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Abstract   

Intermittent demand patterns are characterised by infrequent demand arrivals coupled with 

variable demand sizes. Such patterns prevail in many industrial applications, including IT, 

automotive, aerospace and military. An intuitively appealing strategy to deal with such 

patterns from a forecasting perspective is to aggregate demand in lower-frequency ‘time 

buckets’ thereby reducing the presence of zero observations. However, such aggregation may 

result in losing useful information, as the frequency of observations is reduced. In this paper, 

we explore the effects of aggregation by investigating 5,000 Stock Keeping Units (SKUs) 

from the Royal Air Force (RAF, UK). We are also concerned with the empirical determination 

of an optimum aggregation level as well as the effects of aggregating demand in time buckets 

that equal the lead time length (plus review period). This part of the analysis is of direct 

relevance to a (periodic) inventory management setting where such cumulative lead-time 

demand estimates are required. Our study allows insights to be gained into the value of 

aggregation in an intermittent demand context. The paper concludes with an agenda for further 

research in this area. 
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1. Introduction 

Intermittent demand for products appears sporadically, with some time periods showing 

no demand at all. When demand occurs, the demand size may be variable, perhaps highly 

so. Intermittent demand items may be any Stock Keeping Unit (SKU) within the range of 

products offered by an organization at any level of the supply chain. Such items may 

collectively account for up to 60% of the total stock value (Johnston et al, 2003) and are 

particularly prevalent in the aerospace, automotive, military and IT sectors. They are often 

the items at greatest risk of obsolescence. Inventory control decisions for intermittent 

items are needed to determine inventory replenishment rules. These decisions can be made 

more intelligently if supported by more accurate demand forecasts. Improvements in 

forecasting and stock control may be translated to significant reductions in wastage or 

scrap, and very substantial cost savings.  

 

Replenishment requirements should be calculated according to the anticipated probability 

distribution of demand over the lead-time. However, single-period forecasts are often 

aggregated over lead-time using ad hoc formulae in forecasting software, and there is 

limited guidance on the issue in the academic literature. Hence, there is a need to address 

the question of forecast horizon aggregation, to design coherent aggregation mechanisms. 

Temporal aggregation refers to aggregation in which a low frequency time series (e.g. 

quarterly) is derived from a high frequency time series (e.g. monthly) and is used for 

forecasting purposes. This is ignored in much commercial practice, and there is only a 

small body of academic research on the subject. Nevertheless, temporal aggregation is a 

promising approach for intermittent demand, as forecasts at higher levels of aggregation 
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are generally more accurate and less variable than those at lower levels of aggregation. 

The level of temporal aggregation may be chosen to mirror that of the forecast horizon 

(lead-time), or may exceed it, in which case disaggregation mechanisms are required.  

 

An obvious disadvantage related to temporal aggregation is that of losing information 

since the frequency and number of observations is reduced. However, the accumulation of 

demand observations in lower-frequency ‘time buckets’ reduces the number of zero 

demands and the resulting series bear a greater resemblance to those for fast-moving 

items. As discussed above, requirements for such SKUs are easier to estimate and they are 

typically associated with lower errors than those resulting from forecasting 

‘slow’/intermittent demands. The effect of the level of aggregation on forecast accuracy 

will be investigated further and empirically optimum levels will be identified.  

 

An inherent difficulty associated with intermittent demand patterns relates to the 

identification of the underlying series’ characteristics such as trend and seasonality. The 

presence of zeroes precludes the accurate estimation of such components (that are hidden 

at the high frequency level) and aggregation should facilitate, theoretically at least, such a 

process. The issue of trend and seasonal detection is not discussed further here, but is part 

of a larger research programme being undertaken by the authors of this paper. 

 

1.1 Research objectives 

Exploring the effects of aggregation empirically constitutes the main objective of our 

paper. Determining the (potential) optimum aggregation levels constitutes a further 

objective. This issue is also analysed empirically and appropriate cut-off points are 
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specified. Our analysis is based on 5,000 SKUs from the Royal Air Force (RAF, UK). The 

issue of disaggregating forecasts is considered as well and linked to the theoretical 

properties of the original series. 

 

Intermittent demand estimates are typically associated with a high variance due to the two 

sources of variation (demand arrivals and demand sizes).  It is therefore of interest to 

investigate the effect of the aggregation approach on the sampling error of the mean (as 

reflected on the Mean Squared Error – MSE), and on the bias of mean estimates. In 

addition, it is certainly worthwhile exploring the performance of estimators that were 

originally designed for fast-moving products and contrasting their accuracy to that 

obtained from intermittent demand Croston-based estimators. 

 

Finally, the effects of aggregating demand in buckets that equal the lead time length (plus 

review period) are investigated. This analysis is of direct relevance to a (periodic) 

inventory management setting where cumulative demand estimates over that time horizon 

are required. 

 

In summary, the objectives of our empirical study are as follows: 

1. To provide for the first time some results on the performance of Temporal 

Aggregation when used for items with intermittent demands; 

2. To empirically determine optimum aggregation levels; 

3. To consider appropriate disaggregation mechanisms and link their performance to 

the statistical properties of the original series; 
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4. To assess the effects of temporal aggregation in time buckets that equal the lead 

time (plus review period). 

 

As discussed above, our analysis is conducted on a dataset from the RAF that consists of 

the individual demand histories of 5,000 SKUs. Demand has been recorded monthly and 

the data available covers 7 years’ history (84 monthly demand observations). The actual 

lead-time is available for each of those SKUs. 

 

1.2 Structure of the paper 

The remainder of our paper is organised in five further sections. In the next Section a 

literature review is presented, followed, in Section 3, by the conceptual development of 

our approach, a demonstration of how the approach may be applied in practice and a 

discussion on operational issues. Section 4 covers some basic information regarding the 

dataset used for the purposes of our investigation and details related to the structure of our 

experiment. The empirical results are analysed in Section 5 and, finally, the conclusions of 

our work along with some natural next steps of research are presented in Section 6. 

 

2. Research background 

The methods that are employed in practice to forecast intermittent demand requirements 

are often quite straightforward. Single Exponential Smoothing (SES) has long been known 

to produce biased forecasts immediately after a demand occurrence (Croston, 1972). This 

is important operationally, as stock requirements are often recalculated at this point. 

Croston (1972) proposed a method that captures the compound nature of the underlying 
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demand structure. In particular he suggested using SES for separately forecasting the 

interval between demand incidences, and the demand sizes. The ratio of the latter to the 

former may then be used to estimate the mean demand per time period. However, 

Croston’s method has also been shown to be biased (Syntetos and Boylan, 2001), and an 

approximately unbiased variation has since been developed (Syntetos and Boylan, 2005). 

Known as the Syntetos-Boylan Approximation (SBA), this estimator is calculated by 

multiplying Croston’s estimate by (1 – α/2), where α is the smoothing constant used to 

update estimates of the mean interval between demands. This method and other variations 

yield similar accuracy benefits over Croston’s method (Teunter and Sani, 2009). There 

have been no studies in the academic literature comparing the accuracy of these methods 

at different levels of temporal aggregation. With respect to stock control, estimation of 

demand variance must also be addressed. Temporal aggregation in blocks that equal the 

lead-time (LT) plus review period (R) was examined by Syntetos and Boylan (2006) who 

proposed a cumulative Mean Squared Error smoothing procedure for demand variance 

estimation. This is an important issue, but is not further pursued in our current study. In 

this research paper, we are solely concerned with mean level estimation.  

 

A weakness of model-based forecasting methods is that a standard distribution, such as the 

Poisson or Negative Binomial, needs to be hypothesised. Real data often exhibit greater 

variation than standard distributions. To address this issue, Willemain et al (2004) 

introduced a bootstrapping method for intermittent demand. Their method is not model-

based but instead is a heuristic that combines a Markov process, bootstrapping and 

‘jittering’ to simulate an entire distribution for lead-time demand rather than a single 



Nikolopoulos, Syntetos, Boylan, Petropoulos, Assimakopoulos: ADIDA Forecasting 

 7 

forecast. (Jittering is an ad-hoc procedure designed to allow greater variation than that 

already observed. The process enables the sampling of demand size values that have not 

been observed in the demand history.) An alternative non-parametric approach, based on 

Kernel Density Estimation (KDE) has been proposed by Boylan et al (2008). This also 

allows for the generation of demands not previously observed, but with greater flexibility 

regarding the ‘smoothing’ of the empirical distribution. Porras and Dekker (2008) 

proposed an Empirical Method, based on the construction of a histogram of demands over 

LT’. This was found to yield lower inventory costs than Willemain’s bootstrapping 

method. However, it cannot extrapolate beyond previous demands, making it difficult to 

attain high service level targets.  

 

The issue of forecast horizon aggregation has been addressed for non-intermittent demand 

forecasting, using models based on Multiple Source of Error (Johnston and Harrison, 

1986) and Single Source of Error (Snyder et al, 1999). This issue is also addressed 

directly by the ‘Empirical Method’ discussed above.  

 

3. An Aggregate-Disaggregate Intermittent Demand Approach (ADIDA) 

to forecasting 

With respect to temporal aggregation, we must distinguish between overlapping and non-

overlapping cases. In non-overlapping aggregation, the demand series are divided into 

consecutive non-overlapping blocks of equal length. In overlapping aggregation, the 

blocks are of equal lengths but, at each period, the oldest observation is dropped and the 

newest is included.  
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To address aggregation from a theoretical perspective, a modelling framework is required 

that is rigorous, flexible, and robust when applied to real data. Croston (1972) assumed 

that the time between demands was an i.i.d. (identically and independently distributed) 

process. There is empirical evidence in support of this assumption, including that provided 

in this paper (see Section 4). However, some series show evidence of auto-correlation 

(Willemain et al, 1994). Snyder (2002) pointed out that Croston’s demand model is 

incompatible with his forecasting method, because exponential smoothing methods are not 

designed for i.i.d. demand. Nevertheless, one needs to consider the following: a method 

that is optimal for one particular model may be severely sub-optimal for another model. 

Syntetos et al (2006) argued that, for intermittent demand, robustness of a method across a 

wide range of possible underlying demand models is more important than optimality 

under one particular model. The scarcity of demand observations presents a significant 

inherent difficulty in identifying the demand model.  

 

An alternative approach in modelling is to adopt Auto-Regressive Integrated Moving 

Average (ARIMA) demand models. Under such a modelling approach, temporal 

aggregation for non-intermittent time-series has been the subject of many research papers 

over the last four decades. Results for ‘flow’ (overlapping aggregation) and ‘stock’ (non-

overlapping aggregation) have been obtained for ARIMA and ARIMAX models (ARIMA 

with exogenous variables), ARMA-GARCH (Generalized Auto-Regressive Conditional 

Heteroscedastic) and Vector (V)ARMA models. (See Silvestrini and Veredas (2008) for a 

comprehensive review of developments.) Results have also been obtained for Auto-

Regressive Fractionally IMA (ARFIMA) models by Tsai and Chan (2005).  
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The literature on temporal aggregation of intermittent time-series is much less extensive. 

The most comprehensive analysis was conducted by Brännäs et al (2002). The authors 

investigated temporal aggregation of Integer Auto-Regressive (INAR) processes. Whilst 

overlapping aggregation of processes such as INAR (1) preserves the model form, the case 

of non-overlapping temporal aggregation is more complex. For example, non-overlapping 

aggregation of an INAR (1) model produces a model that resembles an INARMA (1,1) 

but with moving average components that are correlated.  

 

We return to the issue of intermittent demand theoretical modelling for aggregation 

purposes in the last section of this paper where the next steps of our research are also 

discussed. In our work we are concerned with non-overlapping aggregation (for non-auto-

correlated data). The process governing such an aggregation mechanism and the way it 

may be utilized for extrapolation purposes is pictorially presented in Figure 1.  

 

KEY: A: Original data (months); B: Aggregate data (quarters); C: A quarterly forecast is produced; 

D: The quarterly forecast is broken down to three equal monthly forecasts    

Figure 1. ADIDA forecasting framework  
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Suppose the original data is reported in monthly time buckets and there are currently 21 

historical observations available (part A - Figure 1). The monthly time series exhibit 

intermittence, which may be reduced by aggregating individual observations into e.g. 

quarterly data. The resulting series consists of 7 aggregated observations (part B - Figure 

1) and constitutes what one may term ‘regular demand’. In this specific example, the 

resulting series is still quite volatile but we would expect a considerable variance 

reduction as compared to the original series.  

 

Since the new series is non-intermittent we may use any method originally designed 

and/or practically utilised for fast demand items in order to extrapolate and obtain the one-

step ahead quarterly forecast. The simplest choice would be to use the Naïve method 

although an empirical competition could be conducted among various estimators by 

holding out the 7th observation and fitting methods in the first six quarters. A whole range 

of methods becomes available under the present structure of the series whereas in the 

original series the choice would be limited among few alternatives (e.g. Croston’s method 

and the Syntetos-Boylan Approximation). 

 

For the sake of illustration, we extrapolate the series with the Naïve method (part C - 

Figure 1) – i.e. the actual aggregate demand in the 7th quarter becomes the forecast for the 

unknown cumulative demand for the full 8th quarter. We intentionally use the term 

‘cumulative’ as this aggregate forecast could be seen as a direct way to get a cumulative 

estimate for the next three months if this is what we require in operational terms (i.e. for 

stock control purposes). This issue is further discussed in Section 5 of the paper. 
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Returning to the original task of providing monthly forecasts, we need to break down (i.e. 

disaggregate) the quarterly forecast into three monthly forecasts for months 22, 23 and 24. 

The simplest option would be to disaggregate the forecast into monthly estimates using 

equal weights (i.e. in this case 1/3 of the quarterly forecast). This phase is illustrated in 

part D of Figure 1, and this concludes the ADIDA process.  

 

ADIDA is an intuitively appealing aggregation/disagregation mechanism that aims at 

reducing (or eliminating) intermittence for the purpose of providing us with more 

forecasting tools. ADIDA is associated neither with a specific extrapolation method, nor 

with a specific disagregation algorithm. Furthermore, the level of aggregation is an open 

question. Thus, ADIDA constitutes a generic framework offering an alternative way to 

produce forecasts. However, one important issue that needs to be mentioned is that the 

computational cost associated with this four-phase data-manipulating process compares 

unfavourably to that related to the application of a single extrapolative method.  

 

In the next two sections we provide some empirical evidence on the effectiveness of 

ADIDA for intermittent demand time series forecasting. 

 

4. Empirical data and experimental structure 

The empirical database available for the purposes of our research consists of the individual 

monthly demand histories of 5,000 SKUs over 7 years (84 monthly demand observations, 

from Jan. 1996 to Dec. 2002 inclusive) from the Royal Air Force (RAF). The lead-time 

length and unit cost information are also provided for each of the SKUs. The same 

database has been used in an earlier study by Syntetos et al (2009a). Detailed descriptive 
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statistics (to the first decimal place) on the demand data series characteristics and lead-

time (LT) + review (R) information (R = 1) are presented in Table 1.  

 
 
5000 SKUs 

Demand Sizes Demand Intervals Demand per period 
LT+R 

Mean StDev Mean StDev Mean StDev 

Min. 1.0 0.0 3.8 0.0 0.1 0.2 1.0 

25%ile 1.6 0.8 7.3 5.4 0.2 0.5 6.0 

Median 3.8 3.1 9.0 6.9 0.4 1.5 10.0 

75%ile 11.3 9.3 11.6 8.6 1.2 4.4 13.0 

Max. 668.0 874.4 24.0 16.5 65.1 275.7 34.0 

 

Table 1. Demand data descriptive statistics 

 

The lag-1 and lag-12 autocorrelation of the series is indicated in Figures 2a and 2b 

respectively. The series exhibit little autocorrelation and this will inform some 

interpretations of the empirical results discussed in sub-section 5.3. 

  

 

Figure 2. Auto-Correlation Function (ACF) – lag 1 and lag 12 (5,000 SKUs) 

 

5. Empirical investigation 

In this section we provide results from an empirical investigation that aims at: 

 exploring (empirically) the optimum aggregation levels; 

 assessing the performance of various disaggregation mechanisms;  

 testing the effectiveness of ADIDA in terms of various forecast accuracy metrics. 
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5.1. Optimal aggregation levels (per series): an empirical determination 

The first objective of our analysis is to identify, empirically, the optimal aggregation 

levels per series. In order to do so, we considered two forecasting methods: the Naïve and 

Syntetos-Boylan Approximation (SBA) and we used as the holdout period the last two 

years of each series (24 observations). We performed a sliding simulation (rolling 

evaluation) over this out-of-sample via producing one-step-ahead forecasts; thus we 

calculated 24 one-step-ahead errors for each series (Error = Actual – Forecast), for each of 

the forecasting methods considered. Absolute scaled Errors were subsequently calculated 

(AsE, Hyndman and Koehler, 2006); the mean value of this metric - MAsE, across each 

series, is reported in Figure 5 for six randomly selected series. 

 

In order to get forecasts via the ADIDA framework we started creating buckets of 

aggregated data.  

Aggregation level = 1: The data remain unchanged. Thus forecasts are produced via 

normal extrapolation with either Naïve or SBA on the original data. The 

implementation of SBA relies upon Single Exponential Smoothing (SES) forecasts of 

the demand sizes (when demand occurs) and inter-demand intervals. The initial 

demand size and inter-demand interval estimate is calculated as the average quantity 

over the within-sample (60) observations. The smoothing parameters are not optimised 

but rather they are fixed to a commonly used value equal to 0.05 (Syntetos and Boylan, 

2005). Subsequently, we produce an one-step-ahead estimate for period 61 as well as 

the forecast error for this period. Then we include the 61st observation in the in-sample 

block, and we repeat the same process by forecasting for point 62. This process is 
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repeated until all out-of sample points are exhausted, resulting in 24 one-step-ahead 

errors.  

Aggregation level = 2: Starting from the 60th monthly observation, we sum 

observations backwards in buckets of two (2), resulting in a bi-monthly series 

consisting of 30 aggregate observations. Subsequently, we create an one-step- ahead 

bi-monthly forecast (covering periods 61 and 62) using the Naïve method for each 

series. We disaggregate this bi-monthly forecast into two equal monthly forecasts that 

correspond to months 61 and 62; the latter forecast is not further utilised since there is 

only one actual observation held out (for the 61st month). This is the ADIDA(2, Naïve, 

EQW)1 forecasting process, where ‘EQW’ denotes ‘equally weighted’. We repeat 

exactly the same process using the SBA instead of the Naïve method. The process is 

termed: ADIDA(2, SBA, EQW). Subsequently, we summarise the out-of-sample one-

step-ahead errors as discussed above. 

Aggregation level = 3…24. Similarly, the experiment continues with time buckets up 

to 24 periods. At this level there are only two aggregate bi-yearly observations (2 x 24 

= 48 observations), so 12 monthly observations at the start of the series remain unused.  

 

The results presented in Figure 3 indicate that the ADIDA process functions as a self-

improving mechanism for both estimators. Across all series, the benefit is perhaps more 

marked for the Syntetos-Boylan Approximation; please also note that for presentation 

purposes the y-axis scales used for each series in Figure 5 are different for the SBA and 

Naïve estimator. One might have expected more modest (comparative) improvements for 

                                                 
1 For presentation purposes, and for the remainder of the paper, the ADIDA process will be denoted by: 

ADIDA (aggregation level, extrapolation method, disaggregation method). 
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the former method, since it has in fact been constructed for application on intermittent 

series. However, the sparseness of data, i.e. the great number of zero observations present 

in each series (please refer also to the inter-demand interval descriptive statistics in Table 

1) renders the Naïve method a very accurate estimation procedure.  
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Figure 3. Accuracy results for six randomly selected series 
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The results also demonstrate that although there is an ‘optimum’ level of aggregation this 

is not the same across series. This was expected since, theoretically, such a level relates to 

the underlying demand structure of the series. This issue is further discussed in the last 

section of the paper where the natural next steps of research are identified. In the 

following sub-section we investigate the behaviour of the ADIDA framework across the 

entire dataset considered for the purposes of our experiment.    

 

5.2. Optimal aggregation levels (across series): an empirical determination 

Should the dataset be ‘homogeneous’ in nature, an empirical ‘optimum’ aggregation level 

would be expected across the entire dataset. In the following figure we report the 

performance of the ADIDA framework on the entire dataset (5,000 SKUs). The 

experimental structure is identical to that discussed in the previous sub-section, resulting 

in an evaluation over 120,000 errors (per method, per aggregation level): 24 errors x 5,000 

series. 

 

In Figure 4 we see an interesting result. For the Naïve method, a minimum error is 

achieved via an aggregation level of nine periods. Of course this empirical minimum 

relates to the specific dataset used for experimentation purposes and the finding may not 

be necessarily generalised to other situations. In addition, and as discussed in the previous 

sub-section, the ‘optimal’ aggregation level is different for each individual series. 

However, this is a promising result in terms of potentially introducing operationalised 

rules for an entire group of SKUs as well as linking temporal aggregation to cross-

sectional issues. This is further discussed in the last section of the paper. The results are 

similar for the SBA estimator. 
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Figure 4. Effect of aggregation level on forecast accuracy for the Naïve and SBA 

method (across 5,000 series) 

 

The results presented in the previous paragraphs indicate that the ADIDA process may 

lead to substantial improvements in a single method’s application. (In the case of SBA the 

improvements are also statistically significant at the 5% level2.) That is to say ADIDA may 

be perceived as a method self-improvement process, both on individual series and on the 

entire dataset. The validity of the above results has been further examined and confirmed 

through the application of two (2) more error measures: Mean Square Error (MSE; which 

relates directly to variance) and Relative Geometric Root Mean Squared Error (RGRMSE; 

Syntetos and Boylan (2005) - that has been shown to be very robust on intermittent data).  

                                                 
2 95% confidence intervals were constructed at aggregation level = 1 through the calculation of the sample 

standard errors (standard deviation of errors / square root of number of errors considered) for both methods. 

Subsequently, all average errors at the various aggregation levels (> 1) indicated in Figures 6 and 7 (for the 

Naïve and SBA estimator respectively) were evaluated as to whether they constitute statistically significant 

improvements/reductions. 
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5.3. Empirical determination of the best disaggregation method  

The simplest possible disaggregation mechanism (and the one employed for the purposes 

of our research) is that related to using EQual Weights (EQW). That is, for example, if a 

quarterly forecast is meant to be broken down to monthly ones, each monthly forecast will 

be equal to 1/3 of the quarterly one. Furthermore, two other weighing methods were tested 

without much success, as illustrated in figures 5 and 6. PRW (Previous Weights) is using 

fractions for the point forecasts that resemble the empirical ones observed in the very last 

bucket of the original time-series; AVW (AVerage Weights) is using the averages of all 

the empirical fractions observed throughout all the available historical time buckets of the 

original time-series. 

 

 

Figure 5. Optimum aggregation level for various disaggregation mechanisms - Naive  
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Figure 6. Optimum aggregation level for various disaggregation mechanisms - SBA 

 

The results presented in Figures 5 and 6 are produced through the application of the 

MAsE error measure. The results indicate the ‘best’ performance of the EQW 

disaggregation mechanism. Similarly to the analysis conducted in the previous sub-section 

the experiment discussed above was replicated by considering two more accuracy 

measures: MSE and RGRMSE. The results confirm, overall, the superior performance of 

EQW. This superiority was theoretically expected due to the stationary nature of the 

demand data examined in this research (please refer to Section 4). If the data exhibited 

strong auto-correlation then the PRW and AVW approaches would be expected to perform 

better.  
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5.4. Aggregation level = LT+R: a managerial-driven heuristic  

From the previous sub-section it has become apparent that particular forecasting methods 

perform better via the ADIDA process and that optimal aggregation levels may be found. 

The theoretical determination of such a level is left for future research. In this sub-section 

we are concerned with the specification of the aggregation level based on operational 

considerations rather than the satisfaction of certain ‘optimality’ conditions.  

 

In particular, it is true to say that in a practical inventory setting, it would make sense to 

set the aggregation level equal to the lead time length plus one review period, since 

cumulative forecasts over that time horizon are required for stock control decision making. 

Such a process renders disaggregation redundant. In Table 2 we present empirical results 

for an aggregation level = LT + 1 (the review period has been set equal to a single period for all 

SKUs). 

 

Not all 5,000 series were considered in this part of the analysis, as we excluded all series 

characterized by lead-time (LT) equal to zero (i.e. LT + R = 1). Aggregation may well be 

performed in these series; however here our analysis focuses on the value of aggregation 

for time buckets that equal LT + R, in which case, and for the series under concern, 

aggregation introduces no different series than the original ones. In addition, all series 

characterized by: LT + R > 24 were also excluded in order to enable a sufficient out-of-

sample sub-set to be produced (please see experimental details below). This elimination 

process resulted in 4,352 SKUs considered for simulation purposes.  
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We considered the Naïve method and SBA and used as the holdout period the last two LT 

+ 1 cumulative periods of each series. We performed a sliding simulation over this out-of-

sample via producing two LT + 1 steps-ahead forecasts; thus we calculated two LT + 1 

steps-ahead errors (CumError) for these periods: 

 

CumError = Cumulative Demand over LT + 1 periods – Forecast over LT + 1 periods 

  

as series have been aggregated in buckets of LT + 1. Absolute scaled errors were 

subsequently calculated; for scaling purposes we used the in-sample average LT + 1 steps 

ahead forecasts. The mean and Median values of this metric (MAsE and MdAsE 

respetively) are reported in Table 2. Three more error measures were considered: Bias 

(Mean and Median Signed Error: denoted by ME & MdE respectively, error = actual - 

forecast), MSE and RGRMSE. 

 

     4,352 SKUs 

Forecasts ADIDA Forecasts 

Naïve SBA  Naïve SBA  

Bias   
ME 2.35 -3.57 -0.39 -2.55 

MdE 1.00 -1.59 0.00 -1.37 

Scaled 

Errors  

MAsE 125.53% 92.13% 99.84% 89.24% 

MdAsE 13.04% 20.93% 19.56% 19.65% 

Squared 

Errors  
MSE 8147.29 2082.39 3092.99 2084.51 

Relative 

Errors 
RGRMSE 1.00 0.55 0.83 0.52 

 

Table 2.  ADIDA forecasts evaluation - Cumulative forecast horizon = LT + 1 

 

 Bias: ADIDA(LT+1, Naïve, EQW) has the lowest bias with the Naive method 

being the second best. SBA performs slightly worse, although its performance is 

improved via ADIDA. The negative signs of the Median Errors of SBA indicate 
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that there are some positive outliers, where forecasts seriously under-estimate the 

actual. 

 Scaled Errors: SBA as expected is the most accurate forecasting approach. 

Furthermore, ADIDA(LT+1, SBA, EQW) reduces the Mean Absolute Scaled Error 

by an absolute value of 2.89%, which could be seen as a percentage improvement 

of 3.13%. Median values for the metric are much lower indicating the existence of 

outliers.  

 Squared Errors: indicative of the volatility of the provided forecasts. SBA has the 

lower value and it practically remains unchanged via the ADIDA process, while 

the impact in the case of Naive forecasts is substantial (reduced to the 37% of the 

original MSE). 

 Relative Errors: this relative (to Naïve) metric (Relative Geometric Root Mean 

Squared Error) confirms the results obtained by the aforementioned error 

measures. 

 

6. Conclusions and extensions 

Aggregation is an appealing strategy for intermittent demand because such items are often 

voluminous and have good lengths of demand history. Moreover, most inventory 

forecasting software packages support aggregation of data. Although this would typically 

cover cross-sectional aggregation (i.e. aggregation across series) minor customization 

should render temporal aggregation and ADIDA a feasible strategy for many 

organizations. Until now, most packages have not fully exploited the richness of data that 

is available, relying instead on extrapolation of a single item, with no temporal 

aggregation.  
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In this paper we have been concerned with empirically analysing the effects of temporal 

aggregation for forecasting intermittent demand requirements. We did so by means of 

experimentation on 5,000 SKUs from the RAF. The empirical results indicate that our 

proposed methodology may indeed offer considerable improvements in terms of forecast 

accuracy. Forecast variance reductions have also been demonstrated through the 

consideration of the MSE metric. The main findings of this study are the following: 

 

 The ADIDA process may lead to substantial improvements in a single method’s 

application; thus, it may be perceived as a method self-improvement mechanism.  

 The empirical results demonstrate that an optimal aggregation level may exist. 

This is true both at the individual series level and across series (i.e. for the entire 

dataset).  

 Setting the aggregation level equal to the lead time length plus one review period, 

shows very promising results. This simple heuristic would make sense in a 

practical inventory setting, where cumulative forecasts over that time horizon are 

required for stock control decision making.  

 

Originally, our motivation for experimenting with the proposed methodology related to 

the introduction of methods designed for fast moving items into the task of forecasting 

intermittent demand requirements. However, and as discussed above, the results indicate 

that aggregation constitutes a self-improvement mechanism for intermittent demand 

estimators, such as the SBA. Further research should involve the actual application of 

methods so far tested only in regular demand series (such as Damped Exponential 
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Smoothing and the Theta model, Assimakopoulos and Nikolopoulos, 2000), on aggregate 

series resulting from intermittent data. In addition, replication of this study on other 

datasets should also prove to be a valuable exercise. 

 

We have recently argued (Syntetos et al, 2009b) that in an inventory forecasting setting 

extrapolation methods should not only be evaluated with respect to their forecast accuracy 

but also in terms of their stock control implications, as measured through accuracy 

implication metrics (such as inventory costs and service levels achieved). Exploring the 

effects of temporal aggregation on stock control is an interesting line of further research 

and certainly worthwhile pursuing from a practitioner’s perspective. In addition, and given 

the relevance of aggregating demand in time buckets that equal the lead time plus review 

period to stock control, more research in this area would appear to be merited. 

 

The interaction between temporal and cross-sectional forecasting is also an exciting area 

of research. The latter may be ‘product’/SKU or location-related and empirical work could 

be undertaken to examine the potential benefit of combining these various forms of 

aggregation, both in terms of forecast accuracy and inventory control performance. 

 

Finally, and most importantly, in this paper we have not considered the theoretical 

underpinnings of the ADIDA process. Theoretical MSE expressions, along the lines 

discussed by Syntetos et al (2005) should enable: i) the identification of optimum levels of 

aggregation and their linkage to the series’ underlying properties; ii) contrasting the 

performance of various estimators when applied on aggregated data for the purpose of 

choosing one, and iii) the development of demand classification theory for forecasting 
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(and stock control) purposes. Previous work in this area has modelled demand as a 

Bernoulli process and relied upon three key parameters: i) average inter-demand interval 

(or correspondingly the Bernoulli probability of demand occurrence); ii) the mean demand 

size (when demand occurs), and iii) the variance of demand sizes. One opportunity for 

extending the work discussed above is through the consideration of the aggregation 

bucket length and the length of the series (as two additional parameters). Alternatively, 

Poisson-based modelling constitutes also a natural extension. 
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