (1.33) 77.35 [79.03] (72.67) 79.32 [85.59] (61.91)

ZP-26 DA 65.12 [83.12] (59.08) 87.29 [92.34] (85.59) 89.71 [95.81] (87.66)

ZP-26 HA 53.42 [81.67] (43.93) 90.10 [91.45] (89.64) 89.12 [96.41] (86.67)

Mean 29.99 [41.01] (18.20) 81.755 [87.17] (73.70) 84.33 [90.35] (73.06)

Note: [ ] and ( ) indicate an average estimation accuracy before the California electricity crisis and the one during the crisis, respectively.
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generator and those of the 20th wholesaler as an illus-

trative example.

Finding 4 All the five decision bidding rates and mark-

up rates fluctuate and then gradually con-

verge before the California energy crisis.

Those parameters fluctuate drastically during

the electricity crisis (after May 2000).

Table 4 summarizes the average learning (conver-

gence) speed and the volatility of each bidding rate and

mark-up rate before and during the California electricity

Fig. 13. Observed price of SP-15 (DA) and MAIS estimate (during crisis).

Fig. 14. Learning speed of α (generator's bidding rate in DA).

Fig. 15. Learning speed of β (generator's mark-up rate in DA).
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Fig. 16. Learning speed of η (generator's mark-up rate in RT).

Fig. 17. Learning speed of δ (wholesaler's bidding rate in DA).

Fig. 18. Learning speed of λ (wholesaler's mark-up rate in DA).
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crisis. The average and volatility of iterations are listed

in Table 4, as well. Here, the averages of the first three

(α, β, η) imply the means of 964 generators and the

averages of the remaining two (δ, λ) imply the means of

48 wholesalers.

Finding 5 The values of the bidding rates and mark-up

rates before the electricity crisis are lower

than those during the crisis in terms of these

final values, averages and volatilities. This

indicates that all the traders during the crisis

havemade higher bidding prices and amounts

than their bids before the crisis.

Finding 6 A convergence rate of the bidding rates and

mark-up rates indicates the learning speed of

each trader. The learning speeds during the

electricity crisis are almost twice as long as

those before the crisis. This implies that

traders have experienced a difficult time to

adjust themselves to the drastic change of

market price during the California electricity

crisis.

6. Conclusion and future extension

MAIS can be used for analyzing and understanding a

dynamic price change in the US wholesale power market.

Traders can use the software as an effective DSS tool by

modeling and simulating a power market. The software

uses various features of DSS by creating a framework for

assessing new trading strategies in a competitive elec-

tricity trading environment. The practicality of the soft-

ware is confirmed by comparing its estimation accuracy

with those of other methods (e.g., neural network and

genetic algorithm). The software has been applied to a

data set regarding the California electricity crisis in order

to examine whether the learning (convergence) speed of

traders is different between the two periods (before and

during the crisis). Thus, the applicability of the proposed

simulator is confirmed in this study.

There are some research issues related to the

proposed simulator (MAIS), all of which need to be

explored in the future. First, the learning algorithm

incorporated into the simulator needs to be further

extended by incorporating the Bayes theory into the

proposed learning process of traders. Second, a game

theoretic approach adds another perspective on the

learning capabilities addressed in this study. Finally, the

proposed simulator should be extended to network

capabilities so that a market operator exists in one place

and traders exist physically in other places. They are

linked on Internet, as designed in the software. An

important task to be explored in the network-based

research extension is to investigate how traders build

consensus on the market clearing prices under the price

monitoring process of regulatory authority. These issues

are important future research tasks of this study.
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Appendix A. Market clearing scheme for multiple

zones

In this study, a wholesale power exchange market is

separated into multiple zones based on the geographic

location of nodes and transmission grid structure. Each

zone consists of several generators and loads. There are

two types of transmission connections in the power

market: intra-zonal link and inter-zonal link. Intra-zonal

links are connections that exist among generators and

wholesalers within a zone. Inter-zonal links are connec-

tions that exist between zones. A common MCP (Market

Clearing Price) may exist if these zones are linked with

each other. However, if these zones are functionally

separated by a capacity limit on an interconnection line or

an occurrence of congestion, then these zones have

different LMPs (Locational Marginal Prices) as MCP.

Table 4

Learning speed (convergence) of bidding rates and mark-up rates

Before crisis During crisis

Final

value

Values # of iterations Final

value

Values # of iterations

AVG Volatility AVG Volatility AVG Volatility AVG Volatility

α 0.59 0.39 0.22 62.49 21.98 0.72 0.43 0.34 119.24 23.27

β 0.76 0.54 0.25 69.27 17.53 0.83 0.69 0.40 142.37 20.33

η 0.59 0.49 0.17 60.25 23.44 0.91 0.64 0.33 153.12 10.21

δ 0.75 0.53 0.24 53.16 12.33 0.85 0.59 0.22 106.82 19.24

λ 0.73 0.54 0.22 66.03 16.77 0.93 0.67 0.25 161.74 5.34
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Considering a capacity limit on a transmission link,

this study pays attention to the following concerns:

(a) TheMCP is determined by supply–demand even if

a transmission link is limited. That is important because

we need to pay attention to only the supply–demand

relationship in estimating the wholesale market price of

electricity, even under an occurrence of congestion. [It is

assumed that all physical losses are ignored and all

voltage magnitudes are equal in the proposed simulator.

The reality is different from this assumption. However,

the engineering issues are not explored in this study,

because this study limits itself to the economics on power

trading. See Chapter 3–4 of [27] for a detailed description

on ancillary services (e.g., voltage stability, transmission

security and economic dispatch).]

(b) A line limit on transmission or an occurrence of

congestion influences the selection of generators that can

participate in a market clearing process of each zone.

When the capacity limit exists on links, ISO often selects

expensive generator(s) for power supply. An expensive

generator(s) is usually excluded from a supply side if

a line limit or congestion does not occur in transmis-

sion. As a consequence of selecting an expensive gen-

erator, a MCP is usually increased from the one without

congestion.

Fig. A-1 illustrates an algorithm for clearing a whole-

sale market with multiple zones. This algorithm can be

applied to both DA and RT. In the algorithm, a wholesale

market is separated into Z zones (z=1, 2, …, Z). The

algorithm considers, first, that all links are not limited (so,

no congestion) and every zone is connected to one another

by means of a link. Then, we drop this assumption to

investigate the influence of a capacity limit on the market

clearing scheme. Hereafter, we incorporate the subscript

“z” into each symbol to indicate the z-th zone.

As a preprocessing step, ISO forecasts a total demand

(D(z)t) for the z-th zone at the t-th period. The total

demand can be specified as D(z)t=∑jdj(z)t, where dj(z)t is

the demand forecast from the j-th wholesaler in the z-th

zone at the t-th period. The total supply (∑S(z)t) is ob-

tained from all generators in each zone via S(z)t=∑isi(z)t
m ,

where si(z)t
m is the maximum generation capacity of the

i-th generator in the z-th zone at the t-th period. As

mentioned previously, this study assumes that the total

sum of generation capacities (∑S(z)t) should be larger

than or equal to that of total consumptions (D(z)t). An

excess amount of power supply in the z-th zone can be

specified by E(z)t=S(z)t−D(z)t. A zone is said to be

cleared in a market if all the load requirements of the

zone are satisfied for the market. If S(z)t≥D(z)t, then the

z-th zone can be cleared like a self-maintained market

entity. Otherwise (S(z)tbD(z)t), the z-th zone is not cleared. In

this case, the zone needs to generate an additional amount of

electricity by using extra (usually expensive) generators

within its own zone and/or obtaining electricity from other

linked zone(s). In the former case, ISO needs to re-examine

a problem of generator selection and dispatch scheduling

within a zone. In the latter case, ISO needs to examine

whether unused generators are available in other zones.

This initial clearing process of Fig. A-1 continues

sequentially for all zones, as depicted in the upper part

(above the dotted line) of the figure. In the figure, AG

represents a set of generators that are allocated for current

generation. UAG represents a set of generators which are

not allocated for current generation. C represents a set of

cleared zones. NC represents a set of zones that are not

cleared. At the end of this initial market clearing process,

all the zones are classified into either cleared (C) or not-

cleared (NC). Note that a “win” of a generator implies that

the generator bids in a market and obtained a generation

opportunity.

After the initial clearing process is completed, ISO

needs to clear all zones where demand is larger than

supply. All these zones belong to the set (NC). Here-

after, the market clearing process depends upon whether

there is any capacity limit on the links. First, we describe

an algorithm under no line limit on transmission. See the

south-west corner (no line limit) of Fig. A-1. To clear the

z-th zone in NC, ISO prepares a market for the not-

cleared zone where all unused generators in UAG may

participate in its bidding process. Since there is no line

limit on transmission, the bidding process of those

generators works as a single market entity.

The south-east corner (under line limit) of Fig. A-1

indicates an algorithmic process within ISO when the

z-th zone is not cleared and a link between the not-cleared

zone and other zones have a capacity limit on its trans-

mission. To clear the market in the not-cleared zone, ISO

identifies not only all generators in the not-cleared zone

(NC) but also unallocated generators (UAG) in other

zones. Such a group of generators is expressed by PG

(Participating Generators). In this case, ISO needs to

consider both (a) whether a link connects between the not-

cleared z-th zone and the other zones and (b) whether the

link has a capacity limit.

An issue (all generators should be connected to the not-

cleared z-th zone through a link) is solved by identifying a

group of generators whose zones have a link to the not-

cleared zone. This group of generators is expressed by

TCG (Transmission Connected Generators). Consequent-

ly, a group of generators, which can participate into the

market clearing process of the z-th zone, is selected from
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MCPG (Market Clearing Participating Generators) that is

expressed by an intersection between PG and TCG. Thus,

the z-th zone is cleared by using all generators in MCPG.

Based upon the market clearing result, the four sets

(C, NC, AG, and UAG) are updated in the data base

within the proposed simulator, as depicted in Fig. A-1.

Fig. A-1: Market Clearing Scheme for Multiple Zones. Legend: AG (Allocated Generator), UAG (Unallocated Generator), C (Cleared Zone), NC

(Not Cleared Zone), PG (Participating Generator), TCG (Transmission Connected Generator) and MCPG (Market_Clear Participating Generator).
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Appendix B. Adaptive Behavior of Traders Equipped

with Learning Capabilities

In the proposed simulator, each market consists

of many artificial traders who can accumulate knowl-

edge from their bidding results in order to adjust their

proceeding bidding strategies. Their adaptive learning

process is separated into (a) a Knowledge Accumu-

lation (KA) process and (b) an Own-Bidding (OB)

process. The KA process provides each trader with

not only a forecasted estimate on wholesale power price

and amount, but also a win–loss experience from

their biddings. The KA process can be considered as a

training process for each trader. After the learning

process in the KA process is completed, each trader

starts his bidding decisions based upon previous trading

experience. All traders constantly update and accu-

mulate their knowledge (experiences) at each trade.

The bidding and learning process is considered as the

OB process. The bidding experience in the OB pro-

cess is incorporated into the KA process as updated

information.

Reward to Trader: Table A-1 summarizes a reward of

the i-th generator. Each cell of Table A-1 indicates a

winning reward of the generator. For example, if p̂(z)t
1
bpi(z)t

1 ,

then the generator cannot have any chance to generate

electricity, so having no reward in the DA market.

Conversely, if p̂(z)t
1 ≥pi(z)t

1 , then the generator receives a

reward (p̂(z)t
1 −MCi(z)t

1 )ŝi(z)t
1 , as listed in the cell under

“DA” and “within the z-zone”. In a similar manner, if

p̂(z)t
0 ≥pi(z)t

0 inRT, then the generator obtains (p̂(z)t
0 −MCi(z)t

0 )

ŝi(z)t
0 .

In addition to the sale within the z-th zone, the

generator sells electricity to another zone (i.e., the z′-th

zone). The generator can obtain a reward from the z′-th

zone. In this case, the reward becomes (p̂(z′)t
1 −MCi(z)t

1 )

ŝi(z→z′)t
1 in DA and (p̂(z′)t

0 −MCi(z)t
0 )ŝi(z→z′)t

0 in RT.

Here, ŝi(z→z′)t
1 and ŝ i(z→z′)t

0 are the amount of electricity

transmitted in DA and RT, respectively, from the z-th

zone to the z′-th zone at the t-th period. The trans-

mission from the z-th zone to the z′-th zone is as-

sociated with a transmission cost that is listed as

TC(z→z′)t. The total reward (Ri(z)t) is determined by

subtracting the transmission cost (under an occur-

rence of the inter-transmission) from a sum of these

sales. This study considers that the transmission cost

within a same zone is zero. Here, TC(z→z′)t stands for

a unit transmission cost ($/MWH) that is associat-

ed with physical losses, ancillary services and others

related to transmission services from the z-th zone

to z′-th zone. The cost in Table A-1 indicates a total

transmission cost ($).

Table A-1

Reward for generator

Reward=Sale−Cost DA RT

Sale Within the

z-zone
̂p
1

ðzÞt �MC1
iðzÞt

n o

̂siðzÞt
1 ̂pðzÞt

0
�MC0

iðzÞtg ̂siðzÞt
0

n

Transmission

(z→ z′)
̂pðzVÞt
1 �MC1

iðzÞt

n o

̂s iðzYzVÞt
1 ̂pðzVÞt

0 �MC0
iðzÞt

n o

̂s iðzYzVÞt
0

Cost ̂s iðzYzVÞt
1 þ ̂s iðzYzVÞt

0
n o

TCðZYZ VÞt

Next, a reward to the j-th wholesaler in the z-th zone

at the t-th period can be specified as follows: If p̂(z)t
1

N

pj(z)t
1 , then the wholesaler cannot access electricity

through the DA market. Conversely, if p̂(z)t
1 ≤pj(z)t

1 ,

then the wholesaler can obtain electricity from the DA

market and sell the electricity to end users. Similarly,

if d̂ j(z)t
0 ≥0, then the wholesaler can access electricity in

the RT market. An opposite case can be found if d̂ j(z)t
0 =0.

The wholesaler usually provides electricity whose

retail price is ruled by a regulatory agency(s). Hence,

let p(R)(z)t be the retail price of the z-th zone at the t-th

period. Then, the reward for the wholesaler can be

specified in Table A-2.

Table A-2

Reward for wholesaler

Reward DA RT

pðRÞðzÞt � ̂p
1

ðzÞt

n o

̂d
1

jðzÞt
pðRÞðzÞt � p̂

0

ðzÞt

n o

̂d
0

jðzÞt

Adaptive Sigmoid Decision Rule: In the adaptive

learning process of the proposed simulator, each trader

constantly looks for an increase in an estimated

winning probability. In other words, the trader looks

for a combination of unknown bidding rates and mark-

up rates that can increase a winning probability. The

win or lose of a trade is considered as a binary re-

sponse. To express an occurrence of the binary re-

sponse, a sigmoid model is widely used to predict a

winning probability. Mathematically, the probability

cumulative function of the sigmoid model is expressed

by FðrÞ ¼
R r

�l eu=ð1þ euÞ2du ¼ 1=ð1þ e�rÞ. The

win or loss status of the i-th generator of the z-th zone

at the t-th period is predicted by the following linear

probability model:

RiðzÞt ¼ c0 þ c1aiðzÞt þ c2biðzÞt þ c3giðzÞt þ e ðA� 1Þ

Here, Ri(z)t is a reward obtained by the i-th generator.

Parameters to be estimated are denoted by c. An
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observational error is listed as ε. The parameters are

unknown and hence, need to be estimated by OLS

(Ordinary Least Squares) regression. The winning

probability (Prob) can be specified as follows:

ProbðWINÞ ¼ ProbðRiðzÞtz0Þ

¼
EXPð ̂c0 þ ̂c1aiðzÞt þ ̂c2biðzÞt þ ̂c3giðzÞtÞ

1þ EXPð ̂c0 þ ̂c1aiðzÞt þ ̂c2biðzÞt þ ̂c3giðzÞtÞ
:

ðA� 2Þ

The symbol (^) indicates a parameter estimate

obtained by OLS. The above equations suggest that

the winning probability can be predicted immediately

from the parameter estimates of the sigmoid model.

The reward of the j-th wholesaler of the z-th zone at

the t-th period can be estimated by the following linear

probability model:

RjðzÞt ¼ c0 þ c1djðzÞt þ c2kjðzÞt þ e: ðA� 3Þ

Hence, the winning probability is specified as

ProbðWINÞ ¼ ProbðRjðzÞtz0Þ

¼
EXPð ̂c0 þ ̂c1djðzÞt þ ̂c2kjðzÞtÞ

1þ EXPð ̂c0 þ ̂c1djðzÞt þ ̂c2kjðzÞtÞ
:

ðA� 4Þ

The KA process of the wholesaler provides three

parameter estimates of the sigmoid model. Two (ĉ1 and

ĉ2) of the three parameter estimates are important in

determining the bidding strategies of the wholesaler. If

the parameter estimate is positive, the wholesaler should

increase its corresponding decision variable in order to

enhance a winning probability. Conversely, an opposite

strategy is needed if the estimate is negative. Thus, the

sign of each parameter estimate provides information

regarding which decision variable needs to be increased

or decreased. However, the winning probability, ob-

tained from the sigmoid model, does not immediately

imply that the trader can always win in a wholesale

market with the estimated probability. That is a

theoretical guess. The win or lose is determined through

the DA and RT market mechanism.

Exponential Utility function: It is assumed that all the

traders have an exponential utility function. The utility

function represents a risk aversion preference. Mathe-

matically, the exponential utility function employed in

this study is expressed by U(Rj(z)t)=1−EXP(−ζRj(z)t)

on Rj(z)t≥0, where ζ indicates a parameter to express

the level of risk aversion. The utility function is a

smooth concave function. Different ζ values represent

different risk-hedge behaviors of traders.

Returning to Eq. (A-3), the utility value (ϕj(z)t) for a

reward (Rj(z)t) of the wholesaler is given by ϕj(z)t=1

−EXP(−ζRj(z)t). Hence, given ϕj(z)t, the reward is

expressed by

RjðzÞt ¼ �lnð1� /jðzÞtÞ=f

¼ ̂c0 þ ̂c1djðzÞt þ ̂c2kjðzÞt; ðA� 5Þ

where “ln” stands for a natural logarithm. After

obtaining the parameter estimates of the sigmoid

model, along with a given utility value or its range;

the wholesaler considers a bidding strategy for the next

period. In this study, the bidding strategy for the next

period (t+1) is specified as follows: λj(z)t+1→λj(z)t
+τΔj(z)t

λ ) and δj(z)t+1→δj(z)t+τΔj(z)t
δ ,where Δj(z)t

λ =λj(z)

t
U−λj(z)t

L and Δj(z)t
δ =δj(z)t

U −δj(z)t
L . The prescribed quanti-

ties (λj(z)t
U and λj(z)t

L ) indicate the upper and lower bounds

on λj(z)t, respectively. The other prescribed quantities (δj

(z)t
U and λj(z)t

L ) also indicate the upper and lower bounds

on δj(z)t. In this case, we need to identify these quantities

from the upper and lower bounds of previous bidding

amounts. An unknown parameter (τ) indicates the

magnitude of such a bidding change. Along with the

changes and given ϕj(z)t+1, Eq. (A-5) becomes

�lnð1� /jðzÞtþ1Þ=f ¼ ̂c0 þ ̂c1ðdjðzÞt

þ sDd
jðzÞtÞ þ ̂c2ðkjðzÞt

þ sDk
jðzÞtÞ: ðA� 6Þ

From Eq. (A-6), the magnitude variable is deter-

mined by

s ¼ � lnð1� /jðzÞtþ1Þ=fþ ̂c0 þ ̂c1djðzÞt þ ̂c2kjðzÞt

� �

� ̂c1D
d
jðzÞt þ ̂c2D

k
jðzÞt

� �

ðA� 7Þ

Thus, we can determine the magnitude of a bidding

change (τ) along with a previously determined strategic

direction. Different utility values produce different

magnitudes of τ, consequently generating different

bidding prices and amounts for the j-th wholesaler.

[The description on the utility function of the wholesaler

can be extended to that of the i-th generator in a similar

manner.]

Algorithm: Based upon the signs of parameter

estimates of the sigmoid model obtained from the KA

process, the j-th wholesaler in the z-th zone has nine

different bidding strategies (with t=1 as the start):

Step 1: Set initial bidding variables from the KA

process. A forecasting method (e.g., moving average

and exponential smoothing) with different time periods
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is used to compute the initial bidding variables. Also, set

the upper (δj(z)t
U and λj(z)t

U ) and lower (δj(z)t
L and λj(z)t

L )

limits from the KA process.

Step 2: Use OLS to obtain parameter estimates of the

sigmoid model from the KA process. Obtain the

magnitude of a bidding change (τ) from an exponential

utility function.

Step 3: Based upon the signs of parameter estimates,

the decision variables on bidding are changed as follows:

(a) If ̂c1N0 & ̂c2N0; then ðdjðzÞtþ1; kjðzÞtþ1Þ

¼ djðzÞt þ sDd
jðzÞt; kjðzÞt þ sDk

jðzÞt

n o

:

(b) If ̂c1N0 & ̂c2 ¼ 0; then ðdjðzÞtþ1; kjðzÞtþ1Þ

¼ djðzÞt þ sDd
jðzÞt; kjðzÞt

n o

:

(c) If ̂c1N0 & ̂c2b0; then ðdjðzÞtþ1; kjðzÞtþ1Þ

¼ djðzÞt þ sDd
jðzÞt; kjðzÞt � sDk

jðzÞt

n o

:

(d) If ̂c1 ¼ 0 & ̂c2N0; then ðdjðzÞtþ1; kjðzÞtþ1Þ

¼ djðzÞt; kjðzÞt þ sDk
jðzÞt

n o

:

(e) If ̂c1 ¼ 0 & ̂c2 ¼ 0; then ðdjðzÞtþ1; kjðzÞtþ1Þ

¼ djðzÞt; kjðzÞt
� �

:

(f) If ̂c1 ¼ 0 & ̂c2b0; then ðdjðzÞtþ1; kjðzÞtþ1Þ

¼ djðzÞt; kjðzÞt � sDk
jðzÞt

n o

:

(g) If ̂c1b0 & ̂c2N0; then ðdjðzÞtþ1; kjðzÞtþ1Þ

¼ djðzÞt � sDd
jðzÞt; kjðzÞt þ sDk

jðzÞt

n o

:

(h) If ̂c1b0 & ̂c2 ¼ 0; then ðdjðzÞtþ1; kjðzÞtþ1Þ

¼ djðzÞt � sDd
jðzÞt; kjðzÞt

n o

:

(i) If ̂c1b0 & ̂c2b0; then ðdjðzÞtþ1; kjðzÞtþ1Þ

¼ djðzÞt � sDd
jðzÞt; kjðzÞt � sDk

jðzÞt

n o

:

Step 4: Compute dj(z)t
1 and pj(z)t

1 , using (δj(z)t, λj(z)t),

and submit the bids to the DA market. If t=T, then stop.

Otherwise, go to Step 5.

Step 5: If the wholesaler loses, then drop information

on the current bidding variables and go to Step 1. If the

wholesaler wins, then go to Step 6.

Step 6: Add information on the current bidding

variables into the KA process and go to Step 1.

Note that (a) even if a trader keeps the same strategy,

his/her market result may be different from the previous

one, because the wholesale market determines the price

and amount of power allocation. (b) In Step 3 for each

generator, the generator has 27 (=3×3×3) bidding

strategies, as structured for the wholesaler. The three

parameters need to be considered in the algorithmic

steps for the generator. (c) The algorithm proposed for

DA can be applied to the bidding price and quantity of a

generator for RT in a similar manner.
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