
© 2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or

for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be

obtained from the IEEE.

For more information, please see www.ieee.org/portal/pages/about/documentation/copyright/polilink.html.

MOBILE AND UBIQUITOUS SYSTEMS
www.computer.org/pervasive

An Agent-Based Service Network for
Personal Mobile Devices

Alessandro Genco, Salvatore Sorce, Giuseppe Reina, and Giuseppe Santoro

Vol. 5, No. 2

April–June 2006

This material is presented to ensure timely dissemination of scholarly and technical
work. Copyright and all rights therein are retained by authors or by other copyright
holders. All persons copying this information are expected to adhere to the terms
and constraints invoked by each author's copyright. In most cases, these works

may not be reposted without the explicit permission of the copyright holder.

54 PERVASIVEcomputing Published by the IEEE CS and IEEE ComSoc ■ 1536-1268/06/$20.00 © 2006 IEEE

M O B I L E C O M P U T I N G

An Agent-Based Service
Network for Personal
Mobile Devices

P
ervasive computing aims to disperse

smart devices throughout the real

world to supply various services, but

such devices should remain invisible to

the user—that is, pervasive computing

mustn’t become invasive computing. Yet, we can’t

hide devices designed to help humans interact

with an augmented environment—that is, the nat-

ural environment enriched with smart devices.

Furthermore, such interaction shouldn’t be the

same for all users. Designing

universal interfaces that ignore

the differences in people’s needs

and abilities could lead to sys-

tem specifications that don’t sat-

isfy anyone. We can avoid such

problems by exploiting personal

mobile devices (such as PDAs and smart phones)

for human-environment interaction. Such devices

could be suitable as remote controllers or personal

I/O interfaces for remote applications.

We propose the Agent Network for Bluetooth

Devices, a system that uses personal mobile

devices as adaptive human-environment inter-

faces to supply people with ad hoc information

and high-level services. The ANBD system oper-

ates with a hierarchical framework of service-

providing nodes, dynamically composed and man-

aged by mobile agents.

Our system’s novelty lies in its ability to dynam-

ically adapt itself to environmental changes. Fur-

thermore, accessing system services requires little

overhead in terms of users’ required technical

skills and the necessary software. We achieved

this result using Bluetooth implementations that

are available in most mobile devices. In addition,

the services and access modes we propose are

straightforward, modifications can be made

online, and the only hardware needed to access

system services is a cell phone.

System features
We designed our ANBD system with a mobile-

agent-based software framework to implement

the information retrieval function regardless of

the physical network composition. (See the

“Related Work in Mobile Agents” sidebar for

details on other research.) We chose mobile agents

because they can move from one site to another

with no initial knowledge of the sites they need to

visit. We only need to tell them what to do in each

site as they visit it. They can retrieve the address

of the next site they’ll visit while visiting their cur-

rent site.

We also designed a framework to support the

system’s hardware. It comprises fixed, networked

devices (wired or wireless) hidden in the real-

world environment. The framework’s architec-

ture is hierarchical, and we divided the environ-

ment into logical areas, each accomplishing

specific tasks within the network and each hav-

ing an appropriate scope. Hence, ANBD is scal-

able, modular, and general purpose. It could be

useful in various locations, including universities,

hospitals, large stores, or museums, even if com-

posed of small physical parts such as university

departments and classrooms, hospital wards, or

wings of large stores or museums.

The Agent Network for Bluetooth Devices lets users access ad hoc

information and high-level services using personal mobile devices

enhanced with mobile agents.

Alessandro Genco, Salvatore Sorce,

Giuseppe Reina, and

Giuseppe Santoro

University of Palermo

The physical network’s definition

depends on the physical environment’s

configuration. In any case, the network

will consist of an appropriate set of

devices belonging to two groups:

� mobile devices, such as PDAs, smart

phones, notebooks, or laptop com-

puters, that are Bluetooth-enabled and

equipped with the Java 2 Micro Edi-

tion (J2ME) execution environment,

and

� fixed devices, such as PCs exploited as

database or agent servers, and Blue-

tooth access points that connect

mobile devices with the fixed part of

the system.

Another ANBD system goal is for sys-

tem administrators to be able to make

services available to a large heteroge-

neous audience, so the service network’s

users shouldn’t need programming skills.

Furthermore, the system shouldn’t require

additional software or network access

fees. To this end, we restrict agents to

operate and move along fixed devices,

and mobile devices are only devoted to

the human-environment interface.

ANBD layout
We divide the environment in which

ANBD will be used into logical areas,

each belonging to a given hierarchical

level. The number of levels depends on

the physical environment’s size (see fig-

ure 1). We can create two or more logi-

cal areas to obtain a simple subnet, which

we can then connect to other subnets to

form a bigger network. Each area or sub-

net can be connected to (or disconnected

from) the network at any time, thus lead-

ing to dynamic distribution levels. Each

logical area acts as an autonomous entity

when it’s disconnected from any other

subnet, and users within the area can

only access local services.

There are two main area types. Service

areas (first-level areas) are the smallest

entity within the ANBD framework. An

SA consists of networked Bluetooth base

stations (BT-BSs), and its physical size

corresponds to the signal coverage of its

BT-BSs. Users can access information

stored in the SA central server through

BT-BSs used as anchor nodes for mobile

devices. We can also connect each cen-

tral server to a remote server to supply

users with more services and to lighten

the SA’s central server load.

APRIL–JUNE 2006 PERVASIVEcomputing 55

I n some projects, researchers use PDAs or cell phones with

application execution environments as interfaces for devices

hidden in the environment.1 Takuya Maekawa and his colleagues

implemented a Web-browsing system for cellular phones.2 Users

of such a system can scroll a page on a remote display or follow

the available hyperlinks.

Personal mobile devices can also be used for indoor positioning.

We implemented a positioning system by measuring link quality val-

ues between mobile devices and fixed devices used as references.3

We obtained good results, and we’re carrying out experiments on

algorithms to improve accuracy and optimize the fixed devices’

layout.4

As far as service provision is concerned, the ICEBERG project5

deals with communication technologies integration. Compared

with our proposed system, Iceberg is mostly devoted to low-level

service provision, such as voice over IP.

Museums, meeting rooms, and classrooms are typical environ-

ments where we can use personal mobile devices’ I/O interfaces to

access pervasive services. Several projects support users in such

pervasive environments by providing them with ad hoc informa-

tion or media on mobile devices. In this field, Paolo Busetta and

his colleagues proposed a system that uses agents for dynamic

information generation within active museums,6 and En-Yi Chen

and his colleagues implemented an agent-based system for teach-

ing support in a smart classroom.7 All these projects require the

use of ad hoc software on mobile devices.

Our proposed system differs because the goal is to provide users

with services in the easiest and cheapest way. We use mobile agents

for system management (service definition and listing) and for ser-

vice management (information retrieval).

REFERENCES

1. T. Uemukai et al., “A Remote Display Environment: An Integration of

Mobile and Ubiquitous Computing Environments,” Proc. IEEE Wireless

Communications and Networking Conf. (WCNC 02), vol. 2, IEEE Press,

2002, pp. 618–624.

2. T. Maekawa et al., “A Java-Based Information Browsing System in a

Remote Display Environment E-Commerce Technology,” Proc. IEEE Int’l

Conf. E-Commerce Technology (CEC 04), IEEE CS Press, 2004, pp. 342–346

3. F. Agostaro, A. Genco, and S. Sorce, “A Fuzzy Approach to Bluetooth

Positioning,” WSEAS Trans. Information Science and Applications, vol. 1,

no. 1, 2004, pp. 393–398.

4. A. Genco, S. Sorce, and G. Scelfo, “Bluetooth Base Station Minimal

Deployment for High Definition Positioning,” Proc. ACM/IEEE Int’l Conf.

Mobile and Ubiquitous Systems (MobiQuitous 05), IEEE CS Press, 2005,

pp. 454–460.

5. H.J. Wang et al., “ICEBERG: An Internet Core Network Architecture for

Integrated Communications,” IEEE Personal Communications, vol. 7, no.

4, 2000, pp. 10–19.

6. P. Busetta et al., “Service Delivery in Smart Environments by Implicit

Organizations,” Proc. IEEE Int’l Conf. Mobile and Ubiquitous Systems

(MobiQuitous 04), IEEE CS Press, 2004, pp. 356–363.

7. E.-Y. Chen et al., “Seamless Provisioning of Service in the Ubiquitous

Computing Environment,” Proc. Int’l Conf. Machine Learning and Cyber-

netics, vol. 3, IEEE Press, 2003, pp. 1904–1909.

Related Work in Mobile Agents

Second, resource areas (or nth-level

areas, n > 1) consist of a federation of

one or more lower-level areas that a con-

trol server manages. The RA topology

depends on its hierarchical level. A sec-

ond-level RA contains one or more SAs,

and higher-level RAs contain lower-level

RAs and SAs. The highest-level RA is the

root area, which contains all the lower-

level areas and doesn’t have any higher-

level RAs.

Server-side implementation
All area servers and control servers

run the Java Agent Development Frame-

work mobile-agent platform with one or

more local and remote containers, a

database to store user information, and

a Web server to access information. (See

the “Java Agent Development Frame-

work” sidebar for more details.) Each

JADE platform performs specific tasks,

selecting the agent most appropriate for

each task on the basis of the area in which

the agent runs.

Common elements of our system also

in a JADE platform, depending on the

area type, include

� a main container, which stores default

JADE agents;

� one or more containers, which execute

system agents;

� a logger agent, which manages user

logins and routing services;

� a setup agent, which registers each

area within the network during the

start-up phase;

� user agents, which represent each user

logged in within the area;

� connection agents, one for each BT-BS,

which manage connections between

mobile devices and servers; and

� service agents, one for each available

service.

Communication among these agents

takes place with FIPA ACL (Foundation

for Intelligent Physical Agents Agent

Communication Language) messages,

which are composed according to an

appropriate protocol.

Each BT-BS defines a cell with a lim-

ited coverage range, so we must optimize

the station’s layout to ensure that the

entire area is covered. This could lead to

overlapping cells, so we defined a pro-

tocol to let users with a device within

two or more cells connect to the BT-BS

with the minimum number of active con-

nections. Connection agents manage this

feature to lower the amount of data a

single BT-BS must manage and transfer.

Figure 2 shows a sample JADE plat-

form GUI for an SA with four BT-BSs.

The figure shows a main container, a

Bluetooth_Station container for each BT-

BS, and a Local_Services container where

service agents run. Each Bluetooth_Sta-

56 PERVASIVEcomputing www.computer.org/pervasive

M O B I L E C O M P U T I N G

Administration

Engineering
University of

Palermo

Italian universities

Economy

Library

University of Genova

Hierarchical areas

Service area
level 1

Resource area
level 2

Resource area
level 3

Root area
level 4

Literature

D.I.E.

DINFO

Figure 1. A resource area template for

using the Agent Network for Bluetooth

Devices system in a university

environment. The hierarchical areas

indicate the hierarchical level within the

ANBD system. D.I.E stands for

Dipartimento di Ingegneria Elettrica, or

Department of Electrical Engineering,

and DINFO stands for Dipartimento di

Ingegneria Informatica, or Department

of Computer Engineering.

T ILAB-Italy (Telecom Italia LAB, the research department of Telecom Italia) devel-

oped JADE, which is middleware for distributed-agent-based application develop-

ment fully implemented in Java that complies with the Foundation for Intelligent Physi-

cal Agents (FIPA) specifications (www.fipa.org). The framework supplies agents with

life-cycle services such as white pages, yellow pages, message transport, and message

encoding. The communication architecture offers flexible and efficient messaging

based on the FIPA Agent Communication Language.

Several third-party add-ons extend the default platform’s capabilities or improve

some features. In particular, the Lightweight Extensible Agent Platform (LEAP) add-on

replaces part of the JADE kernel (http://jade.cselt.it), forming a modified runtime envi-

ronment with a reduced memory footprint. JADE-LEAP (http://jade.tilab.com) is intended

for a range of devices varying from servers to Java-enabled cell phones. The JADE-S add-

on protects a JADE-based multiagent system against security attacks.

Java Agent Development

Framework

APRIL–JUNE 2006 PERVASIVEcomputing 57

tion container runs a connection agent

and a user agent for each user connected

via the corresponding BT-BS.

The main steps to setting up an area

platform are initialization and associa-

tion. The initialization phase lets system

administrators set parameters that will

be used during the association phase and

service access. During the association

phase, the root area or an SA links with

an RA to extend the network. Once the

association phase successfully ends, users

within an SA can access services supplied

by another area.

System administrators don’t need to

set up the entire network association at

the same time. In fact, the system can be

started with only one subnet, and other

subnets can be added later. This is pos-

sible because we implemented the ini-

tialization and association protocols

using agents.

The setup agent’s main task is to man-

age interplatform communication dur-

ing the initialization and association

phases. Setup agents store the area type,

the services list, IDs of lower-level setup

agents, and the ID of the higher-level

setup agent. We store such information

in XML files, which setup agents from

other areas use to discover local avail-

able services. We also use XML files to

store the way users can access local ser-

vices. We made this choice for several

reasons:

� The client-side MIDlet can’t process

big files because of mobile devices’ lim-

ited computing and memory resources.

Furthermore, the Bluetooth data trans-

fer rate (no more than 1 Mbit/sec.)

should lead to long response delays.

It’s worth noting that the average size

of exchanged ACL messages is small

(150 to 250 bytes).

� Each area contains files for local ser-

vices only because system administra-

tors can more easily manage decen-

tralized information.

� Each area is autonomous, and even if an

association attempt fails, users within

that area can continue to access local

services. This makes the system modu-

lar, scalable, and free from bottlenecks.

(A MIDlet is a program written and

compiled with Java 2 Micro Edition that

runs on small devices.)

Regardless of the area type, each area

platform stores information needed to

access the available services in a local

XML file named Area.xml. The system

administrator creates an SA’s Area.xml

file. In this case, the file stores the list of

locally available services and informa-

tion on how to access these services.

An RA’s Area.xml file is created by the

local setup agent during the association

phase with another area. In this case, the

file stores the links to the Area.xml files

of the associated areas. In other words,

both SAs and RAs store an Area.xml file

but use it in different ways. An SA uses

it to store information needed to access

local services, while an RA uses it to list

the services provided by lower-level SAs.

Setup agents use the Area.xml file to find

information about sites they will visit to

fulfill a service request. For instance, fig-

ure 3 presents the Area.xml section

where the setup agent of the Engineer-

ing RA finds information about other

service-providing sites.

Figure 2. A sample Java Agent

Development Framework platform GUI

for a service area with four Bluetooth

base stations (BT-BSs). In this case, only

one user is connected to the service area

via the BT-BS number 4.

Figure 3. The Area.xml section where the

setup agent of the Engineering resource

area finds information about other

service-providing sites.

<ui>
<list title = “Engineering”>
<item title = “D.I.E.”>

<link url = “http://
die.unipa.it/xml/Area.xml”/>

</item>
<item title = “Library”>

<link url = “http://biblioteca.
unipa.it/xml/Area.xml”/>

</item>
<item title = “DINFO”>

<link url = “http://
dinfo.unipa.it/xml/Area.xml”/>

</item>
</list>

</ui>

58 PERVASIVEcomputing www.computer.org/pervasive

M O B I L E C O M P U T I N G

An SA stores another XML file named

Index.xml. Setup agents create and man-

age this file, and the client-side applica-

tion uses it to list the available options for

that area. The Index.xml file is dynami-

cally updated according to the current

SA’s linking status.

ACL message exchange between cor-

responding setup agents allows the cre-

ation of the link between an SA and RA,

so we had to define an appropriate com-

munication protocol. A sample ACL

message between setup agents to associ-

ate an SA (DINFO—the Department of

Computer Engineering) and an RA (Engi-

neering) is

Sender: SetupAgent@DINFO
Receiver: SetupAgent@Engineering
Performative: INFORM
Protocol: ADD_PLATFORM
Content: DINFO@http://dinfo.unipa.it/xml/

Area.xml

Login agents accomplish user login

and authentication tasks by finding the

user record containing personal login

data. Each user has a unique ID within

the network that’s used as a primary key

within the user’s distributed database.

Each area server stores a local data-

base (the Logger database) that contains

the routing and login tables. The rout-

ing table stores remote Logger database

addresses, and the login table stores local

user login data. The login table is initially

empty, and records are written each time

a user logs into the area. When a user

attempts to connect to the area server, its

login agent searches for the user’s login

data within the login table. If the agent

doesn’t find user login data, it searches

remote Logger databases using the rout-

ing table. Once it finds the user login

data, the login agent writes it in the login

table. The next time the same user

requires services within the area, the

agent will find the login data locally. This

principle of operation is similar to a

Domain Name System.

Client-side implementation
We implemented the interface between

users and system agents using a MIDlet

running on every mobile device support-

ing Java 2 Micro Edition (J2ME) with

Mobile Information Device Profile

(MIDP) 1.0 or greater APIs and Bluetooth

JSR-82 APIs. The MIDlet is the only soft-

ware that must be executed on mobile

devices to access system services, and it

consists of a static part executed apart

from the connection status and a dynamic

part that depends on the available ser-

vices. The MIDlet negotiates a mobile-

device connection with the network using

a connection agent (see figure 4).

Once the user is authenticated on a

platform, the connection agent sets up a

user agent uniquely associated with that

user. From now on, the connection agent

can continue to manage incoming con-

nection requests from other users, and

the MIDlet contacts the user agent for

service requests.

The user agent sends the appropriate

GUI using an XML protocol message,

thus letting system administrator dynam-

ically define service access modes. Hence,

administrators only need to create XML

files for appropriate GUI generation, thus

avoiding MIDlet source rewriting for

each needed GUI.

We decided to do this, with no agents

running on mobile devices, for two rea-

sons. First, we want people to use their

cell phones in the same way they usually

do, with the same graphical menu-style

interface. We just change the choices

available in the menus according to the

services available in the user’s area. This

way, we avoid installing ad hoc software,

which could be a difficult task for

unskilled users as well as produce dif-

ferent results on different devices.

Our second reason deals with the JADE

Lightweight Extensible Agent Platform

implementation (see the related sidebar

for details). As we discussed earlier, con-

tainers are the agent execution environ-

ments within a JADE platform. In a

JADE-LEAP platform, containers are split

into a FrontEnd (actually running on a

handheld device) and a BackEnd (running

on a Java 2 Standard Edition host), linked

together through a permanent connec-

tion. This execution mode (split mode) is

particularly suited for resource-con-

strained and wireless devices because the

FrontEnd is more lightweight than a com-

plete container, the bootstrap phase is

faster, and fewer bytes are transmitted

over the wireless link. However, the split

mode doesn’t support agent mobility. This

means that if we want to run agents on

mobile phones, we have to deploy JADE-

MIDlet

User agent

(3b)
Create user agent

(3a)
Authentication

acknowledgment

(1)
Authentication request

(4)
Interaction

(2)
Verify user data

Connection agent

Figure 4. MIDlet connection steps. A step-

by-step description of the connection

between the MIDlet running on the

mobile device and a connection agent

running on an SA.

LEAP in the split mode and only exploit

agents’ communication features.

Owing to these implementation choices,

our system can ignore device coverage

problems because user agents perform

even if the user is offline (out of BT-BS

communication range).

A service request involves a user agent

and a service agent. The former acts on

behalf of users who need services, and the

latter supplies users with the required ser-

vice. In more detail, when a user requires

a service via the MIDlet on a mobile

device, the user agent on the platform

reads the Index.xml file to obtain data

related to the service required and the

name of the agent that can provide the

service. Next, the user agent asks the

appropriate service agent for a service

template, which it will use to correctly

compose the service request. In fact, the

service request must make all the relevant

services available within the user’s SA and

adhere to the proper service provision

mode. For example, in the Administra-

tion SA, students should be able to check

their curriculum and their fee payment

status. In this case, the service must be

provided in a secure mode to protect per-

sonal data transmissions, and the request

must contain all the required fields.

Of course, we set up suitable commu-

nication protocols (dealing with hand-

shake, authentication, and communica-

tion closing), a data packet format, and

a template layout to easily code them in

XML files.

Case study
We designed the ANBD system to be

used in several physical environments;

in particular, we carried out some exper-

iments within our university to test our

design choices. The university environ-

ment consists of departments, each with

a specific scope and services (research,

teaching, and secretariat) and a typical

kind of user (professors, students, and

employees).

A possible list of services for users

include

• document requests;

• exam enrollment;

• access to teaching information, such

as course time and exam dates;

• requests for teaching aids, either

directly downloaded onto the mobile

device or sent to an email address; and

• access to location-related information,

such as department directories or pro-

fessor meeting times.

When users come within a BT-BS’s cov-

erage area, the local Bluetooth service dis-

covers their devices and pushes the

MIDlet onto them (only if the users allow

the MIDlet installation). We accomplish

this with a simple Java application that

loops a Bluetooth device discovery

sequence. Once a new device is discov-

ered, the application establishes a Blue-

tooth connection with it and sends the

MIDlet .jar file. Most mobile devices’

operating systems receive the file as a mes-

sage attachment, and installation auto-

matically begins upon user conformation.

We used Atinav’s AveLink API (www.

avelink.com/Bluetooth) to implement all

low-level interactions between fixed and

mobile Bluetooth-enabled devices.

We experienced problems in our tests

while pushing the MIDlet to some phone

models, most likely due to the different

Bluetooth stack implementations. In par-

ticular, the Sony-Ericsson Z600 and

Siemens S55 don’t support the push mode

and reported an “unknown-file-format”

when receiving the message. However,

most Java-enabled Nokia models allow

this interaction mode.

We implemented a Web-based MIDlet

download mode for devices that don’t

support this push procedure. In these

cases, users can connect via General

Packet Radio Service (GPRS) to a URL

that corresponds to the .jar file. The

device then automatically downloads

the MIDlet, but users must start instal-

lation manually. We accepted this com-

promise solution because users must be

aware of the MIDlet download in this

interaction mode.

A .jad file is generated and attached to

the main .jar MIDlet file both in Blue-

tooth push mode and in GPRS OTA pro-

visioning. The .jad file describes the

MIDlet content, its memory require-

ments, and the certification data, when

available. The description file is smaller

than the actual MIDlet .jar file (1 to 2

Kbytes versus 24 Kbytes). The .jad file

is sent before the .jar file so that the

mobile phone’s operating system can

alert the device’s user, who can accept

or refuse the MIDlet according to the

information received and the execution

environment. This reduces the amount

of data to transmit and, therefore, the

fee users must pay when using the GPRS

OTA provisioning mode.

Once installed and started, the MIDlet

shows a GUI that is dynamically created

depending on the available services.

Figure 5 shows the trial environment

with four SAs and two RAs successfully

connected. The logical-areas distribution

fits the real environment hierarchy. In this

scenario, a user might enter the library

SA coverage area carrying a smart phone.

The MIDlet’s static part will show a GUI

with the connection option list and dialog

boxes for login data introduction. Once

authenticated, the client-side MIDlet

downloads the appropriate GUI with a

APRIL–JUNE 2006 PERVASIVEcomputing 59

AdministrationEngineering

Library

University of
Palermo

 Service area Resource area

DINFO

D.I.E.

Figure 5. A hierarchical representation of the

trial environment. SAs always link to an RA.

60 PERVASIVEcomputing www.computer.org/pervasive

M O B I L E C O M P U T I N G

list of possible choices and shows it on

the device display. Because related SAs

(D.I.E.[Department of Electrical Engi-

neering], DINFO, Library) are connected

to the same parent RA (Engineering), the

first menu lets the user choose services

supplied by one of the available SAs, even

if he or she is only covered by one of

them. Users can also access other areas

connected to the network via a higher-

level RA.

In a different scenario, another user

might enter the DINFO SA coverage area

and connect a device to the network. In

this stage of the experiment, we shut off

the Engineering RA platform, simulating

a fault to test the residual system opera-

tion capability. The user can still access

services supplied by the D.I.E., DINFO,

Library, and University of Palermo areas

because the user agent already has all

information needed to connect to other

SAs. The only users who might experi-

ence problems because of the platform

fault are those who need to access ser-

vices supplied by one of the D.I.E.,

DINFO, or Library areas from an exter-

nal SA. For instance, users within the

Administration SA can’t access services

supplied by the DINFO SA during an

Engineering RA fault.

User experiences
We implemented an exam enrollment

service to evaluate the system from the

user’s point of view. Because the service

is useful for students and professors, we

were able to test reactions from both sets

of users.

Because Italian students must fill in a

form with name, matriculation roll, and

email address to enroll for exams, we

asked 200 students to enroll for their

exams using their mobile devices. They

filled in the form fields with the appro-

priate data and sent it back to their user

agents, which compiles the XML node.

We received positive feedback from

students who found this kind of service

provision more familiar than a common

Web interface, probably because cell

phones are readily accessible and seem

to be more familiar than computers

among young people.

Confirming this informal result, we

noted an average of 48 accesses per day

from the system log files. The test period

lasted 25 days, and we saw a rapid

growth from nine accesses the first day

up to a peak of 112 accesses in 90 min-

utes on the fourth day. From the third day

on, we had a minimum of 23 accesses per

day. These results are impressive when

compared with the number of accesses

logged for our Web site for the same task

in the same period (39 per day average,

with a maximum of 91). The activity log

file shows that students repeatedly

checked their subscription status and the

exam room and time. We think this is due

to the system’s novelty and because the

service is free of charge.

Our mobile application is as fast as

Web-based access, so we think that stu-

dents appreciated the ability to access

services at any time without having to

search for Internet points and, above all,

pay for Internet access.

From the professor’s point of view, it’s

straightforward to add, modify, or delete

exam information because we defined a

service template layout that involves

only a few lines of XML code. The seven

professors who evaluated our system used

it less than the students, but they found it

useful when they needed to rapidly

change some service-related data. In par-

ticular, some professors changed the

exam start time just minutes before the

scheduled exam time.

It’s worth noting that our test subjects

didn’t report any errors or failures on

their mobile devices while executing the

MIDlet.

Security issues
The trial implementation of our sys-

tem didn’t deal explicitly with security

problems because we were mainly test-

ing the system’s operation and useful-

ness. Furthermore, the databases we’re

currently using don’t store information

to be secured. However, ANBD users

and programmers are intrinsically pro-

vided with suitable security in the three

main categories of security problems—

execution-environment security, prob-

lems raised by agent protection, and

communication channels—thanks to

the middleware capabilities. Specifi-

cally, the limits of agent execution and

resource access are well defined within

JADE containers. Furthermore, from

the agent’s point of view, the JADE-S

add-on lets users set up enhanced

agent-authentication features using,

for instance, user fingerprints.1 Fur-

thermore, communications in JADE

platforms use the FIPA-ACL, so it’s

easy to encrypt messages exchanged

between agents.

Concerning robustness, we designed

ANBD to adapt itself to environmental

changes and faults, providing users with

a reduced set of services, if necessary.

System agents can act autonomously,

and we designed them to always be in a

consistent state. The worst case occurs

when a mobile device disconnects dur-

ing agent setup or data exchange, for

instance, because of a battery fault. An

agent is only fully set up once the instan-

tiation procedure completes. Therefore,

System agents can act autonomously,

and we designed them to always be in a

consistent state.

APRIL–JUNE 2006 PERVASIVEcomputing 61

if the fault occurs before the procedure

concludes, the agent simply doesn’t exist

and must be reinstantiated. This is a less

critical situation than an agent left in an

inconsistent state. If the fault occurs after

the procedure is completed, the agent can

start its task and come back to its con-

tainer until the client can connect again.

Although our system exploits the basic

JADE and Bluetooth security features,

we plan to enhance system security in the

future.

O
ur future work will seek to

improve security features

during login, data access,

data transfer, and database

storage. To let users communicate with

each other, we hope to implement a mes-

senger feature that, for example, profes-

sors might use to contact students with

last-minute messages or students would

use to contact colleagues.

Furthermore, we’re evaluating the

possibility of letting mobile devices be

more involved in the agent platform. We

think this could be useful when some

local execution is needed, given that

next-generation microprocessors for cell

phones and PDAs are capable of high-

performance computing. Moreover,

we’re experimenting with using smart

phones to store user profiles, in hopes of

composing intelligent queries according

to users’ skills and behaviors.

Owing to space limitations, this arti-

cle doesn’t provide full implementation

details on the ANBD system. For further

information, please contact the authors

directly.

REFERENCE

1. V. Conti et al., “An Enhanced Authentica-
tion System for the JADE-S Platform,”
WSEAS Trans. Information Science and
Applications, vol. 1, no. 1, 2004, pp.
178–183.

the AUTHORS

Alessandro Genco is an associate professor of computer science in the Department

of Information Engineering and a coordinator of the PhD School of Computer Engi-

neering at the University of Palermo. His research interests include mobile networks

and pervasive-system middleware design for augmented reality. He received his

degree in mathematics from the University of Palermo. Contact him at Dipartimento

di Ingegneria Informatica, Viale delle Scienze, edificio 6, 90128 Palermo, Italy;

genco@unipa.it.

Salvatore Sorce is an instructor and research collaborator at the University of

Palermo. His research interests are in mobile agents in collaborative augmented-

reality environments and in parallel and distributed applications, pervasive com-

puting, wireless networks and communications, wearable computers, positioning

systems, and personal-mobile-device programming for pervasive systems. He

received his PhD in computer engineering from the University of Palermo. Contact

him at Dipartimento di Ingegneria Informatica, Viale delle Scienze, edificio 6, 90128

Palermo, Italy; sorce@unipa.it.

Giuseppe Reina is a final-year student at the University of Palermo. His current research is in mobile-

device programming for remote-service access. He will receive his degree in computer engineering

from the University of Palermo this year. Contact him at Dipartimento di Ingegneria Informatica, Viale

delle Scienze, edificio 6, 90128 Palermo, Italy; reina@studing.unipa.it.

Giuseppe Santoro is a final-year student at the University of Palermo. His current research is in mobile-

device programming for remote-service access. He will receive his degree in computer engineering

from the University of Palermo this year. Contact him at Dipartimento di Ingegneria Informatica, Viale

delle Scienze, edificio 6, 90128 Palermo, Italy; santoro@studing.unipa.it.

IEEE Distributed Systems Online brings you

peer-reviewed articles, detailed tutorials, expert-managed

topic areas, and diverse departments covering the latest

news and developments in this fast-growing field.

Log on for free access to such topic areas as

Grid Computing • Mobile & Pervasive

Cluster Computing • Security • Peer-to-Peer

and More!

To receive monthly

updates, email

dsonline@computer.org

http://dsonline.computer.org

