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Abstract

The COVID-19 epidemic created, at the time of writing the paper, highly unusual and uncertain socio-economic conditions. 

The world economy was severely impacted and business-as-usual activities severely disrupted. The situation presented the 

necessity to make a trade-off between individual health and safety on one hand and socio-economic progress on the other. 

Based on the current understanding of the epidemiological characteristics of COVID-19, a broad set of control measures has 

emerged along dimensions such as restricting people’s movements, high-volume testing, contract tracing, use of face masks, 

and enforcement of social-distancing. However, these interventions have their own limitations and varying level of efficacy 

depending on factors such as the population density and the socio-economic characteristics of the area. To help tailor the 

intervention, we develop a configurable, fine-grained agent-based simulation model that serves as a virtual representation, 

i.e., a digital twin of a diverse and heterogeneous area such as a city. In this paper, to illustrate our techniques, we focus our 

attention on the Indian city of Pune in the western state of Maharashtra. We use the digital twin to simulate various what-if 

scenarios of interest to (1) predict the spread of the virus; (2) understand the effectiveness of candidate interventions; and 

(3) predict the consequences of introduction of interventions possibly leading to trade-offs between public health, citizen 

comfort, and economy. Our model is configured for the specific city of interest and used as an in-silico experimentation aid 

to predict the trajectory of active infections, mortality rate, load on hospital, and quarantine facility centers for the candidate 

interventions. The key contributions of this paper are: (1) a novel agent-based model that seamlessly captures people, place, 

and movement characteristics of the city, COVID-19 virus characteristics, and primitive set of candidate interventions, and 

(2) a simulation-driven approach to determine the exact intervention that needs to be applied under a given set of circum-

stances. Although the analysis presented in the paper is highly specific to COVID-19, our tools are generic enough to serve 

as a template for modeling the impact of future pandemics and formulating bespoke intervention strategies.

Keywords Covid19 pandemic · Digital twin of city · Agent based simulation · Simulation based control · What-if analysis

Introduction

In the midst of a pandemic like COVID-19, one of the key 

priorities of the public health administration is to understand 

the dynamics of the transmission of the pathogen (World 

Health Organization 2020; Organization et al. 2020) and use 

that knowledge to design effective control measures to keep 

its impact on public health within manageable and tolerable 

limits. In case of COVID-19, while the characteristics of 

the virus (i.e., mode of transmission and the typical trajec-

tory of infection in an individual) are known to an extent 

from the existing research (World Health Organization 2020; 

Asadi et al. 2020; Cai et al. 2020; Wang et al. 2020; He et al. 

2020a, b), the dynamics of its transmission and spread in a 
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heterogenous population is not fully understood. It is known, 

though, that the spread of infection is related to people’s 

movement, the nature of the area where people congregate 

(open-air versus closed), and number and frequency of 

proximal contacts. It is also known the demographic factors 

and comorbidity play a role in the spread of infection as 

well as its lethality. Therefore, the primary non-pharmaceu-

tical intervention (NPI) of the public health authorities has 

been to restrict people’s movement to varying degrees, i.e., 

through the so-called lockdowns. In addition to saving lives, 

lockdowns have been the primary instruments for managing 

the load on local healthcare systems.

The economic impact of the lockdowns imposed in 2020 

has been recorded as being amongst the most adverse phe-

nomena to impact the world economy (Fernandes 2020). 

Until the pandemic is brought under control through large-

scale availability of medication or vaccines, the administra-

tors need to decide whether or not lockdowns are needed, 

and their nature and duration. As such, there is no universal 

formula for answering these questions. This is because the 

dynamics of the spread of COVID-19 depend heavily on 

individual localities: their demographic profile, the preva-

lent social etiquette, the capacity of their healthcare systems, 

whether or not people comply with the administrative rec-

ommendations, etc. Therefore, devising effective tools and 

models (possibly on a continuously changing basis) to help 

administrators take decisions at a local level is an urgent 

requirement in the midst of the pandemic.

Use of statistical and mathematical models to understand 

the spread of a pathogen and to explore effective control 

measures is a well-established decision-making aid (Heth-

cote 1989; Marathe and Vullikanti 2013). A wide range of 

modeling, data visualization, and interpretation techniques 

have been developed to predict the spread of COVID-19 

and to explore the efficacy of NPIs (Wynants et al. 2020). 

While some models have been found to be useful for explor-

ing NPIs in a specific geography, others have been found 

wanting for their accuracy of prediction (Holmdahl and 

Buckee 2020). We believe that a universal model to pre-

dict the efficacy of NPIs for all geographies, countries, and 

cities across the world is a difficult proposition. Instead, a 

purpose-specific, locality-based, fine-grained model address-

ing a set of relevant aspects of interest can play a crucial role 

in decision-making for controlling the pandemic.

Contribution

In this paper, we develop a purpose-specific, configurable, 

extensible model of a city (referred to as a purposive digital 

twin of a city) which can be considered as a virtual envi-

ronment to explore various hypotheses or interventions that 

policy-makers and public health practitioners might want 

to assess. Principally, we consider a city as an exceedingly 

complex system (Grieves and Vickers 2017), leverage the 

benefits of agent-based modeling paradigm (Macal and 

North 2009) [in compliance with epidemiological COVID-

19 specific models (Silva et al. 2020; Rockett et al. rock-

ett2020revealing; Agrawal et al. 2020; Kerr et al. 2020)], and 

rely on bottom–up simulation techniques to observe coarse-

grained emergent properties of the system.

As shown in Fig. 1, the digital twin captures four aspects 

of interest: 

1. Epidemiological aspect: Virus characteristics (Wang 

et al. 2020; He et al. 2020a, b).

2. Demographic aspect of the city: People archetypes, 

household structure, age, gender, and comorbidity of 

the population.

3. Stochastic and context-specific socio-spatio-temporal 

movements of the population: Movements specific to 

place, people, archetype, or profession during business-

as-usual circumstances as well as under specific inter-

ventions.

4. NPIs (referred to as interventions in this paper): These 

include administrative interventions (such as closure of 

offices, shops, and schools or restrictions on business-as-

usual movements of people), healthcare-specific inter-

ventions (such as testing, contact-tracing, and quaran-

tine strategies) and interventions to promote appropriate 

social etiquettes (such as mask usage and social-distanc-

ing).

Unlike SIR/SEIR models (Li and Muldowney 1995; Agrawal 

et al. 2020), we do not explicitly model global behavioral 

patterns and infection spread dynamics using a set of differ-

ential or difference equations. Instead, we start by classifying 

Fig. 1  Schematic of the digital twin of a city and the aspects of inter-

est
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a city into a set of locality types (e.g., a residential area for 

well-to-do people with some shops and offices or a busy 

marketplace with low-income group residences and an 

office area). Thus, a locality type captures the people, place, 

and mobility characteristics succinctly. Each locality type 

is specified in terms of the necessary and sufficient agent 

types, each of which captures the state and the behavior of 

a real individual and their interaction with other individu-

als at a fine-grained level. Agent behavior is probabilistic, 

reflecting the choice of actions available with an individual 

to respond to an event of interest. Locality-level behavioral 

patterns emerge from the behavior of individual agents and 

their interaction with other agents. These behavioral pat-

terns provide fine-grained information regarding who can 

come in proximal contact with whom in a given time frame. 

Combining this information with virus characteristics and 

with the health-related parameters and comorbidities of indi-

vidual agents, we can determine how the infection spreads in 

a given locality using simulation. City-level infection spread 

can thus be arrived at inductively and can be used by the 

public health authorities to assess healthcare requirements 

and plan their intervention accordingly.

It is well known that different localities may require dif-

ferent kinds of intervention to control the spread of infection. 

The fine-grained nature of our model allows us to predict the 

efficacy of intervention techniques for individual localities, 

considering the differences between individual localities, 

and thus arrive at a bespoke optimal intervention for indi-

vidual localities. For example, it is expected that a densely 

populated slum may require a strict lockdown and institu-

tional quarantine centers where mildly infected patients can 

stay for 14 days, whereas a residential area for well-to-do 

people with some shops and offices can allow freer move-

ment with mildly infected patients being quarantined inside 

their homes. By exploiting the simulatable nature of our city 

digital twin, we can validate of efficacy of such interventions 

in a quantitative manner.

Furthermore, while lockdowns or restrictions on business 

operations can mitigate the infection rates in some areas, 

these interventions hamper the growth or revival of an 

economy. A pragmatic solution, in all probability, will thus 

involve a set of locality-specific interventions that provide 

an acceptable trade-off between the spread of the infection 

and economic growth. The nature of this trade-off may vary 

from time to time, depending on the state of the pandemic, 

and socio-economic and political factors. The simulatable 

nature of city digital twin can provide a quantitative means 

of arriving at the desired trade-off.

We specify agent types using an actor-based language1. 

We populated the city digital twin as a set of interacting 

agents using the data available with city authorities and 

public health service agencies. We applied a robust con-

struction, validation, and exploration methodology that has 

been extensively used for analyzing complex systems (Barat 

et al. 2017, 2019; Kulkarni et al. 2019). Authors from Prayas 

Health Group2 validated all assumptions related to epide-

miological and demographic aspects. Authors from Tata 

Consultancy Services Research3 ensured correctness of city 

digital twin from a modeling perspective.

In this paper, we show how our fine-grained digital twin 

model can be used to predict and control the spread of 

COVID-19 virus in Pune City4. We specify (1) the epidemi-

ological aspect using data published in peer-reviewed medi-

cal journals; (2) the demographic and movement aspects 

from official data available with Pune Municipality Corpora-

tion (PMC) and from the census data; and (3) interventions 

imposed in different localities/wards in the city from March 

25, 2020 till date. The digital twin is first validated by corre-

lating simulation results with the official data available with 

PMC and fine-tuned by interpreting various key parameters. 

The validated digital twin is then used to predict the spread 

of COVID-19 and estimate the load on the healthcare infra-

structure for various candidate interventions. At the time of 

writing the paper, we note that our predictions continue to 

closely match the actual, recorded statistics as the epidemic 

unfolded in Pune5.

While COVID-19 is part of the central theme of this 

paper, we recall how it has been widely advocated that the 

world needs to ensure a high level of preparedness for future 

pandemics, especially those caused by respiratory pathogens 

[see, for instance, Nuzzo et al. (2019)]. In this context, this 

paper must be seen not just as an exposition of our work 

on COVID-19 but as the presentation of a more general 

framework that is equally applicable to other pandemics 

and locales.

Organization

The remainder of this paper is organized as follows. Sec-

tion 2 reviews different types of models, their capabilities, 

and limitations, justifying the need for a city digital twin. 

Section 3 presents technical details of our model. Section 4 

describes how the model is configured and used for PMC. 

Section 5 evaluates the approach. Section 6 summarizes the 

paper and suggests directions for future work.

1 http://www.esl-lang.org.

2 https ://www.praya spune .org/healt h.
3 https ://www.tcs.com/creat ing-a-syste m-of-syste ms.
4 https ://en.wikip edia.org/wiki/Pune.
5 https ://india nexpr ess.com/artic le/citie s/pune/pune-peak-load-on-

criti cal-healt hcare -to-be-susta ined-until -oct-end-65620 08/.

http://www.esl-lang.org
https://www.prayaspune.org/health
https://www.tcs.com/creating-a-system-of-systems
https://en.wikipedia.org/wiki/Pune
https://indianexpress.com/article/cities/pune/pune-peak-load-on-critical-healthcare-to-be-sustained-until-oct-end-6562008/
https://indianexpress.com/article/cities/pune/pune-peak-load-on-critical-healthcare-to-be-sustained-until-oct-end-6562008/
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Exploration of the State‑of‑the‑Art

Statistical and mathematical models (Marathe and Vul-

likanti 2013) often play a significant role in pandemic-

related decision-making (Rhodes et al. 2020). For example, 

variants of susceptible-infected-recovered (SIR) models 

(Bailey et al. 1975) have been used for projecting infection 

transmission, understanding the load on medical infrastruc-

ture, and exploring control mechanisms for pandemics like 

HIV (Hallett et al. 2014), Hepatitis C (Martin et al. 2011), 

Severe Acute Respiratory Syndrome (SARS) (Lipsitch et al. 

2003), H1N1 (Ferguson et al. 2006), and Ebola (Chretien 

et al. 2015).

Categorically, these models can be broadly divided into 

two types—(1) statistical models backed by experimental 

and/or historical data, and (2) computational models that 

faithfully represent the context under consideration. Com-

putational models can be further divided into compartmental 

and agent-based (or microsimulation) models.

Statistical models (Simonsen et al. 2013; Samsuzzoha 

et al. 2013; COVID et al. 2020) predict the spread of a 

pathogen by estimating key epidemiological parameters, 

e.g., basic reproduction number (referred to as R
0
 ) and the 

doubling time, from historical and real-time data collected 

from a specific area. These models are found to be useful 

only for the areas from where the data are collected and ana-

lyzed (Peng et al. 2020; Holmdahl and Buckee 2020) This is 

because, as explained in the previous section, the transmis-

sion of a pathogen depends significantly on local social fac-

tors. In the context of COVID-19, the construction of such 

statistical models for a specific city or country is a difficult 

proposition due to the unavailability of necessary data and 

lack of veracity of the available data: while data pertaining 

to hard-facts such as the number of deaths and the number 

of hospitalized people are known fairly accurately, the same 

cannot be said of the number of asymptomatic and mildly 

symptomatic patients in the geography under consideration.

SEIR Models

Compartmental models, chiefly the many variants of 

SIR and SEIR (Li and Muldowney 1995) models, rep-

resent different stages of infection (i.e., Susceptible, 

Exposed, Infected, Recovered, and Dead) as a set of com-

partments, and define the flow rules from one compartment 

to another in terms of differential or difference equations. 

In essence, compartmental models are constructed over an 

aggregated, homogenous population using a top–down mod-

eling methodology. Among the wide variations and exten-

sions of SIR model, the classic susceptible-exposed-infec-

tious-recovered (SEIR) model has been widely adopted for 

COVID-19 (Prem et al. 2020; Agrawal et al. 2020; Keeling 

et al. 2020; Teimouri 2020; Guan et al. 2020; Radulescu and 

Cavanagh 2020). It has been extended along two dimensions: 

(1) types of compartments, where stages such as asympto-

matic, mild symptomatic, severe, hospitalized, quarantined, 

etc. augment the traditional compartments of SIR and SEIR 

models, and (2) stochasticity and temporal delays are added 

in the transition dynamics to model the uncertainty in aggre-

gated movement from one compartment to other. For exam-

ple, Giordano et al. (2020) use an extended SEIR model to 

capture eight distinct compartments: Susceptible, Infected, 

Diagnosed, Recognized, Ailing, Healed, Threatened, and 

Extinct stages of infection. The effects of various social-

distancing interventions to control transmission and reduce 

the burden on healthcare system have been studied using 

an age-structured SEIR model (Prem et al. 2020) which is 

further extended to explore contact-tracing (Keeling et al. 

2020; Agrawal et al. 2020).

From a modeling perspective, the key limitations of 

SEIR-based models are twofold: (1) inclusion of realistic 

(e.g., socio-economic) features requires a large number of 

compartments and parameters, increasing the difficulty of 

calibrating and validating the model parameters (Kerr et al. 

2020), and (2) SEIR models are inherently unable to capture 

heterogeneities such as demographic and geographic char-

acteristics (e.g., slum, well-to-do locality, housing societies 

etc.), household structure and dynamics (which is associ-

ated with almost 60–70% of total infection), and professional 

archetypes (Radulescu and Cavanagh  2020). The accuracy 

of SEIR-based models for COVID-19 is also questionable 

due to two key reasons. First, these models consider the esti-

mated reproduction number [so-called R
t
 ] to calculate the 

aggregate movement of population from the ‘susceptible’ 

compartment to the ‘exposed’ or ‘infected’ compartments 

(i.e., S → E or S → I). The computation of R
t
 depends on his-

torical or live data, and is specific to individual geographic 

areas. Finally, the movement from I (i.e., Infected) to R (i.e., 

recovered or dead) is grossly aggregated in SIR and SEIR 

models, usually ignoring the effect of demographic charac-

teristics (e.g., age, comorbidity, and gender) of individuals.

Agent‑Based Models

Agent-based modeling (ABM) can address some of the 

inherent limitations of SEIR/SIR models as it is capable of 

capturing the inherent heterogeneity of most populations. 

It allows individual (and heterogeneous) micro-elements 

within a given population or area to interact with each other 

(thus accurately reflecting the reality) to produce emergent, 

verifiable macro-behavior.

The ABM paradigm has been used as an aid to understand 

the spread of COVID-19 and the impact of interventions 

such lockdowns, contact-tracing, and social-distancing. For 

example, ABM has been used to understand the efficacy 
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of social-distancing and school closure in Australia (Chang 

et al. 2020). An agent-based simulator for an influenza epi-

demic has been repurposed to estimate the likelihood of 

human-to-human transmission of COVID-19 in a synthetic 

Singaporean population (Koo et al. 2020). Here, the authors 

showed how and why some interventions such as quarantine, 

school closure, and workplace distancing are more effective 

for the Singaporean population as compared to local contain-

ment and strict lockdowns. ABM has been used to assess 

public health measures or non-pharmaceutical interventions 

(NPIs) for reducing the contact rates (and thereby reducing 

the transmission of the virus) in the UK (Ferguson et al. 

2020). A similar study has been conducted for the Indian 

cities of Mumbai and Bangalore in Agrawal et al. (2020).

ABM is also used for several micro-level analyses: a 

three-layer agent network (that includes school, household, 

and a joint workplace community as layers) with a stochas-

tic behavioral model was adopted to represent a synthetic 

population of Boston Metropolitan Area and to simulate 

the efficacy of social-distancing and contact-tracing (Aleta 

et al. 2020). A similar synthetic population of a metropolitan 

area in the United States was constructed by considering 

four place archetypes (i.e., household, school, work, and 

other) to understand the efficacy of NPIs, such as work-

from-home, liberal leave, home isolation, self-isolation, 

and home isolation with household quarantine of ascertained 

cases (Chao et al. 2020). Kerr et al. (2020) have developed 

an open source agent-based simulator called Covasim to 

explore a wide set of interventions such as physical distanc-

ing, hygiene measures, and testing-related interventions that 

include symptomatic and asymptomatic testing, contact-

tracing, and quarantine. Conceptually, it captures (1) age 

and population size-specific demographic information, (2) 

transmission networks of four social population archetypes 

(viz., households, schools, workplaces, and communities), 

and (3) age-specific disease severity (or age-specific epi-

demiological aspect, in the context of Fig. 1). ABMs have 

also been reportedly6 used in collaboration with local health 

agencies and policy-makers to interventions such as reo-

pening of schools in the United Kingdom, fever-screening 

in Nigeria, partial workplace and community reopening in 

Australia, and epidemic projections for Eswatini and in the 

American states of Oregon, Colorado, and Washington.

Overall, agent-based modeling demonstrates its ability 

to model the inherent heterogeneity of the population and 

household structures, age-specific variation of epidemiologi-

cal characteristics, and microscale variations of intervention 

policies. It also helps to simulate how a situation can emerge 

from the interactions of multiple heterogeneous agents with 

relatively known temporal, spatial, and spatio-temporal 

behavioral patterns i.e., movements of individuals, contact 

propensity, disease progression probability, and mortality. 

While it shows a clear benefit over statistical and compart-

mental model, the key limitation of this model is inherent 

computational complexity—it is computationally expensive 

and difficult to scale as all individual elements, such as citi-

zens, places, transport infrastructure, and their individual-

istic behaviors, need to be modeled and simulated. Moreo-

ver, this calls for fairly detailed understanding of individual 

elements at least at archetype level. Therefore, agent-based 

model is well suited for analyzing localized contexts such as 

a locality or a city as opposed to entire country.

ABM in the Indian Context

In our view, existing agent-based models (Kerr et al. 2020; 

Chang et al. 2020; Koo et al. 2020) for pandemic control fall 

short of addressing the high level of heterogeneity associ-

ated with India, e.g., the Indian population includes a wide 

range of professional archetypes with a uniquely rich set of 

characteristics and local variations, a large variety of places 

where people come together, a large variety of reasons for 

different groups of people to come together, place-specific 

movement characteristics, and a large set of possible local 

interventions. Most of the agent-based models reported in 

literature consider three professional archetypes (namely: 

office-goers, school students, and others), age structure (clas-

sification at 5–10 year intervals), and two levels of interac-

tion patterns, namely: interactions at home and interactions 

at public place, where public places include office, school, 

and other place.

Agent-based model proposed by TIFR and IISc (Agrawal 

et al. 2020; Harsha et al. 2020) have considered several het-

erogeneous demographic characteristics while analyzing the 

Indian cities of Mumbai and Bangalore. Their model consid-

ers house, school, college, office, factory, shop, commute 

medium (mainly train), and community space along with the 

other typical demographic aspects, such as age, gender, and 

comorbidity. The key limitations of their model are three-

fold: (1) they have considered the mean size of households 

in their final computation, which fails to bring out the key 

differences in the household structure of slums, residential 

areas for well-to-do people, households with senior mem-

bers, etc.; (2) household infection, place-specific infection, 

and severity-specific counts (i.e., number of asymptomatic, 

symptomatic, and severely infected individuals) are com-

puted using a set of aggregated equations (Agrawal et al. 

2020) thus generalizing individualistic behaviors to an 

extent, and (3) a generalized and simple temporal model 

is used to specify the physical movement of individuals, 

thereby ignoring the daily and weekly temporal variations 

such as those in the crowding seen in public spaces, in the 

load on the public transport during various time of a day 6 Optima Consortium for Decision Sciences http://optim amode l.com.

http://optimamodel.com
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(e.g., office/school/factory hours), in public gathering at 

places of worship at specific times on a given day, or in the 

weekend crowding at malls.

Since our primary objective is to capture Indian cities , 

we consider fine-grained India-specific specializations along 

demographic aspect, movement aspects, and intervention 

aspects. We keep the epidemiological aspect unchanged 

from that reported in the literature (i.e., person-to-person, 

aerosol-based, and fomite-based transmissions). 

1. Demographic: Wide range of household structures with 

varying areas, a wide range of family size from two to 

ten members, a wide range of professions (e.g., office-

goers, workers, shop owners, drivers, housemaid, house-

wife, bank employee, school, and college students), a 

wide range of transport infrastructure, age range from 

0 to 80 +, genders, and comorbidities such as hyperten-

sion, diabetes, and chronic pulmonary diseases (CPDs).

2. Movement and contact: People’s movements and con-

tact are complex, uncertain, and they exhibit significant 

heterogeneity along social, spatial, and temporal dimen-

sions. For example, the movements and the contact pro-

pensity of office-goers can be different when they are in 

office, at home, in a shopping mall, or at a local shop. 

The footfall at all of these places is strongly dependent 

on the time of the day as well as the day of the week. 

Similarly, the contact rate of any given office-goer (or 

any other archetype) may differ significantly depend-

ing on their choice of commute (e.g., own car, shared 

cab, or public transport). We capture this heterogeneity 

by introducing a large (and extensible) list of places in 

our simulator, such as school, college, (large or small) 

office, factory, marketplace, shopping mall, local shop, 

wholesale market, place of worship, etc.

3. Intervention: The availability of such fine-grained ele-

ments in our digital twin model allows us to explore 

several micro-level temporal interventions (that are seen 

in the lockdown and the unlock process in India), such 

as time-dependent curfew, partial time-dependent clo-

sure of non-essential shops, closure of places of worship, 

limitations on public gathering, restrictions imposed on 

domestic help, etc.

In the next section, we present the details of our meth-

odology and a fine-grained model for a city-specific digital 

twin.

Methodology: Digital Twin of a City

General Principles

We visualize a city as a complex, dynamic system of systems 

(Boardman and Sauser 2006), whose macro-behavior (i.e., 

how a pandemic unfolds in the city with/without interven-

tions) emerges from the behavior of its constituent micro-

elements and their interactions, as shown in Fig. 2. Each of 

these constituent micro-elements has its own state, charac-

teristics, and stochastic socio-spatio-temporal behavior.

From a system theoretic perspective, we characterize each 

micro-element as modular (i.e., encapsulates its own state, 

properties/characteristics, behavior and historical states/

traces), reactive (i.e., interacts with other elements), com-

posable (i.e., can be combined to form a larger element, e.g. 

place), autonomous (i.e., can act pro-actively without wait-

ing for an external stimulus), and adaptive (i.e., can change 

its behavior over time). Moreover, these elements exhibit 

probabilistic spatio-temporal characteristics. It is cognizant 

of spatial relationship to exhibit place-specific behavior and 

to assess proximity with surrounding elements. Its behavior 

is cognizant of time and of progression of time.

We realize these micro-elements as extended forms of 

‘Agents’ (Barat 2018), where the canonical form of agent/

actor abstraction (Agha et al. 1997; Macal and North 2009) 

is extended to capture the desired composability, uncer-

tainty, spatio-temporal characteristics, and adaptation. An 

extended form of composition is considered for representing 

places like household, office, sub-area representing slum, 

and area for well-to-do population. We also consider relevant 

commuting means (e.g., bus, shared cab, and private cabs) 

of individual as a composite agent, since it has its own state 

(i.e., number of individuals and infected area), characteris-

tics (i.e., area and capacity), and behavior (e.g., shared cab 

has one driver and passengers join and move out of vehicle).

Fig. 2  Key concepts and relationships for the actor model
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Individual Citizens

A citizen has its own state about infection (e.g., susceptible, 

exposed, mildly infected, severely infected, and recovered) 

and location (e.g., staying at home or visiting workplace). 

They have individualistic characteristics, such as age, gen-

der, comorbidity, and profession (e.g., office-goers, worker, 

students, and housewife). From behavioral perspective, 

each citizen may move from one place to other as the day 

progresses. These movements are uncertain and exhibit 

spatio-temporal characteristics—essentially a movement of 

an individual is a function of place, profession, and state 

of the individual. For example, a healthy office-goer may 

go to office during the weekdays and may have some pro-

pensity to shop for groceries or at a mall, and visit recrea-

tional places during weekends. In a given place, a citizen 

may move within that place and may come in contact with 

other citizens for a varying time and proximity. The same 

citizen is likely to exhibit significantly different movement 

pattern when unwell (the aforementioned adaptive property 

of agents). Here, we consider that all citizens are rational; 

emotive and psychological aspects of individual are not con-

sidered in this paper.

Epidemiological Aspect

From an epidemiological perspective, an infected citizen 

emits virus not only when sneezing and coughing but even 

while breathing normally. This leads to possible infection 

transmission either through person-to-person or through 

person-to-surface area-to-person (within a stipulated time). 

The transmission probability of person-to-person (through 

aerosol), person-to-surface-area, and surface-area-to-person 

(fomite infection) depends upon the virus characteristics 

which may change as virus mutates—we are not consider-

ing virus mutation in this paper.

Places

A place has a state (i.e., collective state of the individuals 

who are in the place), a set of properties or characteristics 

(such as area, operating hours and professions of permitted 

citizens), and behavior. The behavior of a place typically 

emerges from the behavior of its constituent micro-elements, 

i.e., citizens visiting/staying there. Infectiousness of these 

citizens, duration of their stay at the place, and plausible 

proximity of possible contacts play a role in virus spread 

dynamics of the place.

Digital Twin of a City

Holistically, a city is virtually represented as a digital twin 

by mimicking the state, the characteristics, and the behavior 

of all relevant constituent elements as interacting agents. The 

constructed digital twin is then used for understanding the 

spread of virus by simulating the behavior of the constituent 

agents and their interactions.

All agents of the constructed digital twin are first instanti-

ated to the same states as reality and an estimated number 

of infected citizens are introduced in the digital twin. The 

behavior of all agents is simulated by triggering a sequence 

of discrete events that represent an hour (e.g., a simula-

tion tick). We simulate the digital twin for pre-defined time 

epochs to understand how the pandemic unfolds in the city. 

This is compared with the real-life data for the same time 

epoch when the simulation is carried out post facto. The city 

digital twin thus validated is then used to check effectiveness 

of a candidate set of interventions through simulations.

The interventions (e.g., temporal restriction on move-

ments, closure of specific places and commuting means, 

isolation of infected citizens through testing and contact-

tracing, and mask adoption) are specified by introducing 

parametric changes in the characteristics and behavioral 

aspects of the agents. We adopt a systematic well-established 

three-step modeling and simulation methodology (Sargent 

2013) to construct the digital twin of a city and use it for 

quantitative analysis. The steps are: (1) construction of a 

purposive digital twin of a city (a generic model for Indian 

cities), (2) contextualization and validation, for a specific 

city, and (3) experimentations and what-if scenario playing. 

These are explained in the following sections.

Constructing the City Digital Twin

We visualize a city digital twin as an extensible parameter-

ized agent model that captures four interrelated aspects, 

namely, demographic, movements, epidemiological, and 

interventions, as highlighted in Fig. 1. Figure 3 depicts the 

meta-model of city digital twin.

Demographic Aspect

To support the wide spectrum of demographic heterogene-

ity of typical Indian cities in city digital twin, we consider 

variations of area specific population density, household 

structure and family size, occupational archetypes of local 

population, and three commonly considered demographic 

factors, namely: age, gender, and comorbidity of individuals.

As shown in Fig. 3, a city is a collection of administrative 

units or Wards, where each ward can be visualized as a set 

of Localities with unique characteristics in terms of 

Citizens, Households, and Commercial Places. 

The citizens have three properties namely age, gender, 

and comorbidity, where we consider three comorbidi-

ties, namely: Hypertension, Diabetes, and Chronic 

Obstructive Pulmonary Disease (COPD) that 
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majorly influence severity of infection. A citizen belongs to 

a specific citizen Archetype as shown in the figure.

We have 21 types of household structures and 15 citizen 

archetypes. The household structures range from 2-mem-

ber family (1M1F, i.e., 1 Male and 1 Female) to 12-mem-

ber family (3M3F4C2S, i.e., 3 Male, 3 Female, 4 Children, 

and 2 Senior Citizens) that cohabit a house having specific 

area, which is a parameter for contextualization. Citizen 

archetypes cover a wide range that include commonly used 

archetypes, as seen in other agent-based models, such as 

Kid, College Student, Senior Citizen, and Office-goers. The 

list contains a set of unique and representative occupational 

archetypes. For example, a Bank Staff is different than 

Office-goers as they interact with other bank staffs and 

also with bank customers; a Cab Driver keeps interact-

ing with varying number of passengers for different time 

span throughout the day; and a Housemaid visits multiple 

households and interacts with a fixed set of family members 

for close to 1 h or more in a day. Similarly, small shop keep-

ers (e.g., Staff of Small Shop) interact with custom-

ers for short intervals, Wagers mostly work in congested 

places, and Hairdressers come in extended contact with 

their customers. Therefore, they have different propensity 

of getting and spreading infection while going about their 

daily routines.

Like household and citizen archetype, Commercial 

Place is also an extensible model element with 19 default 

commercial places, as shown in Fig. 3. Each commercial 

place has specific area (property of model element Place), 

and operating hours. These places have time-varying citizen 

visiting patterns and population densities over a day and 

over weekends. Therefore, they contribute differently in 

spreading infection (specific details are discussed in move-

ment aspect).

Demographically, we visualize a city as a set of proto-

typical wards. Each ward is a combination of well-to-do 

and slum localities with representative set of households 

(with different structure and area), citizens (with different 

age, gender, comorbidities, and archetype), and commer-

cial places. For example, a locality can be formed using 

two offices, three schools, hundreds of local shops, tens of 

barber shops, hundreds of clinics, and thousands of house-

holds with varying number of family members. Citizens 

from well-to-do localities may stay in relatively bigger 

houses with few family members as compared to slum area. 

Predominantly, the citizens from well-to-do area are office-

goers, bank employees, health worker, and from other white-

collar professions. On the other hand, slum areas are densely 

populated, and have smaller houses with bigger families. 

Typically, the citizens from slum area are engaged in profes-

sions (e.g., daily worker, drivers, housemaid, and restaurant 

staffs) that demand long working hours, may take them to 

crowded places, and do not have a fixed workplace.

In addition, we capture the distribution of commuting 

means (i.e., own car, bus, or shared cab) of the individuals 

in a locality. City administration and municipal corporation 

offices maintain record about ward count, number of locali-

ties in a ward, locality-specific population (including their 

age and gender), number of commercial places along with 

their types, number of registered public and private vehicles, 

and public transport infrastructure. For information related 

to comorbidity, guestimates available with healthcare organ-

izations can be used.

Fig. 3  Meta-model of city 

digital twin
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Movements

Business-as-usual movements of citizens can be broadly 

classified into movements within a Place (e.g., within 

office, school, and mall) and movements between places 

(e.g., home to car, car to office, office to shop, and shop to 

home). These movements depend on the demographic fac-

tors as well as the state of the citizens and are stochastic in 

nature. The key factors are: citizen archetype (who is the 

person), place archetypes (where the person is), and current 

time (when).

The movement within a place is inherently random; how-

ever, we adopt a rationalistic view to define movement pat-

terns and movement frequency of an individual at a specific 

place. Essentially, they are functions over the tuple <citizen 

archetype, place archetype>. For example, a doctor stays in a 

specific location during the clinic hours; and visiting citizens 

(patients) wait in a waiting area for specific time (a range of 

time interval) and go to doctor’s place before moving out 

of the place. Similar pattern is seen in hospital, bank, and 

barber shops. However, they may have different area and 

population density at a specific time; therefore, number and 

frequency of proximal contacts may differ significantly for 

different places. The movements within place for all <citi-

zen archetype and place archetype> tuple are defined in our 

digital twin. While most of the combinations follow well-

defined patterns, some movements are specified as random 

movements.

Movement between places can be further divided into 

three sub-categories, namely: (a) deterministic movements 

conforming to fixed pattern and time, (b) stochastic move-

ments conforming to a fixed pattern, and (c) random move-

ments. Deterministic movements conforming to fixed pattern 

and time primarily conform to three factors time of the day 

and week, state of the individual (mainly health- and infec-

tion-related state), and operating hours of the (commercial) 

place. The examples of such types of movements are: office-

goers going to office, students going to school, shop keepers 

going to shop, housemaid going to houses, and barbers going 

to barber shop. We use event–condition–action (ECA) para-

digm to specify movement for professional place for each 

archetype. We further consider distribution of commuting 

means (defined in demographic aspect) to mimic commut-

ing dynamics. The movements for professional places and 

utilization of commuting means conform to well-defined 

temporal patterns, which local administration has realistic 

guesstimate.

Stochastic movements conforming to a fixed pattern, such 

as movements to grocery shops, clinics, bank and ATM, 

eateries, barber shops, and wholesale market, are probabil-

istic in nature and conform to a repetitive pattern (daily, 

weekly, monthly, or other time interval) for each citizen 

archetype. We augment probabilistic actions in event–con-

dition–action paradigm to specify this type of movements. 

Here, local administration is usually unawre of individual 

level movements, but they have reasonable understanding 

about the average footfall of each of the places (i.e., average 

footfall in bank, ATM, and clinic) in a day. We consider 

this information to validate assumption about probabilistic 

event–condition–action specification.

Random movements, such as visit to worship place, mall, 

community space, other localities, or other households (as 

guest), exhibit significant uncertainty. We use probabilistic 

event–condition–action where triggering event and action 

both are probabilistic in nature. We use heuristics (validated 

by local administration and/or public health organization, 

such as Prayas) to specify the involved probabilities and pat-

tern for each archetype.

Due to all types of movements at different places, citizens 

make contacts with other citizens; we define a contact as a 

colocation of two or more citizens in a Surface Area of 

a place. Each citizen maintains (remembers) all its contact 

Fig. 4  Epidemiological dynam-

ics
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using contactTrace attribute of citizen (we use this 

attribute to realize contact-tracing, which is described as 

Intervention aspect).

Epidemiological Aspect

We define infection dynamics by comprehending established 

facts and peer-reviewed literatures on COVID-19 virus. 

Here, we focus on two types of dynamics, namely: infection 

transition dynamics over infection stages, and virus trans-

mission dynamics. Existing literature (He et al. 2020a, b; 

Kucharski et al. 2020) considers four prominent stages of a 

COVID-19-infected citizen, namely: susceptible, exposed, 

infected, and removed, as shown in Fig. 4. All citizens 

(irrespective of their age, gender, and other demographic 

characteristics) who are not yet infected are considered as 

susceptible. As shown in the figure, a susceptible citizen can 

be exposed to the virus either through aerosol or fomite. An 

exposed citizen becomes infectious after a time delay—typi-

cally after 3 days (this time delay is a parameter in our digi-

tal twin). In this stage, a citizen can remain asymptomatic 

or may develop mild symptoms. Subsequently, some mild 

symptomatic citizens may develop severe symptoms neces-

sitating hospitalization. Age, gender, and comorbidities of 

individual are the primary factors for progression of infec-

tion in the individual (Guan et al. 2020). All asymptomatic 

and mildly symptomatic citizens recover after a time delay 

(a parameter in the digital twin). In addition, the medical 

treatment available also determines progression of severely 

symptomatic individuals or citizens. We assume that all 

severely symptomatic citizens undergo testing and get admit-

ted to a special Hospital for COVID-19 patients, as shown 

in Fig. 3 (Covid Hospital). Recovered patients resume 

business-as-usual activities or are removed from the digital 

twin in case of death.

The transition time delays and transition propensity for 

citizens with various age, gender, and comorbidities are 

parameters in our digital twin. Table 1 depicts the transi-

tion propensities and Table 2 presents transition propensi-

ties, delays, and ranges (a synthesis of infection transmission 

dynamics (Chen et al. 2020; Guan et al. 2020; Chen and Li 

2020).

We capture two types of virus transmission dynam-

ics—(1) transmission at Household and transmission at 

Commercial Places (of the classification presented in 

Fig. 3). The household transmission to a susceptible citizen 

is computed based on three factors: (1) hourly household 

transmission rate (a model parameter), (2) citizens, i.e., fam-

ily members, visitors, and housemaid, in the household at 

specific hour of the day, and (3) infection-related states of 

individuals in the household.

Transmission from an infected citizen to a susceptible cit-

izen in a commercial place can happen when the susceptible 

citizen is within the proximity (where proximity distance is 

a model parameter) of an infected citizen for a specific time 

span (a model parameter). Essentially, a susceptible citizen 

is in same Surface Area (defined by unitProximity 

attribute with 2 m 2 as default value) of a Place with an 

infected citizen (see Fig. 3 for model element description). 

A transmission at commercial place is a function of: (1) 

hourly transmission rate, (2) individuals in proximal contact, 

and (3) infection-related states of all individuals in proximal 

contact.

A fomite infection is a two-step process, as shown in 

Fig. 4. An infected person infects surface area with a prob-

ability as she sneezes/coughs/breaths. This surface area stays 

infected for a span of time (a parameter named infec-
tionRemainActive with value range 3–36 h) during 

which a susceptible citizen coming in proximal contact may 

get exposed to the virus (a parameter in digital twin).

We consider attack rates (i.e., infection probability) dur-

ing incubation and infectious phase are 5% and 27%, respec-

tively, as default values. Similarly, the rate of transmission 

through fomite are 5% and 15%, respectively, for incubation 

and infectious phases (Li et al. 2020). 

Interventions

In India, a nationwide stringent lockdown was imposed on 

March 25, 2020. Different forms of lockdowns continued 

till May 2020 and then a gradual unlock started in a phased 

manner. Initially, all commercial places except few essential 

services were closed, which restricted more than 95% of the 

business-as-usual activities including offices, schools, col-

leges, non-essential shops, and factories. Household visits 

for housemaids, workers, and relatives were also restricted 

during the initial phases. We visualize these interventions, 

termed as Intervention Strategy, as a collection 

of changes in the form of business-as-usual activities, test-

ing uptake, and behavioral characteristics of the citizens, 

e.g., wearing masks. We define a coherent set of interven-

tions as intervention strategy indicating necessary changes 

on model elements of city digital twin (shown in Fig. 3) for 

a span of (simulation) time, as shown in Fig. 5. We con-

sider interventions along three dimensions: administrative 

intervention, health care-related intervention, and social 

intervention. Administrative interventions are related to cit-

izen movements and (partial) closure of places. Examples 

are (1) complete or partial closure of commercial places, 

such as offices, schools, and malls, (2) total or time-bound 

restriction of movements in and out of a locality (or a ward 

or a city, etc), (3) restriction of non-essential movement 

in a locality (or a ward or a city, etc), and (4) total ban or 

part-capacity operation of public transport and shared cabs. 

Introducing these interventions amounts to changing values 
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of appropriate model parameters of city digital twin model 

elements (shown in Fig. 3) suitably. For example, isOpen 

attribute of Place is used for opening and closing a place; 

operatingHours attribute of Commercial Place is 

used for partial time-dependent closure of places. Similarly, 

isOpen attribute of Household is considered to prohibit 

guest and housemaids in the households, isOpen attribute 

of Locality is used for defining containment zones, and 

isOpen attribute of Ward is used for closing boarders. 

The allowed passengers of Cab and Bus can be changed by 

changing capacity (of Commercial Place) attribute to 

an allowed number. We also have a provision to introduce 

sanitization of a place where a percentage of contaminated 

Surface Area can be considered as clean surface area 

as result of sanitization.

Subsequently, it reduces the change of fomite-related 

infection (see infection transmission logic of epidemiologi-

cal aspect). From health care perspective, testing of severely 

infected citizens and admitting them to Covid hospital are 

mandatory responsibilities for city administrators as dis-

cussed in epidemiologic aspect. Interventions from health 

care standpoint include testing of mildly infected citizens 

(in addition to severely infected citizen), contact-tracing, and 

isolation of detected mildly infected citizens. The change 

in testing uptake is realized by (randomly) testing a certain 

percentage (a parameter) of mildly infected citizens. This 

mimics the scenario of encouraging citizens to undergo 

Covid testing who are experiencing Covid-like symptoms. 

Essentially, we control testing uptake of a city/ward/locality 

by tweaking the percentage of mildly symptomatic citizens 

in our model.

 Contact-tracing is realized by testing a percentage of 

contacts of citizens, who are tested positive. We first com-

pute who all have shared same surface area from infectious 

stage to testing time of an infected citizen (through con-
tactTrace attribute of Citizen model element), and 

then, we select a specific percentage of citizens (contact-

tracing percentage—a parameter) for contact-tracing. One 

can change uptake of contact-tracing by changing contact-

tracing percentage in the model.

The isolation of citizens is achieved through home 

quarantine and institutional quarantine. In our model, the 

home quarantine is realized by (temporarily) muting all 

daily movements of the citizen and confining all household 

members at home using isOpen parameter of House-
hold. Institutional quarantine is like hospitalization, 

where citizens are sent to institutional quarantine center 

till citizen recovers from the infection. Who can avail 

home quarantine and who should go to quarantine facility 

is a locality-specific administrative-decision—typically, 

citizens from well-to-do localities may avail home quar-

antine and citizens from slum area avail quarantine centers 

we use an attribute of locality model element named as 

Table 2  Transition temporality

Transition Duration

Exposed to infectious 48–72 h

Asymptomatic to recovered 14 days

Mildly to severely symptomatic 6 days

Mildly symptomatic to recovered 21 days

Severely symptomatic to recovered 23–28 days

Severely symptomatic to dead 17–29 days

Fig. 5  Intervention meta-model and relationship with core model
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isolationOption to indicate (a) if isolation should 

be enforced the citizens of a locality, and (b) what kind 

of isolation (i.e., home or institutional quarantine) should 

be enforced.

We consider two types of social interventions in our 

model: mask usage and social-distancing. The efficacy of 

the mask is realized through a set of model configurations 

and parameterizations. 

1. Our model recognizes an extensible list of mask types 

with precise efficacy of spreading and protecting virus. 

Three mask types are added as default model elements, 

namely: N95 with efficacy 95%, medical mask with effi-

cacy 70%, and cloth mask with efficacy 25% (Tian et al. 

2020).

2. We use parametric model elements to capture archetype-

specific distributions of mask type adoption. For exam-

ple, one can specify all healthcare staff use N95; adop-

tions of N95, medical mask, and cloth mask among the 

senior citizens are—20%, 40%, and 40%. These adoption 

distributions help to set the value of maskType attribu-

tion of individual Citizen in our model.

3. The transmission dynamics from an infected citizen to 

susceptible citizen is cognizant of the efficacy of the 

mask (as shown in Fig. 4). Essentially, the probability of 

infection spread is adjusted based on (a) mask usage of 

susceptible citizen, (b) mask usage of collocated infected 

citizen, and (c) mask types of the both citizens.

Likewise, the social-distancing is realized using a paramet-

ric model element to capture archetype-specific adoption of 

social-distancing norm. We realize this norm by ensuring a 

citizen, who is following social-distancing norm, will try to 

avoid collocating in a Surface Area with others if there 

is any free surface area in a Place.

Contextualization and Validation

A digital twin of a city is realized by implementing meta-

model shown in Fig. 3 as a set of parametric agent types, 

where agent types: (1) structurally conform to the meta-

model relationships; (2) encapsulate necessary variables to 

capture states, characteristics, and historical traces; and (3) 

mimic business-as-usual behaviors using probabilistic event-

condition-action rules. To use this digital twin for a specific 

city, all agents need to be contextualized and validated with 

respect to a specific city.

Contextualization

Contextualization of city digital twin is a process of instan-

tiating the meta-model of Fig. 3 in terms of the requisite 

number of agents leading to a purposive simulatable model 

of the city. The model comprises demographic configura-

tion, movement configuration, and instantiation of all agents 

to their representative states. Demographic configuration 

defines number of wards of a city, localities within each 

ward, locality-specific households, and commercial estab-

lishments (e.g., offices, factories, schools, shops, etc.), 

number of citizens in each locality, and their demographic 

characteristics. Movement configuration specifies movement 

characteristics embellished with appropriate probabilities 

and parameters. An agent has multiple state variables; how-

ever, infection state is of primary importance. Infection can 

be introduced in a locality by changing infection state of (a 

Fig. 6  A screenshot of the simulator, showing the ward-level agents and localities in the early phase of a simulation
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limited number of) its citizens from the default ‘Susceptible’ 

state to ‘Exposed’ state. We capture all configuration and 

instantiation parameters in spreadsheets for ease of use.

Simulation

Contextualized digital twin can be simulated. We have cho-

sen the simulation time ‘tick’ to be an hour. Figure 6 shows 

a screenshot of the visualization environment accompany-

ing our simulator. A ward is represented here as 1.5 × 1.5 

km
2 block. Blue color dots denote susceptible citizens. As 

business-as-usual activities take them to various places thus 

bringing in contact with other citizen agents and infected 

surfaces, they get exposed (denoted by magenta colored 

dots) and may get infected (denoted by orange colored dots 

for mildly symptomatic and red colored dots for severely 

symptomatic) based on duration and frequency of proximal 

contacts, and age, gender, and comorbidities of the agents. 

Thus, macro-behavior of entire city in terms of infection 

transmission, as illustrated in Fig. 7, emerges over time from 

the micro-behavior of various agents.

Simulation continues for the desired time epoch several 

months in our case by repeating simulation tick  specific 

number of times. Thus, simulation gives an estimate of the 

likely spread of infection over the time epoch along with 

fine-grained information such as age, gender, comorbidi-

ties, hotspots, etc. The candidate set of interventions for 

controlling the pandemic are experimented with by setting 

up suitable what-if scenarios and simulating for them using 

real data. Table 3 depicts the decide rata used to check effec-

tiveness of these interventions. Simulation run generates the 

necessary data for computing the desired KPIs, as shown 

in Fig. 8.

Validation

The confidence on simulation-based estimations depends on: 

(1) how faithfully does the digital twin represent the city 

ward, (2) methodological rigor, (3) accuracy of the technol-

ogy used, and (4) how close the simulation results are with 

respect to the reality. We use well-established techniques of 

simulating business- and mission-critical systems to estab-

lish faithfulness of the constructed digital twin with respect 

to the reality (Sargent 2013). They are: 

1. Conceptual model validation that determines the theo-

ries and assumptions is reasonable for the intended pur-

pose.

2. Computerized model validation that ensures all concep-

tual elements is appropriately represented using a robust 

implementation technology.

3. Operational validation that determines the simulation 

outputs is sufficiently close to reality.

4. Data validity that ensures the reliability and adequacy 

of inputs data.

Conceptual model validation is ensured by validating all 

aspect specific assumptions. Epidemiological assumptions 

and infection-related probabilities are introduced as per 

the data and results available in peer-reviewed literature. 

The correct interpretation of these properties is ensured 

by epidemiologists within our group. Demographic aspect 

and movement-related assumptions are ascertained using 

data available with city administration authority. We also 

took help of demographic expert within our group to vali-

date citizen movement-related assumptions. The candi-

date set of interventions can be obtained (as in the case of 

Pune) from the city’s administration authorities.

Fig. 7  Simulation dashboard for illustration
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Validity of computerized model is ensured bottom–up. 

A city is modeled as a set of interacting agent types to 

specify people, place, movement, virus characteristics, and 

candidate set of interventions. We used a robust agent/

actor technology named ESL (Clark et al. 2017) that has 

been used to model other complex system of systems such 

as a telecom company (for minimizing customer churn 

(Barat et al. 2020)) and a retail chain (for optimizing shop 

stock replenishment (Barat et al. 2019a, b)). Individual 

agent-type specification was first validated with domain 

experts for completeness, correctness, and consistency, 

and then tested on real data as part of the city digital twin. 

Thus, suitable modeling abstraction, rigorous model con-

struction, and robust technology ensure validity of the 

computerized model.

We contextualize digital twin for a city, introduce an 

amount of infection, and compare simulation results with the 

real observations to ensure operational validity. We chose 

death count as the metric to establish operational validity as 

it was reliably recorded on a daily basis.

To ensure data validity, we considered data from city 

administration authority as input. However, we acknowledge 

that limited data are available on the distribution of comor-

bidity and disease prognostic in Indian population. High 

fidelity data inputs on several socio-demographic can further 

improve simulation prediction. We consider it as a threat to 

internal validity (Onwuegbuzie 2000) of our approach.

What‑If Analysis

We followed an iterative human-in-the-loop simulation-

based approach, as shown in Fig. 9. We simulated the con-

textualized digital twin for the desired time epoch. The 

simulation results were interpreted to arrive at key metrics 

such as new cases (infections), deaths, load on hospital 

infrastructure (number of new admissions and nature of 

critical care required), load on quarantine centers (number 

of new mildly infected patients staying in small houses or 

Table 3  Key performance indicators (KPIs)

KPI Description Illustration

SEIR graphs for ward and localities Progression of active susceptible, exposed, active infected, cumulative recov-

ered and cumulative death counts for ward and localities

Figure 10a

New cases of infection, recovery and death Day wise new cases of mildly infected and asymptomatic cases, severely 

symptomatic, recovered and death

Figure 10d

Cumulative cases Cumulative cases of mild, severe and death cases Figure 10e

Load on hospitals Active cases in hospital and ventilators Figure 10b

Load on institutional and home quarantine Number of citizens who are under home quarantine and intuitional quarantine. Figure 10c

Load on testing (1) Number of severely infected citizen tested, (2) number of mildly infected 

citizens tested

Figure 10f

contact-tracing Number of citizens are traced and tested through contact-tracing Figure 10f

Testing efficacy % of positive cases for overall testing, household testing and contact-tracing Not shown

Demographic distribution of infected citizens Gender-specific distribution, age-specific distribution, medical history-specific 

distribution and occupational archetype-specific distribution of all infected 

citizens (based on cumulative numbers)

Not shown 

(similar to 

hospitali-

zation)

Demographic distribution of hospitalized citizens Gender-specific distribution, age-specific distribution, medical history-specific 

distribution and occupational archetype-specific distribution of hospitalized 

citizens (based on active numbers)

Figure 10j, k

Demographic distribution of death Gender-specific distribution, age-specific distribution, medical history- spe-

cific distribution and occupational archetype-specific distribution of death 

persons (based on commutative numbers)

Not shown 

(similar to 

hospitali-

zation)

Source of infections (1) Counts of transmission place (i.e., the place from where the virus is trans-

mitted), (2) counts of archetypes who spread the virus

Figure 10h, i

Way of transmission How virus is transmitted, i.e., either through aerosol at household, aerosol in 

the commercial places, or through fomite

Figure g

Infection fatality rate Infection fatality rate, cumulative death upon cumulative infected Not shown

Average infected family members at households Average % of infected family members at household for slum and well-to-do 

localities

Not shown

% of impacted households % of households where at least one family member is infected in slum and 

well-to-do localities

Not shown
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slums), and load on testing infrastructure (whom to test and 

when). Akin to design of experiment, we set up appropri-

ate what-if scenarios to ascertain efficacy of the candidate 

set of interventions to improve the pandemic situation in 

terms of the key metrics. We tried them out one-by-one and 

later in combinations. The fine-grained nature of digital twin 

representing a city ward helped ascertain identification of 

ward-specific interventions. This helped us to come up with 

Fig. 8  Snapshots from a simulation wherein no intervention was considered

Fig. 9  Human-in-the-loop and reinforcement learning-based what-if explorations
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ward-specific recommendations that were backed by data. 

The ward-level numbers were projected onto city level to 

obtain the big picture.

Case Study: Pune City

We applied our digital-twin-based approach to predict and 

control the spread of COVID-19 pandemic for Pune city7, 

a western state of Maharashtra in India. The urban area of 

Pune has a population around 4 million and a geographic 

area of approximately 330 km
2 . The city is divided into 41 

administrative zones which are referred to as wards. We 

classified residential localities into two: (1) slum a densely 

populated (typically, upwards of 60,000 population per km
2 ) 

area with small houses packed together each inhabiting a 

large number of people, and (2) well-to-do area consisting 

of apartments and houses with a reduced population density 

(mid-1000s per km
2).

Based on the composition of residential areas and commer-

cial places, we classified Pune city wards into three prototypi-

cal wards: (1) residential ward: primarily well-to-do residential 

area with a small population living in slums and few busy 

small-size market areas (e.g., Sahakar Nagar and Kothrud); 

(2) market ward: primarily a densely populated busy market 

place with residential area comprising of well-to-do and slum 

localities (e.g., Bhavani Peth); and (3) office ward: primarily 

a business district comprising large modern office complexes, 

some small office buildings, shopping malls, and large modern 

residential complexes (e.g., Nagar Road and Aundh). Table 4 

presents details of the five wards which we used for analysis.

Contextualization

Description of the three prototypical wards in terms of the 

four aspects constituting the digital twin follows: 

1. Epidemiological aspects: The epidemiological char-

acteristics, i.e., transmission and transition dynamics 

along with infection probabilities, of COVID-19 are 

same across Pune, and they are same as rest of the India/

world. Hence, we consider default characteristics as dis-

cussed in Sect. 3.

2. Demographic aspects and movements: We consider the 

age, gender, and comorbidity-related heterogeneities are 

uniform across all three prototypical wards, as shown 

in Table 5. The heterogeneities of household structures 

and commercial places of three prototypical wards are 

highlighted in Tables 6 and 7.

3. Interventions: Pune city complies with all nationwide 

lockdown and unlock guidelines8. A stringent lock-

down was imposed on March 25, 2020 across all wards 

in Pune along with rest of the India. All commercial 

places except few essential services were closed, which 

restricted more than 95% of the business-as-usual activi-

ties including office, school, colleges, non-essential 

shops, and factories. Housemaid, workers and relatives 

to visit any household were also restricted during that 

time. Different forms of lockdowns continued till May 

2020, and then, relaxation/unlock started with varying 

movements and place closures, as illustrated in Table 8. 

All lockdown and unlock- based interventions in Pune 

are applied to all three prototypical wards to compre-

hend the spread of virus in different wards in Pune.

We initialized ward-specific digital twins with approximated 

infected citizens. We used heuristics based on reported infec-

tion counts from various wards in Pune during the second 

week of March to estimate initial infection counts of these 

prototypical wards.

We considered March 10 as the starting point of our anal-

yses and started with 100–120 infected citizens per 100K 

citizens in all three prototypical wards. However, we found 

some of the residential wards (e.g., Kothrud) and office 

wards (e.g., Aundh) had a smaller number of reported cases 

in the second week of March as compared to other wards. 

We mimicked this laggard infection behavior by introduc-

ing a sub-category characterized by fewer infections (20–25 

infected citizens per 100K citizens) on March 10.

Table 4  Area and population of few wards in Pune

Prototypical 

area

Ward Total area 

( km
2)

Well-to-do 

area ( m2)

Slum area 

( m2)

Well-to-do 

population

Slum popula-

tion

Total popula-

tion

% population in 

slum

Residential 

area

Sahakar nagar 9.2 8,830,000 370,000 126,912 78,529 205,441 38.2246

Kothrud 16.26 15,424,257 835,743 103,524 141,742 245,266 57.79113

Market Area Bhavani Peth 2.9 2,380,802 519,198 157,936 106,851 264,787 40.35357

Office area Nagar road 29.1 28,586,850 513,150 186,489 76,408 262,897 29.06385

Aundh 40.75 40,262,827 487,173 268,804 72,540 341,344 21.25129

8 https ://en.wikip edia.org/wiki/COVID -19_pande mic_lockd own_in_

India .7 https ://en.wikip edia.org/wiki/Pune.

https://en.wikipedia.org/wiki/COVID-19_pandemic_lockdown_in_India
https://en.wikipedia.org/wiki/COVID-19_pandemic_lockdown_in_India
https://en.wikipedia.org/wiki/Pune
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Validation

The city administrative organization, i.e., Pune Municipal 

Corporation (PMC), made available pandemic-related data 

for each ward on a daily basis. We used these data, aug-

mented suitably in consultation with demography and epi-

demiology experts, to initialize ward-specific digital twin 

and to validate the simulation results. In particular, the con-

ceptual validity of the assumptions related to the number 

of places and citizen archetypes are ensured by corrobo-

rating ward-specific data available with PMC. The close-

ness of archetype movements with/without interventions 

is validated by local demographic experts. We provided 

a graphical visualization aid of archetype movements, as 

shown in Fig. 10, to ensure the validity of movement-related 

assumptions. In cognizant with the data validity step, we 

considered official and reliable data sources to contextu-

alize Pune specific digital twin. For example, data shown 

in Table 4 are taken from PMC site, and data shown in 

Tables 5, 6 and 7 are derived from PMC data. For example, 

the population size and number of households at slum and 

well-to-do localities in respective wards are derived from 

PMC city sanitation plan, 2012, and Table 8 is constructed 

based on the actual interventions that are applied to Pune. 

As part of operational validity, we compared death count 

of Pune, as shown in Fig. 11. In addition to city-level death 

count, we also compared death counts of all 5 wards that 

we considered in our analysis.

Early Explorations

A nationwide lockdown was imposed from March 25, 2020 

in India, and thereafter, the government of India has issued 

a series of advisories on possible interventions for states 

and cities to follow. However, it was observed that a com-

mon set of interventions have resulted into different impact 

on different part of the state and city as the spread of virus, 

fatality rate, and load on hospitals depend on the local situ-

ation of the epidemic. The local administration had to care-

fully weigh the epidemic situation on the ground and the 

socio-economic advantages of opening up against the burden 

on hospital load. Our digital twin contextualized for Pune 

city allowed us to analyze different intervention strategies 

such as restricted/staggered timings of offices/shops/malls, 

intermittent lockdown for a shorter period, offices/shops/

restaurants with limited occupancy, etc., supplemented 

with necessary testing uptake. During the lockdown phase 

in Pune (i.e., March 25 to May 31), the main objective was 

to limit the spread of the virus so as to minimize the load 

on hospital infrastructure and to arrive at accurate enough 

estimate of number of ICU beds and ventilators. The key 

focus was to identify and isolate mildly infected and asymp-

tomatic citizens that can be safely isolated either at home or 

quarantine centers.

In the light of limited capacity for testing (around 

700–1000 per day) and inadequate number of quarantine 

centers in the early phase of pandemic, we focused on iden-

tifying locality-specific time-bound interventions so as to 

utilize the available public health infrastructure judiciously. 

Table 7  Demographic distribution

Citizen archetypes Age range (years) Gender distribution

Beautician 20–60 Male: 70%, female: 30%

College student 16–25 Male: 60%, female: 40%

Daily wage worker 18–55 Male: 80%, female: 20%

Driver 18–60 Male: 100%

Health Worker 18–60 Male: 40%, female: 60%

House maid 18–60 Female 100%

House wife 20–60 Female 100%

Market place staff 18–60 Male: 70%, female: 30%

Office-goer 18–60 Male: 70%, female: 30%

Restaurant staff 18–60 Male: 70%, female: 30%

School kid 5–16 Male: 50%, female: 50%

Senior citizen 60–90 Male: 50%, female: 50%

Small shop Staff 20–60 Male: 80%, female: 20%

Average 30–31 Male: 50%, female: 50%

Medical history distributions

School and college kid medical No medical history: 100%, hypertensive: 0%, diabetic: 0%, COPD: 0%

Senior citizen medical No medical history: 44%, hypertensive: 40%, diabetic: 20%, COPD: 6%

Other archetype No medical history: 62%, hypertensive: 25%, diabetic: 10%, COPD: 3%
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Some of the interventions explored were: (1) isolating 

localities having higher number of infections, (2) increas-

ing contact-tracing and household testing in localities having 

higher number of infections, and (3) enforcing intuitional 

quarantine for mildly infected patients staying in slum areas. 

We discuss some of the early what-if scenarios played out 

using the city digital twin.

Efficacy of Initial Lockdown

First, we wanted to ascertain whether the strict lockdown 

imposed on 25th March was indeed necessary or not. Fig-

ure 12 illustrates possible virus spread with/without inter-

ventions using SEIR graphs. Figure 12a shows the virus 

spread had there been no strict lockdown. Figure 12b shows 

effect of the first lockdown that was imposed on March 25, 

and Fig. 12c depicts the consequence of partial relaxations 

applied on May 4.

Efficacy of Increased Testing

As shown in Fig. 12, the predicted impact for allowing 

essential movements as part of lockdown 2 (see Table 8) 

was threefold increment of the infection situation at that 

point of time. Therefore, we analyzed how limited testing 

capacity can be effectively utilized to control such surge of 

infection count. The impact of increased testing for three 

prototypical wards is shown in Fig. 13. We also evaluated, 

active infection, and need for hospitalization of well-to-do 

and slum areas of all three prototypical wards under three 

different testing uptakes, as shown in Fig. 14.

Fig. 10  Archetype-specific business-as-usual movement, in the absence of interventions

Fig. 11  Simulated and actual 

death count for validation
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Fig. 12  Simulation under initial lockdown conditions

Fig. 13  Ward-specific SEIR graphs illustrating the impact of increased testing
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Simulation results indicate that increased testing is advan-

tageous but is not linear to infection spread. Increased test-

ing in densely populated wards (e.g., BhavaniPeth) during 

the early phase of epidemic showed far greater benefit com-

pared to low population density wards such as NagarRoad. 

Moreover, increased testing beyond certain degree is shown 

Fig. 14  Impact of increased testing uptake on well-to-do and slum areas of three prototypical wards

Fig. 15  Impact of infections under different interventions
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diminishing advantage. Therefore, the recommendation was 

to increase testing uptake in densely populated slum area 

significantly as compared to less density area.

Explorations for Unlock

In India, the unlock process, Unlock 1.0, was started from 

June 1. The second phase of unlock, Unlock 2.0, lasted 1–31 

July, and Unlock 3.0, Unlock 4.0, and Unlock 5.0 were put 

into effect in August, September, and October, respectively. 

However, Pune has seen restrictive/muted unlock as it was 

one of the top three cities in India with respect to number 

of infection. As shown in Table 8, Unlock 1.0 with lim-

ited opening of commercial places continued till July 12, 

a 10-day strict lockdown was imposed between July 13 

to July 23, and then, phased unlocks were imposed with 

adequate testing and contract tracing. Prior to implement-

ing these unlock strategies, several candidate interventions 

were evaluated and their efficacies with respect to death 

counts, peak load on critical health care (oxygen beds, ICU, 

ventilators, etc.) and load in institutional quarantine cent-

ers were predicted through what-if simulations on Pune city 

digital twin. As an illustration, the cumulative count and 

active count of infection under four different interventions 

are shown in Fig. 15.

Our analysis shows that different wards reach peak at 

different stages of epidemic. As shown in Fig. 16, wards 

with higher population density, like BhavaniPeth, reach 

peak as early as mid-July, whereas other wards see the peak 

in September and October. We also see from Fig. 16b that 

two residential wards, namely SahakarNagar and Kothrud, 

with more or less identical characteristics exhibit similar 

active infection pattern, but reach peak at different times as 

they were in different state in terms of initial infection when 

first lockdown started in March 25. City-level estimation 

of active infection, shown using red color line in Fig. 16b, 

exhibits quite a different pattern from the constituent wards. 

This justifies our claim that city-level situation is an aggre-

gation of ward-specific situations, and hence, analysis of 

city-level situation may lead to interventions that may not be 

effective at ward level. The trends on cumulative infections, 

shown in Fig. 16c, d, show that around 35–40% of crowded 

dense market ward population is infected by mid-August. In 

comparison, only 10–15% of population in residential wards 

(e.g., Kothrud and Aundh) is infected by mid-August. The 

model predicted that with the sequence of interventions, the 

peak load on critical health care (oxygen beds, ICU, ventila-

tors, etc.) remain sustained until end-October9, as shown in 

Fig. 17a.

Fig. 16  Infection situation in different prototypical wards under Unlock 3.0 intervention

9 https ://india nexpr ess.com/artic le/citie s/pune/pune-peak-load-on-

criti cal-healt hcare -to-be-susta ined-until -oct-end-65620 08.

https://indianexpress.com/article/cities/pune/pune-peak-load-on-critical-healthcare-to-be-sustained-until-oct-end-6562008
https://indianexpress.com/article/cities/pune/pune-peak-load-on-critical-healthcare-to-be-sustained-until-oct-end-6562008
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Further analysis shows that majority of the infections, 

as high as 60%, are being seen to occur through household 

contacts. A comparison of virus spread in household and 

commercial places under no intervention and sequence of 

interventions till Unlock 3.0, shown in Fig. 17b, indicates 

that the virus spread at outside household is significantly 

controlled through the series of interventions.

Analysis of citizen archetypes and commercial places as 

sources of infection spread, shown in Fig. 18a, b, respec-

tively, indicates that long-duration interactions in enclosed 

and crowded places are likely to increase transmission 

risk. Correlation of Fig. 18a, b indicates that complete 

closure of schools and colleges and offices operating with 

reduced staffs helped to reduce the spread of virus by 

Fig. 17  Analysis outcome

Fig. 18  Citizen archetype and place-specific analysis

Fig. 19  Analysis of comorbidity and age
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respective archetypes (shown using error bars in Fig. 18a). 

Those closures also helped to reduce fomite-related infec-

tions significantly. The orange bar of Fig. 18b indicates 

place-specific propensity of spreading virus. It indicates 

bank, parlour, bus, office, and crowded market which has 

greater propensity of virus spread (i.e., additional precau-

tions need to be taken while visiting those places). School 

can be also categorized in similar characteristics when 

they are open. An analysis on comorbidity and age distri-

bution on death, shown in Fig. 19, indicate the impact of 

lockdowns and unlocks on different age groups and indi-

viduals with comorbidities. A representative sample of 

specific interventions explored through what-if scenario 

playing are listed below: 

1. Opening up: We undertook comparative analysis to 

assess the impact of opening up different places with 

load on hospitals for critical care admissions as the pri-

mary metric. The analysis showed that opening of offices 

is more detrimental than opening of shops, as shown in 

Fig. 20a.

2. Weekend lockdown: Weekend lockdown (allowing only 

essential services and imposing restriction on all other 

movements on weekend) has limited efficacy in reduc-

ing the burden, as shown in Fig. 20b. This efficacy will 

be further reduced if there is overcrowding during the 

weekdays.

3. Universal use of masks: Behavioral intervention as in 

use of mask was found significantly effective as com-

pared to no use of mask. Our simulations showed that 

load on hospital for critical care admissions reduced up 

Fig. 20  Summary of experimental outcomes

Fig. 21  A hypothetical experimental result of opening up places from January 2021
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to 25% when if 80% of population wore masks in public 

places, refer Fig. 20c.

4. Testing: Testing helped in slowing down the epidemic. 

The model results show that doubling the current testing 

rate is likely to reduce the hospital load up to 10% dur-

ing peak months. Screening of symptomatic cases was 

found to be a better strategy compared to increasing the 

contact-tracing efforts among non-household contacts. 

However, increased testing also increased the burden on 

institutional quarantining facilities and home isolation 

by 35–40% (refer Fig. 20d).

5. A hypothetical experimentation: Simulation results of a 

hypothetical experimentation of continuing Unlock 4.0 

till December 2020 and then opening up everything are 

shown in Fig. 21. The number of infections shoots up 

in mid-Jan climbing rapidly till mid-Apr before taper-

ing somewhat. There is commensurate surge in critical 

care admissions to hospitals that peaks from mid-Mar 

to mid-Apr. This indicates that a phased and carefully 

planned approach to opening up of schools, offices, and 

other public places is necessary even when the present 

infection level is negligible (see active infection level in 

December 2020, as shown in Fig. 21b).

Discussion

The present model provides information that would be useful 

to plan public health measures as well as prepare health care 

systems for impending case load. It provides a ward-level 

analysis of the unfolding situation in the city. As observed 

for Pune city, different wards (and sub-localities within 

wards) achieved peaks at different time points, owing to dif-

ferences in demographic profile, movement dynamics, and 

infection levels during early months of epidemic. The ward-

level picture can help in designing context-specific, flexible, 

and responsive public health strategies.

The model provides information on total number of active 

cases (both mild/moderate and severe cases) over a period of 

time. The insight becomes useful for planning to cope with 

additional health care demands—such as additional need for 

isolation beds, oxygen beds, Intensive Care Units, and ven-

tilators. When juxtaposed to the number of detected cases, 

it gives a fair idea of how many actual infections are being 

missed. It can help set realistic targets about how much 

testing needs to be expanded. The model can also provide 

outputs on positivity rates in household and non-household 

contacts across different wards/localities, and places where 

majority transmissions occur. Such granular information can 

help in better targeting (in terms of who to test, where to 

test) and optimal utilization of available resources.

The model shows that mask use and increased testing 

substantially reduce the burden on health care. These find-

ings are consistent with other prediction studies from India 

and elsewhere. The efficacy of these interventions in the 

present analysis assumed a high level of compliance. How-

ever, in real life, such high levels may be difficult to achieve. 

The model has the flexibility to not only consider different 

levels of testing uptake and mask use, but further complexi-

ties seen in real life. For example, one can set rules about 

who wears masks, how many people wear masks, and at 

what places people wear/not wear masks. Similarly, differ-

ent scenarios such as early vs late testing, different levels of 

testing uptake, and compliance levels of isolation of positive 

cases can be simulated in the model. Such detailed analysis 

can give a more realistic picture of possible benefits of NPI. 

It can help in advocating for the need for awareness and 

behavioral change interventions, which is possibly the most 

neglected aspect of COVID-19 responses in India.

Evaluation

Our city digital twin for COVID-19 is best seen as an aid to 

explore the efficacy and impact of candidate set of interven-

tions for controlling the pandemic. The simulatable nature 

of city digital twin makes it amenable to what-if and if-what 

scenario playing thus leading to data-driven justification-

backed decision-making. City administration found our 

predictions and analyses leading to control interventions 

useful. Our ward-wise (city-wide) prediction of COVID-

19 deaths, which is computed by corelating prototypical 

wards with actual wards and aggregating the death counts 

observed from prototypical wards, matches closely with the 

reality. The state of epidemic in Pune in terms of deaths, 

infections, and load on hospital in the months of September 

and October is unfolding the way which we predicted in 

August10. Our analyses of household infection and infections 

at other places correlate with Indian evidence on transmis-

sion dynamics of COVID-19 (Laxminarayan et al. 2020). 

Such close resemblance with reality on multiple dimensions 

of COVID-19 epidemic establishes the efficacy of our fine-

grained model to predict and control COVID-19 pandemic 

in Pune city. Given the parameterized nature of the model, 

we think that it can be easily configured to other comparable 

cities.

Useful Design Choices

Given the limited data and uncertain dynamics of the overall 

system, we had to make a set of well-founded choices to 

ensure that city digital twin is an accurate representation of 

ground reality. The key choices are discussed below: 

10 https ://india nexpr ess.com/artic le/citie s/pune/pune-peak-load-on-

criti cal-healt hcare -to-be-susta ined-until -oct-end-65620 08/.

https://indianexpress.com/article/cities/pune/pune-peak-load-on-critical-healthcare-to-be-sustained-until-oct-end-6562008/
https://indianexpress.com/article/cities/pune/pune-peak-load-on-critical-healthcare-to-be-sustained-until-oct-end-6562008/
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1. System theoretic view: System theoretic view to con-

ceptualize a city as a complex system of systems dis-

tinguishes our approach from popular compartmental 

model-based approaches. Our focus on capturing the 

existing heterogeneity in people, places, transporta-

tion, and health infrastructure, etc., so as to enable 

specification of individualistic micro-behavior led us to 

choose agent-based modeling paradigm. We extended 

the canonical agent-based modeling paradigm to help 

specify probabilistic and spatio-temporal behavior of 

individual agents. As a result, the emergent behavior 

of the complex system of system faithfully reflected the 

reality. We believe that these extensions stand out from 

prevalent agent-based approaches.

2. Aspects of interest: Our assumption to capture a city 

around four interrelated aspects, namely: epidemiologi-

cal aspect, demographic aspect, movement aspect, and 

intervention aspect, turned out to be necessary and suf-

ficient for prediction and control of virus spread. We 

believe that the separation of concerns and making 

dependencies therein explicit help manage the complex-

ity of virus spread dynamics. The extended agent-based 

modeling technology is rich to specify these aspects 

and their relationships at the desired level of granular-

ity, thus preventing oversimplification of the inherent 

complexity.

3. Citizen and place archetypes: The other key factor 

that helps us to differentiate from other agent-based 

approaches is the conceptualization of an extensive list 

of agent types to capture necessary heterogenous char-

acteristics of citizens and places. In our digital twin, 

an agent type encodes specific characterization in terms 

of demography (e.g., age and gender), profession (e.g., 

office-goers, Students, senior Citizen, housewife, health-

care professional, driver, housemaid, market staff and 

shop owners), place (e.g., apartment, slum, shop, office, 

clinic, hospital, and grocery store), transportation (e.g., 

bus, car and cab), health condition (e.g., diabetes, hyper-

tension, and chronic pulmonary disease), and so on. In 

particular, an agent type specifies business-as-usual 

behavior of a well-demarcated and well-defined subset 

of the heterogeneous population. Therefore, a collection 

of key representative agent types together can character-

ize an entire population of a city.

4. Proven methodology and technology: Finally, the use of 

proven model construction and validation methodology 

augmented with the ESL technology that has been found 

effective for analyzing complex business systems have 

together led to a robust and pragmatic approach.

Limitations

Every model has its limitations and this model is no excep-

tion. Like all other models, this model too relies on a set of 

assumptions; inaccurate assumptions may reduce the accu-

racy of the model prediction significantly. Some model 

parameters have significant uncertainty. Adverse impact of 

the uncertainty is contained to the extent possible by tak-

ing due precaution in analysis. Still, the input data should 

not be grossly incorrect. From technology perspective, 

the scalability of agent-based is an inherent limitation. 

At present, ESL technology infrastructure is capable of 

supporting a few million agents. Augmented with use of 

stratified sampling, the technology has catered to predict 

and control COVID-19 epidemic in large cities. However, 

scaling it to be able to cater to state and country level is 

not possible with standard computing power.

Future Directions

As our understanding of COVID-19 improves, we plan to 

incorporate the learnings from other ongoing COVID-19 

initiatives. It is relatively easy to introduce new arche-

types of citizens and places. This extension should also 

help to configure the digital twin for other comparable 

cities. Digital twin can be extended to cater to reinfec-

tion, mutated virus, and vaccine. How to strike a balance 

between control of epidemic and revival of economy is an 

important next step which we are considering.

Concluding Remarks

We presented a novel agent-based digital twin of a city to 

support simulation-based approach to predict and control 

COVID-19 epidemic. The defining characteristic of the 

city digital twin is a set of suitable agent types neces-

sary to capture heterogeneity in terms of people, places, 

transport infrastructure, health care infrastructure, etc. As 

a result, we are able to construct a fine-grained model of 

the city that is amenable to what-if and if-what scenario 

playing. We populated the city digital twin using data from 

the city administration, together with suitable augmenta-

tion. The fine-grained nature of digital twin enabled us to 

address the critical concerns such as the rate and the extent 

of the spread of the epidemic, demographic, and comor-

bidity characteristics of the infected people, load on the 

healthcare infrastructure in terms of specific needs such 

as number of admissions requiring critical care (supple-

mentary oxygen, ventilator support, intensive care, etc.), 

load on institutional quarantine centers, and so on. We 

set up appropriate what-if scenarios to identify the most 

effective intervention from the candidate set to control 
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epidemic as well as bring back normalcy. We vetted the 

simulation results against epidemic-related data released 

by city administration daily. Though the approach has been 

validated in the specific context of Pune city, we believe 

that the parameterized nature of our digital twin makes 

the approach applicable for other comparable cities with 

minor effort. We expect that the framework detailed in this 

paper can serve as a template for developing simulators as 

aids to decision-making should such epidemics occur in 

the future.
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