


An Agent-based Industrial Cyber-Physical

System Deployed in an Automobile Multi-Stage

Production System
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Abstract Industrial Cyber-Physical Systems (CPS) are promoting the development

of smart machines and products, leading to the next generation of intelligent pro-

duction systems. In this context, Artificial Intelligence (AI) is posed as a key en-

abler for the realization of CPS requirements, supporting the data analysis and the

system dynamic adaptation. However, the centralized Cloud-based AI approaches

are not suitable to handle many industrial scenarios, constrained by responsiveness

and data sensitive. Edge Computing can address the new challenges, enabling the

decentralization of data analysis along the cyber-physical components. In this con-

text, distributed AI approaches, such those based on Multi-agent Systems (MAS),

are essential to handle the distribution and interaction of the components. Based

on that, this work uses a MAS approach to design cyber-physical agents that can

embed different data analysis capabilities, supporting the decentralization of intelli-

gence. These concepts were applied to an industrial automobile multi-stage produc-

tion system, where different kinds of data analysis were performed in autonomous

and cooperative agents disposed along Edge, Fog and Cloud computing layers.
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1 Introduction

Industrial Cyber-Physical Systems (CPS) are enabling the next generation of in-

telligent production systems, mainly based on the concepts of smart machines and

products. Driven by the needs to attend the ever-changing market trends, such dig-

ital transformation is mainly based on the use of Internet of Things (IoT), Cloud

Computing and Artificial Intelligence (AI) technologies [12]. While the first enables

the interconnection of equipment and consequently the digitization of the industrial

environment [22], the second provides on demand high processing and storage re-

sources [15]. On the other hand, AI provides advanced data analysis algorithms,

such those based on Machine-Learning (ML), that can take advantage of the huge

amounts of IoT data and the power of Cloud Computing, in order to provide action-

able information and support data-driven decision-making [20, 8].

Although Cloud manufacturing [15] has been seen as a new paradigm in the

realization of the 4th industrial revolution (4IR) [12], the traditional Cloud-based

approaches, where IoT devices send all the data to be processed by centralized ap-

plications, present some drawbacks. Indeed, besides information security and pri-

vacy concerns [21], this approach is not suitable for many real-time, data-sensitive

and constrained network applications [2]. In this context, Fog Computing emerged

to cover the Cloud limitations, promoting the deployment of data processing ca-

pabilities closer to the data sources [4]. It defines an intermediate computing layer

between Cloud applications and IoT devices that besides providing a more direct,

reliable, secure and fast link between them, also promotes the decentralization of

data analysis, decision-making and control, increasing local components autonomy.

Besides Fog, which considers equipment at the local network, CPS also considers

processing capabilities directly embedded in the end device itself, which should be

able not only to analyze their data, but also to interact with other components. These

aspects are addressed in the Edge Computing context, which also concerns about

how to embed such features in the huge number of existing legacy heterogeneous

and constrained equipment that cannot be simply replaced by modern ones.

Having this in mind, Cloud, Fog and Edge represent a layered infrastructure that

spans from cyber to physical world, presenting several complementary aspects and

technologies that are suitable to attend different industrial requirements. For in-

stance, although the Edge comprises resource constrained devices that can easily

saturate with processing, it is highly suitable to support the operational levels, en-

hancing the components’ autonomy and providing fast response for real-time mon-

itoring and control tasks. On the other hand, given connectivity and data sensitive

issues, Cloud fits better the needs of enterprise and business levels, employed for

planning, optimization, supervision and decision support tasks. Meanwhile, Fog

plays a gateway role, contributing to offload both, Edge and Cloud, supporting Edge

with time constrained tasks, and Cloud with preprocessed and more meaningful in-

formation that can reduce the bandwidth, storage and analysis costs.

Considering that the 4IR is promoted by the massive use of AI, a main concern

in the realization of industrial CPS encompasses the need to achieve a balanced

distribution of the intelligence across the cyber and physical worlds, particularly re-
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garding how and where data analysis should be deployed. This decentralization of

data analysis can be realized through the use of AI distributed problem solving ap-

proaches, such those based on Multi-Agent System (MAS). The MAS approach fits

suitably the CPS requirements, supporting the design and development of systems

based on societies of intelligent, autonomous and cooperative entities [10].

In this sense, this paper describes a modular agent-based architecture to design

cyber-physical components with embedded data analysis capabilities. The proposed

approach is based on a set of data processing modules that can be combined to

build cyber-physical agents to be deployed at different computing layers. The envi-

sioned decentralized data analysis approach is illustrated in a multi-stage automobile

factory plant, developed under the EU H2020 GO0D MAN (aGent Oriented Zero

Defect Multi-stage mANufacturing) project (go0dman-project.eu). The preliminary

experiments illustrate how different kinds of data analysis can be used to deploy an

industrial CPS to support the Zero Defects Manufacturing (ZDM) philosophy.

The remaining of this paper is organized as follows. Section 2 discusses the de-

centralization of data analysis, presenting an agent-based approach to design and

develop industrial CPS. Section 3 describes an instance of the proposed approach

for ZDM problems in multi-stage production systems, and Section 4 describes its

deployment for the industrial automobile use case and analyses the experimental

results. Finally, Section 5 rounds up the paper with the conclusions and future work.

2 Agent-based Approach for Decentralized Data Analysis

AI is a key enabler for the realization of industrial CPS, playing two main roles: pro-

viding data driven approaches to endow cyber and physical components with data

analysis capabilities, and providing distributed knowledge management approaches

to endow such components with autonomy, reasoning and collaborative capabilities.

2.1 Intelligence in Industrial CPS

In industrial environments, AI has been widely applied for both, business and op-

erational tasks [20, 17, 7]. Examples of AI used at business levels include several

kinds of online and offline batch, exploratory and descriptive data analysis tasks

from reporting and forecasting to product design, supply chain and customer rela-

tionship management. In this context, Cloud is a good option when considering Big

Data and ML tasks, like predictive and prescriptive analytics, that may need consid-

erable computational resources to manage large amounts of data. In the same sense,

operational tasks, like planning, optimization and process fault diagnosis are also

suitable to be performed at Cloud. Given the broad scope and resource availability

of the Cloud, the kinds of ML algorithms are diverse, from simple linear regression

to robust classification and complex Deep Neural Networks [7].
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On the other hand, operational tasks like system real-time condition monitor-

ing and abnormality detection are more suitable to be performed at the Edge and

Fog [19, 1]. Given the constrained characteristics of Edge/Fog platforms, at these

layers the tasks are mainly based on the execution of rule-based and simple data

analysis models that can be created and dynamically updated by Cloud systems.

Besides having different algorithms executing in different layers, complementing

each other, another approach considers algorithms that can be distributed vertically

across these layers. For instance, some works propose the distributed execution of

Deep Learning models, where the neural network layers are distributed along Cloud

to Edge, which besides offloading the computation in central servers can also pro-

vide a local fast and partial response [16, 11].

In this sense, the use of intelligence and data analysis at the Fog/Edge levels al-

lows to: i) take real-time decisions and mitigate communication failures, ii) perform

data preprocessing and aggregation to reduce the data size, optimizing the band-

width, reducing the storage and analysis costs, and iii) increase the autonomy, mod-

ularity and flexibility of the system. On the other hand, it may face some issues and

drawbacks, namely: i) costs and investment to modernize legacy and/or adopt mod-

ern equipment, ii) increased system complexity and unpredictable behavior coming

from the components’ distribution and autonomy, and iii) handle the uncertainty of

AI approaches.

This leads directly to three main criteria that should be considered to determine

and guide such distribution: 1) Edge/Fog devices computational power and avail-

ability, combined with the adoption of modern devices or instrumentation of legacy

ones; 2) effort to handle the complexity derived from distribution, combined with

the benefits brought by the solution; and, 3) desired level of autonomy, combined

with the acceptable levels of uncertainty.

2.2 Agents Interconnecting Data Analysis layers

In spite of the benefits of decentralizing the data analysis from the Cloud to Fog and

Edge layers, it presents several concerns encompassing not only the constrained

computational resources, but also considering the data analysis outputs. For in-

stance, while Cloud applications centralize the data from different sources, enabling

the analysis of patterns over large number of samples and sets of attributes, Edge

devices manage few samples of data with small sets of attributes, providing a very

simple and highly uncertain notion of the environment conditions.

To cope with these constraints, besides data-driven, AI provides approaches like

MAS, where distributed, autonomous and cooperative processing nodes, i.e. agents,

work as a vessel for different kinds of algorithms. This approach uses negotiation

and collaboration protocols and strategies that besides enabling the decentralization

of data analysis, also support the management of vertical and horizontal interaction

and collaboration of the components from each layer [3, 14, 18, 10].
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Fig. 1 Modular approach to build agent-based cyber-physical components

In this sense, the proposed modular agent-based architecture, to design and em-

bed cyber-physical components with data analysis capabilities, comprises a set of

data processing modules that can be combined to build cyber-physical agents to be

deployed at different computational layers, as illustrated in Figure 1 (left). Each

module has a specific role that in the MAS approach can be seen as an agent be-

havior. They are grouped in 4 clusters, namely Edge Agent Modules, Cloud Agent

Modules, Common Modules and Local Modules.

Edge Agent Modules define common tasks to be performed by Edge equip-

ment, like the physical communication with the world through sensors and actu-

ators (Physical Comm.), data preprocessing (Preprocessing) and condition monitor-

ing (Monitoring). While these modules aim continuous and simple data processing

to attend fast response requirements, the Cloud Agent Modules focus on advanced

and batch data analysis, aiming to support decision making and optimization. They

define tasks that are computational demanding or require a broad view of the system,

thus being more suitable to be performed at Fog or Cloud layers. Such tasks encom-

pass the system supervision (Supervisor), data analysis and ML (Data Analysis),

decision-support and other human agent interaction systems (Human-Agent Inter.),

as well as knowledge management tasks (Knowledge Base). The Collab. Manager

and Intel. Controller modules represent common modules that can be present in

any kind of agent, being responsible for the agents’ interaction and their internal

decision-making mechanisms, respectively. The Local modules should be part of all

agents, handling their communication interfaces (IoT Comm. API), managing the

internal events (Agent Manager) and storing local data (Local Data Store).

In spite of the modules division in Edge and Cloud, they are not restricted to that,

and should be combined according to the application constraints and requirements.
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3 GO0D MAN MAS Cyber-Physical System Architecture

The described approach was used, under the GO0D MAN project, to design a mod-

ular CPS that supports the ZDM philosophy in multi-stage manufacturing systems

[9]. The goal is to achieve an adaptive system for the real-time monitoring and the

early identification of deviations and defects along the different process and quality

control stages, towards the proactive and dynamic adaptation of process and inspec-

tion parameters. For this purpose, the GO0D MAN architecture defines four types

of agents, namely Product Type Agent (PTA), Product Agent (PA), Resource Agent

(RA) and Independent Meta Agent (IMA) [9], which are responsible for managing,

collecting and analyzing data from different manufacturing entities. Based on the

required responsiveness, data visibility and data analysis tasks, they are placed at

different computing layers, as illustrated in Fig. 2.

Fig. 2 GO0D MAN agent-based architecture for multi-stage manufacturing systems

Each inspection station has an associated RA that resides locally in an Edge

computing platform and presents capabilities of data stream analysis, early prob-

lem detection and self-monitoring. It plays an essential role to enhance the real-time

monitoring and the quality (granularity) of the data sent to upper layers, as well

as the overall data management and distribution along the computing layers. These

agents are related to Edge agents, implementing the respective data analysis mod-

ules, as well as the Common and Local Modules, as described in Sect. 2.

Each product, i.e. a vehicle being produced, has associated a PA, hosted at the

Fog layer, responsible for managing the product’s inspection along the stages, early

detecting deviations and determining quality indicators. Both RAs and PAs perform

the continuous monitoring and dynamic adaptation of process parameters, executing

simple but fast data analysis, attending the fast response and data sensitive require-
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ments, respecting the constrained resources of their platforms. Based on that, the

data analysis models used by them could be built and dynamically updated through

the interaction with the agents placed at the Cloud level. The PAs may combine Edge

and Cloud modules, excluding the Physical Comm., since they don’t need to access

any physical device, and usually having a Supervisor module. The intelligence and

data analysis algorithms embedded in these agents may support, e.g., the:

• Customization of functional tests: PAs can adjust the testing plan according to

different product types, features or events recorded along the production process.

• Collaborative detection of malfunctioning: RAs can be self-aware of their con-

ditions, thus given any anomaly in their operation, they can interact with other

RAs to diagnose if it is a local or global malfunction. In the same manner, each

PA can correlate data or interact with others PAs to detect and diagnose problems

involving more than one resource.

• Selective raw data exchange: RAs monitor the collected raw data continuously,

sending preprocessed data and alerts to upper level components. Their limited

data storage can be used to keep track of a window of raw data samples and

selectively send it to upper level components.

• Early identification of products that never reach the desired quality: PAs ana-

lyze the evolution of the quality indexes of each product during its production to

early detect when the desired quality is not possible to be achieved anymore and

consequently decide to stop the production of the non-quality product.

On the other hand, PTAs (one for each product model) and IMAs (to provide

global optimization) are hosted at the Cloud layer taking advantage of the available

computational resources to store and process the huge amount of data (historical

and real-time streams) integrated from PAs and RAs. Both PTAs and IMAs com-

prise Cloud-based agents, implementing the related data analysis modules. How-

ever, PTAs can also implement Monitoring modules, while Human-Agent Inter. and

Knowledge Base modules are more common for IMAs. In general, they run ad-

vanced ML algorithms for classification and prediction tasks, as well as to plan and

optimize the processes and their parameters. For instance, classification or cluster-

ing techniques can be used to classify the products according to their testing results,

while prediction algorithms can be used to determine in advance if the product will

fail in the next stages based on the results of the previous ones. The intelligence and

data analysis algorithms embedded in these agents may support, e.g., the:

• Dynamic adaptation of the process plan: PTAs can optimize the process plan for

each product, based on the analysis of the integrated PA’s data, also providing

up-to-date data models and other settings to PAs.

• Optimization of process parameters: IMAs use advanced batch data analysis to

handle the large amount of data, collected from PAs and RAs, to adjust moni-

toring rules, train data models and optimize operational parameters. As example,

this includes the early detection of performance or quality degradation.

This illustrates some of the AI capabilities, regarding the collaboration between

physical and cyber components to implement ZDM in multi-stage systems. More

details can be found in [9].
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4 Deployment in an Industrial Automobile Multi-Stage

Production System

The envisioned MAS approach for decentralizing the data analysis was applied to

an automobile assembly line at the Volkswagen Autoeuropa situated in Portugal.

Following the principles of the zero defect multi-stage manufacturing, the idea is to

collect data from the several stages of the assembly line and analyze them to extract

knowledge related to the continuous monitoring and the early detection of defects,

allowing to perform adjustments or rework as soon as possible.

For this purpose, the case study considers 2 inspection stations disposed along the

assembly line. The first station, called Framing, inspects the deviations in the rear

part of the vehicle’s frame, regarding the product design specified measurements. It

provides a total of 21 variables (15 raw measurements and 6 extracted from them).

The second station, called Finish Line, inspects the alignment and gaps deviations

(gap and flush) between the vehicle’s frame and the tailgate. This station provides

22 variables (16 raw measurements and 6 extracted from them). Moreover, the pre-

liminary experiments considered the data from only one type of vehicle, which after

a cleaning process produced a data set containing about 38.500 product samples.

4.1 Development of the Agent-based CPS Solution

The agent-based solution was developed using the JADE framework, with the agents

using the GO0D MAN data model [13], based on the AutomationML, to support the

information sharing among the agents. The agent-based model considers:

• 2 RAs, one for each station, that collect and analyze the inspection measurements

to determine if the vehicle needs any adjust/rework before continue the assembly.

• As many PAs as the number of vehicles being produced in the assembly line,

each one being responsible for integrating and processing the data from the RAs.

• 1 PTA representing the model of vehicle that is produced, being responsible for

integrating and analyzing the data provided by the PAs.

• 1 IMA to provide dynamic optimization by retraining the data models and mon-

itoring rules to be used by the other agents.

The data analysis capabilities have been developed in Python and integrated in

the RAs, PAs and PTA agents. In this context, before the creation of the data analy-

sis models to be deployed in the system agents, data mining tasks were performed,

where besides data preprocessing and cleaning, an exploratory data analysis was

conducted aiming to determine what kind of data analysis approaches and algo-

rithms could be used. Moreover, regarding the lack of labeled samples, the data

analysis was based on unsupervised learning approaches. In the preliminary exper-

iments, they mainly comprise outlier and novelty detection techniques. Given this

case study characteristics and requirements, they were used to continuously monitor
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the quality of the products along the assembling process. Their outputs were used to

determine the quality indicators and detect outliers and deviations, aiming to trig-

ger alerts for early adjustments and mitigation tasks, in order to reduce the need for

rework and the production of low quality products or even scraps.

4.2 Preliminary Data Analysis Experiments

This section describes the results from the implementation of unsupervised data

analysis, mainly based on anomaly and novelty detection algorithms.

4.2.1 Monitoring and Characterization of the Vehicle Assembly Quality

As discussed in the Sect. 3, the RAs are in charge to perform the continuous moni-

toring of the measured variables at the associated station. Regarding that, some im-

portant data analysis tasks include the monitoring and characterization of the quality

of the vehicle assembly at the current stage. In this context, considering the lack of

labeled data, instead of use classification algorithms, an unsupervised approach for

outlier/anomaly detection was applied.

The main idea behind the outlier detection algorithms is to keep track of the

local distribution of data points, considering an outlier any sample that substantially

deviates from such distribution. Such algorithms should be previously trained with

only regular data samples in order to fit the model with the data distribution.

In this context, the Fig. 3 illustrates the results of the application of the Local

Outlier Factor (LOF) algorithm [6] in the data from both inspection stations. The

LOF algorithm is an unsupervised anomaly detection method that considers outliers

the data points that present a substantial deviation from the density distribution of its

neighbors. Instead of simply determining whether a new observation is an outlier,

this algorithm also provides a score, indicating the degree of outlier, i.e., how far it

is from the local distribution. In this context, this value is used to characterize the

quality of the vehicle assembly process.

In the experiments, a LOF data model was build and previously trained by con-

sidering the first 8000 data samples. In the Fig. 3, each point indicates the outlier

score of an inspected product that in this case can be interpreted as the product

quality after the given assembly process. The red ’X’ indicates products that did not

achieve the highest desired quality values, thus triggering an alert for adjustments

or rework to be performed before to continue the assembly process.

The analysis illustrated in Fig. 3 is computed separately by each RA, with prob-

lems associated to individual stations being detected by these agents. However, in

multi-stage systems, the occurrence of critical problems or defects can only be de-

tected by correlating the outputs of multiple stages, which increases the data analysis

complexity. For this purpose, the quality values acquired by the RAs are also ana-

lyzed by the PAs that can correlate them across the stations and check the quality
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Fig. 3 Anomaly detection in inspection stations

evolution along the assembly process. In this context, the Fig. 3 illustrates 2 prod-

ucts that did not achieved the desired quality indicators at the first station, and even

after the execution of the adjustments still presented undesired quality values. This

can be used to raise alerts for a special attention in the next adjustments that should

be performed. This correlation can be performed based on rule-based algorithms

that should compare the values of the different stages, or even using clustering or

classification methods that may consider the combination of multiple indicators to

determine if the product does not comply with the specified quality values.

4.2.2 Detection of Changes in the Process

Since at the operational levels, the processes are subject to constant changes, for

instance, that may be caused by products changeover or mechanical issues, another

important aspect that should be monitored is related to changes in the distribution

of the measurements. These kinds of changes in the data distribution, also known

by Concept Drift, are different from the degradation that present a smooth change

(trend) in the measurements. Thus, it is important to monitor and detect them, in

order to alert higher level systems that some significant change occurred in the pro-

cesses, indicating the need to update the current data models or monitoring rules in

order to keep the monitoring tasks operating properly.

While the outlier detection algorithms analyze whether a new observation is in-

side the current data distribution, the Concept Drift algorithms follow a similar ap-

proach, checking if a sequence of consecutive data samples left the data distribution

and start a new one. In this context, Fig. 4 illustrates the application of the Page-

Hinkley method [5] for the detection of a concept drift in one of the features of the

Framing station. In this case, the concept drift was correctly detected, but only 16

products after the occurrence of the change, which means that the current model

could be fine-tuned. In alternative, other well-known algorithms for concept drift

detection can be used, like ADWIN (ADaptive WINdowing) and DDM (Drift De-

tection Method) [5].
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Fig. 4 Concept drift detection in a measured parameter

5 Conclusions

In the industrial domain, CPS emerged as a paradigm that combines technologies

like IoT, Cloud, Edge and AI, aiming to create distributed and autonomous pro-

duction system capable of coping with the required levels of mass customization of

products and the dynamic reconfiguration of processes. This paper discusses the use

of a MAS approach to support the design and development of industrial CPS, based

on cyber-physical components that can embed different data analysis capabilities.

Such components should support the decentralization of data analysis from Cloud

to Edge layers, aiming to attend industrial constrained applications requirements,

like fast response and data sensitive.

An industrial case study, regarding an automobile assembly line aiming to im-

plement the ZDM philosophy, was used to validate the proposed approach. The

preliminary experiments illustrated how data analysis embedded by agents can be

performed at different computational layers. Moreover, they considered important

data analysis aspects of industrial operational levels, namely, the analysis of un-

labeled data, and novelty detection that are essential to support dynamic environ-

ments. The expected benefits are related to a reduction in the costs associated to

scraps, an increase in the process efficiency, as well as in the quality of the products.

Future work will be devoted to the further development of the industrial case

study, exploring other ML algorithms to be embedded in the agents, as well as to

integrate agent collaboration mechanisms to support the dynamic system adaptation.
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