
■ Satellite domains are becoming a fashionable area

of research within the AI community due to the

complexity of the problems that satellite domains

need to solve. With the current U.S. and European

focus on launching satellites for communication,

broadcasting, or localization tasks, among others,

the automatic control of these machines becomes

an important problem. Many new techniques in

both the planning and scheduling fields have been

applied successfully, but still much work is left to

be done for reliable autonomous architectures.

The purpose of this article is to present CONSAT, a

real application that plans and schedules the per-

formance of nominal operations in four satellites

during the course of a year for a commercial Span-

ish satellite company, HISPASAT. For this task, we

have used an AI domain-independent planner that

solves the planning and scheduling problems in

the HISPASAT domain thanks to its capability of

representing and handling continuous variables,

coding functions to obtain the operators’ variable

values, and the use of control rules to prune the

search. We also abstract the approach in order to

generalize it to other domains that need an inte-

grated approach to planning and scheduling.

C
omplex real-world tasks usually require
the combination or integration of tools
and techniques from two well-known

fields—planning and scheduling (Smith,
Frank, and Jónsson 2000). An example of such
a task is workflow applications, which require
the generation of sequences of activities that
define a process in an organization and the as-
signment of resources (human or material) to
these activities (Myers and Berry 1999, R-
Moreno and Kearney 2002).1 Other examples
are building aircraft (Drabble, McVey, and
Clements 2000) and space mission control

(Bensana, Lemaitre, and Verfaillie 1999; Dun-
gan et al. 2001; Johnston 1994; Rabideau et al.
2000).2 To solve problems in any of these do-
mains, we need to represent the information
necessary for efficiently finding good solu-
tions. Real domains require a rich representa-
tion formalism to be able to handle activities,
time, and resource constraints. Several lan-
guages have been defined in the AI planning
and scheduling community. The PDDL2.2 lan-
guage (Edelkamp and Hoffmann 2004) is be-
coming a standard in the planning field for
representing domains and problems. Although
PDDL2.2 and other predecessor planning lan-
guages can be used to represent this type of re-
al problem, in many cases some assumptions
have to be made, and in some cases the prob-
lem must be reduced.

Traditionally, these problems were solved
using methods that belong to either planning
or scheduling. On one hand, deliberative plan-
ners embody powerful techniques for reason-
ing about actions and their effects (Allen,
Hendler, and Tate 1990). They try to find plans
to achieve a set of goals from an initial state
and are good at finding precedences among ac-
tivities, but they are limited at resource or time
reasoning. 

On the other hand, scheduling systems allo-
cate available resources to known activities
over time to produce schedules that respect
temporal relations and resource capacity
(Cheng and Smith 1995; Tate, Drabble, and Kir-
by 1994). They are good at optimizing and as-
signing time and resources to activities, but
they require knowledge about ordered relations
among the activities. They can optimize a set of
objectives, such as minimizing makespan, min-
imizing work to be done, maximizing resource
allocation, or minimizing cycle time. 
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Planning and Scheduling:
PRODIGY

The planner we use to schedule the HISPASAT
operations is PRODIGY (Veloso et al. 1995), an
integrated architecture that has been used in a
wide variety of domains. The problem solver is
a nonlinear planner that uses a bidirectional
means-ends analysis search procedure with full
subgoal interleaving (Carbonell et al. 1992).
The planning process starts from goals and
adds operators to the plan until all goals are
satisfied. Although it does not use a language
with an explicit representation of resources or
temporal information, it is able to handle some
scheduling reasoning thanks to its capability to
(1) represent infinite types (numeric variables),
which are needed to represent information
about time and resources; (2) define functions
that obtain the values of variables in precondi-
tions of operators so that values can be con-
strained; and (3) use control rules (heuristics)
to prune the search, which makes the overall
problem-solving process efficient. Figure 1
shows the types of knowledge needed by the
planner. 

The reasons we chose this particular planner
are manifold. Among them, we can highlight
definition and handling of quality metrics, ex-
plicit definition of control rules, flexibility to
define new search behaviors, and explicit ratio-
nale of search decisions made through the ex-
pansion of the search tree. The domain theory
contains all the actions represented by opera-
tors. The language for describing PRODIGY do-
main theory, called PDL4.0 (Carbonell et al.
1992), is based on an augmentation of the
STRIPS representation originally proposed by
Richard Fikes and Nils Nilsson (Files and Nils-
son 1971). In the STRIPS representation, a
world state is represented by a conjunction of
grounded literals that are true on that state. An
operator consists of preconditions (conditions
that must be true to execute the action), and
postconditions or effects (composed of an add
list and a delete list). The add list specifies the
set of literals that are true in the resulting state
after applying the operators, while the delete
list specifies the set of literals that are no longer
true after the execution of the action. Because
this representation is quite restrictive, it has
been extended with disjunctive preconditions,
conditional effects, and universally quantified
preconditions and effects (Carbonell et al.
1992) resulting in a similar language to ADL
(Pednault 1989). 

Figure 2 shows an example of an operator in
the PDL4.0 syntax in the HISPASAT domain.
The operator represents the action that main-

Depending on the complexity of the prob-
lem, solutions to some problems may require a
strict separation between planning and sched-
uling. A simple approach to doing this is to ap-
ply a scheduler to the output of the planner to
assign resources and time to each activity (Ces-
ta and Pecora 2003). But in other cases there is
an indirect temporal and resource dependency
with other states and goals that cannot be tak-
en into account if we separate the two tasks
(Garrido and Barber 2001). The simple ap-
proach is weak if the scheduler fails to find a so-
lution: if the planner does not receive any feed-
back from the scheduler, the planner can
generate expensive and unsatisfactory so-
lutions. 

One way of integrating both tasks within the
same tool consists of adding representational
and reasoning capabilities to the planner for
the resource and temporal information. This
has been done in systems such as IxTeT (Ghal-
lab and Laruelle 1994), HSTS (Muscettola and
Smith 1997), RealPlan (Srivastava, Kambham-
pati, and Do 2001), and IPSS (R-Moreno, Oddi,
Borrajo, Cesta, and Meziat 2004). In this article,
we explore the possibility of using a nonlinear
domain-independent planner—PRODIGY (Ve-
loso et al. 1995)—and study the possibility of
using it directly for generating solutions to
problems requiring both planning and schedul-
ing. PRODIGY does not have an explicit model
of time representation or a declarative way for
specifying resource requirements or consump-
tion. However, thanks to its capability of repre-
senting and handling continuous variables,
coding functions to obtain the values of the
variables, and the use of control rules to prune
the search, we have successfully integrated
planning and scheduling in the satellite control
domain. Satellite control needs to integrate
planning (there are implicit precedence rela-
tions among operations in the domain descrip-
tion) and scheduling (for instance, the fuel
tanks to use should be specified for some oper-
ations) to set up nominal operations that must
be performed on the satellites during the year. 

Our article is structured as follows. In the
next section, we describe the features of the
planner. The “Satellite Maintenance Opera-
tions” and “Scheduling Knowledge in the Plan-
ning Domain” sections introduce the type of
operations on satellites that have to be per-
formed during the year and the knowledge rep-
resented in the planner. The section on the
CONSAT tool presents the tool’s functionality
and the modules that integrate it. We then
show some experimental results and, finally,
describe related work and draw some conclu-
sions.
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tains the satellite’s sensor position. It is per-
formed during the spring and autumn
equinoxes. 

The symbols within the angle brackets (< >)
are variables that are instantiated during prob-
lem solving. This operator has two precondi-
tions: (equinox-spring <d>) and (no-maneuver <s>
<t> <d0>) and just one add effect (ires-transi-
tioned <s>). As the variables <d> and <d0> are
numbers, we need to use the gen-from-pred
PRODIGY function to constrain the values that
the numeric variable DATE can have. The gen-
from-pred function generates a list of values to
be possible bindings for the corresponding
variable by using the information of the cur-
rent state referred to as the no-maneuver and
equinox-spring literals. That is, this function
permits encoding the functions d0 = no-maneu-
ver(s, t) and d = equinox-spring(d0).

The second input to the planner is the prob-
lem to be solved, described in terms of an ini-
tial state and a set of goals to be achieved. As a
result, PRODIGY generates a plan with the se-
quence of operators that achieves a state (from
the initial state) that satisfies the goals. More
importantly, given that we represent some
temporal and resource information and con-
straints within the operators, the plan that
PRODIGY generates also takes into considera-
tion the temporal constraints among the oper-

ators. The obtained plan does not consider any

optimization with respect to resource use or

availability, given that for the HISPASAT do-

main it is enough to find a plan. Any schedule

that fulfils the temporal and resource con-

straints is a valid one. However, the planner

could plan for good-quality solutions accord-

ing to some criteria using the QPRODIGY ver-

sion described by Daniel Borrajo, Sira Vegas,

and Manuela Veloso (2001). 

When there is more than one decision to be

made at a search decision point, the third input

to the planner—the control knowledge (declar-

atively expressed as control rules)—can guide

the problem solver to the correct branch of the

search tree. Other planners such as TALplanner

(Kvarnstrom and Doherty 2001) have followed

a similar approach, although they use a less de-

clarative definition of control knowledge ex-

pressed in a form of temporal logic. There are

three types of rules: selection, preference, and

rejection. One can use the rules to choose an

operator, a binding, or a goal or to decide

whether to apply an operator or continue sub-

goaling. Figure 3 shows an example of a con-

trol rule to select a binding. From all the batter-

ies that can be used for reconditioning, this

control rule selects the battery that is currently

unloaded.
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The operations must be executed according to
a rigid timetable: every two weeks (on Monday
or Tuesday depending if it is summer or winter)
in a specific hour, which is given by an external
software tool. These operations can be moved
ahead only if interference (by the sun or by the
moon) occurs. Interference causes incorrect
measurment of the satellite orbit, so the sen-
sors affected by interference must be masked
using adequate operations. Once these opera-
tions are scheduled, the operations related to
the use of tanks or batteries are set, always in
weeks without maneuvers.

Finally there is a small set of operations that
depend only on the last time they were
performed. In these cases, just the data of the
last operation of their same type is needed.

We have used six ways of eliciting the
knowledge that we describe in more detail later
in this article: (1) standard written sources, (2)
open interviews, (3) structured interviews, (4)
questionnaires, (5) the documentation generat-
ed for each satellite in previous years, and (6)
the satellite operations manuals.

Operators

The first step for defining the domain consists
of identifying the operators and the types of
objects that are needed in the domain (for de-
claring the type of each operator variable).
Types can be defined and structured in a hier-
archy. A special kind of type, the infinite type,
can be used to represent variables with contin-
uous values, while finite standard types repre-
sent nominal types.

In our domain, we have, among others, the
following types: SATELLITE TIME, PERCENT-
AGE, DIRECTION, and DATE. Variables of type
SATELLITE instantiate to one of the available
satellites. DIRECTION can have the values
north or south. TIMES and PERCENTAGE
could have been defined as numbers, but we
have chosen to declare them as discrete vari-
ables because under our domain formalization
only a finite number of values for them are
considered. Finally, DATE is represented as an
infinite type. Figure 4 depicts one of the hun-
dred operators that have been implemented in
the HISPASAT domain—the South-Maneuver op-
erator, in charge of computing the date when
the operation can be performed, keeping in
mind that moon blindings (represented by the
moon-blinding predicate) cannot interfere
(within three hours) with the expected South-
Maneuver date. If interference occurs, the oper-
ation will be moved ahead by 24 hours.

The PRODIGY gen-from-pred function gener-
ates a list of values to be possible bindings for
the corresponding variable by using the infor-

Satellite 
Maintenance Operations

This section provides an overview of the HIS-
PASAT ground-scheduling operations for its
four satellites. HISPASAT is a Spanish multimis-
sion system in charge of satisfying national
communication needs. It also supplies capacity
for digital TV in Europe, America, and North
Africa; TV image, radio, and other signals; and
special communications for defence purposes.
It is the first European satellite system to offer
transatlantic capacity for simultaneous cover-
age between South and North America. 

Every maintenance operation in orbit must
have explicit engineering instructions. These
instructions provide a guide for technicians to
consider the work accomplished. The opera-
tions engineering group generates this docu-
mentation every year by hand and on paper.
Later, this documentation is revised and veri-
fied. 

Due to the increasing number of satellites
(there are now five, 1A, 1B, 1C, 1D, and Ama-
zonas, and one planned for the future, called
1E), a program that generates and validates the
schedule of operations for engineering support
was needed. 

In the HISPASAT domain, a special type of
operation—the maneuver operation—plays an
important role in the scheduling of the rest of
the operations. Maneuver operations are used
to correctly position the satellite in its orbit.
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 (OPERATOR  IRES-TRANSITION

 (preconds

   ((<s>  SATELLITE)

    (<t>  TIMES)

    (<d0>  (and DATE (gen-from-pred (no-maneuver <s> <t> <d0>))))

    (<d>   (and DATE (gen-from-pred (equinox-spring <d>)))))

   (and (no-manoeuvre <s> <t> <d0>)

        (equinox-spring <d>)))

 (effects

   ((add (ires-transitioned <s> )))))

(Control-rule SELECT-BATTERY

  (if (and (current-goal (loaded-battery <s> <batt>))

           (current-ops (BATTERY-RECONDITIONING))

           (true-in-state (unloaded-battery <s> <batt1>))))

  (then select bindings ((<batt> . <batt1>))))

Figure 2. An Example of a PRODIGY Operator in the HISPASAT Domain.

Figure 3. A Control Rule Example that Decides What Battery to Use.



mation of the current state. In this particular

case we use it to generate all the values that the

numeric variable DATE can have. DATE repre-

sents seconds, since 1900, in GMT. (We used

Common Lisp as the programming language

for functions because PRODIGY is written in

Lisp and this is the way Common Lisp handles

time.) The reason to use this format is for effi-

ciency: it is faster to generate the bindings of

one date variable instead of generating values

for the six usual time-dependent variables (cor-

responding to the year, month, day, hours,

minutes, and seconds). Also, GMT is the refer-

ence zone time for HISPASAT. Other similar ap-

proaches fix the starting point of the computa-

tion, call it time zero, and schedule all the

activities from that point (Muscettola 1994;

Tate, Drabble, and Kirby 1994; Vere 1983).

The remainder of the functions that appear in

figure 4 have been coded for this particular do-

main. However, since some of them are generic

for any domain with temporal restrictions, they

can be reused in any such domain, as will be de-

scribed later on. As an example of domain-de-

pendent functions, Is-South-Maneuver generates

the date of the maneuver (if there is any) that

overlaps within three hours of any moon blind-

ing. If the blinding intensity is over 40 percent,

the maneuver must be moved 24 hours ahead

(the function over-n calculates if the percentage

of the moon blinding is over 40). 

As examples of domain-independent func-

tions, the Calculate-start-time function sub-

tracts 24 hours from a given date (in this case

the expected maneuver), and Calculate-end-

time calculates the end of the operation from

the start time and the duration—three hours in

this case. The <end-time> variable is computed

here just to show how to do it when needed to

describe temporal constraints to other opera-

tors. 

We have defined a similar function, add-
time, that adds some time to a date and also

helps to define temporal constraints among

the operators as preconditions of them. 

There is only one precondition for the oper-

ator: (south-maneuver <s> <t> <d1>), the date

when the South-Maneuver is expected to be per-

formed (part of the initial state, as shown in

figure 6).

The operator has two effects that belong to

the add list; the predicates south-m (the goal

that we want to achieve), and south-man,
which adds to the state the date when the

South-Maneuver must be performed. In case any

interference occurs within three hours, the val-

ue of the <start-time> variable matches the val-

ue of the expected maneuver, <d1>, moved

ahead 24 hours.

We identified three categories of planned op-

erations, according to the flexibility to sched-

ule them (hard versus soft constraints). The

representation chosen for each type can be eas-

ily generalized for each planning and schedul-

ing domain. The following subsections de-

scribe them in more detail.

Operations Driven by External Events
That Start or End at a Fixed Time

Some operations, such as moon blindings, sun

blindings, or eclipses of the sun by the earth or

by the moon, depend on external events,
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(OPERATOR SOUTH-MANEUVER

  (preconds

     ((<s> SATELLITE)

      (<t> TIMES)

      (<t1> TIMES)

      (<p> PERCENTAGE)

      (<n> DIRECTION)

      (<d> (and DATE (gen-from-pred (moon-blinding-start <s> <d> <n> <p> <t1>))))

      (<p1> (and PERCENTAGE (over-n <d> greater 40)))

      (<d1> (and DATE (Is-South-Maneuver <d> 3 hours 3 hours)))

      (<start-time> (and DATE (Calculate-start-time <d1> 24 hours)))

      (<end-time> (and DATE (Calculate-end-time <start-time> 3 hours))))

     (south-maneuver <s> <t> <d1>))

  (effects

     ((add (south-m <s> <t>))

      (add (south-man <s> <t> <start-time>)))))

Figure 4. Operator Corresponding to the South-Maneuver Task of Table 1.



possible solutions that the planner will pro-
vide; however, as we said before, in this do-
main it is enough to generate a feasible solu-
tion. After constraining the variables to the
corresponding set of values, the planner is still
able to obtain valid plans.

Most of the operations in this category are
scheduled to take into consideration the date
when a South-Maneuver was performed. These
operations are in charge of the correct satellite
orbit positioning, and they are performed
every two weeks at a specific time.3 In the ini-
tial state, we define the satellite affected by the
secular drift and the date and time of the year
when the maneuver will be performed. Table 1
shows the features of a South-Maneuver. Given
that the maneuvers are forbidden during moon
or sun blindings, they have to be moved ahead
24 or 48 hours (in case two moon blindings oc-
cur on subsequent days) from the secular drift
time. The two maneuvers (West-Maneuver and
East-Maneuver) that follow the first one must al-
so be moved ahead the same number of hours.
The rest of the operations in this category start
or finish some hours before or after the start or
end of the performance of the South-Maneuver.
Some operations cannot be performed if a ma-
neuver has been scheduled during that week,
while others must be performed during, after,
or before maneuvers. Others just have to be
performed N days, weeks, or months since the
last time they were performed. Therefore, we
had to represent different types of temporal re-
lations among operators.

To represent this knowledge, we needed a
problem solver able to express the fact that if a
South-Maneuver is performed during one day of
a week (having in mind moon and sun blind-
ings), other operations, such as BOOST HEAT-
ING, which cannot be performed during the
same week but are performed the following
week, or the CONF-ADCS operation, which
must be performed 9 hours after the East-Ma-
neuver, are affected. This kind of reasoning is
hard to represent in the operator preconditions
and is difficult for most current planners to
solve. PRODIGY can solve these problems
thanks to the coded functions that restrict the
value of the BOOST HEATING start-time vari-
able to the week after the South-Maneuver, as we
will describe later in the article.

Long-Interval Operations

Some operations, such as maintaining the
steerable antenna, have significant scheduling
flexibility. This operation is performed four
times a year. To schedule it, we need to know
when the operation was last performed. The
operations in this group present the softest

which constrain when other operations can be
performed. Because these are hard constraints,
they are represented as preconditions of the op-
erators. Some external (eclipses and blindings)
and seasonal (solstices and equinoxes) events
are foreseen several weeks before the year starts,
so they are represented in the initial state of the
problem. In the case of external events, one
needs to include the affected satellite and the
events’ start and end times. For the seasonal
events, one just needs to represent the start
time of the spring and summer equinoxes and
winter and autumn solstices. Examples are the
CHANGE-TO-MODE2/4 and the CONF-ADCS opera-
tions performed every time a moon blinding
occurs or during the sun blinding periods. 

These operations set masks on the upper or
lower position detectors depending on where
the interference occurs (north or south). By do-
ing so, the satellite does not consider the value
of these detectors to define its position. Anoth-
er example is the CPE-MODE operation per-
formed at the spring and autumn equinoxes,
switching the heaters on or off to compensate
for seasonal changes. As goals, we define the
two possible modes (summer and winter) for
the CPE operator, so the planner generates the
appropriate satellite operations in each period.
The operations in this first category do not
force the addition of temporal constraints to
an operator’s effects.

Given Strategy Operations 
Performed at Specific Dates

Other operations have more flexibility regard-
ing when they can be performed, such as ma-
neuvers, localization campaigns, or battery re-
conditioning. Because these operations have
no hard constraints, we have coded functions
in the preconditions to guide the planner in
preferring some dates over others, keeping in
mind the restrictions imposed by any precon-
ditions. This decision restricts the number of
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Name South-Maneuver

Description Follows the two weeks keeping cycle, operating the

satellite in one of every two weeks

Requirements On Monday or Tuesday at an hour corresponding to
the secular drift. A West and East maneuver must

follow it

Constraints It can not be performed with Moon or Sun Blindings

Secular drift 16/02/2004 22:47:56

Duration 3 hours

Table 1: South-Maneuver Task. 

This is a South-Maneuver that will be performed during 2004. If there is a moon

blinding within three hours of the expected maneuver with intensity over 40, the

maneuver has to be moved ahead 24 hours. The end time of the task is calculated

by the calculate-end-time function.



constraints, because they have no other con-
straints with the rest of the operators; the con-
straints relate just to the same operation. 

For long-interval operations, we need only
to represent in the initial state information
about the last time the operation was per-
formed in each satellite during the previous
year. With respect to the goals, we have to in-
troduce the number of executions of each op-
erator during the year (in the preceding exam-
ple, four times). 

Control Rules

In the HISPASAT domain, we identified the
tanks and the batteries as resources. Control
rules can help to assign a given resource, such
as a tank, to an operation. Each satellite has
four tanks. Any of them could be chosen for
the swapping operation, but the recommenda-
tion of the company that built the satellite is to
use a given tank during each period of the year.
The control rule in figure 5 prunes the search
tree and chooses the tank for that period of the
year. It says that if the date is around the au-
tumn equinox, and we can apply the TANK-
SWAPPING operator, then we should select the
tank NTO1. The same can be said of the batter-
ies: there are two batteries, BATT1 and BATT2,
that must be charged twice a year before every
eclipse season. So another control rule helps to
choose the battery in the right season.

We could have alternatively coded a func-
tion to choose the correct tank for the TANK-
SWAPPING operation in the precondition of
the operator. However, specifying this type of
preference as control rules provides more flex-
ibility, given that it is easier to decide which
ones to use at run time, while the domain the-
ory stays general enough.

Initial State and Goals

For each type of satellite control operation, we
need to define the set of goals that must be
achieved and the initial conditions that must
be set up in order to apply them. Figure 6
shows a small fraction of the initial state, that
is, all the events that will occur during the year.
For instance, for moon blindings we need to
know the satellite affected by the blinding (1B),
the date in seconds when it will take place
(3282941400 = 1/13/2004 01:10:00), the direc-
tion (south) and the intensity (45 percent rep-
resented by p-45).

Finally, the first chronological appearance of
moon blinding is represented by t1, the second
by t2, and so on. With respect to the goals, we
need to perform a fixed number of maneuvers
during the year, which is represented in the
goals section of the problem.

The definition of this type of state in PDDL2.2

would require the use of functions, but PDDL2.2

cannot handle a case with two or more numeri-

cal variables in the same predicate directly.

Planning Versus Scheduling

One might wonder why we use a planner when

the problem seems to be a typical scheduling

one: locating different activities that consume

some resources in specific time windows. As

we’ve already noted, maneuvers are the main

operations. Once they are scheduled, every-

thing else can also be scheduled. But maneuvers

are scheduled having in mind the atmospheric

conditions (blindings and eclipses). These con-

ditions could be modeled as binary resources

with a fixed start and end time. Any scheduler

will try to schedule the maneuvers when these

resources are not being used. However, this will

not be a feasible solution for HISPASAT as ma-

neuvers can be moved only 24 or 48 hours

ahead, and in the last case, some operations can

be omitted or scheduled and planned in a dif-

ferent way depending on the date that the ma-

neuver should be performed. These decisions

are not known a priori, so all activities to be

scheduled are not known before running the

scheduler, and we need some kind of planning. 
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(Control-rule select-tank-NTO1

   (if (and (current-goal (swapped <s> <tank>))

            (current-ops (TANK-SWAPPING))

            (true-in-state (swapped <s> NTO3))

            (true-in-state (equinox-au <d>))))

   (then select bindings ((<tank> . NTO1))))

(state

  (and

     (moon-blinding-start 1B 3282941400 south p-45 t1)

     (moon-blinding-end 1B 3282945005 south p-45 t1)

     (spring-equinox 3257193600)

     (last-antenna-maintenance 1B 3235965395)

     ...

     (south-maneuver 1B t1 3257107800)

     (south-maneuver 1B t2 3258317400)  ...))

(goal

  (and

     (south-m 1B t1) (south-m 1B t2)... ))

Figure 5. Control Rule to Select the Tank NTO1 during the Autumn Equinox.

Figure 6. Some Goals and Initial Conditions for the 1B Satellite.

The goals require that the South-Maneuver be performed a given number of times

a year.



the PDL4.0 syntax does. But a durative action
with the features mentioned above can be sub-
divided into two STRIPS actions, one for each
of the end points of the durative action in case
there are no invariant conditions (Long and
Fox 2001). If the action specifies invariant con-
ditions, it is necessary to guarantee their truth
over the interval in order to avoid conflicts. In
PRODIGY this is not a problem due to its serial
plan nature, but it must be kept in mind in par-
tial order plans as shown in Coddington
(2002). On the other hand, PDDL presents
more restrictions than PDL4.0 in representing
the Allen primitives because PDDL is not able
to assign values to variables through coded
functions nor to return a set of values within
an interval. 

Currently, there is not a standard language
with respect to scheduling problems, but the
wide extended representation as a constraint sat-
isfaction problem (CSP) makes it very easy to
handle time and resources. Each operator is rep-
resented with two time points, one for the start
time and another for the end time. Each time
point is represented as an interval of possible val-
ues, so all quantitative and qualitative relations
between them can be perfectly represented.

To compare the representations mentioned
above, we have grouped the seven Allen prim-
itive relations in five types, and we will show
how they are represented (for simplicity, in
PRODIGY and PDDL2.2 we have reduced the
syntax). We have used the HISPASAT domain-
independent functions that table 2 shows.
There are some functions that return a value
and others that return a finite number of pos-
sible values in an interval, so these types of
functions are obviously discrete. But, as many
values as one needs can be returned, so, in the
end, they can be thought as equivalent in some
practical sense to a continuous representation
at a given granularity level. Also, while in the
planning notation, a value is assigned, and it is
possible to establish constraints, with infinite
quantities it is hard to assign a value (commit-
ment). By contrast, in the CSP representation
constraints are established much more easily.

The five categories are explained in the fol-
lowing paragraphs.

The end time of OperatorA occurs before the
start time of OperatorB within a range of time in
the interval [a, b]. The following Allen relations
belong to this type: OperatorA before OperatorB
and OperatorA meets OperatorB (where a = b =
0). The elapsed time from the end of OperatorA
can be a value that can be constrained, in the
general case, by an interval [a, b]. The limits
can be zero or positive numbers. The way this
can be represented in PRODIGY is shown in

As a summary, this domain needed a prob-
lem solver able to represent and reason about
state changes, symbolic and temporal relations
among operators, and goals that have to be
achieved. Given these constraints, we selected
a problem solver that is able to handle all this:
PRODIGY.

Scheduling Knowledge 
in the Planning Domain

In this section, we provide an overview of the
scheduling concepts that we had to face in or-
der to give a solution to the nominal
operations of HISPASAT using a planner, since
we needed to represent time information and
constraints through the Allen primitives (Allen
1984). First, we describe the time aspect of the
scheduling. Then, we describe some issues
about resource usage in this domain. 

Representation of Time Constraints

The time representation of PRODIGY is a dis-
crete model of time, in which all actions are as-
sumed to be instantaneous and uninterrupt-
ible. It does not handle reasoning on parallel
actions. However, the functions that can be
called within the preconditions of the opera-
tors when assigning values to variables can add
constraints among and within operators. Using
them, PRODIGY can handle the seven Allen
primitive relations between temporal intervals
(Allen 1984) and some quantitative relations
(Dechter, Meiri, and Pearl 1991; Mieri 1996).4

PDDL2.1 is also a discrete model of time in
the levels that consider time representation at
level 3 by means of temporal conditions and
the effects of durative actions, although in
PDDL2.2 there is a representation of continu-
ous time. The specification of pre- and post-
conditions, and the fact that invariant condi-
tions can be identified, means that it can take
into consideration concurrent behavior as long
as another action that accesses a variable at the
exact point when it is updated by another ac-
tion is avoided. Conflicts over variables can oc-
cur only at the start and end points of actions.
In the preconditions, the propositions can be
asserted at the start of the interval (the point
when the action is applied), at the end of the
interval (the point when the final effects of the
action are asserted), or over the interval from
the start to the end (invariant over the dura-
tion of the action). In the effects, the literal can
be immediately applied (it happens at the start
of the interval) or delayed (it happens at the
end of the interval). 

On one hand, this representation provides
more expressivity for the domain modeler than
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figure 7 (variables DUR and DUR0 represent the
duration; ELAPSED1 and ELAPSED2 represent
the minimal and maximal values of the inter-
val [a, b]; and TIME, TIME0, TIME1, and TIME2

represent time units). The function add-time-
in-interval (see table 2) returns a finite set of
possible values in that interval. For instance, if
we want to represent that OperatorA is be-
tween four and five minutes before OperatorB,
the call to function add-time-in-interval should
be: (add-time-in-interval <d> 4 minutes 5 min-
utes), where <d> represents the end time of Op-
eratorA. For simplicity we suppose that the
start time of OperatorA is given explicitly in
the initial conditions of the problem by the
predicate/function start-A. The representation
using the CSP notation is shown in figure 8. 

In the case of the PDDL2.2 syntax, we need
to declare four functions that represent the
start and end times of OperatorA and Opera-
torB. By defining them as functions, we can
modify their values in the effects and do arith-
metic and logical operations in the precondi-
tions. Figure 9 shows how to represent these
primitives in PDDL2.2. The main difference
with the PRODIGY solution is that in the PDDL
case, the start time of process B has to be de-
fined in the initial state in order to be able to
test its value in the preconditions of OperatorB.
On the contrary, PRODIGY can wait until Op-
eratorA is applied to compute when to start ex-
ecution of OperatorB.

The start time of OperatorA is the start time
of OperatorB. The following Allen relations be-
long to this type: OperatorA starts OperatorB
and OperatorA equals OperatorB. In a case in
which we would like to represent the equals re-
lationship, we should also constrain in PRODI-
GY the end time of the operations. Then, the
elapsed time from the start of OperatorA to the
end of the operation can be a value that can be
constrained by an interval [a, b] as in the pre-
vious case. The way to represent this is depict-
ed in figure 10, while figure 11 shows the CSP
representation. 

In PDDL2.2 we can impose the same start
time in both operations, and the duration of
OperatorB can be greater than the end time of
OperatorA minus ELAPSED2 and less than the
end time of OperatorA plus ELAPSED1. If
ELAPSED2 and ELAPSED1 are equal to zero, the
duration of OperatorB is equal to the duration
of OperatorA, and then it represents the Oper-
atorA equals OperatorB primitive (figure 12). 

The end time of OperatorA is the end time
of OperatorB. The OperatorA finishes Opera-
torB primitive belongs to this category. The
case OperatorA equals OperatorB could have
also been in this category (where a = b = 0). In
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Name Meaning

add-time-in-interval

<d> ELAPSED1 TIME1 ELAPSED2 TIME2

returns a set of finite possible values

for the variable <d> in the interval
ELAPSED1 and ELAPSED2 placed to

the right of the value of variable

<d> according to a given resolution.
TIME1 and TIME2 represent time

units, that is: hours, minutes, sec-

onds, etc. ELAPSED1 and ELAPSED2

must be positive numbers.

del-time-in-interval

<d> ELAPSED1 TIME1 ELAPSED2 TIME2

returns a set of finite possible values

for the variable <d> in the interval

ELAPSED1 and ELAPSED2 placed to
the right of the value of variable

<d>. TIME1 and TIME2 represent

time units, that is: hours, minutes,
seconds, etc. ELAPSED1 and

ELAPSED2 must be positive

numbers.

add-time

<st> DUR TIME

returns a value that is the sum of
the variable <st> plus DUR. TIME

specifies the time units, so DUR will

be converted to seconds according
to the time units passed as a pa-

rameter.

del-time

<st> DUR TIME

returns a value that is the subtrac-

tion of the variable <st> minus

DUR. TIME specifies the time units,

so DUR will be converted to seconds

according to the time units passed

as a parameter.

OperatorA

preconds:  (<start-time> (start-A <start-time>))

           (<end-time> (add-time <start-time> DUR TIME))

effects:  (add (finished-A <end-time>))

OperatorB

preconds:  (<d> (finished-A <d>))

           (<start-time> (add-time-in-interval <d>

                          ELAPSED1 TIME1 ELAPSED2 TIME2))

           (<end-time> (add-time <start-time> DUR0 TIME0))

effects:  (add (started-B <start-time>))

          (add (finished-B <end-time>))

Table 2. PRODIGY Domain-Independent Coded Functions to Handle Time.

estB - lftA <= b

estB - lftA >= a

Figure 7. A PRODIGY Representation of the 
A before B and A meets B Allen Primitives.

Figure 8. CSP Representation of A before B and A meets B.



PRODIGY the start time of OperatorB comput-
ed from the end of OperatorA can be a value
that can be constrained, in the general case, by
an interval [a, b]. The limits can be zero or pos-
itive numbers. The function del-time-in-inter-
val (see table 2) returns all possible values in
that interval. This is represented in figure 13,
and its corresponding CSP representation is
shown in figure 14. 

In PDDL, we have to impose the condition
that the end time of both activities be equal. In
the case of the OperatorA equals OperatorB prim-
itive, the value of the duration of OperatorB
should be equal to the duration of OperatorA.
Imposing the ending of both operators at the
same time should be done in the condition field.
But it is not an easy task to guarantee this condi-
tion for most of the state-of-the-art planners. 

The start time of OperatorB is in a given
range from the start of OperatorA, that is, Op-
eratorA overlaps OperatorB. The PRODIGY rep-
resentation is shown in figure 15 and the CSP
representation in figure 16.

The start time of OperatorA occurs after the
start time of OperatorB, and its end time occurs
before the end time of OperatorB. The Allen re-
lation that belongs to this type is OperatorA
during OperatorB. The way to represent this last
category is depicted in figure 17, where the
variables ELAPSED3 and ELAPSED4 represent
the minimal and maximal values of the inter-
val [a, b] and TIME3 and TIME4 represent time
units. The CSP representation of this primitive
is shown in figure 18. 

Enriching Time Constraints

The relations between operators described in
the previous section are defined within a time
window and consider that there is only one in-
stance of these relations in that window. 

Because in HISPASAT (as well as in some oth-
er real domains) there is more than one time
window defined with several instances of the
same operators on it, we need to differentiate
among different executions of an OperatorA
and their corresponding relations to different
executions of another OperatorB. Therefore,
we can define two predicates for each Opera-
torX to control the instantiated relations:

index-OperatorX: a pointer to the particular
instance of each OperatorX. 

last-index-OperatorX: the index of the last
instantiation of OperatorX.

Also we need to define one more predicate for
each temporal relation between two operators:

used-index-OperatorX-for-OperatorY: an in-
dex related to an instantiation of Opera-
torX in relation to another OperatorY. 
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Figure 12: A Representation of the A starts B and 
A equals B Allen Primitives in PDDL2.2.

Figure 11. CSP Representation of A starts B and A equals B.

Figure 9. A PDDL2.2 Representation of the A before B and A meets B Allen
Primitives Using Only the Lower Bound of the Interval.

OperatorA

preconds: (<start-time> (start-A <start-time>))

          (<end-time> (add-time <start-time> DUR TIME))

effects: (add (started-A <start-time>))

         (add (finished-A <end-time>))

OperatorB

preconds: (<start-time> (started-A <start-time>))

          (<end-time> (add-time-in-interval <start-time>

                       ELAPSED1 TIME1 ELAPSED2 TIME2))

effects: (add (started-B <start-time>))

         (add (finished-B <end-time>))

Figure 10. A Representation of the A starts B and A equals B 
Allen Primitives in PDL4.0.

estA = estB

lftB - lftA >= a

lftB - lftA <= b

(:durative-action OperatorA

 :duration (= ?duration DUR)

 :condition ...

 :effect (and (at end (assign (end-A) (+ (start-A) DUR))))

 ...)

(:durative-action OperatorB

 :duration (and  (>= ?duration (- (end-A) ELAPSED1))

                 (<= ?duration (+ (end-A) ELAPSED2)))

 :condition  (at start ( = (start-A) (start-B)))

 :effect ... )

(:functions (start-A)

            (end-A)

            (start-B)

            (end-B))

(:durative-action OperatorA

 :duration (= ?duration DUR)

 :condition …

 :effect (and (at end (assign (end-A) (+ (start-A) DUR)))))

(:durative-action OperatorB

 :duration (= ?duration DUR0)

 :condition (at start (and  (>= (+ (end-A) ELAPSED1) (start-B))

                            (<= (+ (end-A) ELAPSED2 ) (start-B))))

   :effect ... )



So for each of the Allen primitives described in
this section we should add the predicates ex-
plained above as figure 19 shows. We use a
counter to compute the instance that has been
used for any of the temporal relationships be-
tween operators and a global counter to com-
pute the last value used. Given that this solu-
tion requires some modeling effort for
humans, we can hide it by building an inter-
face that automatically defines these high-level
relations between operators and translates
these relations into instances following the no-
tation described above. A quite similar problem
happens in CSP, because we need to know all
activities a priori that need to be scheduled in
the plan. 

Representation of 
Resources Constraints

A resource is a source of supply or support or an
available means. There are basically three types
of resources (Sherwood et al. 2000), although
the name given to each type varies from one
author to another:

Type 1 is available when not in use (one user
at a time). Examples are physical devices such
as a robot arm or a CPU. In ASPEN (Sherwood
et al. 2000) a similar type is the concurrency re-
source that must be made available to the ac-
tivity before resources are reserved. An example
would be a telecommunications downlink
pass. The telecommunications station must be
available before the spacecraft could initiate a
downlink.

Type 2 can be used by more than one activi-
ty, so a capacity should be defined. It is always
available when not in use, and many activities
can use different quantities of it. It does not
need to be replenished as, for example, solar ar-
ray power does.

In Type 3 the capacity is diminished after its
use, so a capacity should be defined. It may or
not be replenished by another activity. Exam-
ples are battery energy, memory capacity
(which can be replenished) and fuel (which
cannot be replenished for satellite missions).

In PRODIGY, as in PDDL2.2, there is no pro-
vision for specifying resource requirements or
consumption. But resources can be seen as vari-
ables that can have associated values through
literals that refer to them, that is, as a logical
formula. This way of resource representation
has the disadvantage of making the search ex-
tremely intractable when the number of re-
sources increases, as the results in Srivastava,
Kambhampati, and Do (2001) show.

For example, if tank T1 of a satellite has 30
liters of fuel in a given instant, we could repre-
sent it as (has-fuel T1 30). Then, in the opera-
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Figure 13. A Representation of the A finishes B and A equals B 
Allen Primitives in PRODIGY.

OperatorA

preconds: (<start-time> (start-A <start-time>))

          (<end-time> (add-time <start-time> DUR TIME))

effects: (add (finished-A <end-time>))

OperatorB

preconds: (<end-time> (finished-A <end-time>))

          (<start-time> (del-time-in-interval <end-time>

                         ELAPSED1 TIME1 ELAPSED2 TIME2))

effects: (add (started-B <start-time>))

              (add (finished-B <end-time>))

Figure 14. CSP Representation of the A finishes B and A equals 
B Allen Primitives.

lftA = lftB

Figure 16. A overlaps B Allen Primitive Representation Using CSP.

OperatorA

preconds: (<start-time> (start-A <start-time>))

          (<end-time> (add-time <start-time> DUR TIME))

effects: (add (started-A <start-time>))

         (add (finished-A <end-time>))

OperatorB

preconds: (<d> (started-A <d>))

          (<start-time> (add-time-in-interval <d>

                         ELAPSED1 TIME1 ELAPSED2 TIME2))

          (<end-time> (add-time <start-time> DUR0 TIME0))

effects: (add (started-B <start-time>))

         (add (finished-B <end-time>))

Figure 15. A Representation of the A overlaps B Allen Primitive in PRODIGY.

lftB < lftA

estB <= estA - a

estB >= estA - b

Figure 17. A Representation of the A during B Allen Primitive in PRODIGY.

OperatorA

preconds: (<start-time> (start-A <start-time>))

          (<end-time> (add-time <start-time> DUR TIME))

effects: (add (started-A <start-time>))

         (add (finished-A <end-time>))

OperatorB

preconds: (<d> (started-A <d>))

          (<d1> (finished-A <d1>))

          (<start-time> (add-time-in-interval <d>

                         ELAPSED1 TIME1 ELAPSED2 TIME2))

          (<end-time> (del-time-in-interval <d1>

                       ELAPSED3 TIME3  ELAPSED4 TIME4))

effects: (add (started-B <start-time>))

         (add (finished-B <end-time>))



tors, we can restrict the set of values that can be
assigned to the variable that represents the re-
source, consume the fuel, or refuel the tank if
necessary and possible.

To represent capacity, we can use the scalar
quantity model. The capacity constraints of a
resource with uniform capacity can be calculat-
ed in PRODIGY through a functional expres-
sion. For instance, we can define a function
(such as compute-consumed-fuel) that calculates
the fuel consumed in each maneuver as a func-
tion of the available fuel and the angle of the
satellite with respect to the sun as shown in fig-
ure 20. 

The value of the angle is obtained from the
instantiation of the literal (position <sat>
<angle>) and must be greater than the value
four (4 grades) with respect to the current state.
Once it sets the value of variable <sat>, it will
access the state and set the value of the second
argument as the value for variable <angle>. Al-
so, the value of the available fuel is obtained
from the instantiation of the literal (available-
fuel <sat> <available>) with respect to the state,
for the instantiated variable <sat>.

In the effects, the operator adds the ground-
ed literals (performed-maneuver <sat>) and
(available-fuel <sat> <new-fuel>) to the state (in
other words, it asserts them as true) and deletes
the (available-fuel <sat> <available>) literal from
the state.

In PDDL2.2, the functions decrease/increase
present a compact way of handling numeric
fluents, more compact than in PRODIGY, but
the semantics and the way to use resource con-
sumption is the same, as figure 21 shows.

In the case of binary resources, in PDL4.0
and PDDL2.2 we can model them as predicates
that must be available at the beginning of the
operation. The operation will remove a re-
source’s availability from the state (we can do
that because of the instantaneous representa-
tion of actions) so other operations cannot use
it, but we need to add an operation that sets
the resource free so it can be used again. Figures
22 and 23 show an example of a binary re-
source as it can be an instrument inside a satel-
lite. This example belongs to the satellite do-
main of the 2002 International Planning
Competition (www.dur.ac.uk/d.p.long/IPC). In
this case, scientific instruments in satellites
must collect some data as images. In order to
observe some data, the instrument inside the
satellite must be free. The operation adds to the
state that the instrument is busy. In order to
use it again, the Free-Resource operation will
add to the state its availability for other opera-
tions (the (del (busy <instrument>)) or (not (busy
?i)) grounded literals).
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Figure 18. A during B Primitive Using CSP.

estB <= estA - b

estB >= estA - a

lftB >= lftA + c

lftB <= lftA + d

Figure 19. A Way of Handling Instances for Any Allen Primitives.

                    Initial State

for each OperatorA --> (last-index-opA 0)

                       (used-index-opA-for-opB 0)

OperatorA

preconds: (<last-index> (last-index-opA <last-index>))

          (<index> (+ 1 <last-index>))

          ...

effects: (add (index-opA <index>))

         (del (last-index-opA <last-index>))

         (add (last-index-opA <index>))

OperatorB

preconds: (<index> (index-opA <index>))

          (not (used-index-opA-for-opB <index>))

...

effects: (add (used-index-opA-for-opB <index>))

Figure 20. Representing a Resource Capacity and Consumption Such as Fuel
in PRODIGY for the Satellite Domain.

OPERATOR-MANEUVER-SOUTH

preconds: (<angle> (position <sat> <angle>)

                   (> <angle> 4))

          (<available> (available-fuel <sat> <available>))

          (<fuel-consumed> (/ <available> <angle>))

          (<new-fuel> (- <available> <fuel-consumed>))

effects: (add (performed-maneuver  <sat>))

         (add (available-fuel <sat> <new-fuel>)))

         (del (available-fuel <sat> <available>)))

Figure 21. PDDL2.2 Representation of Figure 20 Operator.

(:action Maneuver-S

 :parameters (?sat - satellite)

 :precondition  (> (position ?sat) 4)

 :effect  (at end (performed-maneuver  ?sat))

          (at end (decrease (available-fuel ?sat)

                            (/ (available-fuel ?sat) (position ?sat)))))



In CSP scheduling, there are many algorithms
and heuristics to handle easily binary to multi-
capacity resources, such as the ones proposed in
Cesta and Oddi (2002); Cesta, Oddi, and Smith
(1999); and Smith and Cheng (1993).

The Tool: CONSAT

One of the current problems for the deploy-
ment of planning technology is the lack of an
easy-to-use front end for users and their inte-
gration with the current tools used in organiza-
tions. In this section we present a graphical
modeling and validation tool developed for
scheduling the nominal operations for in-orbit
control of HISPASAT’s satellites (R-Moreno,
Borrajo, and Meziat 2002). The CONSAT5 tool
consists of the following subsystems, which
will be described in the next subsections:

The User Subsystem is in charge of the control
access to the tool and the interaction with the
user in order to obtain and manipulate all the
data needed for planning and scheduling.

The Reasoner Subsystem: once the input data
is introduced, a domain-independent planner
is in charge of generating the solution to the
problem.

The Generator Subsystem is responsible for
maintaining coherence between the two possi-
ble representations that the tool offers: annual
to provide a general overview of the operations
and weekly for a more detailed view of the
hours and resources (if any) involved in the op-
erations. If the user modifies the weekly repre-
sentation, the annual representation will be up-
dated automatically. This subsystem also
converts the solution to a specific document
format type, comparing two different solu-
tions, or generating an HTML version.

Figure 24 shows a high-level view of the ar-
chitecture and the modules that it comprises.
The first and the third subsystems interact with
the user. The second subsystem interacts with
the other two and is in charge of the solution
generation.

The User Subsystem

The User Subsystem is in charge of data intro-
duction. The control engineers are the ones
who interact with this subsystem. As we have
seen before, the initial state and goals refer to
data about external events and some opera-
tions. Some of this data, such as the time in
seconds that most operators and literals need
as arguments, is difficult for a user to provide
directly. Therefore, the user can specify data in
the current usual way through the User Subsys-
tem, and the subsystem automatically trans-
lates it into the internal model.

This subsystem provides the following more
specific functionality: In the case of external
and South-Maneuvers, the events are known in
advance by means of specific supporting engi-
neering tools that predict, according to some
parameters, when the events will occur and the
hour when the South-Maneuver can be per-
formed every day of the year. These software
tools generate the data in a set of ASCII files.
The subsystem can also import these files and
detect the correct file format.

Nowadays, the engineers represent this data
in a specific document and schedule the oper-
ations according to it. Every time a new modi-
fication is done, the engineer in charge of it
must sign the document. Therefore this subsys-
tem also controls the user access to register
who is creating, revising, modifying, or verify-
ing the schedule.

Related to the third type of operations,
which require data from the last time the oper-
ation was performed, the engineers must find
the information in the previous year’s docu-
ment. If the tool was previously used, this data
is available to the User Subsystem and auto-
matically reused.

Finally, the User Subsystem assists the user in
validating the introduced data, thus avoiding
possible user inconsistencies, such as trying to
swap the same tank twice in the same period of
the year or performing an operation in an ille-
gal period.6 Figure 25 shows one of the inter-
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Figure 22. An Example in PRODIGY of How to Represent a Binary Resource.

Figure 23. The Example of Figure 22 in PDDL2.2 Syntax.

Take-Data

preconds: (belong  <instrument> <sat>)

          (not (busy <instrument>))

effects: (add (busy  <instrument>))

         (add (have-image <mode>  <direction>))

Free-Resource

preconds: (busy <instrument>)

effects: (del (busy  <instrument>))

(:action Take-Data

 :precondition (and (belong  ?i ?sat)

               (not (busy ?i))

 :effect: (and (busy  ?i)

               (have-image ?m ?d)))

(:action Free-Resource

 :precondition (busy ?i)

 :effect:  (not (busy  ?i)))



The Reasoner Subsystem

The User Subsystem translates all this informa-

tion into a suitable format for input to the Rea-

soner Subsystem. This system is composed of

the AI planner explained previously. It is in

charge of the plan generation, with temporal

and resource reasoning. It generates a problem

file with all the information provided by the

user. This file is given to the planner as an in-

put, together with the domain and control

knowledge files, allows the planner to run. The

planner output is saved in another ASCII file

that will be manipulated to generate the input

to the Generator Subsystem.

The Generator Subsystem

Currently, once the engineers know every ex-

ternal event and have represented the events in

a document, the laborious task of scheduling

every operation starts. The engineers generate

two types of documents: (1) a document that

provides an overview of all the operations per-

formed each day of the year; and (2) a docu-

ment that represents in more detail each oper-

ation’s duration, type of maneuver, and any

resources, such as batteries, tanks, and so on,

affected by the operation.

The weekly representation is generated every

week and takes into consideration the annual

representation (shown in figure 26). The prob-

lem of maintaining two documents relates to

the incongruencies between them. Also, these

documents are generated by the engineers of

face windows (written in Spanish due to engi-

neers’ requirements) of the User Subsystem. It

shows on the left part of the window an or-

dered list of operations that require user inputs.

On the right side, the system asks for specific

data for each operation, such as a file (as shown

in the figure) or the last performed operation if

it is not available in the database. The user

must complete each step on the left part of the

window in order to obtain an annual schedule.
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Figure 24. Architecture of the Planning Tool.
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the headquarters at Arganda (Madrid) and sent

to other backup centers in Spain and South

America. In case any problem arises at the

headquarters, one of those other backup cen-

ters must continue performing the scheduled

operations. Therefore, every time a change on

a schedule occurs, it must be sent to the rest of

the backup centers.

The Generator Subsystem guarantees the

consistency of the two representations. The

user can easily modify the results obtained by

the planner by just dragging and dropping the

symbols in the table of the annual or weekly

representations. The user can also compare two

solutions and analyze the differences between

them; convert the results to the document for-

mat that the engineers use in daily operation;

and generate the solution in HTML for use at

the other centers.

Experimental Results

We have done some experiments to show the

performance of the tool developed for HIS-

PASAT on real data that are shown in table 3.

All these results have been obtained using a

Pentium III 800 MHz processor and 256

megabytes of memory under Windows. The

number of operators in the HISPASAT domain

is 100, the number of control rules is 10, and

there are a total of 50 coded functions, 25 per-

cent of them domain independent.

To compare it with humans, the time devot-

ed to preparing the annual representation for

the three satellites is 40 hours a year by one

person, basically 35 hours to elaborate it and 5

hours for verification. For the weekly represen-

tation, engineers devote one hour and a half a

week, and generally not all the changes made

in the weekly representation are reflected in

the annual representation.

With respect to validation of generated

plans, all of the plans are valid. We analyzed

differences with the plans provided by human

experts, and the results were that the plans

generated by the tool agree at least 90 percent

of the time with the plans generated by the en-

gineering team. The main differences fall on

last-time operation changes due to the satel-

lites’ needs or coincidence of some operations

with holidays that force the operations to be

moved to other dates. This last discrepancy will

be considered in future versions of the soft-

ware. CONSAT is actually under the validation

phase.
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Figure 26. The Generator Subsystem Interface: Annual Representation.

Satellite Time (mn) Goals Literals in the initial state Nodes Ops. in solution
1A 9.13 215 93 1837 411
1B 8.61 247 91 1947 439
1C 2 221 160 1269 303

Table 3. Results Obtained to Achieve a Plan for Each Satellite.



space telescope ground system, but then it was
adapted to schedule a variety of astronomical
scheduling problems. It has faced the problem
using CS techniques. 

Magpen (Ai-Chang et al. 2003) is part of the
Mars Exploration Rover mission. It is a system
that merges ideas from CS as propagation and
consistency checking and planning. The plan-
ner system called EUROPA (Frank, Jónsson,
and Morris 2000) is an evolution of the Deep
Space One planner (Muscettola 1994). The par-
tial plan that it builds consists of a set of inter-
vals connected by constraints. This plan is
modified using search-based methods until the
plan is a valid one. 

All these systems differ from our approach in
that they had to (re-)implement the planners
to handle scheduling information, while we
have used an “old” planner with a powerful
representation of domains and defined a set of
simple time-handling functions that introduce
time management in an intuitive way almost
equivalent to the expressive power of other
tools.

ASPEN (Rabideau et al. 1999) uses an AI
planner with a richer representation in activi-
ties so the user can easily provide start times,
end times, duration, and use of one or more re-
sources. Some algorithms this planner uses to
solve the problem belong to the scheduling
area (such as the schedule iterative repair algo-
rithm). ASPEN is part of CASPER (continuous
activity scheduling planning execution and re-
planning) (Rabideau et al. 2000). It provides
functionality to work in dynamic environ-
ments, a requirement for most NASA projects
(Chien et al. 1999; Chien et al. 2002; Chien et
al. 2003; Estlin et al. 1999; Willis, Rabideau,
and Wilklow 1999). Our planner uses specific
planning algorithms that can handle a subset
of the scheduling problem, sufficient for solv-
ing tasks in the HISPASAT domain. We do not
need replanning, operations monitoring, or ex-
ecution because these operations are not as
critical as on-board missions, and planning ex-
ecution time is not a high priority. The flexibil-
ity to schedule the operations is one of the
main features of this domain as opposed to on-
board missions where maximizing the weight-
ed sum of the scheduled observations is one of
the main issues.

A quite similar domain as the one presented
in this article is shown in the Ground Processing
Scheduling System (GPSS) (Deale et al. 1994).
The way they face the problem differs from ours
in several aspects. First, GPSS takes as inputs the
set of precedence relations between tasks. It de-
fines four types of temporal constraints with in-
tervals between two tasks: activity-A finishes be-

Related Work

Several planning systems have addressed appli-
cations of planning with resources and time
considerations. The planner NONLIN+ (Tate
and Whiter 1984) maintains information
about the duration of the activities and repre-
sents limited resources. 

In SIPE (Wilkins 1988) the use of resouces
can be declared in the operators. DEVISER
(Vere 1983) could also handle consumable re-
sources. These planners have been designed
with the purpose of explicitly handling some
types of resources. In the IPP planner (Koehler
et al. 1997), based on Graphplan (Blum and
Furst 1997), the search algorithm has been
modified to combine the ADL search algorithm
to handle logical goals together with interval
arithmetic to handle resource goals. Realplan
(Srivastava, Kambhampati, and Do 2001), also
based on Graphplan, decouples the logical rea-
soning from resource reasoning thanks to the
CSP formulation that helps the planner in re-
source allocation. This is the main difference
with PRODIGY, which was designed as a gener-
al planning and learning system rather than as
a scheduler. But this is not a disadvantage for
representing this type of knowledge and rea-
soning about it without modifying the search
algorithm (as explained in the “Satellite Main-
tenance Operations” and “Scheduling Knowl-
edge in the Planning Domain” sections).

Other current approaches have integrated
planning and scheduling in the same system as
HSTS (Muscettola 1994) by instantiating state
variables into a temporal database. These state
variables are very different from predicate logic
formulae used by PRODIGY, although they are
merely a convenient shorthand for logic, lead-
ing to no loss in expressivity. Also the O-PLAN2
(Tate, Drabble, and Kirby 1994) integrates plan-
ning, scheduling, execution, and monitoring
within a system that also uses an activity-based
plan representation. Based on HTN, it requires
a lot of hand-coding of domain operations and
refinement of these operations in hierarchical
levels. Other systems are temporal-based plan-
ners, such as IxTeT (Ghallab and Laruelle
1994). It is a least commitment planner that
uses a graph-based algorithm for detecting re-
source conflicts between parallel actions. The
time logic relies on a restricted interval algebra
represented by time points. Time points are
seen as symbolic variables where temporal con-
straints can be posted. The world is described
by a set of multivalued domain attributes tem-
porally qualified into instantaneous events and
persistent assertions and a set of resource at-
tributes. SPIKE (Jónsson et al. 2000) was initial-
ly used for science operations for the Hubble
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fore the start of activity-B, the start time of activ-
ity-A is equal to the start time of activity-B, the
finish time of activity-A coincides with the finish
time of activity-B, and the start time of activity-
A coincides with the finish time of activity-B.
Second, resources are modeled as classes sepa-
rately with an initial capacity. Third, to handle
changes produced by tasks, tasks are represented
as attributes instead of as predicate logic as in
our approach. Fourth, a solution is a schedule
where each task has a start and end time, a re-
source assignment for every resource that the ac-
tivity consumes where all temporal constraints
are satisfied. When looking for solutions, GPSS
searches through the space of all possible sched-
ules, looking for better schedules thanks to the
defined cost functions based on expert heuris-
tics. 

In our approach we have as inputs the do-
main theory and the problem definition. For
our domain, the four precedence relations be-
tween tasks are not enough, as we need other
Allen primitives such as during or overlaps, and
we found it easier to model these relationships
between activities inside the domain theory.
We could also add intervals between tasks
thanks to the coded functions. In relation to re-
sources, these are part of the causal reasoning,
so PRODIGY, as most planners, considers dis-
crete resources like robots, fuel, or batteries as
logical predicates. This causes the search space
to become huge when the number of resources
increases. As experimental results showed in
Srivastava, Kambhampati, and Do (2001), this
strategy severely curtails the scale-up of exist-
ing planners. Given that the HISPASAT domain
does not deal with a high number of resources,
it does not affect PRODIGY performance. With
respect to how to represent changes, in PRODI-
GY as in any other classical planner, an opera-
tor consists of preconditions and effects. Ac-
tions have well-defined start and end times and
resource assignments for each activity. The ob-
tained plan does not consider any optimiza-
tion with respect to resource use or availability,
given that for HISPASAT it is enough to find a
plan. However, as mentioned before, we could
also reason about quality-oriented plans ac-
cording to some criteria using QPRODIGY
(Borrajo, Vegas, and Veloso 2001).

Conclusions and Future Work

In this article, we have presented a tool that
fully integrates planning and scheduling for
the nominal operations that need to be per-
formed in three satellites during the course of
a year for a commercial satellite company. Be-
fore the software development, the engineer-

ing group generated by hand and on paper the
operations that have to be done during the
week and year. There were many incongruen-
cies between the two types of representation
used (weekly and annual), and document mod-
ification was a tedious task.

The tool not only saves users a lot of time
due to its capability of importing files of any
type, it presents the results in a table that can
be easily modified by just dragging and drop-
ping, generates more than one solution, shows
the differences between any two solutions, and
generates the results in their internal format or
in HTML. But there is also a high-level descrip-
tion language that is used to specify satellite
problems (domain-dependent knowledge) and
planning and scheduling problems (domain
independent knowledge) and that makes it
easy to maintain the tool and to add the corre-
spondent operations when new satellites are
added.

We want to explore the possibility of adding
more satellites, so that CONSAT could define or
delete new operations, and be adapted to new
satellites as Magpen (Ai-Chang et al. 2003) is
adapted to different missions. This would allow
us to study the scalability of the approach for
dealing within the planner with planning,
temporal, and resource reasoning. It would also
be interesting to integrate a monitoring mod-
ule to execute the scheduled operations ob-
tained by the planner and to replan in case of
changes. Finally, we would like to explore the
tool’s generality by using the satellite domains’
temporal independent knowledge for coding
other domains that require planning and
scheduling.
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Notes

1. See also the PLANET Workflow Management TCU

Road Map (http://scalab.uc3m.es/~dborrajo/plan-

et/wmtcu).

2. See also the PLANET Aerospace TCU Road Map

(http://pst.ip.rm.cnr.it/en/events/planet).

3. The hour corresponding to the secular drift direc-

tion, that is, an hour when it is possible to position

the satellite, having in mind different parameters.

4. Because it cannot return infinite possible values for

variables and it does not reason about variables that

represent intervals, it cannot handle all quantitative

relations as CSP techniques do.
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