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An agent-based modeling framework for sociotechnical

simulation of water distribution contamination events

M. Ehsan Shafiee and Emily M. Zechman
ABSTRACT
In the event that a contaminant is introduced to a water distribution network, a large population

of consumers may risk exposure. Selecting mitigation actions to protect public health may be

difficult, as contamination is a poorly predictable dynamic event. Consumers who become aware of

an event may select protective actions to change their water demands from typical demand patterns,

and new hydraulic conditions can arise that differ from conditions that would be predicted when

demands are considered as exogenous inputs. Consequently, the movement of the contaminant

plume in the pipe network may shift from its expected trajectory. A sociotechnical model is

developed here to integrate agent-based models of consumers with an engineering water

distribution system model and capture the dynamics between consumer behaviors and the water

distribution system for predicting contaminant transport and public exposure. Consumers are

simulated as agents with behaviors, including movement, water consumption, exposure, reduction

in demands, and communication with other agents. As consumers decrease their water use, the

location of the contaminant plume is updated and the amount of contaminant consumed by each

agent is calculated. The framework is tested through simulating realistic contamination scenarios for

a virtual city and water distribution system.
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INTRODUCTION
Drinking water distribution systems are critical infrastruc-

ture systems. Because they provide potable water to a large

population of consumers from centralized sources, they

create vulnerability in a community to both accidental patho-

gen outbreaks and intentional attacks (US Government

Accountability Office ). For example, accidental intro-

duction of pathogens may occur due to pump failure, pipe

breaks, and polluted source water, and intentional attacks

may be initiated at tanks, treatment plants, and exposed

water mains (Kroll ). Historical outbreaks due to con-

taminated water have caused severe public health

consequences, including hospitalization and death of vulner-

able segments of the population (Hrudey & Hrudey ).

The public health consequences of an outbreak or

attack do not depend on the characteristics of the
contaminant intrusion alone. Instead, the decisions and

behaviors of human actors as they interact with the pipe

network can influence the number of exposed consumers

and the propagation of a contaminant plume. The US

Government Accountability Office () recommended

that system vulnerability may be reduced by changing

human actions and interactions, including strengthening

the communication between actors who distribute infor-

mation during an event and training utility operators for

outbreak mitigation. Woo & Vicente () and Vicente &

Christoffersen () have described the water contami-

nation outbreak as a sociotechnical system, which is a

system that is characterized by strong interactions between

social and technical factors that govern the emergent

system performance. Optimization of a technical system
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without consideration of social interactions tends to

degrade the performance and increases the unpredictabil-

ity of the system. Glouberman () investigated an

outbreak in Walkerton, Ontario, and emphasizes that the

occurrence and effects of a water contamination event

cannot be attributed to one culprit alone. The study

suggests that attempts to strengthen a system by focusing

on one component alone may ignore events and

interactions that can have important stabilizing or destabi-

lizing effects. While the analysis of Walkerton focused on

the interactions that increase the vulnerability of the

system and that influence detection of the event, the inter-

actions between human actors and the infrastructure

system as the event unfolds can also influence the trans-

port of contaminant in the network and determine the

emergent public health consequences. For example, as a

contaminant spreads through a system, consumers may

become sick and stop consuming water or change their

water use due to warnings from public health officials or

their peers. At the same time, a water utility may take

action to mitigate the event after the detection of the con-

taminant. The utility may use both outreach activities,

such as broadcasting boil water orders, and operational

procedures, such as closing valves and opening hydrants.

The actions taken by consumers and decision-makers

may cause hydraulic conditions in the network to fluctu-

ate outside of expected ranges and, therefore, the

contaminant plume to deviate from a predicted propa-

gation. The unpredictability introduced through

consumer interactions may create difficulties for utility

managers in identifying the most effective response plans

to protect public health.

Simulation studies typically consider water distribution

pipe networks in isolation and neglect dynamic interactions

among the contaminant in the pipe network and consumer

demand decisions. A complex adaptive system (CAS)

approach is developed here for the water distribution con-

tamination event. A CAS is characterized by a set of

interacting agents that influence emergent system properties

through dynamic feedback loops (Holland , ; Axel-

rod ; Miller & Page ). Agent-based modeling (ABM)

is a computational model for simulating the actions and

interactions of autonomous agents in a CAS to evaluate

the collective effect on system properties (North & Macal
://iwaponline.com/jh/article-pdf/15/3/862/387091/862.pdf
). Agents are modeled to receive information about

their environment, have goals, and select actions to

change the environment and meet goals. Additionally, an

agent can receive information from other agents and inter-

act with them. The ABM approach has been applied in

water supply management in limited contexts to explore

decision-making strategies for increasing water supply

capacity and to simulate consumers and their reactions to

water pricing (Tillman et al. , , ; Athanasiadis

et al. ; Rixon et al. ). Preliminary research has

explored simulation of water distribution contamination

through coupling water distribution system simulation with

ABM, and this approach was applied to evaluate the

public health consequences of contamination events for a

small virtual city of 5,000 residents (Zechman , ,

). The study presented here makes a new contribution

to threat management research by comparing public

health consequences that are predicted through the ABM

methodology to results that are obtained from an engineer-

ing model alone. This research demonstrates and

quantifies the change in the predicted hydraulic conditions

in the network that the decentralized decisions of consu-

mers can produce. While utility managers and their

reactions to mitigate the consequences of water events can

significantly impact the consequences of a contamination

event, this study explores consumer behaviors, and utility

actions are not included for simulation in the present

study. The framework developed and presented here intro-

duces advances in behavioral simulation beyond the

previous studies. Improvements to the simulation of

human behavior include incorporation of established

models for a word-of-mouth mechanism, simulation of a

demographically heterogeneous population, improved simu-

lation of exposure, and utilization of real data for simulating

the expected protective actions of consumers during con-

tamination events. This study applies the ABM approach

for a virtual case study, which is a municipality of 150,000

residents. The case study is realistic and includes a large

population of consumers and a complex water distribution

system. A new metric is used to evaluate the location of a

contaminant plume in a network over a time series, and

results show that for large doses of potent chemicals, the

hydraulics in a network are reversed in flow directions

from normal operating conditions. In preliminary studies,
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ABM was proposed and implemented as an approach to

address water contamination events; this study emphasizes

the importance of ABM for studying water events as socio-

technical systems by comparing it with the models that are

traditionally used for analysis.
AGENT-BASED MODELING FRAMEWORK

A set of actors, including end-use consumers, water utility

managers, public officials, the mass media, and public

health agencies, interact through sharing information

when a contaminant is introduced in a water distribution

system, as illustrated in Figure 1. Individual actors and

organizations choose from a set of potential actions, based

on their interpretations of the event, and these actions can

directly or indirectly change hydraulics in the pipe network.

For example, water utility managers may first become aware

of contamination through unusual water quality data that

are collected by an early warning sensor system or through

consumer complaints. Water utility managers may

implement operational strategies to control the propagation

of the contaminant plume in the water distribution system.

Public officials may alert residents about potential or con-

firmed contamination by implementing, for example, a boil
Figure 1 | Interactions among actors and the water distribution system in a water distribution

consumers and the water distribution model, as shown by the shaded box.
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water notice. Consumers may comply with notices and

warnings by implementing protective actions, such as avoid-

ing contact with tap water, and alerting peers about a threat.

As a result of these interactions, hydraulic conditions in the

water distribution system may fluctuate due to direct oper-

ations, such as opening hydrants and closing valves, and

due to reductions in consumer demands.

A modeling framework is described here to capture the

interactions among consumers and the water distribution

system by coupling a water distribution simulator

EPANET (Rossman ) with an ABM system, AnyLogic

(X.J. Technologies ). Consumers are represented as indi-

vidual agents, who adapt their behavior based on the

information they receive from the water distribution

system and other agents. When the simulation begins, con-

sumer demands are represented as aggregated demands

that are exerted on the water distribution system at nodes,

and EPANET calculates the flow volumes, flow directions,

and water quality within the pipe network. The simulation

proceeds at discrete time steps for hydraulic calculations in

EPANET, and at each time step, water quality information

is passed from the water distribution system model to the

agents. Consumers are simulated to ingest water, and

once a consumer has accumulated a critical dose of the

contaminant, the consumer is flagged as ‘exposed’ and
system contamination event. The study described here captures the interactions among
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responds to exposure by passing information to other con-

sumers and reducing water usage. Changes in demands

are translated to the water distribution simulation, and

the hydraulic conditions for successive time steps are calcu-

lated by EPANET. In this way, the feedback loop between

the consumers and the water distribution system is

established.

The procedure that consumers use to select behaviors is

represented through a set of rules, which include if-then

relationships and probabilistic functions. The behaviors

that are included in the simulation are the timing and

volume of water ingestion; changes in water usage through

protective action strategies; travel among nodes; and word-

of-mouth communication among consumers. Agent attri-

butes and rules of behavior are described in the following

sections.
Demographic information

Agents are initialized with diverse characteristics to rep-

resent a heterogeneous population. Data are used from a

study that reports statistics for age, gender, and weight, for

the US population, as grouped into 11 discrete age groups

(US Environmental Protection Agency ) (Figure 2).
Figure 2 | Demographic information for the US population shown as the average for an age g

Protection Agency 2000); (c) volume of ingested tap water (US Environmental Prote

://iwaponline.com/jh/article-pdf/15/3/862/387091/862.pdf
Volume and timing of daily ingestion

Each agent is initialized with a specific pattern for using and

consuming water, based on gender and age group, using the

distribution shown in Figure 2(c). Two approaches, a fixed

approach and a probabilistic approach, are used and com-

pared to simulate the volume of water that each agent

consumes each day. The fixed approach simulates that

each agent ingests the expected value of the distribution,

or 0.93 L. The probabilistic approach uses an exponential

distribution to assign random volumes to different consu-

mers based on the mean value for each age group. A value

for the daily consumption volume is assigned to each consu-

mer using Equation (1), which is the inverse form of an

exponential distribution function (Ang & Tang ):

v ¼ �vm ln 1� pð Þ (1)

where v is the volume of water, vm is the mean volume

associated with each age group in Figure 2, and p is a prob-

ability that is randomly generated between zero and one.

A consumer agent is assigned five times during a day,

when it consumes tap water. The fixed approach divides

the volume of water that each consumer drinks uniformly

among five times: 7:00, 9:30, 12:00, 15:00, and 18:00
roup. (a) Age (US Environmental Protection Agency 2000); (b) weight (US Environmental

ction Agency 2000); (d) employment (United States Department of Labor 2010).
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(Davis & Janke ). The probabilistic approach was devel-

oped to specify probability density functions for the times at

which a consumer takes three daily meals, depending on the

timing of previous meals (Figure 3) (Davis & Janke ).

Minor meals are taken at the mid-point between major

meals to simulate five daily ingestions.

As agents ingest contaminated water, the mass of con-

taminant in an agent’s body accumulates. Once an agent

has ingested a critical dosage, he is considered exposed.

The critical dosage varies for different contaminants.
Water demand behaviors and self-protective strategies

Simulation of water end-use behaviors is based on data col-

lected by the US Environmental Protection Agency ().

This study reports that 70% of the total residential water

demand for US households is used for indoor activities,

and these indoor water end-uses are grouped into six cat-

egories based on the ultimate appliance: washing clothes

(15.4% total-water use), toilet (18.5%), shower (11.6%),

faucet (11.2%), leakage (9.8%), and other miscellaneous

indoor uses (3.5%) (Mayer et al. ). Consumer agents

are simulated with the ability to suspend water use for
Figure 3 | Cumulative distribution functions (CDF) represent the times at which three

major meals are taken. M1, M2, and M3 are the times for Meals 1, 2, and 3,

respectively. (a) CDF for M1 and M2, (b) CDF for M3.

om http://iwaponline.com/jh/article-pdf/15/3/862/387091/862.pdf
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four of these indoor activities, including washing clothes,

showering, using the faucet, and miscellaneous indoor

uses, representing 41.7% of a household’s total water use.

Once consumers become exposed to a contaminant or

are alerted by peers about a threat, they may adjust their

demand decisions and change typical consumption of tap

water for indoor uses. Results of a survey about expected

behaviors in a water contamination event are used to

better represent how consumers make decisions about redu-

cing water use during a contamination event. The study

summarizes nine water activities related to indoor end-

uses (Lindell et al. ). Respondents were asked to quan-

tify how likely continuing certain water use activities

would be to endanger their health when drinking water

has been contaminated. Survey results (Figure 4) were

used to calculate the probability that a consumer will con-

tinue each activity, and each water activity corresponds to

one of the four water end-use groups listed above (washing

clothes, showering, using the faucet, and miscellaneous

indoor uses). When a consumer agent selects to alter its

water use behavior, the probability of suspending each use

is evaluated independently, and the total reduction in total

water demand is computed.

As agents change their behaviors, the base demand of

each hydraulic node is updated at each time step:

bd0
t ¼

PK
1 1� RFið Þ

K
bdt (2)

where bdt is the original base demand at a node at time step

t; K is the number of consumers located at the node at time

step t; RFi is the reduction factor decision made by
Figure 4 | Probabilities for suspending water activities once a consumer is alerted to an

event, based on results reported by Lindell et al. (2010).



Figure 5 | Framework for sending and receiving messages within a cluster of individuals

(Lindell & Perry 2004). Arrows show the direction of messages passed from

senders to receivers.
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consumer i at the node; and bd0
t is the new base demand at

the node. The parameter RFi varies between 0.035 and 0.417

to represent the reduction in demand corresponding to the

end uses that are discontinued for an agent.

Mobility

During a contamination event, consumers may move across

the boundary of the contaminant plume as they travel to

work, places of business, or a residence, and may become

exposed to the contaminant by drinking water at any of

these locations. The percentage of employed adults, distin-

guished by age group and gender, was reported by the US

Department of Labor () (Figure 2(d)) and is used in

simulating mobility. To simulate the movement of consu-

mers in a municipality, each agent is assigned a residential

node, a non-residential node, the time at which the agent

leaves its residential node, the length of time spent traveling,

and the time it leaves the non-residential node to return to

its residential node. Employed agents spend approximately

8 hours at non-residential nodes, and unemployed agents

visit commercial nodes or remain at residential nodes

during a day. To calculate the travel time between nodes,

the Euclidean distance between an agent’s residential node

and non-residential node is calculated. The travel time is

subtracted from the time a consumer spends at a residential

node.

Data describing demand patterns and the time series of

consumers at each node are used to establish mobility pat-

terns that are consistent with the water distribution model.

Demand patterns that specify the daily time series of nodal

demand are obtained from the input data for the hydraulic

model. These patterns are normalized and multiplied by the

maximum population at a node to derive the number of con-

sumers that should be at a node at each time step, and these

numbers are used to assign mobility parameters to agents.

Word-of-mouth communication

During hazardous events, individuals may receive infor-

mation through many varied channels, and word-of-mouth

communication can significantly affect the behavior of a

population (Perry et al. ). Victims may identify their

own unsafe actions and encourage family members, friends,
://iwaponline.com/jh/article-pdf/15/3/862/387091/862.pdf
peers, and colleagues to discontinue water-use activities.

Once consumers experience exposure symptoms, they may

adopt protective behaviors and warn others about the

danger.

While a few models exist for simulating communication

among peers (e.g., Lind et al. ), a cluster model was

developed for simulating communication specifically

during an emergency event (Lindell & Perry ) and

was selected for implementation within the ABM frame-

work. The cluster approach is similar to a small world

network model (Watts ), but the cluster approach speci-

fies a unidirectional flow of information and specifies

relatively less communication among agents. Each agent is

specified as an information isolate or a member of a cluster.

In a cluster, individuals are assigned one of several roles,

including an original source, intermediate members, and

ultimate receivers. Original sources are typically individuals

who are informed about current events, communicate with

many individuals, and have a strong influence in their

immediate community. A warning message can originate

from the original source or the intermediate actors in each

cluster (Figure 5). The time it takes to pass each message

is assumed for this study as one step of the hydraulic simu-

lation (typically 15 minutes to 1 hour). Upon receiving a

message, agents in a cluster wait one time step before pas-

sing the message to the next receiver.
ILLUSTRATIVE CASE STUDY: MESOPOLIS

Mesopolis is a virtual city that was developed for threat

management research (Johnson & Brumbelow ) and

is used to demonstrate application of the ABM framework



Figure 6 | Schematic of the Mesopolis water distribution system.

Table 1 | Distribution of the Mesopolis population among different types of agents

Types of consumers Population

Employed consumers 86,776

Employed consumers at commercial nodes 26,034

Students 19,457

Employed consumers at industrial nodes (over 3 shifts) 21,186

Unemployed consumers who visit commercial nodes 18,552

Unemployed consumers remaining at residential nodes 6,755

868 M. E. Shafiee & E. M. Zechman | Agent-based modeling of water distribution contamination events Journal of Hydroinformatics | 15.3 | 2013

Downloaded fr
by guest
on 21 August 2
for a realistic case study. The city is modeled with an histori-

cal development, beginning in the 1800’s as a harbor town

and growing to include residential, commercial, and indus-

trial areas, in addition to a naval base, an airport, and a

university (Figure 6). A river that flows through the city

from south to north provides the main source of fresh

water. Water is withdrawn from the river at a location 13

miles south of the city and pumped through a main pipe

to the southern edge of Mesopolis, where the pipe branches

to deliver water to an East Treatment Plant and a West

Treatment Plant. The West Treatment Plant is an older

plant and provides the majority of the water demand for

the west side of the city, which is separated from the east

side by the river. The East Treatment Plant supplies water

for the eastern side of the city, and, in addition, for a large

portion of the western side during peak demands. A skeleto-

nized hydraulic simulation model represents the network

using 1,588 nodes, 2,058 pipes, one reservoir, 13 tanks,

and 65 pumps. Four different demand patterns are specified,

which include residential, commercial, industrial, and naval

demands. Commercial nodes include churches, schools, gro-

cery stores and malls. Demands at industrial nodes are

typically constant through a 24-hour period, corresponding

to three 8-hour shifts, while the demands at other types of

nodes increase during the day and reduce to nearly zero at

night. Based on the demands simulated in Mesopolis, the
om http://iwaponline.com/jh/article-pdf/15/3/862/387091/862.pdf
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population is calculated as 146,716 persons, and the distri-

bution of the population among node types is shown in

Table 1. The mobility patterns are established using the

demand patterns and population distribution among nodes

(Figure 7). For the word-of-mouth simulation, initial settings

are selected as 15 for the cluster size, with one information

isolate, one original source, two intermediate receivers, and

11 ultimate receivers.
CONTAMINATION EVENTS

A large number of potential intentional attacks and acciden-

tal outbreaks can threaten the quality of water in a

distribution system. A set of both biological and chemical



Figure 7 | Percentage of consumers at demand node types. The percentage is based on

the aggregated maximum population for each type of demand node and

demand patterns.
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contaminants are explored, including Escherichia coli, Nor-

walk-like virus, and arsenic. The characteristics of the

contamination events are based on a risk assessment

study, which reports the location and timing for the worst

case events that could occur in Mesopolis and the maximum

number of exposed consumers that would be expected for

each event (Rasekh et al. ; Rasekh & Brumbelow in

press). The risk assessment study was conducted to evaluate

the severity of event without considering consumer actions

or reductions in demands. A hydraulic water distribution

simulation model was coupled with an engineering model

with an optimization methodology to identify worst-case

threats, which are characterized by the time that the con-

taminant is injected, the duration over which the

contaminant is released, and the hydraulic demand multi-

plier (the hydraulic demand multiplier represents the

fluctuation of demands with seasons). To estimate loading

values for the bacterial contamination, probability distri-

butions were created to describe the likelihood of any load
Table 2 | Accidental pathogen outbreaks and intentional attacks used for contamination eve

winter (W)

Event type Entry point
Pathogen or toxic
chemical

Demand mult
(season)

Accidental West Treatment
Plant

E. coli 0.85 (F/W)
Norwalk-like 0.9 (F/W)

East Treatment
Plant

E. coli 0.8 (F/W)
Norwalk-like 0.95 (F/W)

Intentional West Treatment
Plant

Arsenic 0.6 (W)
Arsenic 0.6 (W)

East Treatment
Plant

Arsenic 0.6 (W)
Arsenic 0.6 (W)

://iwaponline.com/jh/article-pdf/15/3/862/387091/862.pdf
of bacteria injected to a system, based on literature that

describes bacterial outbreaks. Due to a lack of occurrence

and documentation about wide spread arsenic contami-

nation, two loading events were created to represent low-

impact and high-impact cases. A selected number of events

that were identified through the risk assessment are used

as simulation scenarios for this study (Table 2), including

intrusions of E. coli, the Norwalk-like virus, 75 kg of arsenic,

and 300 kg of arsenic at the East Treatment Plant and West

Treatment Plant, for a total of eight contamination events.

For each of the eight contamination events, the value for

the critical dose for each contaminant is calculated using

exposure information and models available in the literature.

The critical dose represents the dose at which a person

experiences symptoms. The critical dose (infectious dose)

for E. coli and Norwalk-like are 9 and 15 cells, respectively

(Kothary & Babu ). The arsenic critical dose varies

based on the weight of a victim (White ):

dc ¼ 5:0 × 10�8 wm (3)

where dc is the arsenic critical dose in kilograms and wm is

the consumer’s body weight in kilograms. For the initial set

of simulations, all consumers are assigned a weight of 70 kg,

with a corresponding arsenic critical dose of 3.5 mg.
MODELING SCENARIOS

Fivemodeling scenarios are constructed to represent increas-

ing levels of complexity in the model (Table 3). Model 1

represents the static engineering model, where all consumers
nts, adopted from (Rasekh & Brumbelow in press). Seasons include fall/winter (F/W) and

iplier Injection starting
time

Injection ending
time

Contaminant
load

Day 1 8 am Day 3 7 pm 36M doses
Day 1 8 am Day 4 6 pm 38M doses
Day 1 12 am Day 2 1 am 74M doses
Day 1 12 pm Day 3 12 pm 91M doses

Day 1 12 pm Day 1 2 pm 75 kg
Day 1 6 pm Day 2 12 am 300 kg
Day 1 6 pm Day 1 7 pm 75 kg
Day 1 7 pm Day 1 12 am 300 kg



Table 3 | Modeling scenarios for the ABM model

Model

Static→Dynamic

Model mechanisms 1 2 3 4 5

Ingesting Volume and Times Det. Prob. Prob. Prob. Prob.

Mobility No No Yes Yes Yes

Adaptation of Consumers No No No Yes Yes

Word-Of-Mouth
Communication

No No No No Yes
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drink water at the same time each day and of the same

volume (0.93 L), remain at residential nodes without

moving, are exposed after ingesting 3.5 mg of arsenic, and

do not adapt their demands or communicate with other con-

sumers. Model 2 includes probabilistic simulation of the

volume and timing of consumer tapwater ingestion, although

consumers still remain at residential nodes and maintain

water consumption. Model 3 incorporates daily mobility of

consumers in the network. Model 4 includes a feedback

loop between the consumers and the network, where consu-

mers decrease demands based on exposure, and hydraulic

conditions are altered dynamically. Model 5 includes the

adaptive behaviors of Model 4 and, in addition, consumer

agents communicate and receive warnings through the

word-of-mouth mechanism to update their demands.
RESULTS

Total exposure

For each modeling scenario, the simulation duration has

been set to 8 and 10 days, according to the type of event,

to provide a baseline for comparing the modeling scenarios.

The models described here do not simulate the responses

and actions of the utility. Without the interactions of the uti-

lity, such as opening hydrants to flush contaminated water,

consumers continue to use water until a contaminant has

been completely consumed, which occurs after 8 and 10

days for the intentional and accidental events, respectively.

As shown in the following results, new dynamics arise in

the simulation after 6 days due to the adaptations of the
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population. Future and on-going research will explore the

interaction of utility actions during a contamination event

(Shafiee & Zechman ).

Each of the five models was executed for 10 random

trials, for a total of 50 simulations for each one of the 8 con-

tamination events. Figure 8 shows the results for the

contamination events (E. coli outbreak, Norwalk-like virus

outbreak, 75-kg arsenic event, and 300-kg arsenic event) at

the West and East Treatment Plant. Results are presented

as the average number of exposed consumers, and the

error bars show the range of the number of exposed consu-

mers over 10 trials. The stochasticity that is introduced by

the probability distributions in the modeling of the behavior

of agents results in a small variation in the predicted number

of exposures. For all models and contamination scenarios,

the range of exposed consumers varied within a range of

300–600. Compared with the total number of exposed con-

sumers, the range of variation is small due to the size of

the contamination events, which introduce a large load of

the contaminant. In addition, for many simulations, the con-

taminant remains for a significant amount of time at many

nodes, which gives the consumers at those nodes repeated

opportunities to consume contaminated water. Although

there is variation in mobility and ingestion, over time, simi-

lar numbers of consumers are exposed across the set of 10

realizations for each unique combination of contamination

event and model.

The static model, Model 1, predicts the highest number

of exposed consumers across all models for the contami-

nation events at the East Treatment Plant. For each of the

four events, Model 2 predicts between 40 and 50% the

number of exposed consumers as predicted by Model

1. Model 2 includes stochasticity in the volume of water

ingested by each consumer and in the timing of consuming

water. As a result, the range of the contaminant mass

ingested by each consumer is wider, and while some consu-

mers ingest much more of the contaminant, fewer

consumers ingest contaminant above the critical dose. Mobi-

lity (included in Model 3) decreases the predicted number of

exposed consumers by a small percentage, as more consu-

mers travel away from contaminated nodes and do not

ingest a critical dose. Model 4 includes adaptive behavior,

and because consumers change their water demand once

they have become exposed, there is more contaminant that



Figure 8 | Average number of exposed consumers due to contamination events at the West Treatment Plant (left column, white bars) and East Treatment Plant (right column, dark bars)

over 10 trials for each model. Contaminant Events are (a) E. coli, (b) Norwalk-like, (c) 75-kg arsenic, (d) 300-kg arsenic. Error bars show the range of exposed consumers over 10

trials.

871 M. E. Shafiee & E. M. Zechman | Agent-based modeling of water distribution contamination events Journal of Hydroinformatics | 15.3 | 2013

Downloaded from http://iwaponline.com/jh/article-pdf/15/3/862/387091/862.pdf
by guest
on 21 August 2022



872 M. E. Shafiee & E. M. Zechman | Agent-based modeling of water distribution contamination events Journal of Hydroinformatics | 15.3 | 2013

Downloaded fr
by guest
on 21 August 2
remains in the network for a longer time period, and

additional consumers are exposed. Model 5 shows a small

decrease in the predicted number of exposed consumers, as

consumers who are warned through the word-of-mouth

mechanism before they become exposed are protected

from the contaminant.

The results for events at the West Treatment Plant show

different patterns for the predicted number of exposed con-

sumers when compared with events at the East Treatment

Plant. Model 1 predicts the highest number of exposed con-

sumers for all events except the 300-kg arsenic event. Model

2 shows a decrease (40–65% reduction compared with

Model 1) in the predicted number of exposed consumers,

but mobility (simulated in Model 3) increases the number

of consumers who are exposed. This is because for events

initiated at the West Treatment Plant, the contaminant is

confined to a small part of the network in larger concen-

trations, so that the most significant impact of mobility is

that the number of individuals from the eastern side of the

city visit the contaminated area during the day and ingest

contaminated water, becoming exposed. Including the adap-

tive nature of consumers in Model 4 increases the number of

exposed consumers, as the contaminant lingers in the

system without being consumed by exposed consumers.

The word-of-mouth mechanism, included in Model 5, pro-

tects a small percentage of the total population, which is

seen when compared with Model 4.

The 300-kg arsenic event at the West Treatment Plant is

significantly different in predicted consequences. Stochasti-

city in drinking patterns (Model 2) does not decrease the

number of exposed consumers to the same extent as other

events. Mobility increases the number of exposed consumers

above the number predicted by Model 1, producing a greater

increase than for any of the other events or models. The adap-

tive behavior of consumers as they reduce their demands

increases the number of exposed consumers further. The

impact of the word-of-mouth communication is greatest for

this event, and reduces the number of exposed consumers

by approximately 10,000. These results are explained by the

high contaminant load of 300 kg. This event produces con-

taminant in concentrations above 1.5 mg/L lingering for 19

hours at 67% of the terminal nodes in the western part of

the city. Most consumers at nodes on the western side of

the city consume a critical dose of arsenic due to the high
om http://iwaponline.com/jh/article-pdf/15/3/862/387091/862.pdf
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concentration in the water. The number of the residential

consumers in the western portion of the city is 37,463, and

the number of individuals predicted as exposed using

Model 3 is an average of 38,865, indicating that mobility

results in the exposure of more consumers although they do

not reside in the western part of the city.

In all of the events at both treatment plants, there is a

notable decrease in predicted exposed consumers between

Models 1 and 2. The decrease when stochasticity is intro-

duced to consumer behavior is heightened for these events

because the contamination events were originally designed

through optimization to have the most impact for the deter-

ministic model, Model 1 (Rasekh & Brumbelow in press).

The impacts of optimizing events for simplified modeling

is further explored through Figure 9. Figure 9(a) shows the

profile of contaminant concentration at Node A when

75 kg of arsenic is introduced at the West Treatment Plant

(the location of Node A is shown in Figure 6). The timing

for consumer consumption is simulated using Models 1

and 3, and the bars show the average over 10 simulations

for each model. Model 3 represents the ingestion timing

and volume for Models 3, 4, and 5, because stochasticity

in consumer water activities and mobility are included in

these models. Model 1 predicts that all 1,071 people located

at Node A drink water on the second day at 12:00 P.M., 3:00

P.M., and 6:00 P.M., when the contaminant is at high con-

centrations at that location. Model 3 predicts a more

uniform distribution of ingestions at Node A. Model 1 pre-

dicts that the consumers at Node A drink a total of 796 L

of water, and Model 3 predicts 598 L of water are ingested

during the 34-hour window shown in Figure 9(a).

Figure 9(b) demonstrates the mobility of consumers,

which is included in Models 3, 4, and 5. Consumers move

throughout the city, and as a result, there are only a few hun-

dred consumers at Node A when contaminant

concentrations are high. As a result, less than 300 consu-

mers drink water at Node A when the contaminant

concentration is at the highest value. For the 10 simulations

of each model, the volume of ingested water at Node A is an

average of 262 L (standard deviation of 29 L) for Models 3

and 4, and an average of 237 L (standard deviation of

20 L) for Model 5. These volumes are much lower than

the volume of water that is predicted to be ingested at

Node A using Model 1. These results demonstrate that a



Figure 9 | Results for one simulation of the 75-kg arsenic event at the West Treatment Plant. (a) Contaminant concentration profile at Node A and the timing of consumer ingestions for

Model 1 and Model 3, (b) contaminant concentration profile at Node A and the number of consumers located at the node, simulated using Model 3.
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worst-case scenario that is designed using vulnerability ana-

lyses and a static model may not be the worst-case scenario

when the complexities of adaptations and interactions in an

event are taken into account.

Dynamics of exposure

Figure 10 shows the dynamics of consumer exposure for four

of the contamination events, including 300-kg arsenic events

and Norwalk-like outbreaks at the West Treatment Plant and

the East Treatment Plant, as predicted by all five models. For

each event, Model 1 shows a stepwise behavior in the increas-

ing number of exposed consumers, which is due to the

uniformity of consumer behaviors. All consumers in the popu-

lation drink at the same five events during 1 day, and each

consumer ingests the same volume of water, although the

amount of contaminant that is ingested varies due to diverse
://iwaponline.com/jh/article-pdf/15/3/862/387091/862.pdf
contaminant concentrations throughout the pipe network.

For Model 1, consumers are counted as exposed only after

each of the five daily drinking events, leading to the stepwise

behavior. For the remaining models, there is stochasticity in

the timing of ingestion events, leading to a more continuous

increase in the number of exposed consumers. In simulating

the consequences of the Norwalk-like event (Figures 10(c)

and 10(d)), Models 2–5 predict that some consumers are

exposed to the critical dose while the contaminant is still

being released, in contrast to Model 1, which predicts that

consumers become exposed only once the entire load has

been injected into the system. This is due to the variability

in the amount of ingested water among consumers in

Models 2–5; some consumers drink large enough quantities

to become exposed much earlier in the event.

Figure 11 shows for these same events the time series of

consumers who are exposed, consumers who are warned



Figure 10 | Time series of the average (over 10 trials) number of exposed consumers using Models 1–5. Contaminant loading profile is shown as shaded area. (a) 300-kg arsenic event at

the West Treatment Plant, (b) 300-kg arsenic event at the East Treatment Plant, (c) Norwalk-like at the West Treatment Plant, and (d) Norwalk-like at the East Treatment Plant.
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through word-of-mouth communication, and consumers

who change their water use, simulated using only Model

5. The line representing the number of consumers who

change their water use generally follows the exposed consu-

mers; as more consumers are exposed, more consumers are

warned. In addition, consumers who are warned also warn

others. The number of consumers who change their water

use does not exceed 70,000 for any of the simulations due

to the limitations imposed by the word-of-mouth mechan-

ism. When an agent becomes exposed, the warning goes to

agents in the same cluster, but does not spread to other

clusters.
Effects of adaptive consumer behaviors on system

hydraulics

The hypothesis of this work is that as consumers change

behaviors in response to the contaminant, the hydraulic con-

ditions in the network are altered. To illustrate differences

among the models in the predicted movement of the con-

taminant, the Coincident Population Plume Index (CPP) is
om http://iwaponline.com/jh/article-pdf/15/3/862/387091/862.pdf
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introduced here. The CPP represents the coincidence, or

coinciding location and timing, of the population and the

contaminant plume. The CPP assesses the fraction of consu-

mers who are located at nodes where the contaminant

concentration is greater than zero:

CPP tð Þ ¼
Pn

i¼1
Pi tð Þ

1� δ Qi tð Þð Þ
� �

P
(4)

where CPP(t) is the Coincident Population Plume Index at

time step t of a simulation; Pi(t) is the population at node

i and time step t; n is the total number of terminal nodes

in a water distribution system; Qi(t) is the contaminant con-

centration at node i at time t; δ(x) is the Dirac delta function

(Dirac ); and P is total number of consumers in the

model. The function δ(Qi) takes on a value of infinity

when the contaminant concentration is zero, and a value

of zero when the contaminant concentration is greater

than zero.

The CPP is computed for the E. coli outbreak at the East

Treatment Plant (Figure 12(a)). The E. coli outbreak is



Figure 12 | Time series of Coincidence Population Plume Index for (a) E. coli outbreak at East Treatment Plant, and (b) 300-kg arsenic at West Treatment Plant, simulated using Models 1–5.

Figure 11 | Time series of the average (over 10 trials) number of exposed consumers, consumers who are warned, and consumers who change their water use, simulated using Model

5. (a) 300-kg arsenic event at the West Treatment Plant, (b) 300-kg arsenic event at the East Treatment Plant, (c) Norwalk-like at the West Treatment Plant, and (d) Norwalk-like

at the East Treatment Plant.
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selected because the duration of the contaminant intrusion

is shorter than the Norwalk-like virus event and shows

dynamics of the CPP clearly. Models 1 and 2 predict similar

behaviors for the CPP, and the CCP value drops off during

days 6–8, as the contaminant leaves the system. Diurnal pat-

terns are present during days 6–8, due to the filling and

draining of a tank, which removes the contaminant from

the pipes during the night and re-introduces the
://iwaponline.com/jh/article-pdf/15/3/862/387091/862.pdf
contaminant to the pipes as the tank drains during the

day. For the first 6 days of the simulated event, Models 3,

4, and 5 show similar values for CPP, indicating that the

adaptive behaviors of the consumers do not influence the

location of the contaminant plume. Later in the event,

during days 6–8, the location of the plume varies widely

among these models. Specifically, Model 3 shows lower

CPP values, as residents continue to consume water and
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the contaminant, and the contaminant leaves the system.

For Model 4, some consumers change their demands so

that the contaminant lingers in the system longer, and for

Model 5, as additional consumers change demands, the con-

taminant stays in the system and covers a larger portion of

the network.

The CPP is also computed for the 300-kg arsenic event

at the West Treatment Plant (Figure 12(b)). Models 1 and

2 (plotted as one line in Figure 12) show the same behavior

for the value of CPP, as the location of consumers and the

movement of the plume is identical between the two

models. The number of consumers at contaminated nodes

does not change for Models 1 and 2 over the first 6 days

of the event (Figure 12(b)), as the contaminant does not

leave the system until the seventh day. The behavior of the

CPP for Model 3 shows an oscillating pattern, due to the

daily movement of consumers, as many travel to the western

side of the city during the daytime, and back to residential

nodes on the eastern side of the city during the nighttime.

The mobility patterns among Models 3, 4, and 5, are the

same, but the behavior of the CPP for Models 4 and 5

depart from that of Model 3. For Models 4 and 5, the CPP

is lower than the CPP for Model 3. The adaptive behaviors

of the consumers (changes in demands for Model 4, and

changes in demands in addition to the word-of-mouth mech-

anism for Model 5) have influenced the water system to the

extent that the predicted location of the plume shifts. As

shown in Figure 13, and described in the following para-

graph, Model 5 predicts that the plume moves to the

central part of the city, where nodes are non-residential

and fewer consumers are present, during the later part of

the simulation when demands have been adapted. Model 5

predicts a lower value for CPP during the last few days of

the simulation.
Figure 13 | 300-kg arsenic event introduced at the West Treatment Plant as predicted by

(a) Model 1, and (b) Model 5. Contaminated terminal nodes are indicated by

large dark circles. Terminal nodes that remain clean throughout the event are

shown as small dark circles.
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The 300-kg arsenic event at the West Treatment Plant

demonstrates strong dynamic behaviors that lead to dramatic

changes in the predicted contaminant plume, as consumers

are exposed early in the event and adapt their demands

quickly. The hydraulics in the system is impacted to such

an extent that the normal direction of flow in the system is

reversed. Figure 13 depicts the total spread of the contami-

nant plume, as predicted by Models 1 and 5. Under Model

1, the contaminant is constrained to the western side of the

city. Under normal conditions, water flows from east to

west to meet peak demands; using Model 5, hydraulic con-

ditions are changed to such an extent that water flows

from west to east due to the number of consumers that

have reduced their water demand, and the contaminant

plume reaches a greater number of nodes. This mechanism

breaks what has been identified as a ‘hydraulic barrier’, or

a division in the pipe network over which water does not

flow or flows uni-directionally under normal operating con-

ditions. This case demonstrates the utility of the ABM

approach to identify unexpected emergent dynamics that

may occur due to adaptive behaviors.
SENSITIVITY ANALYSIS

In all models, a few assumptions were made and can impact

the simulation results. For example, consumers recognized

and responded quickly to symptoms of exposure and

immediately begin to notify peers. Zechman () con-

ducted a sensitivity analysis of these parameters for a

small network. Further studies are needed to tune these

behaviors to represent realistic behaviors. A sensitivity

analysis is conducted here to evaluate the impact of two

modeling parameters, critical dose and the word-of-mouth

framework, on public health consequences.

Critical dose for arsenic

The initial modeling assumed that all consumers have a

body weight of 70 kg, and as a result, all consumers respond

to a critical dose of 3.5 mg (or 0.05 mg/kg body weight) of

arsenic. There may be considerable uncertainty in the size

of arsenic dose that causes symptoms to appear for any indi-

vidual. Three additional cases are considered here, where
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consumers respond to critical doses of arsenic of 0.035,

0.050, and 0.071 mg/kg body weight, and consumer agents

are initialized with weights that are generated probabilisti-

cally to better represent a heterogeneous population.

Critical doses represent the upper bound, lower bound,

and median values of exposure (White ). The age

group and gender of each agent (initialization of these par-

ameters is described above) translates to a mean value for

the weight of a consumer based on the US representative

statistical distribution (shown in Figure 2). To generate the

weight of each consumer, an exponential distribution func-

tion is used (Equation (5)) and ensures that for a large

sample, the average mean of the weight of the sample

matches the average for the original data set:

w ¼ �wm ln 1� pð Þ (5)

wherew is a consumer weight,wm is the mean weight of each

age group in Figure 2 and p is a probability that is randomly

generated between zero and one. Figure 14 shows the pre-

dicted number of exposed consumers for varying critical

doses. As expected, a higher critical dose results in a lower

predicted number of exposed consumers. For Model 1,

these modeling variations result in significant differences in
Figure 14 | Consumer response curves for the heterogeneous population simulated with variou

(a) 75-kg arsenic event at the West Treatment Plant, (b) 300-kg arsenic event at the

arsenic event at the East Treatment Plant.
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the results. For Models 2–5 at the West Treatment Plant for

the 300-kg arsenic event (Figure 14(b)), using the homo-

geneous population under-predicts the number of exposed

consumers, even when compared with results corresponding

to a critical dose of 0.0710 mg/kg body weight. For events at

the East Treatment Plant, simulating a homogeneous popu-

lation matches more closely the heterogeneous population

with a critical dose of 0.05 mg/kg body weight. The dynamics

of the more extreme events (Figures 14(b) and 14(d)) exacer-

bates the unpredictability of model results.
Word-of-mouth framework

The modeling structure that is adopted for the word-of-

mouth mechanism may also significantly impact the pre-

dicted number of exposed consumers. Parameters in the

word-of-mouth framework that can be investigated include

the cluster size and the number of intermediate members.

Analysis demonstrated that varying the number of inter-

mediate members does not impact the number of exposed

consumers in the range of two to eight, when the size of

the cluster is kept constant at 15. Varying the size of the clus-

ter, however, can significantly alter the results (Figure 15).
s critical doses compared with the base case of a homogeneous population. Simulated for

West Treatment Plant, (c) 75-kg arsenic event at the East Treatment Plant, and (d) 300-kg



Figure 15 | Number of consumers who change their water use and the number of

exposed consumers for varying cluster sizes.
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As the number of members in a cluster increases, more indi-

viduals will be informed of an event and change their water

use, resulting in fewer exposed consumers. The number of

exposed consumers is reduced by 50% as the cluster size

increases from 10 to 30, indicating that results may be sig-

nificantly sensitive to the word-of-mouth simulation. The

parameters that best represent the community structure

and communication characteristics of a population should

be identified to facilitate a better understanding of the

dynamics that may occur in an event.
DISCUSSION AND CONCLUSIONS

An ABM framework is described and demonstrated for

simulating contamination of water distribution systems.

Sociotechnical simulation integrates modeling of consumer

behavior and a hydraulic model of the pipe network to pre-

dict the number of exposed consumers for an event. The

ABM simulates consumers as agents with mechanisms for

mobility, word-of-mouth communication, probabilistic esti-

mations of the volume of water ingestion, and probabilistic

timing for water ingestion. The research presented here

makes a new contribution to research investigating the sig-

nificance of consumers adapting their demands in the

event of a contamination event through a comparison of

the results of the sociotechnical model with an engineering

and exposure model alone (Rasekh et al. ; Rasekh &

Brumbelow in press). Analysis is conducted here to create

new understanding about the simulation of a dynamic

event: results demonstrate the spatial and temporal vari-

ation in consumer demands and in the movement of the
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contaminant plume as consumer activities of increasing

complexity (e.g., mobility and communication) are included

in the simulation. New results presented here demonstrate

that in some cases, adaptations of consumer demands can

alter the predicted hydraulics of the system, the movement

of the contaminant plume, and as a result, public health con-

sequences. Specifically, for potent events that are isolated in

the western portion of the city, the fluctuation of the hydrau-

lics changes the flow directions in the network from normal

operations and breaks a ‘hydraulic barrier’, which leads to a

higher number of exposures. The simulation approach that

is developed here can benefit utility managers and public

health officials in developing plans for mitigating conse-

quences of contamination events. Specifically, managers

can gain insights to the potential dynamics that can influ-

ence the direction and flows of water in the system.

Vulnerability analysis that is conducted by considering an

engineering model in isolation may mis-identify the worst-

case scenarios for contaminant intrusion, and response

plans that are developed without consideration of adaptive

behaviors may disregard important dynamics that influence

the performance of selected protective actions.

This study also develops a new metric for evaluating the

movement of the plume and the population within the net-

work. The CPP Index is defined to represent the

movement of polluted water to nodes that are highly popu-

lated, and it can be used to evaluate the change in the

plume due to adaptations of consumer behaviors. The

index gives a concise metric for displaying the change in

the vulnerable population based on additional complexity

in the model. For this study, values of the index illustrate

that models of increasing complexity predict that the pol-

luted water is available to a wider range of consumers. By

including accurate representations of the complex socio-

technical interactions, more conservative predictions of

consumer exposure can be obtained. The results of this mod-

eling framework can lead to better understanding of the

impact of events on public health and to better selection

of components that should be hardened and mitigation

strategies.

This study also improved the simulation of consumer be-

havior beyond what has been implemented previously to

provide a more realistic representation of the potential beha-

viors of individuals. Much of this behavioral simulation is
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still rudimentary, however, especially regarding the reac-

tions of consumers to exposure and information about a

threat. For example, the simulation assumes that consumers

respond within 1 hour of becoming exposed or receiving a

warning from a peer. Previous work demonstrated that the

emergent consumer exposure is sensitive to timing infor-

mation (Zechman ). New information is needed from

social science studies about the timing and risk-aversion of

consumer reactions to hazards, sickness due to specific con-

taminants, and public warnings, to better conceptualize and

parameterize the model.

Finally, this research conducted a sensitivity analysis to

explore the influence of the social model on the predicted

consequences. The analysis demonstrated that the cluster

modeling assumptions and settings could significantly influ-

ence the predicted results. New research for modeling and

parameterizing social networks and their functions in

hazards can be incorporated, as it becomes available, in

the ABM framework. Beyond the research demonstrated

here, the modeling can be enhanced through inclusion of

information about consumer response to different types of

media and warning messages, and consumer response to

symptoms. The dissemination of warning notices by utility

managers and how they influence the adoption of protective

actions are not part of this modeling study, but are investi-

gated in on-going work (Shafiee & Zechman a).

The sociotechnical simulation developed here forms a

bridge to connect research conducted in behavioral science

with engineering management. ABM provides an approach

to incorporate probabilistic information about consumer

choices with hydraulic simulation. Additional research can

investigate the extent to which social networks and engin-

eering preparedness determine the resilience of a

community to hazardous events. Additional agents can be

defined to represent utility managers, media, and public

health officials to capture additional dynamics due to

human behavior and errors. An extended framework can

be developed and is being investigated to evaluate the effec-

tiveness of alternative response actions that can be selected

by public officials, as response actions can include a wide

range of hydraulic and social response, such as opening

hydrants and closing pipes (Zechman ); and warning

consumers through media and emergency siren vehicles

(Shafiee & Zechman b).
://iwaponline.com/jh/article-pdf/15/3/862/387091/862.pdf
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