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Chapter I 

I !~TRODUCT I or-; 

Scheduling Proble~s represen~ a broad class of mathemati-

cal programming problems in wh~ch a number of tasks are to 

be performed over time with a limited amount of resources. 

The objective of these problems is to determine the se-

quence, starting times, and manner in which the tasks are to 

be performed so that the available resources are most effi-

ciently used to perform the specified 

the nature of the scheduling problem, 

tasks. Depending 

"efficiency" may 

en 

be 

measured in terms of various criteria: for example, cost or 

time. 

In this thesis, a special case of the general scheduling 

problem defined above is studied. The problem under consid-

eration is an airline crew allocation and scheduling problem 

faced by certain divisions of the United States Air Force. 

In this problem, a task consists of visiting a set of bases 

in a pre-chosen order where the starting and ending base is 

the same (home base). The resources are the planes and the 

crews. This problem differs from most scheduling proble~s 

in that part of the available resources, namely, air force 

crews, must ~e allocated among various entities (air force 

bases) before the actual scheduling process occurs. The 

1 
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problem also differs from the usual airline scheduling prob-

lems in that it uses as an input, as opposed to generating, 

the routes and the number of times each route must be ser-

viced over a certain time period. 

tures, the specific proble:n under 

heuristically or otherwise, using 

literature. 

Due to these unique fea-

study cannot be solved, 

procedures found in the 

As mentioned above, the purpose of this thesis is to stu-

dy in detail an airline crew allocation and scheduling prob-

lem presented by the United States Air Force. Based on the 

characteristics inherent to this problem, two heuristic so-

lution methodologies are proposed. Al though these solution 

methodologies may be used to solve related problems, they 

are designed for the specific problem of concern in an ef-

fort to obtain as specialized and efficient a solution 

procedure as possible. Computational experience is provided 

for these two procedures in an effort to compare their rela-

tive merits. 

The thesis is organized as follows. Chapter I presents a 

detailed statement of the problem and its underlying assump-

tions. A literature review of crew scheduling problems is 

found in Chapter II. In Chapter III, two solution methodolo-

gies, based on the problem structure, are proposed. Finally, 

Chapter IV presents a comparison of the relative merits of 
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these procedures as well as cornp~~ational experience for the 

two proposed solution methodologies using input data availa-

ble from the Brooks Air Force Base. 

1.1 PROBLEM STATEMENT 

The problem under study involves n bases, designated 

Bl,B2, ... ,Bn. Base Bl is chosen as the home base. There ex-

ist m distinct routes, each representing some mission, 

threading through subsets of these bases. Moreover, each 

route originates at the home Base Bl and is closed in the 

sense that it also terminates at the home Base Bl. Although 

resource limitations may not permit it, it is desirable to 

service route j some rj times per planning horizon, for each 

j =l, ... , m. The resources are in terms of available planes 

and crews and have the following specifications. 

1. Planes 

a) There exist p homogeneous planes in the system. 

Initially, all p planes are located at the home 

base Bl. 

b) For each leg of the flight, say from base h to 

base k, on each route j, the expected time th'k of 
.1 

loading at base h, flying from base h to base k 

and unloading at base k is specified, for 

j = l, ... , rn, and h, ke: ! 1 , ... , n l . 



4 

c) It is required that a plane, once assigned to a 

given mission, re~ains devoted to that mission un-

til its completion. However, the single crew 

which is required to servi~e each leg of the jour-

ney may change fr0m base to base during the flight 

of a given mission. 

d) With regard to the r . flights of a given mission 
J 

type j, it is required that there be an interval 

of at least T. time units, between the comrnence-
J 

ment of any two consecutive flights, for 

j=l, ... ,m. This quantity T. is typically required 
J 

to be positive for all missions j if a uniform 

distribution of missions over the planning horizon 

Note that the case T.=O, j=l, ... ,m, 
J 

is desired. 

essentially makes this assumption inactive. 

e) Each plane requires periodic maintenance. This in-

volves a down time of q hours every 45 days for 

minor maintenance and a down time of Q hours every 

90 days for major maintenance. Fu::::-thermore, only 

the home base Bl has the facility for providing 

maintenance work. The down time of q hours is spe-

cified according to a discrete probability distri-

bu ti on. A probability p 1 , p2 , p 3 is assigned to 

different durations q , q , 
1 2 

respectively. 

q , hours of down time 
3 
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2. Crews 

a) There are c > p homogeneous crews in the system. 

Initially, the c crews are to be distributed among 

the n bases in some to be determined "optimal" 

manner. Note that if ck denotes the number of 

crews initially located at base k, k=l, ... ,n, then 

due to assumption (a) on planes, the number of 

crews at base k at any given time is 

c -1 mp ( t ) + p 1 ( t ) for base k=l ( 1. 1) 

for k=2, ... , n ( 1. 2) 

where pk ( t), k=l, ... , n, denotes the number of 

planes at base k at time t, and mp (t) denotes the 

number of jobs being flown at time t. Moreover, 

it is stipula~ed that initially c 1 ~ m so that the 

maximum number of planes can be utilized given 

that they are all operational. 

b) It is assumed that crews do not have home bases to 

which they have to periodically return. In other 

words, the initial distribution of crews does not 

appoint home bases for crews. Realistically, since 

each crew has some home base, then this assumption 

implies that whenever a crew goes off duty to re-

turn to its home base, it is replaced by some oth-
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er crew in a manner such that the distribution of 

crews in the sys":em is determined only by the 

flights. 

c) Each leg (flight from base i to base j) of the 

journey on each route is assumed to involve a suf-

ficient time duration so as to warrant a rest per-

iod for the crew. Crews are hence said to have to 

"stage at each base". The rest period is taken to 

be 14 hours, regardless of the time of day when it 

commences. Moreover if short legs are flown, these 

are combined so that a route is defined in terms 

of bases where the crews must rest. Note that in 

connection with assumption (a) for crews, we as-

sume that the work period of a crew includes both 

air and ground times. Also, the possible substitu-

tion of one crew by another as indicated in as-

sumption (b) for crews is assumed to have no ef-

fect on rest periods. 

d) Crews are assumed to be integral units and trans-

fer of members from one crew to another is not 

permitted. Further, the transfer of a crew from 

one base to another is permitted only if this crew 

is working on a flight servicing that leg. That 

is, neither "deadheading" nor any external trans-
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fer of crew3 is allowed. However, a crew may 

transfer from one mis~ion to another at any base, 

subject to assumption (c) for planes. 

e) The following workload restriction is also imposed 

on each crew. Namely, the federal regulations do 

not allow more than 8 flight hours in any given 24 

hours time period. Note, for example, that a rest 

period of 14 hours (as in assumption (c) for 

crews) implies a maximum of 8 flight hours for a 

ground time of at least 2.00 hours. 

Scheduling Objective 

The problem seeks a judicious distribution of crews among 

the bases and a subsequent scheduling of the missions so as 

to maximize the expected overall utilization rate for the 

planes over some period of time. This overall utilization 

rate is defined to be the average operation time (flight and 

ground time) per plane per day over the period under consid-

eration. Note that a period of time Tj required between the 

commencement of any consecutive flights of any given mission 

j implies a possible idle tim~ for planes while waiting for 

available missions. Equivalently, one may minimize the to-

tal idle time spent by the planes over some period of time. 
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Al though the main im:erest is the maximization of the 

utilization rate of the planes, ~he minimum number of crews 

and planes required in the system for a given completion 

time (makespan) is valuable information in this problem. 

Different variants of the problem are considered accord-

ing to the time, Tj, required between the starting time of 

any two consecutive operations of the same mission j. Three 

variants are considered, T. 
J 

equal to zero, T. different 
J 

from zero and calculated during the simulation process, and 

Tj different from zero and fixed at the beginning of the al-

gorithm. Even though assumption (d) for planes and assump-

ti on (a) for crews differ on each variant with T., 
J 

as sump-

tions (a), 

assumptions 

( b) / 

( b), 

( c), and 

(c), (d), 

(e) for planes, as well as, 

and ( e) for crews remains the 

same in the three variants of the problem discussed below. 

1.1.1 Problem 1 

In this problem, the utilization rate of planes is maxim-

ized, given that there exists no restrictions on the start-

ing time of the jobs. This means that for a given number of 

planes, crews and missions, the number of missions to be 

performed at any time depends only on the availability of 

resources (planes and crews) in the system. Therefore, the 

number of days necessary to complete all the jobs when the 
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number of crews, as well as the number of planes is fixed, 

is minimized. 

In this case, the total time required for the completion 

of the jobs depends on the allocation of crews among bases 

as well as on the number of planes in the system since the 

missions can be flown as long as these two resources are 

available. 

Since the completion time of the jobs depends on the num-

ber of planes available in the system, we also seek to det-

ermined the minimum number of crews which will yield the 

completion time. 

1.1. 2 Problem 2 

Here, a restriction of a period of time T. between the 
J 

starting time of any two consecutive operations i-1 and i, 

of mission j is imposed on the problem. Therefore, in ~his 

problem, the availability of the missions is also restrict-

ed. Moreover, a limited number of planes, equal to the num-

ber of missions that can be flown at the same time, is ef-

fectively used in the system. Therefore assumption (a) for 

crews stipulates a :ninimum of m crews initially placed at 

Base Bl. 

The value of Tj is fixed at the beginning of the problem 

in order to spread the missions over the period of time de-

sired in the problem. 
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Since this problem in some way res~ricts the overall com-

pletion time, then after a (maximum) utilization rate for 

the problem is found, it is of interest to determine the mi-

nimum number of crews and pla:::i.es in the system which wi 11 

yield this maximum utilization rate solution. Obviously it 

must be expected that a smaller number of crews and planes 

is required in the system by this problem than by Problem l, 

since fewer missions are being flown at the same time. 

1.1.3 Problem 3 

As in Problem 2 a restriction on the time between the 

starting time of any two consecutive operations of any mis-

sion j, is imposed on this problem. This problem does not 

allow more than one operation of mission j to be performed 

at the same time. Therefore, the imposed time restriction 

T. . depends on the processing time of the operation i-1 as l.J 
well as on the idle time (if any) incurred by this opera-

ti on. T.. is calculated for each operation i of mission j l.J 
using the equation 

( l. 3) 

where t j is the processing time of mission j, It (i-1) j is 

the known idle time of operation i-1 of mission j, and i-1 

and i are consecutive operations of mission j. The value 
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It .. is generated during the simulation process. Hence, TiJ" l.J 
is not a prespecified quantity, b~t is determined by the so-

lution procedure. Since only m planes can be flown at any 

time, assumption (a) for c~~ws r~quires a minimum of m crews 

initially placed at Base Bl. 

1.2 PROBLEM FORMULATION FOR A RELAXED VERSION 

According to the Problem Statement, we break down the 

formulation below into two cases, namely, T · =O J I 
j=l, ... ,m 

and;::. '/=O, j =l, ... , m. For both cases, a linear mixed integer 
J 

programming formulation for an associated relaxed problem is 

presented. This relaxation of the actual problem considers 

only assumptions (a), (b), (c), and (d) for the planes while 

ignoring the assumptions for the crews. The difference in 

the complexity of the formulations of these two problems is 

indicative of their relative difficulties. These formula-

tions illustrate the difficulty of the problems. Also one of 

the proposed methods uses this relaxed version of the prob-

lem to find a sequence of missions to be flown by each 

plane, as well as an upper bound for the number of crews re-

quired in the system. However, an exact solution of these 

relaxed problems is not computationally feasible for all 

sized problems, and hence, we alternatively propose certain 

heuristics to obtain good quality solutions. 
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1.2 .1 Case (i) T.=O, j=l, ... ,rn - -J- -
Observe that in this case, the problem basically reduces to 

a parallel processor scheduling problem [S], with p identi-

cal machines (planes) and rj operations of type j each re-

quiring a processing time tj units for j=l, ... ,m. 

Here, t j, equals the sum of flight and ground times re-

quired to perform mission j. No preemption is permitted. 

Defining 

1 if machine i processes operation k of mission j 

( 1. 4} 

0 otherwise 

for i=l, ... ,p, j=l, ... ,m, k=l, ... , r. , the problem of minim-
] 

izing the makespan T may be formulated as follows 

Pl: Minimize T 

m rj 
Subject to T..::_ E Et.x .. k 

j =lk=l J l.J 
for each i=l, ... ,p ( 1. 5) 

for each k=l, ... ,rj (1.6) 

and each j=l, ... ,m 

xijk binary for each i,j,k 

Constraints ( 1. 5) determine the make span T and constraints 

( 1. 6} ensure that each operation is performed on some ma-

chine. The objective of minimizing the make span is equi va-

lent to minimizing the total machine-idle-time. 
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m 
Denoting n = Lr., Problem Pl is a mixed-integer program 

j=l J 
with np binary variables, one continuous variable and n+p 

constraints. Since no computationally feasible solution 

procedure for Problem Pl has yet been developed, a heuristic 

procedure based on the "LPT dispatching rule" [5] is a via-

ble alternative for approximately solving Pl. 

1.2 .2 Case (ii) T.~o, j=l, ... ,m - -J~ -
This case is more complicated than Case ( i), since now, 

not only is the assignment of jobs to machines relevant, but 

also their sequencing thereon. A relaxation of this problem 

is considered to illustrate the relative complexity of this 

case. Defining variables xijk as in Equation (1.4), one may 

stipulate that constraints (1.5) and (1.6) must hold as be-

fore. Now, define variables 

Yjk = start time for operation k of mission j ( 1. 7) 

for k=l, ... ,rj and j=l, ... ,m. Since it is possible for idle 

times to occur on machines between the processing of conse-

cutive operaticns, the makespan T is determined in this case 

through the inequalities 

T > y . k + t . + M ( x .. k- 1 ) 
- J J J.J 

for each i=l, ... ,p 
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k=l, • • • Ir j 

j=l, ... ,m 

m 

( 1. 8) 

where M is a suitably large number, e.g., M =j~lrj( tj+Tj ). 

Next, for each machine i=l, ... ,p we need to ensure that 

there is no overlap between any two operations being pro-

cessed on that machine. In other words, x irs + x ijk = 

imply that either y jk ~ Yrs + ~ or that Yrs ~ y jk + 

2 must 

tj for 

any job pairs (j,k) and (r,s), for each i=l, ... ,p. This con-

dition can be enforced by the inequalities 

y. k > y + t + 2M ( x · + x .. k -2) - M J ·- rs r irs 1.J <J 
jk,rs 

( 1. 9) 

Yrs ~ YJ· k + t J. + 2M ( x • + x • • k - 2) - M ( 1 - cr . ) irs 1.J Jk,rs 

for each pair (j,k) and (r,s), 

are dummy binary variables. 

for i=l, ... ,p where cr ·k rs 
J ' 

Finally for each j=l, ... ,m and for any job pairs (j, r) 

and (j,s) of type j, one needs to enforce that either y.k > 
l. -

or that y > y + T rs - jk j Similar to (1.8), this 

restriction may be enforced through the inequalities 

Yjs > Y. + T. -M ( Y j rs) Jr J 
( 1. 10) 

y. > y. + T - M ( 1 - Y jrs ) Jr ·- J s j 
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for each pair of jobs (j,r), (j,s) of type j, j=l, ... ,m, 

where again, y. are suitable dummy variables. Thus, the JrS 
problem addressed may be formulated as 

P2: Minimize T 

subject to constraint (1.4) 

constraint (1.6) 

constraint (1.7) 

constraint (1.8) 

T, y > 0 and x, cr, y 

m 

( n) 

(np) 

(np(n-1)) 

m 
( E r. (r.-1)) 
j=l J J 

binary 

where n= 2: r. and where there are (np) x-variables, (n(n-1)) 
j=l J m 

cr -var i ab 1 e s , ( E ( r; ( r j - 1 ) ) / 2 ) 
j=l .J 

denotes the makespan. 

y -variables, ( n) y-variables 

and T 

Since the relaxation of P2 itself is a large linear pro-

gramming problem which requires considerable computational 

effort, it is clear that except for relatively small prob-

lems, solving even the linear relaxation of P2 in order to 

obtain an approximate solution may be an arduous task. 

Furthermore, a continuous valued solution may not be useful 

because a feasible integer solution is not usually available 

therefrom. Consequently, a heuristic solution procedure may 

again be preferable. 



16 

1.3 OUTLINE OF SOLUTION S7RATEGY 

Two solution procedures are proposed in this thesis for 

the given problem. These are referred to as the Two-Phase 

Method and the One-Phase Method. 7he principal thrust of 

these techniques is to obtain a judicious allocation of 

crews to bases in such a fashion that good quality solutions 

for the resultant scheduling problem may be obtained. 

In the Two-Phase Method, the first phase (Phase I) is an 

initialization step in which a relaxed version of Problem P2 

is solved. The solution to this problem provides three im-

portant pieces of information. First, it yields a lower 

bound on the time period required to schedule exactly r 

missions of type j, j=l, ... ,mas well as an upper bound on 

the number of crews which can be effectively used. Second, 

it provides a natural s~arting distribution of crews among 

bases. Finally, and most important, it suggests which mis-

sions should be flown by which planes and in what sequence. 

The second phase of the Two-Phase Method (Phase I I) is 

essentially a simulation process repetitiously executed. 

Given the initial distribution of crews, and the sequence of 

operations to be performed by each plane as prescribed in 

Phase I, a repeated simulation of the problem is conducted 

with different (revised) crew allocations for each simula-

tion, to provide a schedule of missions. More specifically, 

,. 
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given a sequence of missions flown by each plane, and an in-

itial allocation of crews -::o bases (from Phase I ) I Phase I I 

first: simulates the prcblem tc ·:ie-:ermine a schedule for 

planes and crews. Based upon the results of the simulation, 

a re-allocation of crews to bases is then made. Next, the 

simulation is repeated. The procedure iterates between the 

allocation of crews to bases and the subsequent simulation 

phase until some termination criterion is satisfied. 

The One-Phase Method is basically a simulation process 

executed several times. Initially, this method distributes 

crews among the bases in proportion to the number of times 

the bases are visited in the problem. The planes are as-

signed to missions during the simulation process according 

to certain specified rules. At the end of the simulation, a 

schedule of missions to planes is obtained. Based on the 

output of this process, an improvement in the objective fuc-

tion is sought through a re-distribution of crews among the 

bases. Similar to the Two-Phase Method this problem then 

iterates between the allocation of crews among bases and the 

simulation process until a suitable stopping criterion is 

satisfied. 

It is important to note ~ere the difference between the 

Two-Phase Method and One-Phase Method. While in the former 

method the sequence of missions to be flown by each plane is 
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fixed before the simulation iterations commence, in the lat-

ter, the assignment of missions is performed concurrently 

with the execution of the simul~~ion. There exist other dif-

ferences between these ~wo metI'.odologies such as the crite-

ria used for the distribution of crews among bases and the 

determination of bounds for the number of crews required in 

the system. As will be seen later, these differences in so-

lution methodologies yield significant differences in compu-

tational efficiency. 



Chapter II 

LITERATURE REVIEW 

The routing and schedulin.g of vehicles and crews is an 

important problem area in Operations Research. A large am-

ount of literature has been wri -c-cen on this topic in the 

last twenty years. The literature can be classified into 

three main categories: routing of vehicles, scheduling of 

vehicles and crews, and routing and scheduling of vehicles 

and crews. These categories reflect problems of increasing 

difficulty as more features are considered. 

Divisions within the categories exist, based on other 

problem characteristics and solution strategies applied to 

the problem. For example, the problem may seek to fulfill 

different objectives, such as maximizing some index of safe-

ty or customer satisfaction or as is usually the case in 

most routing and scheduling problems, minimizing the total 

cost. An outline of the ten major considerations in the 

classification of routing and scheduling problems is giver.. 

by Bodin and Golden (13]. 

The solution approach to these problems is another con-

sideration in the classification of the routing and schedul-

ing problems. As discussed by Bodin et al. [ 14], the main 

characteristic utilized to classify these problems is wheth-

19 
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er or not the solution procedure is :'polynomially bounded". 

A solution procedure is considered polynomially-bounded if 

the computational effor-:: increases only polynomially with 

the problem size in the worst case. A problem which belongs 

to this class (P) can usually be solved to optimality in an 

efficient manner. Generall:/, wher.e·,;er an algorithm for the 

solution to a problem belongs to the class P, the set of 

procedures employed for the solution of the same type of 

problem are also P-bounded. 

An NP-hard problem is a problem which algorithms with po-

lynomial difficulty cannot solve. The problem that requires 

a solution effort which increases exponentially with the 

size of the problem in the worst case is NP-hard. Some sche-

duling problems have been classified NP-hard. However, there 

exist problems in the literature that have not as yet been 

classified as either NP-hard or P-bounded problems. 

In this chapter we intend to describe each category sepa-

rately. The categories will be discussed in order of diffi-

cul~y. A vehicle routing problem is solved when a sequence 

of tasks to be performed by these vehicles is obtained. I:i 

this problem there is neither a specific time when the tasks 

must be performed, nor a specific relationship between the 

tasks (there is no order in which the tasks must be ser-

viced). The four most important problems within this catego-
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ry are: the Traveling Salesman ?roblem, the Chinese Postman 

Problem, the Single Mair.. Depo-:, ~l!ul tip le Vehicle Routing 

Problem, and the Multiple Main ~e~ot, Multiple Vehicle Rout-

ing Problem. 

Many solution procedures have been developed for the so-

lution of the vehicle routing problem. Some of them intend 

to solve the problem to optimality while others provide good 

solutions via heuristic procedures. The former are mostly 

employed in the Single Main Depot, Multiple Vehicle Problem, 

Multiple Depot, Multiple Vehicle Problem and some variants 

of the Chinese Postman Problem. The latter are used for the 

Traveling Salesman Problem and some variants of the Chinese 

Postman Problem since these are considered NP-hard. These 

solution procedures will be presented in the next section. 

A vehicle scheduling problem is one which seeks a se-

quence of activities which are restricted to be performed at 

specific times. The crew sheduling problem requires a se-

quence of tasks to be performed by each crew when these 

tasks are restricted to some specific time. The crew sche-

du ling 

three 

problem will be discussed in this 

categories: Scheduling of workers at 

chapter within 

a fixed loca-

tion, Mass Transit Crew/Vehicle Scheduling problem and the 

Air Crew Scheduling problem. 
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The first category deals wi~h the schedule of workers at 

a fixed location over a certain ~urr~er of time intervals in 

order to obtain the required n~mber of workers for each in-

terval. This problem can be :fortt:t.:.lated as a network flow 

problem. 

The Mass Transit Crew/Vehicle Scheduling Problem attempts 

to schedule the crews and vehicles in order to minimize the 

cost of the completion of jobs. Two well known approaches, 

Set Partitioning based and Run Cutting methods, are present-

ed for the solution of this problem. 

The Air Crew Scheduling Problem requires a sequence of 

as for each tasks to be performed by each crew as well 

plane. This is a very difficult problem since both aspects 

of the problem, crews and planes, are considered at the same 

time. A vast number of techniques have been developed for 

the solution of this problem. These techniques can be clas-

sified under two main groups: mathematical programming ap-

proaches and heuristic approaches. The details of the prob-

lem as well as the procedures employed for the solution of 

the problem are discussed in Section 2.2. 

The combined 

both the Routing 

Routing 

Problem, 

and Scheduling Problem considers 

and the Scheduling problem res-

tricted by precedence relationships, and with respect to in-

tervals of time (time windows) within which the tasks must 
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be performed. Heuristic procedures have been developed 

since no exact mathematical techr.iques have been successful 

for these problems. 

A comparison of the .:ibJ ecti. -.;e 3.r.d solution procedures 

proposed in this thesis for the problem on hand, with those 

in the literature is given in Section 2.4 of this chapter. 

2.1 ROUTING PROBLEMS 

A basic routing problem involves a set of nodes and/or 

arcs to be serviced by a fleet of vehicles, wherein no tem-

poral restrictions (period of time in which the service must 

be performed) or precedence constraints exist. Only maximum 

route length constraints may exist. The problem is to find a 

set of routes for each vehicle for which the objective fuc-

tion is optimized and the constraints are satisfied. "A 

vehicle route is a sequence of pick up and delivery points 

which the vehicle must traverse in order, starting and end-

ing at a same main depot or domicile" [14]. Different objec-

tives of the problem and a large variety of constraints pro-

duce a vast number of possible variations on the standard 

problem, al though a sequence of routes to be performed by 

each vehic~e is the output in all of them. 

The most well known vehicle routing problems are: 

1. The Traveling Salesman Problem 
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2. The Chinese Postmar. ?roblem 

3. The Single Main Depot, Multiple Vehicle, Routing 

Problem 

4. The Multiple Mc..:i.::1 Depc-.:, Mu2. -.:iple Vehicle, Rou -cing 

Problem 

The Traveling Salesman Problem requires the de~ermination 

of the minimum distance in a cycle (Hamiltonian circuit) 

within which each city is visited exactly once. This is, 

perhaps, the most discussed problem in the literature of 

routing problems. Bellmore and Nemhauser [7] present a sur-

vey of this problem. Christofides (19] presents a detailed 

study of this problem. 

Different versions of this problem have been studied in 

the literature. For instance, the M-Traveling Salesman Prob-

lem is a generalization of this problem wherein 1) M sales-

man, rather than one, trace Hamiltonian circuits among a 

subset of the nodes or cities, and 2) each city is visited 

at least once. Formulations of this problem can be found in 

Bellmore and Hong [8], and Orloff (38]. 

Even though many algorithms have been proposed for solv-

ing the Traveling Salesman Problem, problems involving more 

than 300 cities remain unsolved. Karp (31] has shown that 

the problem is an NP-hard problem. Hence, different heuris-

tic procedures have been developed. An analytical compari-
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son of these procedures is fcund in Rosenkrantz et al. 

[ 39]. 

The Chinese Pos~man ?r0blem deals with the task of find-

ing a minimal distance rou~e i~ a ::..etwork where every arc 

must be traversed at least once. There are three versions of 

the problem. In the first version, undirected arcs are as-

sumed. Solution procedures for this version have been pro-

posed by Glover [25], Edmond and Johnson [22], Christofides 

[19] and Bellman and Cooke [6]. The first three papers pre-

sent P-bounded algorithms which can be employed only in the 

solution of small size problems. 

The second version studies the case where the graph is 

directed. The solution of this problem is based on the no-

tion of "a continuous path through a network that traverses 

each arc exactly once" (14]. An algorithm which obtains op-

timal solutions has been developed by Beltrami and Bodin 

(9]. The third version considers a mixed graph with both, 

directed and undirected arcs. The first two versions have 

been solved to optimality whereas the the third version is 

an NP-hard problem (14]; there exists no exact procedure for 

the solution of this version. 

The Single Main Depot, Multiple Vehicles Routing problem 

is a classical routing problem in the literature. Given a 

set of routes and vehicles in one main depot or garage a de-
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mand at each city or depot must be satisfied with a minimum 

distance traveled. Mathemai:ically, the generalized vehicle 

routing problem formulation as given in Bodin et al. [ 14] 

is : 

n 

n rn nv 
Minimize z z z c .. 

i=l j=l k=l J.J 

nv n 
Subject to z z xijk = 

n 

n 
z 

i=l 

n 
z 

i=l 

k=l j=l 
n 

xihk- j~lxhjk=O 

d. 
]_ 

n 
( Z x. ·k) ~ Kk 
j =l J.J 
n n 

xijk 

d. 
]_ 

Z t.k . 1 ]_ Z x. "k + 
j=l J.J 

Z Z t .. kx .. k < 
i=l j =l J.J J.J i= 

n n 
Z Z x iJ"k < 1 

j=l i=l 

xijk binary 

( 2. l) 

i=2, ... ,n (2.2) 

k=l, ... , nv ( 2. 3) 

h=l, ... ,n 

k=l, ... , nv (2.4) 

k=l, ... ,nv ( 2. s) 

k=l, .. ,nv ( 2. 6) 

i=l, ... ,n (2.7) 

j=l, ... ,n 

k=l, ... , nv 

where n is the number of depots, nv the number of vehicles 

in the system, Tk the maximum time allowed for a route of 

re-vehicle k, di the demand of depot i (d1=0), tik the time 

quired for vehicle k to serve depot i / ( tkk =O for all k), 

tijk i:he time required for vehicle k to travel from depot i 

to depot j ( t ~kk = "" for al 1 i), c ij the cost of travel from 
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depot i to depot j, and xijk equals 1 if the distance from 

depot i to depot j is traversed by vehicle k, and is 0 oth-

erwise. 

The objective function (2.1) to be minimized, represents 

the total di stance traversed. Equation (2.2) ensures that 

the demand is met at each depot. Equation (2.3) represents 

the continuity of the routes. The capacity and availability 

constraints of the vehicles are represented by inequalities 

(2.4) and (2.6) respectively. 

given by inequality (2.5). 

The route time constraint is 

Simple modifications in the objective function or the 

constraints result in different versions of the general 

problem formulation. For example, if we incorporate in this 

model a restriction on the exact times when the tasks are to 

be performed, as it will be seen later in this chapter, a 

model of a scheduling problem results. 

Many solution procedures have been proposed for the solu-

tion of this problem. The majority of these procedures can 

be classsified in five categories. 

1. Route-cluster 

2. Insertion 

3. Improvement/exchange 

4. Mathematical programming procedures 

5. Exact procedures 
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Route-cluster is a LWO SLep procedure approach, which can 

be classified in two dif!erent procedure groups. The differ-

ence between Lhem is the order :~ which the steps are per-

formed. In one of these procedure groups, Step 1 produces a 

large route where all the entities are served. This route is 

usually infeasible. Step 2 creaks the routes down into 

smaller but feasible routes. In Bodin and Berman [ 12] an 

application of this approach to the school bus routing pr~b

lem, is found. In the second procedure group a small set of 

en ti ties are produced in the first step. The second step 

finds rouLes within each set thaL minimize the cost. Appli-

cations of this procedure are given in Gillett and Johr.son 

[24], and Karp [30]. Also an algoriLhm for the solution of 

street-sweeper routing problems using the latter procedure 

has been proposed by Bodin and Kursh [16]. 

Insertion procedures have beer. developed for single main 

depot routing problems. These procedures compare an alter-

native solution with the current solution for the problem, 

where both solutions may be infeasible, but the alternative 

solution either reduces the obJective fuction value or sa-

Lisfies one of the routes that is not covered by the currer.~ 

solution. The procedure concludes wher. a feasible solution 

is at hand. This procedure is used by Hinson and Mulkerkan 

[ 27] in a solution method proposed for plane routing prob-

lems. 
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Improvement procedures atte:;-.pt to reduce the to-cal cost 

in the problem by exchanging branches of the current solu-

tion. Feasibili c:y of so2.utions is always maintained. The 

procedure continues until no more improvement via prescibed 

exchanges are possible. Heuristic :::-ules for this type of 

procedu:::-e have been developed by Baker et al. [4]. 

Mathematical programming approaches have been devised for 

routing problems. Most of these solu1:ion techniques are 

heuristic procedures where special structures of the problem 

are exploited so that formal mathematical procedures such as 

dynamic programming or Lagrangian relaxation can be inyorpo-

rated in the (approximate) solution technique for that spe-

cific problem. Al so, subjective assessments based on previ-

ous experience or knowledge of the problem can be adapted to 

optimization models in order to obtain a more accurate solu-

tion procedure for the problem. 

Exact procedures such as branch and bound and cutting 

plane techniques nave been applied to rou~ing problems. 

~hese techniques provide good bounds for the problems, even 

thougr. the optimal solution is not ob1:ained for other than 

s~all sized problems. 

The Multiple Main Depoe:, Multiple Vehicle routing pro~lem 

is a generalization of the above problem. This routing prob-

lem keeps the same constraints and objective function as the 
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previous one, but now there exist more than one main depot 

(garage). The soluticn procedures employed for this type of 

problem are extensions of the procedures discussed above. 

Most of the solution proceduras which have been developed 

for this problem are heuristic procedures. Gillett and John-

son [24], Tillman and Cain [47], and Golden et al. [26) have 

proposed heuristic algorithms for this problem. 

2.2 CREW/VEHICLE SCHEDULING PROBLEMS 

Crew/Vehicle Scheduling Problems can be thought of as 

routing problems with temporal restrictions (specific period 

of time in which the task must be performed) [14]. The veh-

icle and crew scheduling problem depends on the sequence of 

activities to be performed as well as on the specific time 

that each activity mus't be perf.:>rmed. In this sense both 

crew scheduling and vehicle scheduling are similar, although 

in the former case more restrictions are involved, such as 

federal regulations, union regulations, contract specifica-

tions, etc. 

Whenever both crew and vehicle scheduling are required in 

a problem, the two aspects interact with each other. The 

ideal situation would be to solve both problems simultane-

ously. However, the union of both problems generally yields 

a model too complicated to be solved. Hence the approach 
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usually followed is to use iterative algori thrns where the 

crew or vehicle scheduling problem is alternately solved, 

given a schedule for the other entity. 

A basic crew/vehicle scheduling problem can be formulated 

as a set partitioning problem [14) 
n 

Minimize i:: c i xi 
i=l 

Subject to 
n 
i:: 

i=l 
a .. x · =l J 1. 1. 

x. 
1. 

binary 

(2.8) 

j=l, ... ,m (2.9) 

i=l, ... ,n 

where m is the number of task or jobs to be completed and n 

the possible schedules covering the jobs. a.. is a binary J 1. 

coefficient taking the value of 1 if schedule i covers job j 

and a value 0 otherwise. c. is the cost of schedule i, for 
1. 

each i=l, ... ,n. 

This formulation is modified to obtain different versions 

of the scheduling problem. For instance, if more than one 

schedule is allowed to cover the same job, a set covering 

problem is now obtained where Equation (2.9) is replaced by 
n 
l: a· ·X · > l. i=l Ji: i-· 

A more complicated problem results from the basic crew/ 

vehicle schedulir.g problem formulation when additional fea-

tures are added to it. These features are usually: 

1. Restriction on the maximum length of the path allowed 
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2. Existence of multiple vehicle types 

3. Existence of mul~iple main depot vehicles 

The crew scheduling ?roblerr. car.. be divided inL.o three 

main groups of interest: 

l. Workers at a fixed location Scheduling Problem 

2. Mass Transit Crew and Vehicle Scheduling problem 

3. Air Crew Scheduling Problem 

The first group is the simplest version of this problem. 

For a given set of time intervals of a day and a specific 

demand of workers required in each time interval, a schedule 

for each worker is sought in the problem. Telephone operaL.or 

scheduling [43] is an example of this problem. This problem 

has a neL.work formulation. Algorithms based on this formula-

tion have been proposed by Bennett and Potts (111, Bodin et 

al. [ l 7] and others. 

The Mass Transit Crew and Vehicle Scheduling Problem is a 

more complicated version of L.he problem since both aspects 

of the schedulir.g problem are considered. A set of tasks is 

assigr.ed to each crew and vehicle for a one day period. 

Thereafter, a number of days (wiL.h differing schedules) are 

combined to obtain a weekly schedule. These schedules are 

combined until a mor..thly schedule is obL.ained for each crew 

and vehicle. In many algorithms an exchange of schedules 

among the personnel is required in order to ensure equal 
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difficulty of tasks to all the personnel. This last restric-

tion complicates the problem. Thus, an optimal solution is 

not usually tangible. 

The state of art of these problems is presented by Wren 

( 49] . The traditional approaches utilized in the solution 

of this problem are the Set Partitioning Based Approach and 

the Run Cutting Approach (14]. 

Two algorithms based on the Set Partitioning/Covering Ap-

proach are presented in Bodin et al. [14]. The first algor-

ithm attempts to decompose the problem based on the duration 

of the tasks. Several groups are formed according to this 

criterion and within each group a set of columns is generat-

ed. A set partitioning problem is then solved for each 

group. Parker and Smith [37] develop a second algorithm in 

which all the tasks are considered at the same time but a 

set of restrictions is imposed on the set of columns gener-

ated in order to reduce the total number of columns. An ex-

act solution procedure for the Mass Transit Crew Scheduling 

Problem has been developed by Edmonds [21]. This method is 

based on the set partitioning'problem where no more than two 

ones per column exist. 

The Run Cutting Approach is generally used in heuristic 

methods based on procedures employed by manual schedulers. 

These methods attempt to incorporate heuristic rules used in 
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manual scheduling for specific problems into computerized 

techniques. Algorithms based en this approach are given in 

[32], [33], and [42]. 

The Air Crew Scheduling problem is one of the most com-

plicated versions of the scheduling problem. Generally, a 

schedule of planes is conducted concurrently with the sche-

duling of crew. Many times, a certain frequency of the mis-

sions over a period of time is required. Therefore, the jobs 

must be completed within a given interval of time (time win-

dow). Hence a combination of routing and scheduling problems 

result. 

Generally, the solution techniques applied in the solu-

tion of the Air Crew Scheduling Problem are also used for 

the solution of Workers at a fixed location Scheduling Prob-

lem and Mass Transit Crew Scheduling Problem. Since our at-

tention is focused on the Air Crew Scheduling problem, a 

more detailed discussion of the techniques used for the so-

lution of crew scheduling problems will be given within the 

framework of the problem under consideration. 

The solution procedure for the Air Crew Scheduling prob-

lem can be divided into two main categories: those which use 

a :nathematical programming approach, and those which use 

heuristic methods. Within these categories subdivisions are 

found. 
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2.2.l Mathematical Prc~amming Aooroach 

Most Crew Scheduling Prcblems can be formulated as mixed in-

teger linear programmi~g probl~ms, even though only a small 

number of them can be completely solved by this approach. 

In the Air Crew Scheduling Prcblem a leg i is defined as 

the smallest feasible uni<: of work for a crew, that is a 

flight from node A to node B without intermediate stops. The 

planning unit for crews is called a rotation. A rotation is 

a set of legs flown by the crews which starts and ends at 

some home base (round trip). For these problems a matrix A 

is generated where the rows represent legs to be flown and 

the columns are the rotations. The entry a .. of the generat-
l.J 

ed matrix takes a value of 1 if leg i is flown in rotation j 

and 0 otherwise. For different cases of the Air Crew Sche-

duling Problem, this matrix can be either generated or be an 

input for the problem. 

From the matrix A a set of rotations is chosen to be 

flown. takes value of 1 if rotation j is chosen and 0 

otherwise. Associated with each rotation j there exists a 

cost c. 
J 

Also a specific number of crews is required for 

each leg i; this number of crews is represented by b i . 

Based on the matrix A the cost c. 
J 

for each rota~ion j, 

and the required number of crews bi, for each leg i, a sim-

ple formulation of the Crew Scheduling Problem used by many 

airlines is: 
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Minimize P3: 

i=l 
Subject to 
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c.x. 
J J 

~ = 0,1 . ; 
~ 

(2.10) 

i=l, ... ,m (2.11) 

Based on Arabeyre et al. [2], the solution procedure for 

the above formulation can be divided into 3 steps: Genera-

tion, Reduction, and Optimization. 

1. Generation 

The first step is the construction of the matrix A, each 

column of which corresponds to a feasible rotation. The in-

formation used in the development of the matrix, therefore, 

varies with the specific problem. Hence, each Air Crew 

Scheduling Problem needs to develop its own matrix based on 

its specific restrictions. 

The general information req~ired for the construction of 

the matrix is [2]: 

a) Crew Regulations 

b) Aircraft schedule for each aircraft 

c) Definition 0£ the smallest produc~ion unit that a 

crew can fly 

Most airlines are concerned with union regulations, fed-

eral regulations, and safety. However, these regulat~ons 

change with the airline and the home country as well as with 

the type of con~ract the crew has with the company. 
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For the construction of this matrix, the legs are listed. 

Then the rotations are cons~ructed adding legs one by ~ne to 

it until the addition of a new leg makes the rotation no 

longer feasible. This process continues until no more rota-

tions are possible. 

2. Reduction 

The generated A matrix is the matrix considered in a set 

partitioning problem, which is usually far too large to be 

solved by any optimization technique. Hence a reduction of 

the matrix is required. 

Many airlines use the most common Integer Programming 

rules (row dominance, column dominance, etc.) to reduce the 

matrix A [41]. One of the most useful rules in the reduction 

process follows. 

For the minimization problem P3, where b. equals 1 
l. 

for all i, consider two rows Ai and Aj such that 

A.CA .. This means that any pairing which contains 
l. J 

leg i also contains leg j. Therefore, row A j may 

be eliminated and any rotation that does not be-

long to the intersection A .n.A.. can be eliminated 
l. J 

since it is infeasible. 

Other procedures are also used. For instance Rubin (40] 

uses an upper bound for the total cost to reduce the dirnen-

sion of the matrix. Whenever the addition of a rotation to 
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the rotations already =hosen produces a cost greater than 

the given upper bound for it, ~his rotation is eliminated. 

The procedure considers all possibie combinations of rota-

tions until no reduction i£ possi~le. 

The reduction step could also be included in the matrix 

generation process. The combination of these two steps can 

result in a more efficient method, thus reducing execution 

time. 

3. Optimization 

Many Integer Programming solution procedures have been 

used to solve the Crew Scheduling Problem. The most popular 

are branch and bound techniques and cutting plane techni-

ques. 

United Air Lines, for instance, developed an algorithm 

based on Gomory' s cutting plane technique [ 34]. This pro-

ceeds as follows. After the continuous optimum is computed 

using linear programming, additional constraints are added 

to the problem to restrict the continuous solution. The al-

gorithm solves a finite number of linear programming prob-

lems and it stops when the continuous solution is an integer 

optimum. Although ir. theory there is no limit to the size of 

the problem that can be solved via this algorithm, in prac-

tice, a problem with matrix A consisting of more than 4COO 

columns is computationally intractable. 
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Specialized branch and bound techniques developed for the 

specific problem under consideration, have been sucessfully 

used by many airlines. A list cf airlines which have devel-

oped solution procedures based on ~hese techniques is given 

in Arabeyre I et al. r 2 J . A brief outline of the solution 

procedures discussed by Arabeyre et al. [ 2], is presented 

here. 

Air Canada's Branch and Bound Procedure consists of an 

implicit enumeration scheme combined with cost projection, 

relative costing, and subset reduction techniques applied to 

certain subproblems. This method arranges the columns of 

the matrix A in order of increasing cost. The uncovered 

legs are added to the rotations producing a higher cost. 

Hence, a rearrangement of the matrix is performed. If the 

total cost exceeds the current bound, a backtrack occurs, 

and the process is repeated. This process continuous until 

all legs are covered with the least possible cost (23]. 

Air France constructs two matrices, matrix A where the 

columns are the chosen rotations, and matrix B consisting of 

the remaining rotations. The columns (rotations) of the ma-

trix A are rearranged i:i an increasing order according to 

the cost ratio ( c .. /n .) , where nJ· is the number of nonzero l.J J 
entries in column j. Thereafter the Branch and Bound Tech-

nique is applied to the arranged matrix. The branching rule 



40 

employed is: among the rotations that do not intersect with 

the elements of the rota~ions already chosen, the one cor-

responding to the smallest cost is selected. The matrix with 

the residual rotations lS updated. The process continues 

until the dimension of the matrix of residuals is less than 

some given dimensions N0 , M0 . Another version of this al-

gorithm solves the continuous linear program. Certain num-

ber of variables with fractional values are set to 1 and the 

above process is repeated. The solution obtained is compared 

to the LP lower bound. If the difference is less than a giv-

en percentage, the algorithm stops; otherwise, some varia-

bles previously fixed at 1 are set free and the process is 

repeated [ l]. 

The approach used by American Airlines is based on a 

pre-ordered matrix followed by a branch and bound search 

(2). The order of the matrix is based on the time in which 

each leg flown as well as the cost of each column. Several 

bounding criteria have been implemented in this algorithm. 

An initial feasible solution is obtained; this solution is 

progressively improved upon until either the optimal solu-

tion is fcund or some stopping cri~eria is satisfied. 

Techniques for the solution of network problems have also 

been applied to Crew Scheduling Problem. Nicoletti [36j pre-

sents Alitalia Airlines' Crew Scheduling problem as a net-

work model. 
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2.2.2 Heuristic Methods 

Even though most Crew Scheduling Problems can be formu-

lated as mixed integer linear programming problems, the ma-

jority of crew scheduling problems have been solved using 

heuristic approaches rather than rigorous mathematical 

procedures. Most of these heuris~ic methods are based on in-

teger programming solution procedures like branch and bound 

techniques and Balas' Additive algorithm. Also, network flow 

algorithms have been used. These techniques are combined 

with some rules designed for the specific problem under con-

sideration to obtain an optimal or near optimal solutions. 

Whenever generation and reduction steps are required in 

the procedure, these steps are similar to those used in the 

mathematical programming approach. However the optimization 

step differs in the procedure to be followed and the answer 

to be obtained. 

Swiss Air has developed a direct search technique based 

upon heuristic rules which gives an incomplete enumeration 

of feasible solutions [ 45] . BEA' s Set Covering Algorithm 

finds a feasible solution by heuristic rulas and improves i~ 

by adding new constraints according to these rules. This al-

gorithm was proposed by House, Nelson and Rado (28]. 

Armstrong and Cook[ 3] develop a two-step algorithm to 

schedule a limited fleet of aircraft and assign a set of 
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tasks. The algori thrn minimizes total flying time while the 

set of heuristic rules gives at~ention to priority, customer 

satisfaction, and maintenance efficiency. 

Baker et al. [ 4] develops a neuristic procedure to solve 

the Crew Scheduling Problem of the Federal Express Corpora-

tion. This problem differs from the ones already presented 

in the crew payment procedure and the number of home bases. 

This corporation pays their personnel according to operating 

hours in a specific rotation rather than a fixed salary. 

There is only one home base for all the crews, namely, at 

Memphis. Hence a~l rotations must originate and terminate at 

this base. 

The procedure developed for the Federal Express Corpora-

tion problem can be broken into three major steps: rotation 

contruction, rotation improvemen~, and composite method. 

The first step enumerates all possible combinations of legs 

to obtain the columns (rotations) for the scheduling matrix. 

This rotation construction utilizes some criteria based 

upon the unique properties of the problem. First, it consid-

ers each base departure as a seed to a rotation. Each unas-

signed leg is selected to be assigned to a partially formed 

rotation following some tie-breaking rules, if this assign-

ment will not violate any regulation. The tie-breaking 

rules used in this step are the following [4]: 
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a) First feasible assignment. 

b) The next flight leg is assigned to the first feas-

ible pairing for which the aircraft flight number 

of the partially formed rotation and the flight 

leg are the same. 

c) The crew with the longes-c rest period -cakes the 

first flight leg out. 

d) The flight leg is assigned to the rotation with 

the arriving time close st to its departure time. 

This rule minimizes the crew idle time. 

e) The flight leg is assigned to the rotation for 

which the additional cost due to this leg is a mi-

nimum over all rotations considered. 

A leg can be assigned to more than one rotation. When all 

the assignments of legs to rotations, are completed the more 

efficient assignments are selected according to tie-breaking 

rules. 

The second step is the rotation improvement for which 

vehicle routing rules are used. The 2-opt, 3-opt, or gener-

ally, K-opt procedures employed in this step attempt to re-

duce the cost of a route by exchanging any K legs in the 

route for any K legs not in the route. When all the possible 

exchanges have been performed, a K-opt solution results. 
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Another improvement p:rocedure is known as the Merge Tech-

nique. This procedure compares pai~s of solutions in order 

to obtain a better merged sol~tion with a reduced cost. The 

process is repeated ~ntil all feasible solutions have been 

compared. 

The last impro»;ement procedur-e employed by the Federal 

Express Corporation is called hubturning. The procedure at-

tempts to reduce the cost by combining two pairings starting 

and ending in the same base. 

The third step, composite method, starts with an initial 

feasible solution, and improves it via the improvement 

procedures discussed above, until a near-optimal solution is 

obtained. 

2.3 ROUTING AND SCHEDULING PROBLEMS 

The routing and scheduling problem requires the design of 

a schedule for a vehicle or a crew, given time window res-

trictions and precedence relationships. Time windows res-

trict a job to be completed within some interval period of 

time [s,~]. There exists a two-sided window if both extremes 

o= the interval are specified while a cne-sided window ex-

ists when only one extreme is given. The precedence :rela-

tionship places a rest:ricticn on the order in which the jobs 

must be performed. When these two constraints are combined, 
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the problem becomes extr~mely complicated. Further complica-

tions may result when more than one origin or destination 

(main) depot are considered. Renee, no exact procedures 

based on mathematical programming techniques have been suc-

cessfully developed; o~ly heuristic algorithms have been im-

plemented. Moreover, this problem has proved to be NP-hard. 

The routing and scheduling problem can be broken down 

into four major groups: 

l. School bus routing and scheduling 

2. Routing and scheduling of street sweepers 

3. Airplane scheduling 

4. Dial-a-ride routing and scheduling 

The school bus routing and scheduling problem deals with 

a set of tasks (pick up and delivery) to be performed within 

a time interval given precedence relations. The objective of 

the problem is to minimize the number of vehicles required 

in the system while providing satisfactory service. Usually 

this problem involves more than one school to be serviced 

and a different time window for each school. 

The problem can be complicated when the transportation 

cost depends on several factors besides the number of stu-

dents. These factors can be for example the number of enti-

ties which provide the resources, or criteria on which the 

availability of resources are based, etc. For example in 
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New York city, the state, subsidizes only those students who 

live further than 1.5 miles from school (14]. Also different 

factors are involved in the problem depending on the area 

where the service is required. 

A general procedure is followed by many algorithms pro-

posed for the solution of this problem. First a set of 

routes for each school is constructed. Second a schedule for 

the buses is obtained where the schools are ranked according 

to the time that they begin services. Finally, an improve-

ment of these schedules is sought. Algorithms have been pro-

posed by Newton and Thomas (35], Bodin and Berman (12], and 

Bernett and Gazis [10] for the solution of this problem. 

The street sweeper routing and scheduling problem is an 

adaptation of the Chinese Postman problem. The problem is 

stated as follows. A set of streets must be serviced in a 

certain period of time using a minimum number of vehicles. 

The basic approach to the solution of this problem is either 

of the variants of the route-cluster procedures. 

A key constraint for this routing and scheduling problem 

arises from the parking regulations on the streets to be 

served, since sweeping can only take p~ace when the vehicle 

comes close enough to the curb (14]. There could exist more 

than sevem:y possible parking regulations in one city, in-

creasing the difficulty of the problem. No successful solu-

tion procedure has been developed for the solution of this 
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problem, al though the Chinese ?c.:;~man algorithms have been 

employed for the solution of this problem (see Bodin and 

Kursh [15], Edmonds and Johnson [22] ). 

The airplane schedul.ing p:::obl.i:!m is a ·very complicated 

problem where the time table for crews and planes needs to 

be generated. Several factors such as frequency of the 

flights, number of passengers, etc. must be taken into ac-

count when the time table is constructed. Procedures to 

solve this problem were discussed in the previous section. 

The dial-a-ride routing and scheduling problem deals with 

providing service to customers at any desired time. The 

problem can either be thought of as a dynamic problem wher-

ein the calls are being received while the scheduling is be-

ing performed, or as a static problem if the customer de-

mands are known before the scheduling is carried out. Both 

problems involve precedence relationships and time window 

restrictions. The dial-a-ride problem has several applica-

tior.s such as package delivery, bank delivery, vehicle for 

social services, etc. Many algorithms have been developed 

for ~he solution of this problem. For example the algor-

ithms pr~sented by Bodin and Sexton [18], and Sexton and Bo-

din [44]. These algorithms are gene::::-ally more effective for 

one-sided window restrictions, than for two-sided wi~dow 

.... . -t-. res c..r1c ~ions. 
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2.4 COMPARISON OF THS ?RCPOSED ~ROBLEM WITH THOSE IN THE 
LITERATURE 

The problem under co~s~deration in this thesis as was il-

lustrated in Chapter i can be :ormulated based on the simple 

vehicle scheduling problem fo::::-mula-cion, although additional 

constraints such as precedence relationships have been in-

corporated increasing the difficulty of the problem. 

Due to the unique nature of the problem, there does not 

exist a compatible solution procedure in the literature. The 

assumptions of this problem, its objective and the require-

ment to pre-allocate crews among bases are features on which 

the subsequent scheduling of c::::-ews and planes depends, and 

which give this problem unique characteristics not previous-

ly considered in the literature of routing and scheduling 

problems. 

This problem as many others in the literature, becomes 

intractable when the size of the problem increases. There-

fore a formal mathematical programming solution procedure is 

no-c computationally feasible. Hence heuristic me-chods are 

proposed in this thesis for -che solution of the problem. 

The solution methods proposed in Chapter III for the Air 

Force Crew Scheduling problem, as many o"t:hers which deal 

wi -ch this type of problem, exploit the unique featu::::-es of 

the problem in order to obtain a solution procedure. Another 
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similarity of these proposed methods with those in the lit-

erature, is the simulation process executed repeatedly in 

the procedure. 

The structure of the Twc-Phace V:ethod, is similar in phi-

loscphy to the routing and scheduling techniques in that a 

sequence of missions on planes is obtained before the sche-

dule of c=ews is considered. The One-Phase Method, however, 

attempts to schedule both, crews and planes simultaneously. 



CI:apter I :i: I 

PROPOSED MET50DOLOGY 

This chapter deals wi t.h the two algorithms proposed for 

the solution of the Air Force Crew Allocation and Scheduling 

Problem. These algorithms attemot to schedule missions as 

well as initially distribute the crews among bases and 

thereafter schedule them in an appropriate manner. Both al-

gorithms are shown to produce good quality sol~tions for the 

problem under consideration. 

The major difference be-cween these algorithms concerns 

the sequence of missions flown by each plane in the system. 

In the first algor:.. thrn, the Two-Phase method, the sequence 

of missions is :ixed according to the output of the first 

p~ase; whereas in the One-Phase me"Chod, the sequence of mis-

sions is obtained concurrently while the missions are being 

performed. Incidentally, an upper bound for the number of 

crews required in the system is obtained as a byproduct of 

the Two-Phase method. 

The objective c: this problem is to schedule the tasks 

(missions to be flown) on machines (planes) so as to minim-

ize the makespan T, where the makespan is defined to be the 

time taken to complete work on all the jobs. This is equiva-

lent to minimizing t~e total idle time on all the machines, 

t~at is minimizing 

50 
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m 
pT - L: c.r. (3.1) 

j::: 1 J J 
where p is the number of plar.es in the system, t. 

J 
is the 

processing time of mission j, and r. is the number of opera-
J 

tions to be performed of mission j. 

Equivalently, the objective can be stated as one of max-

imizing the utilization rate. This utilization rate is the 

ratio of the total duty hours spend by all the planes, 

(namely, flight and ground loading and unloading times), to 

complete all the jobs, and the total time taken for the com-

pletion of all the jobs. 

rate of planes is given by 

m 
E 

j=l pI 

Mathematically, the utilization 

( 3. 2) 

Maximizing ( 3. 2) is therefore equivalent to minimizing the 

makespan T. 

The algori trans proposed here are also designed to study 

the sensitivity of and hence to suggest, the number of crews 

and /or aircraft needed to complete the missions with mini-

mum idle time. 

In the problem under consideration a set of missions is 

required to be completed over a given period of time. A res-

triction can be imposed on the time between the commencemen~ 

of any two consecutive operations of any mission. This 
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constraint implies a period of time Tj (Tj~O), between the 

starting time of any twc consecu-:=ive operations of mission 

j. Also a restriction car.. be imposed on the time between 

the completion of operation i and the start of operation 

i + 1, of mission j, where i and i + 1 are consecutive opera-

tions. This constraint yields another variant of the ini-

tial problem. 

The heuristic dispatching rules developed for this prob-

lem are similar for both algorithms since both algorithms 

have the same assumptions. 

A more detailed explanation of each algorithm will be 

given in the next two sections of this chapter. 

3.1 TWO-PHASE METHOD 

In this section, a two phase heuristic method is present-

ed for the Air Force Crew Allocation and Scheduling problem. 

The first step in Phase I of this method deals with a uni-

form spread of missions over the desired period of time 

within which the missions must be completed, if such a 

spread is required by the problem (only one variant, namely, 

Problem 2, requires this feature). A uniform spreading of 

missions is performed to ensure that all the rj jobs of mis-

sion j are not performed at the same time. The minimum va-

lue Tj between the starting times of any two consecutive op-
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erations of mission j, is calculated. The value Tj can be 

either given or calculated du:::-ing the simulation process, 

producing the other two variants of the problem. 

The spread of missions, when required by the problem, 

proceeds as follows. 

1. For all missions j, calculate 

Rj= r.t. 
J J 

j=l, ... ,m ( 3. 3) 

where tj is the processing time (flight and ground 

time), and r. is the number of operations of mission 
J 

j to be performed. 

2. Take the difference between the desired completion 

time (planning horizon) for all the missions, CT, and 

D·= CT- R · J J j=l, ... ,m (3.4) 

3. Spread the difference for mission j over the total 

number of operations of mission j. 

SR.= D./r· J J J 
j=l, ... ,m ( 3. 5) 

4. In order to ensure the completion of the jobs within 

the desired period of time, CT, let us consider the 

factors CL and f3 , where CL and S are real values. For 

positive values of D., 
J 

a value between [O,l] is used 

for CL in order to spread the missions over a certain 

period of time. A value of 0 would make the spread 

inactive while a value of 1 would force the last op-
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eration of mission j to be finished at the end of the 

period. In order to ensure the completion of jobs 

within the planning horizcn, even though idle time is 

incurred. 

Sj = ry,SRj 

For negative values 

if D >O j=l, ... ,m 

of D., 
J 

a value S between 

( 3. 6) 

[ 1, 2] 

ensures the completion of the r. operations of mis-
J 

sion j within the desired period of time. A value of 

1 spreads the missions such that operation r. will be 
J 

completed at the end of the period. In order to en-

sure the completion of jobs within the planning hori-

zon, even though idle time was incurred, a value bet-

ween (1,2) is recommended fors 

if D <O j=l, ... ,m 

5. The starting time of any job i is given by, 

T .. > T(. l) . + S. + t. i=l, ... , r. l.J - 1.- J J J J 
( 3. 7) 

j=l, ... ,m 

where T .. is the starting time of operation i of mis-
1.J 

sion j, S . is defined in Equation ( 3. 5), and t is 
J j 

the processing time cf mission j. 

Thereafter, Phase I of this method sets up anci solves a 

relaxed problem as a modified parallel processor p:?:"oblem 

with precedence constrained operations. In the relaxed 

problem assumptions (a), ( b), ( c), and ( d) for planes, and 
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no assumptions for crews are ir.volved. Hence, Phase I ob-

tains a lower bound on the time req~ired to schedule all the 

missions, an upper bound c on the number of crews required, 

and the manner in which these c crews may be distributed 

among the n bases to yield a non-delay schedule for the re-

laxed problem. In addition, this phase determines for each 

plane the sequence of operations it must perform. Also Phase 

I distributes the available c crews in direct proportion to 

the above distribution of the c crews, subject to c 1 ~ p for 

Problem 1 and c 1 ~ m for Problems 2 and 3, where p is the 

number of planes in the system and c 1 denotes the number of 

crews placed initially at Base Bl. 

Phase II can be divided into two steps. Given an initial 

distribution of crews among the bases, Step 1 simulates the 

conditions of the problem, using suitable tie-breaking rules 

whenever necessary, to obtain the resultant schedule for the 

missions using the sequence from Phase I. Also this phase 

computes the utilization rate and the total idle time spent 

by the planes at each base. 

Step 2 determines whether the simulation has been execut-

ed a p~e-chosen number of times, in which case the process 

is stopped. Otherwise, a re-distribution of the c crews 

among the n bases is performed in approximately direct pro-

portion to the idle time of the planes at the n bases as 
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determined in Step 1. - -' -- .... a s~oppi~g criteria is satisfied, 

the process is terminated. 0therwi3e it returns to Step 1. 

At termination, the dis~ribution of the crews correspond-

ing to the maximum utilization ra~e of planes is the one re-

commended for implementation. A schema of the algorithm is 

given in Figure 1. 

3.1.1 Phase I 

In this phase, we consider a relaxed version of the prob-

lem described in Chapter I. Specifically, we assume that 

only stipulations (a), (b), (c), and (d) need hold for the 

planes and no restrictions need hold for the crews. In oth-

er words, we initially assume that whenever a plane is ready 

for take-off, a rested crew is available to accompany it. 

Indeed, this assumption will permit us to determine an upper 

bound on the number of crews required in the system. Having 

solved the relaxed problem, we invoke the restrictions (a), 

(b), (c), (d) and (e) on crews in order to determine a good 

starting allocation of crews among the bases. 

Now, under assumptions (a), (b), (c), and (d) on the air-

craft, and assuming the ready a?ailability of crews, Problem 

3 may be cast into the framework of a modified parallel pro-

~essor job scheduling problem as follows. Consider a situa-

. . h . h th . . th . th . . h . tion in w ic ere are m missions, e J mission aving 
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Prescrib<: the sec~ut:uce Ji i1l:rnions to be flown 
by each plane. Determine a c~c~ distribution for 
a non-d<!lay scbeJulc. DU tribute the crews among 

bases in dire~t ~ropoction t0 cne crew distribution 
correspcndin~ to the non-Jclay schedule. 

Given the sequence of missions to be flown 
by each plane from Phase I and a current 

allocation of crews to bases, run a 
simulation model which incorporates the 

salient features of the problem. 

Evaluate the system performance. Record the crew distribution 
corresponding to the current 1ter at ion. (Calculate: idle time 

of planes at each base, utilization rate for each plane, 
average utilization rate and average idle tiree). 

Figure 1: 

No 

Reallocate the crews to bases, based 
J11 the previous system performance. 

The distributlon of crews 
corresponding to the maximum 
utilization rate of planes ls 

recommended for implementation. 

~lowchart of ~he Two-?hase Method 
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r j so called real-operations jl, ... , jr. and rj -1 so called 
J 

virtual-operations vjl'" .. ,vj(r.-l) for each j=l, ... m. Each 
J 

real operation of mission j is assumed to take tj time units 

whereas each virtual operation of job j is assumed to take 

Tij time units (where Tij is the time between the completion 

of operation i-1 and the commencement of operation i of mis-

sion j) . Further, these operations are constrained to be 

performed in the sequence 

jl,vjl'j2,vj2' · ·. ,j (r.-l)'vj (r.-l)'jr.· 
J J J 

Note that in our case, each mission corresponds to a par-

ticular type of mission and each real-operation of a mission 

corresponds to the actual processing time of the corrspond-

ing route. Hence t. 
J 

denotes the total non-delay time (pro-

cessing time) for route j, j=l, ... ,m. A virtual-operation is 

inserted between consecutive operations to account for the 

turnover time Tij specified in assumption (d) for planes. 

Continuing with the problem description, let there be p 
m 

identical real-machines and L: r. - m identical virtual-ma-
. 1 J J= 

chines. Any real-operation can be performed on any real-ma-

chine and any virtual-operation on any virtual-machine. Thus 

the real machines correspond to the planes ir. our case and 

the virtual-machine serves as an artifice in accomodating 

the minimum turnover time constraints since the number cf 

virtual-operations equal the number of virtual-machines. 
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The objective is to schedule the jobs on machines so to 

minimize the makespan T, or equivalently, maximize the uti-

lization rate of the real-machines. 

The precedence relationship be-cween the various opera-

tions of the missions are illustra~ed in Figure 2. Here, 

each node represents an operation and arcs represent direct 

precedences (SJ. The number at each node denotes its opera-

tion time, with node NT representing an artificial terminal 

node. The precedence structure illustrated in Figure 2 is 

known as an assembly tree (see [SJ, for example). In gener-

al, an assembly tree structure is one in which there exists 

a unique path leading from any node to the terminal node. Hu 

(30J has developed a procedure for scheduling single-opera-

tion jobs with assembly tree precedence structures and with 

equal processing times on identical parallel processors. 

Baker (SJ has extended this to the case where the jobs may 

have non-identical operation times, as in our case. A state-

ment of this scheme specialized to the precedence structure 

of our problem is given below. Note that this is a heuristic 

scheme. 

Labeling Step 

Label each node with the sum of the processing times on 

the nodes lying on the (unique) path from it (and including 

it) to the terminal node. 
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Scheduling Step 

Select at most p operations without predecessors, choos-

ing those with the largest labels first. Schedule these op-

erations by assigning them in order of decreasing labels, 

each time selecting that machine with the least load on it 

thus far. Remove the scheduled operations from the prece-

dence network and repeat this step. Continue until all oper-

ations are scheduled. 

Although this procedure produces good solutions for prob-

lems where Tij :fO as in Problem 3, this is no longer valid 

for Problems 1 and 2 defined in Chapter I. Therefore, for 

the sake of uniformity, we will use certain heuristic tie-

breaking rules for all cases based on the concepts of the 

above assembly-tree algorithm. 

Toward this end, consider the following allocation of a 

sequence of specific operations to each plane. This se-

quence plays an important role in Phase II. A value Pj is 

first assigned to each mission j to denote the product of 

the processsing time t j and the number rj of operations of 

mission j to be performed. An ordered list of missions is 

constructed according to p j' Using the LPT rule ( 3] . The 

first mission in the list is assigned to the first aircraft 

available. Now, the number of visited bases in common bet-
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Figure 2: An Assembly Tree 
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ween mission j and the missi.::m being served is calculated 

for each mission in the list. Let vj denote this value. The 

mission with the minimum vj is assigned to the next plane. 

In case of a tie wherein more than one mission has the same 

value of vj, the mission with the largest Pj is chosen. The 

value Pj for the assigned mission, as well as the list of 

the remaining missions, is updated. v. is re-calculated for 
J 

the updated list and another mission is assigned continuing 

the process until there are no more missions or aircraft 

available. Then whenever a plane returns to home Base Bl or 

a mission is available, the availability of mission in the 

former case or plane in the latter case, is tested. If there 

exists such a feasible assignment, it is performed using the 

following tie breaking rule if necessary. 

If at home base more than one plane is ready for 

take-off, the plane which has the fewest flight 

hours at this point is chosen for take-off. 

Otherwise the plane or mission enters in a waiting line un-

ti 1 an assignment is possible. Notice that the number of 

missions in the list will decrease with each assignment. 

When all the missions have been assigned and all the planes 

return to Base Bl, the process stops. A Flowchart of the 

rule described above is given in Figure 3. 
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Now, given the sequence of missions for each plane 

obtained above, a simulation process for a non-delay sche-

dule is conducted to obtain an upper bound on the number of 

crews required at each base. Assumptions (b), (c), (d), and 

(e) for crews are now involved. 

This simulation process assumes an infinite number of 

crews in the system. Initially p crews, equal to the number 

of planes in the system, are placed at Base Bl. Subsequent-

ly, whenever a plane is ready for take-off at any base i, a 

crew is placed at that base i if there is no crew available 

according to assumption (d) for crews. The process contin-

ues, increasing the number of crews at each base in the sys-

tern when necessary, until the scheduling of all the jobs is 

over, i.e., all the missions are completed. In this manner 

the number of crews required at each base for a non-delay 

schedule is obtained. Therefore, an upper bound for the to-

tal number of crews required in the system is obtained. 

If the resultant schedule is optimal, then clearly its 

makespan is a lower bound on the time required to scl:edule 

r. operations of type j, j=l, ... ,m. 
J 

Further, if the solution is optimal, t~e number of crews 

determined in the manner described above is an upper bound 

on the number of crews which the system may use effectively. 
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Ij is the processl~• :ime 

and r j is the ;mmb~r ..,f 

operation~ of m!~s!on j. 

Construct a list of mts~tons in 
decreasing order of rj. 

for each mission j in the list c~lcuiate 
VJ (as described in Section 3.1). 

Assl~n the mission j* in the list wlth 
minlmum v.1* to the next planeavailable. 

(If more than one plane available use 
tie-breaking rule frnm Section 3.1). 

Let j* be the f lrst mis•ion 
in tbe list. Assign j* to plane l. 

-------------

Figure 3 

Update the list of 
according to 

Yes 

m1sc;1ons J 
p j. 

Jse~uence <>f ml•sions to be flown 
----.,.~ by each plane is available. 

8 
Missions Assignment Tie-breaking Rule 
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Next, we invoke assumption (a) on the crews. That is, we 

determine an initial distribution for the c available crews 

among the bases by allocating them in direct proportion to 

the distribution obtained for the crews required for the 

above non-delay 

where ci is the 

schedule. Specifically, 

c. = ~c_i· c> 
l. n "' 

l: c. 
i=l l. 

number of crews 

i=l, ... ,n 

assigned to base 

(3.8) 

i, ci is 

the number of crews at base i for the non-delay schedule, c 

is the total number of crews in the system and where <u> is 

the integer part of u. Also at least one crew is required 

at those bases visited more than NV times (NV=2 in our com-

putations) . 

integrality 

n 
If l: c i becomes greater (less) 

i=l 
of c. and the restriction of at 

l. 

than c due to 

least one crew 
n 

at the required bases, the number crews in I I: cJ. - c I bases 
i=l 

with the minimum number of visits is decreased (increased) 

by one, while maintaining at least p crews for Problem 1 and 

m crews for Problem 2 and 3, at Base Bl, and at least one 

crew at each base visited at least NV times. A schema of 

Phase I is given in Figure 4. 
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Determine the sequence of miss~ons 
co be flown by each plane. 

Use tie-breaking 
rule from Section 3.1. 

For a non-delay schedule simulate the ?roblem 
for the given sequence of oissions ~nd f~nd an 
upper bound for :he number of crews required 

in the system. 

Distribute the crews among bases ~n 
direc: proportion of the number of crews 

obtained for a non-delay schedule. 

Figure 4: Flowchart of Phase • 
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3 .1. 2 Phase II 

Given the sequence (not the schedule) in which each plane 

flies its assigned missions as pr~scr1bed in Phase I, an it-

erative simulation phase is se~ ~p. This phase incorporates 

the salient features of the problem as specified by assump-

tions (a), (b), (c), (d), and (e) for planes and assumptions 

(a), (b), (c), (d) and (e) for crews. The simulation pro-

cess is essentially a Gantt Chart or a schedule construction 

routine. Hence, this procedure must be performed just once 

for each distribution of crews among bases. At the end of 

each iteration the crews are re-distributed among bases ap-

proximately in direct proportion to the idle time of the 

aircraft at each base in the current iteration. 

The simulation process proceeds as follows. For the ini-

tial distribution of crews among bases and the sequence of 

missions to be performed by each plane as obtained f!:"om 

Phase I, the scheduling of the assigned missions is per-

formed subject ~o the availability of mission-resource pair-

ings. The simulation is performed on the basis of next-e-

vent incrementing, wherein whenever an event occurs, all the 

parameters in the sys~em are updated. The events are: 

1. arrival of a plane at any base r 

2. availability of planes at any base k 

3. availability of crew a~ any base k 
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4. availability of a missio~ at Base Bl 

If the event is the availability of a mission or of one of 

the resources, the availabili~y of the other two factors is 

verified in order to in.:crporate another operation in the 

simulation process. If one cf the factors is not available 

the others factors wait until they are all available while 

the next event is selected. Otherwise the following factors 

are updated for mission j being flown by plane i from base k 

to base r (k=Bl) 

1. 

2. 

3. 

4. 

5. 

list of plane 

time for the 

next base to 

arrival time 

list of crews 

available at 

availability 

be visited by 

of plane i at 

available at 

base k 

of plane i at base r 

plane i (base r) 

the next base r 

base k 

6. time for the availability of the next crew at base k 

if one exists 

7. total plane idle time at base k 

8. mission j being flown by plane i 

9. time for the availability of mission j 

10. number of hours already flown by plane i 

11. number of missions already flown by plane i 

If the next event is the availability of a plane or a crew 

at any base k other than Base Bl, factors ( 1) through ( 7) 

are updated. 
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For the arrival of plane l at any base r the following 

information is updated: 

1. availability of plane i at base r 

2. number of planes at base ~ 

3. number of crews at base r 

4. availability of ~he arriving crew at base r 

5. availability of the next crew (exis~ing or arriving) 

at base r 

If the arrival occurs at Base Bl, assumption (e) for plane 

is also verified. This process continues until all the mis-

sions are completed. 

In order to obtain the desired information for the prob-

lem at the end of the process, the following information 

must be maintained and updated when necessary. 

l. idle plane time at each base 

2. total flight hours for each plane 

3. number of times that each mission has been performed 

4. distribution of crews for each iteration 

5. number of iterations already executed 

Assumption (e) for planes is incorporated using some sto-

chastic features. That is, every 45 days, a minor main~e-

nance for planes is required in our problem. The length of 

the down time is determined via a discrete distribution fuc-

tion. A random number is generated assuming a uniform dis-
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tribution. According to the value obtained for the random 

number, one of three possible down times is chosen: 

1. 24.00 hours are required for a routine minor mainte-

nance with .60 probability of occurence 

2. 60. 00 hours are required for minor repair with . 28 

probability of occurence 

3. 96.00 hours are required for major repair with .12 

probability of occurence 

In this manner, a schedule is obtained for the planes and 

for each crew over some period. After the schedule for the 

missions is thus obtained, the utilization rate for each 

plane is calculated by, 

and the overall 

q 
E 

j=l 
TD 

t .. 
l.J i=l, ... ,p (3.9} 

utilization rate of planes is calculated by 
q p 
E E t .. 

j=l i=l l.J 
UR= q p 

E E 
j=l i=l 

m 
t .. + E 

l.J i=l 
It. l. 

(3.10) 

where tij is the total processing time of mission j on plane 

i including flight and ground (loading and unloading) time, 

TD is the total time required to complete all the jobs, UR. 
m l. 

is the utilization rate for plane i, q= ErJ· and Iti is the 
j=l 

total idle time of the planes at base i. The total idle 
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time of the planes at each base is computed by the following 

equation 
p 

It.= I·io .. 
1.j=l-1.J 

i=l, ... ,n (3.11) 

where It. is the total idle ti;:ne of planes at base i, and 1. 
ip .. is the idle time of plane j at base i. 

l.J 
Another iteration, if necessary, is initiated as follows. 

The available c crews are re-distributed among the n bases 

according to the rules discussed below. A test of the stop-

ping criteria given below is performed. If one of the crite-

ria is satisfied the process is terminated; otherwise, Phase 

II is executed again. Then, the crew distribution corres-

ponding to that schedule which has the maximum utilization 

rate is recommended for implementation. A schema of this 

Phase is shown in Figure 5. 

Tie-breaking rules were developed in this algorithm for 

the assignment of planes, crews and routes. These rules are 

based upon the unique properties of the problem. The heuris-

tic rules along with the stopping criteria are listed below: 

1. Aircraft Assignment Rules 

a) If at home Base Bl, more than one plane is ready 

for take-off and there exists only one crew which 

can accompany it (feasible to the constraints), 

then the aircraft which has logged the fewest 
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8 w 
I: 1) Sequence 0f ~issions to be flown 
2) ~ist=ibu~ion of c=ews among bases, 

....1 

1 
Select the mission ::c be perfonned based upon heuristic =ules 

developed for crews lnd planes (Section 3.1.2). 

I Simulate the process for the assigned :nissions. 

I .. 

i 
I 

Incorporate another mission to the si:nulation process if 
resources (plane and crew) and :nissions available. 

~o 

Compute the u:ilization rate for eac~ plane. Reallocate 
crews among bases. (See se:c::ion 3.1.2). 

:\o 

Figure 5: 

~es 

~ 

Flowchart for Phase II 
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flight hours in the p:r-ocess is chosen for take-

off. This assignment of aircraft is performed one 

plane at the time. 

b) If at any base other than home Base Bl, a rested 

crew is avai labie and ·::here exists at that base 

more than one fligh~ which this crew can accompa-

ny, then the flight associated with that mission j 

is selected for which the sum of the number of 

crews assigned to the remaining bases to be visit-

ed by that mission is a maximum. 

2. Crew Assignment Rule 

a) If at any base a plane is ready for take-off and 

there exists more than one crew which can accompa-

ny it (feasible to the constraints), then that 

crew which has had the longest rest period at that 

base is assigned to the plane. 

3. Crew Re-distribution Rule 

a) At the end of each iteration, the redistribution 

of crews in the system is based on the idle time 

of the planes at each base in the current itera-

tion. An exchange cf k crews is performed from the 

k bases with minimum idle time to the k bases with 

maximum idle time. A maximum difference of one 

crew per base is allowed between two consecutive 
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iterations. The r~dist::-ibution of crews is as 

follows: 

i) Construct a list of n bases in decreasing 

orde::- of the total idle time spent by the 

planes in the c~rrent iteration at each 

base. 

ii) Increase the number of crews for the first K 

bases (for the problem to be discussed in 

Chapter IV, K=2) in the list by one. 

c.= c.+ 1 
]. ]. 

i=l, ... ,K (3.12) 

iii) Decrease the number of crews by one for the 

last K bases in the list, while c.> 1 is sa-
l.-

tisfied for those bases visited more than NV 

times (in our computations NV=2). Note that 

more than K bases may be considered in the 

decreasing process due to the restriction of 

c. > 1. 
l.-

c - c 1 i- i- i =n-K + 1 , ... , n ( 3 . 13 ) 

iv) Keep the same number of crews in the remain-

ing bases. 

c.= c. 
]. ]. 

i=K+l, ... ,n-K (3.14:) 

4. Stopping Criteria 
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a) If the process has already been executed a pre-

chosen number of times, a termination occurs. 

b) If the resulting distribution has been generated 

at a previous iteration, the process stops. 

c) If there is no idle time for planes at all the 

bases, the process stops. 

Many rules based upon the distribution of crews at previ-

ous iterations were tried to re-distribute the crews among 

the bases. Although these rules were not succesful for our 

problem, some of them are mentioned here in order to discuss 

their relative merits as well as to compare them with the 

redistribution rule being used in this algorithm. Three of 

these rules are explained below: 

1. The distribution of crews in the next iteration de-

pends on the number of crews at each base and the 

idle time of planes at the current iteration. The 

number of crews at each base is given by the follow-

ing equation. 

c. = 
l. 

CL (c. w.) c 
l l 

N 
I: c~ w. . 1 l l i= 

i=l, ... ,n (3.15) 

where c. is the number of crews at base i in the 
l. 

current iteration, c is the total number of crews 

in the system, Wi is the idle time at base i in 
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the current iteration. a is an exponent factor, 

which attempts to weight ci differently than Wi, 

i.e., c i is weighted more than Wi if a is a posi-

tive integer and is weighted less than w. if a is 
1. 

a positive fraction between 0 and 1. Finally, <u> 

denotes the integer part of u. The problem re-

quires a minimum of one crew at each base i, vi-

sited more than certain number of times, namely 

NV, and a minimum of p crews at Base Bl, where p 

is the number of planes in the system. If the to-

tal number of crews in the system becomes greater 

(less) than c, ci is decreased (increased) by one 
n 

for the 1c-E c. I bases with minimum (maximum) idle 
i=l 1. 

time in the current iteration, subject to p crews 

at Base Bl. 

2. Previous iterations are weighted in order to obtain a 

good distribution of crews among the n bases. The 

formula designed for this rule follows: 

I a 
E ( c ij 

j=l 
I n 
E E (c~ . 

j =li=l 1.J 
. w .. ) 1.J 

I 

i=l, ... ,n (3.16) 

Here, I is the number of previous iterations con-

sidered in the equation, c .. , 1.J is the number of 
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crews at base i at i tera-cion j, w •. 1J is the idle 

time of all the planes a~ base i at iteration j, c 

is the total number of crews in the system. As in 

rule 1 the number of crews at any base must be an 

integer number greater than zero. The number of 

crews at Base Bl must be at least p and the sum of 

c .. at iteration j, over all i=l, ... ,n must be 
1J 

equal to c. If the total number of crews in the 

system becomes greater (less) than c the process 

continues as in Rule 1. 

3. The number of crews at base i in the next iteration 

is based upon the difference between the average idle 

time and the idle time at base i in the current iter-

ation. This rule attempts to uniformally distribute 

the crews among bases according to the average idle 

time in the system. The equation employed for this 

rule is the following. 

c i= (<w i-av). sf~ca) 

sf= 
n n 
r c. I r w. 

i=l ]. i=l 1. 

i=l, ... ,n (3.17) 

(3.18) 

where av is the average idle time of planes in all 

bases at the current iteration, ca is the average 

number of crews per base (c/n), sf is a scale fac-



78 

tor, Wi is the idle time of planes at base i. As 

in the previous rules, c i must be a nonnegative 

value and c 1 must be at ~east p. 

The rules discussed above pr'=sent several disadvantages 

for our problem. First, rule 1 as well as rule 2 base the 

assignment of crews to base i on the product of the number 

of crews at base i in the current iteration and the idle 

time at this base in the same iteration. Hence, whenever 

there is no idle time (w.=O) at one base, at most one crew 
1. 

will be assigned to this base in the next iteration (due to 

the constraint of a minimum of one crew at each base) re-

gardless 0f the number of crews at this base in the current 

iteration. As a result, an erroneous distribution of crews 

among bases may be obtained, and the number of i i:erations 

required to obtain a good distribution of crews, if one is 

obtained, increases significantly. Although rule 2 considers 

more than one previous iteration, the product w ic i• affects 

the distribution considerably and too many iterations are 

needed before a good distribution is reached. 

Rule 1, as well as, rule 2 use a factor c:. in order to 

weight ci. Although this factor may produce a better distri-

bution of crews among bases, a trial and error procedure is 

required before an appropriate factor for the problem ~nder 

consideration is found. 
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Even though rule 3 prod~ces Detter solutions than rules 1 

and 2, it is not recommended for implementation because too 

many iterations are requi~ed ~efore a good solution is ob-

tained. 

In contrast with these rule, the redistribution rule used 

in this algorithm produces an improved solution usually 

within two iterations. The average number of iterations re-

quired to obtain a good solution is approximately 3 itera-

tions. Also the implemented Re-distribution Rule is simpler 

than the rules mentioned above and less computational effort 

is required (less execution time). 

3.2 ONE-PHASE METHOD 

The solution method proposed in this section for the Air 

Force Crew Allocation and Scheduling problem is essentially 

a deterministic simulation process. In this method, instead 

of fixing a sequence of missions for each plane before find-

ing the schedule, the sequence of operations for each plane 

is obtained simultaneously while the simulation of missions 

is being executed. 

This proposed method consists of four steps: uniform dis-

tribution of ~issions over the desired completion time (when 

it is requir~d), initial distributi~n of crews among the n 

bases, simulation of jobs, and re-distribution of crews 
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among bases and the test of the st~pping criteria. Steps 1 

and 2 do not involve assumptions for planes or crews while 

Steps 3 and 4 involve assumptions (a), (b), (c), (d), and (e) 

for aircraft as well as assumptions (a),(b),(c),(d), and (e) 

for crews. Figure 6 presents a schema for the proposed 

method. 

3.2.1 Step 1 

This step is required only when TJ·~O, and T .. is fixed for l.J 
all mission j at the beginning of the process (Recall that 

for some other variants of the problem, T.fO means be calcu-
J 

lated during the simulation process itself). 

The first step of this method distributes or spreads the 

missions to be performed over the desired period of time 

within which all the missions must be completed. The uni-

form spread of missions is performed to ensure that all the 

operations of any specific mission will not be performed at 

the same time. Details of the technique used to perform 

this step have been described in the discussion of the Two-

Phase Method in Section 3.1. 
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3.2.2 

The initial distribution of crews among the n bases is 

based upon the number of times that each base is visited by 

all the jobs (i.e. the number of times that each base has 

been visited at the end of the process by all the missions). 

Let m be the number of missions to be performed, rj the num-

ber of operations of mission j (number of times that mission 

j must be performed by the end of the period) and vj the 

number of times that base k is visited by mission j. Then 

the total number of times that mission j visits base k is 

j=l, ... ,m (3.19) 

k=l, o • • t n 

Based on this equation one can calculate the total number of 

visits to base k by 
m 

hie= :!; v .r. 
j=l kJ J 

k=l, • • o In (3.20) 

For a gi •.ren c, the total number of crews in the system, the 

number of crews initially assigned to base k is given by 

k=2, •••In (3.21) 

where mp is the number of crews at Base Bl. As required by 

the problem, the number of c:::-ews initially assigned to Base 

Bl is p for Problem 1 and m for Problem 2 and 3. Due to the 
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rounding in Equation (3.21) and tl:e restriction c. > 1 for 
l. -

those bases with at least NV visits, it is possible to ob-

tain a total number of crews greater (less) than the number 

of crews available in the system. In this case a crew reduc-

tion (increasing) process is conducted. In this reduction 

(increasing) process, the number of crews in the system for 
n 

the first le- Ee. I bases is decreased (increased) by one un-. 11. i.= 
til there are c crews in the system. When a reduction pro-

n 
cess is required, 

cept Base Bl to 

it takes place in any I c- E c. I bases ex-
. 11. i.= 

satisfy the constraint c.> mp while in an 
i-

increasing process all the bases are considered. 
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Initialize by allocat~ng c=e>1s co bases. 

Run the simulation ~odel incor?orating 
salient features of the problem. 

Evaluate the system performance. ~ecord the c=~Js 
allocation corresponding to the 

cur=ent iteration of the si.!llulation. 

Is 
any 

stopping 
c=iteria 

satisf!ed? 

Yes 

1 Based on the previous syst=~ perfor::iance 
..._~~~~, reallocate the c=ews to bases. 

Til.e distribution corresponding 
to the =~ximum utilization 

rate of planes is recommended 
for inplementation. 

figure 6: Flowchart for the One-Phase Method 
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3.2.3 

Step 2 conducts a simulation process to find a good heu-

ristic schedule of missicns. This step incorporates the sa-

lient features of the 

(a), (b), (c), (d), and 

prci::llem as 

(e) for 

specified by assumptions 

aircraft and assumptions 

(a), (b), (c), (d), and (e) for crews. The simulation process 

needs to be performed just once for each distribution of 

crews among bases. 

The first part of the simulation is the assignment of 

missions to planes where the following three requirements 

must be satisfied: 

1. Availability of aircraft 

2. Availability of crew 

3. Availability of mission 

The simulation process is conducted for the assigned mis-

sions producing the following output for each plane on duty: 

1. Arri val time at each base visited by the mission in 

progress 

2. Depar~ure time from each base visited by the mission 

in progress 

3. Idle plane time at each ~ase 

Simultaneously a test of availability for aircraft, mission, 

and crew is performed at the home base. 

tion process four events can occur: 

During the simula-
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1. availability of crew at any base k 

2 . availability of plane i 
_ ... any base k Cl~ 

3 . availability of mission j at Base Bl 

4. arrival of plane i at any base r 

Whenever an event occurs some parameters in the system are 

updated. If any one of the first three events occur a test 

for the availability of the other two factors is performed. 

If the availability restrictions are satisfied for a certain 

assignment, it is incorporated into the simulation process. 

Otherwise the available factors have to wait until all the 

factors are available. Then another event is determined. 

Whenever one of the first three events occurs at base k 

the following information is updated: 

1. next base to be visited by the mission being flown by 

plane i 

2. list of planes at base k 

3. arriving time of plane i at the next base to be vi-

sited 

4. list of crews at base k 

5. time when the next crew will be ready for take-off at 

base k 

6. total plane idle time at base k 

If the availability of plane or crew occurs at Base Bl the 

following information also needs to be updated: 
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1. mission to be flown by plane i 

2. number of times the assigned mission j has been per-

formed 

3. time when mission j can be reassigned 

When the arrival of plane i at any base r occurs, the fol-

lowing information is updated: 

1. departure time for plane i 

2. availability time for the arriving crew 

3. time when the next crew (existing or arriving) is 

ready for take-off at base r 

If the arrival occurs at Base Bl, assumption (e) for planes 

needs also to be verified. 

In order to obtain the desired information at the end of 

the process, the following information needs to be main-

tained and updated: 

l. idle plane time at each base 

2. total flight time for each plane 

3. number of times that each mission has been performed 

4. distribution of crews a~ each iteration 

5. number of iterations executed 

Assumption (e) for planes is incorporated based on some 

stochastics features. That is, after 45 days, each plane re-

quires a scheduled maintenance. The duration of this down 

time period is determined via a discrete probab~lity distri-
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bu ti on fuction. A uni.:orm random number is generated in 

order to determine how many days are required ~ ~· 
~or c.ne regu-

lar maintenance. Accord:ng to the random number- three case 

can occur: 

l. 24. 00 hour-s are required for minor maintenance with 

.60 probability of occurence 

2. 60. 00 hours are required for minor repair with . 28 

probability of occurence 

3. 96. CO hours are required for major repair with . 12 

probability of occurence 

The simulation process con~inues until all the missions have 

been completed. 

Some heuristic rules have been developed according to the 

snecial properties exhibited by this problem in order ~o as-

sign crews, planes and missions duri!"lg the simulation pro-

cess. These rules are as follows: 

l. Aircraft Assignment 

a) If at the home Base Bl more than one plane is 

ready for take-of:'. and there ex:'..sts a crew which 

can accompany it on some mission (feasible ~o the 

constraints). then the plane which has logged the 

fewest flight hours so far is chcse!"l for take-off. 

This assignment of aircraft is performed one plane 

at the time. 
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b) If at any base differer.~ from the home Base Bl, a 

rested crew is available and there exists at that 

base more t~an one flight which can accompany it, 

then the fligh~ for which ~he sum of the number of 

crews assigned to the remaining bases to be visit-

ed in that operation is a maximum, is selected. 

2. Crew assignment 

a) If at any base a plane is ready for take-off and 

there exists more than one crew which can accompa-

ny it on some mission (feasible to the const-

raints), then that crew which has had the longest 

rest period at that base, is assigned to the 

plane. 

3. Crew Re-distribution Rule 

a) At the end of each iteration a re-distribution of 

crews is performed based on the total idle time of 

planes at each base in the current iteration. An 

exchange of k crews is performed one from each of 

the k bases with minimum total idle time to the k 

bases with maximum total idle time. A maximum dif-

fere!lce of one crew per base is allowed between 

two consecutive iterations. The restribution is 

perfor~ed as in the Two-Phase Method (Section 

3. 1) . 
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4. Route Assignment 

a) The first assigruner.t of missions at the begining 

of each iteration follows these steps 

i) Construct an ordered list of missions ac-

ii) 

cording to the product p j =tj rj where t j is 

the processing time for mission j, and r. is 
J 

the number of operations of mission j. 

Assign the mission with maximum p. to the 
J 

first plane available. 

iii) Update p. for the assigned mission by sub-
J 

tracting tj from it. 

iv) Update the list eliminating the missions not 

available. 

v) For each mission j in the list compute Vj as 

the number of bases visited by mission j 

that are also visited by the missions being 

flown. 

vi) Assign the mission with minimum vj on the 

list to the next plane available. If there 

are more than one mission with the same mi-

nimum v. , the one that corresponds to the 
J 

maximum p. on the list, is assigned. 
J 

vii) Repeat steps (iii) to (vi) until there is no 

mission or plane available (the list is emp-

ty). 
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b) If more than one mission is available and there is 

only one plane ready for take-off and/or there is 

only one crew to accompany it, the mission to be 

assigned is chosen following these steps: 

i) Construct an ordered list of available mis-

ii) 

sions according to Pj· 

Compute v • I 

J 
the number of bases visited by 

mission j that are also visited by the mis-

sions being processed. v. is computed only 
J 

for those missions available. 

iii) The mission with minimum v j in the list is 

assigned to the available plane. If there 

is more than one mission with the same v . , 
J 

the one that corresponds to the maximum p j 

in the list, is assigned. 

iv) Update P. for the assigned mission. 
J 

v) Update the list. 

At the end of this step a schedule of operations is ob-

tained for each plane and for each crew over some period. 

Now Step 4 is executed. 
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3.2.4 

For the schedule of missions obtained in Step 3 the uti-

lization rate for each plane is computed by the following 

equation: 
q 

UR . = 2: t . . / TD 
l. j=l l.J 

i=l, ... ,p (3.22) 

is the where UR]_ is the utilization rate for plane i, t 

processing time (flight and ground) of mission j assigned to 

plane i, TD is the completion time of the last mission as-
m 

signed to plane i, q = 2: r j • 
j=l 

Also an overall utilization rate is calculated by 

UR= 

p 
2: 

i=l 
p 
z 

i=l 

q 
z t .. 

j =l l.J 

q 
z t .. + 

j=l l.J 

n 
z 

i=l 
It. 

l. 

(3.23) 

where It. is the total idle time of planes at each base, 
l. 

calculated as follows: 
p 

!ti= z 
j=l 

it .. 
l.J 

i=l, ... ,n (3.24) 

where itij is the idle time spent by plane j at base i. 

According to the above information a re-distribution of 

crews among bases is performed if the total idle time in the 

curren~ iteration is different from zero. The rule used to 

re-distribute the crews in this step was discussed in Sec-

tion 3.1.2 of this chapter. 
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The next part of this step is concerned with the stopping 

criteria. These criteria determine whether another iteration 

is required or whether the process should be stopped. 

The stopping cri~eria employed in this step are the fol-

lowing: 

1. If the process has already been executed a pre-chosen 

number of times, a termination occurs. 

2. If the new crew distribution has been generated at 

any previous iteration, the process stops. 

3. If there is no idle time for planes at any base, the 

process is terminated. 

If none of the above criteria is satisfied, another iter-

ation is performed, and Step 3 and Step 4 are executed 

again. Otherwise the distribution of crews among the bases 

and the schedule of planes corresponding to the iteration 

with minimum makespan i.e. the maximum average utilization 

rate of planes, is the one recommended for implementation. 

3.3 EXAMPLE PROBLEM 

In order to illustrate the algorithms proposed in this 

thesis a small example problem is presented in this section. 

Lets consicer a problem involving 5 planes, 10 crews and 3 

missions. The planning horizon is 1.00 day. 
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The missions are required to be spread over the desired 

period of time. Therefore Problem 2 is being considered. For 

this purpose a period of time between the commencement of 

any two consecutive operations of mission j, T. is calculat-
J 

ed for all missions j at the beginning of the process. 

A rest period of 2 hours is required for crews at the end 

of each leg. Ground time of 1.5 hours is required at each 

base for loading and unloading. The values for a and S used 

to spread the missions over a period of 1.0 day are 0.75 and 

1.50 respectively. 

The data for this problem is presented in Table 1. 
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TABLE l 

Example Pr~blem Data 

Route 1 freqJency = 3 

base # 1 2 4 1 
~ .. 2.5 1. 5 1. 0 .... I.. 

Route 2 frequency = 2 

base # 1 3 2 3 1 
ft 2.0 2.0 3.0 1. 0 

Route 3 frequency = 2 

base ... 1 4 2 3 1 1T 
f" .. - '- 3.5 2.0 3.0 1. 0 

"ft" is the expected flight time between base i and base j 

a ground time of 1. 5 is required at the end 
of each leg 
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3.3.1 Two-Phase Method 

As was described in Section 1 cf this chapter, Phase I uni-

formly spreads the missions over the desired period of time. 

Using Equation (3.3) 

Rl =3 ( 9. 5) =28. 5 

for t 1 =2. 5+1. 5+1. 5+1. 5+1. 0+1. 5=9. 5 and r 1 =3. 

Equation (3.4) 

D1 =24.00-28.5=-4.5 

Then from 

where CT=24.00 hours (1.00 day). This diffence D1 is spread 

over the total number of operations of mission j, from Equa-

tion (3.5) 

SR1=-4.5/3=-1. 5 

Since D1 has a negative value a factor S is employed in ord-

er to obtain s1 from Equation (3.6), 

1.. =(1.50)(-1.5)=-2.25 

In the similar manner s 2 and s3 are calculated. 

-2.25 

-3.00 

-5.25 

Now using Equation (3.7) the starting time of operation i 

of mission j is obtained. Le~ us consider operation 2 of 

mission 1, 

Tzl~ 0.00+9.50-2.25 
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In the similar manner, the starting time of each operation 

of missions 2 and 3 are obtained. For operation 2 of mis-

sions 2 and 3 T .. l.J is calculated. 

Tzl 7.25 

Tzz 11.00 

Tz3 10.25 

T31 14.50 

The next step of this phase is to determine the sequence 

of missions to be flown by each plane. For this step the 

tie-breaking rule from Section 3. 1. 1 is employed. As de-

scribed in Figure 3 a list of missions to be assigned is 

constructed in order of Pj where 

Pi=28.5-9.5 

Pz=28.0-14.0 

PJ =31. 0- 15. 5 

and whenever a plane or mission is available another assign-

ment is performed until no more missions are available. The 

sequence obtained for each plane is given below. 

Plane 1 Route 3 

Plane 2 Route 2, Route 1 

Plane 3 Route 1, Route 2 

Plane 4 Route 3 

Plane 5 R:iute 1 
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Given the sequence of missions to be flown by each plane, 

the number of crews required at each base is calculated for 

a non-delay schedule. Initially 3 crews are placed at Base 

Bl. At time 2.5 Plane 2 is ready for take-off at Base B3. 

Since no crew is available the number of crews at this base 

is increased by one. At ~ime 7.0 Plane 3 is ready for take-

off at Base B2 where there is one crew available, therefore 

the number of crews placed at that base remains the same. 

This process continues yielding the following distribution 

number of crews at Base Bl 7 

number of crews at Base B2 3 

number of crews at Base B3 3 

number of crews at Base B4 2 

Based on this distribution for a non-delay schedule, the 

crews available in the system are distributed among the bas-

es according to Equation (9). The distribution is as fol-

lows. 

Base Bl 

Base B2 

Base B3 

Base B4 

7 

1 

1 

1 

Now, the information obtained from Phase I serves as an 

input to Phase II. In this phase the tie-breaking rules dis-

cussed in Section 3.1.2 are employed. Initially using rule 
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(a) for the assigrunem::. of planes, Planes 1, 2, and 3 are 

chosen to fly at time 0.00. Planes 3 and 4 stay at Base Bl 

since there is no rou~e available to be flown. 

For the chosen planes the sinulation process is per-

formed. During the simulation process more than one plane 

can be ready for take-off at any base. In this situation 

rule (b) for assignment of planes is used to determine the 

plane to be chosen. For example, consider the situation 

when the next event is the availability of crew at Base B2 

(time=20.50). At this base there are two planes, Plane 3 

and Plane 4, ready for take-off. Only one of them can 

take-off due to the avai labi li ty of a single crew. There-

fore the total number of crews at the bases to be visited in 

the remaining legs of this mission is calculated for the 

Planes 3 and 4 . The plane with the larger number of crews 

located at the remaining bases is the one chosen. In this 

case for both planes the number of crews available is the 

same. Therefore, the plane that has been at the current Base 

B2 for a longer period of time is chosen for take-off (here, 

Plane 3 is chosen). Now the availability time for a crew at 

Base B2 is updated. Also the arriving time of Plane 3, as 

well as the next base to be visited, is updated. 

At the end of this iteration a re-distribution of crews 

is performed. The distribution is based on the total idle 
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time for planes at each base. 

as follows 

The idle time at each base is 

Base Bl 

Base 32 

Base B3 

Base B4 

0.00 

3.30 

2.50 

1. 00 

The utilization rate for each plane is calculated from 

Equation (3.9), and the average utilization rate is 15.00 

hour/day per plane. 

The re-distribution rule used is discussed in Section 

3 .1. 2. In this iteration Base B2 has the maximum idle time. 

Using k=2 the number of crews at this base is increased by 

one. Since Base B4 has only one crew and it is visited more 

than NV times (NV=2) no crew can be removed from this base. 

Therefore one crew is removed from Base Bl to be placed at 

base B2. Now, with k=2, Base B3 must also receive an addi-

tional crew if possible. However, no exchange of crew is 

allowed here because only Base Bl has more than one crew, 

and a difference of only one crew is allowed at each itera-

tion for any base. The new distribution is hence as follows 

number of crews at Base Bl 6 

number of crews at Base B2 2 

number of crews at Base BJ 1 

number of crews at Base B4 1 
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Now the stopping criteria are ~ested. Since no stopping 

criteria is satisfied (Section 3. 1. 2) another iteration is 

performed. In the second iteration a maximum utilization 

rate of 16.154 hour/day per plane in 1.08 days, is obtained. 

At this iteration no stopping criteria is satisfied there-

fore a third iteration is performed. An average utilization 

rate of 16.00 hour/day per plane is obtained. Thereafter a 

re-distribution of crews is performed. This distribution 

turns out to be the same as that obtained in iteration 2, 

and therefore, the process is terminated. 

3.3.2 One-Phase Method 

This method consists of three steps. Step 1 as discussed 

in Section 3.2.1, spreads the missions over the desired per-

iod of time as is required by the present variant of the 

problem. The details of this step are given in Section 3.3.l 

for the spread of missions in the Two-Phase Method. 

The second step of this algorithm deals with the distri-

buticn 8f crews among the bases. From Equations (3.19) and 

(3.20) the total number of times that each base is visited, 

is calculated for each mission. For example, 

h1=2(3)+2(2)+2(2)=14. Then from Equation (3.21) the initial 

distribution of crews obtained for this problem is as fol-

lows 

number of crews at Base Bl 5 
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number of crews at Base B2 2 

number of crews at Base B3 2 

number of crews at Base B4 1 

For the given allocation of crews among bases from Step 

2, Step 3 conducts a simulation process. First, the missions 

are assigned according to the tie-breaking rules discussed 

in Section 3. 2. 3. Route 3 is the first mission to be as-

signed since it has the maximum p j value calculated from 

rule (a) for the assignment of missions. Next, Routes 1 and 

2 are assigned. These routes have the same value of Vj cal-

culated from Rule (a) for the assignment ?f missions. There-

fore the route with the maximum Pj is assigned next. That 

is, Route 2 is assigned to the second plane available and 

Route 3 is the last route to be assigned at time 0.00. Since 

a period of time T j is required between the starts of any 

two consecutive operations of a mission j, only these three 

jobs are initiated in the simulation process at the begin-

ning of the process. The simulation of the missions is con-

ducted using the tie-breaking rules for the assignment of 

crews, planes, and missions as discussed in Section 3.2.3. 

Step 4 is performed. In this step the average utilization 

rate of planes, and the idle time cf planes at each base is 

calculated via Equations (3.25) and (3.26) respectively. Or. 

this iteration an average utilization rate of 16.471 hours/ 
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day per plane in 1.06 days, and an average idle time of 1.00 

hour, is obtained. 

At the end of the simulation process (when all the jobs 

have been completed), a re-dis~ribution of crews among bases 

is performed using the re-distribution rule presented in 

Section 3. 2. 3. From Equations (3.22) through (3.24) a new 

distribution of missions is obtained as follows. 

number of crews at Base Bl 7 

number of crews at Base B2 , ... 

number of crews at Base B3 1 

number of crews at Base B4 1 

Also a test of the stopping criteria is performed. No stop-

ping criteria is satisfied, therefore another iteration is 

required. 

Steps 2, 3, and 4 are executed again for iteration 2. 

Tie-breaking rules are employed, wherever necessary, for the 

assignment of planes, crews and missions. For example in 

this iteration at time 11.00 hours, Planes 3 and 5 are ready 

for take-off at Base B2. Therefore tie-breaking rule (b) 

for the assignment of planes discussed in Section 3.2.3, is 

us~d. In this rule the total number of crews assigned to the 

remaining bases to be visited by the mission being flown for 

each plane at that base, is calculated. In this problem 

both planes have the same number of crews located at the re-
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maining bases. Hence, the plane which has been at that base 

for the longest period of time is chosen for take-off. In 

this case, Plane 3 is chosen. At iteration 2 an average 

utilization rate of 15.00 hours/day per plane in 1.17 days, 

and an average idle time of 1. 688 hours, is obtained. No 

stopping criteria is satisfied, and therefore, iteration 3 

is performed. 

Iteration 3 yields an average utilization rate of 1. 082 

hours/day per plane in l. 08 days, and an average of 0. 688 

hours of idle time. In Step 4 of this iteration the distri-

bution of crews obtained is the same as the distribution ob-

tained at iteration 2. Hence the algorithm stops, yielding a 

maximum average utilization rate of 16.471 hour/day per 

plane at iteration 1. 

The algorithms discussed in this chapter were implemented 

using data from the U.S. Brooks Air Force base. The results 

obtained, along with a comparison of the algorithms, are 

presented in the following chapter. 



Chapter IV 

RESULTS AND CONCLUSIONS 

This chapter presents the results of computational exper-

ience with the two methodologies, namely, the Two-Phase 

Method and the One-Phase Method, proposed in Chapter III for 

the solution of the Air Force Crew Allocation and Scheduling 

Problem. The (real-world) data used for computational pur-

poses, as well as a comparison of the relative merits of 

these methods, is also presented in this chapter. 

4.1 DATA FROM BROOKS AIR FORCE BASE 

In order to study the relative merits of the proposed 

methods, a set of data from the United States Brooks Air 

Force base was used, and the proposed heuristics were imple-

mented on an IBM 370/158 computer with coding in FORTRAN IV. 

The data concerns eighteen planes, fifty two crews, four-

teen bases and eight routes. The routes, flight times of the 

legs on each route, and frequency of occurence of each route 

is given in Table 2. Since the exact values for the flight 

time of the legs are unknown, expected values are used. The 

planning horizon for the problem is 90 days. 

For assumption (e) on planes, a maintenance down time of 

24. 00 hours with probability of . 60 of occurence, 60. 00 

104 
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hours for minor repairs with probability of 0. 28 of occu-

rence, and 96.00 hours for major repairs with probability of 

0.12 of occurence is used. 

Results and grapI'..s fo:: this problem are given for the 

proposed methods. 

Since two different methods have been tested using the 

data from Table 2, a discussion of the results for each one 

of the problems discussed in Chapter I, is presented sepa-

rately for each method. 
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TA.ELE ..., 
.:. 

Data from Brook;;:; A;r ... _ Force Base 

Route " ... .freq"Jency = 10 

base # 1 2 ,j 4: 3 2 3 4 3 
stage 0 1 " 1 0 1 1 1 .... 
ft 0.8 1 ., .... ..., 8.2 9.2 l. 8 l. 3 8.2 9.2 

base # 2 3 4 1 
stage 0 1 1 1 
ft 1. 8 1. 3 8.2 9.4 

Route 2 frequency = 14 

base # 1 5 6 7 4 3 5 6 7 
stage 0 1 0 1 1 0 1 0 
ft 0.4 5.1 5.6 3.8 9.2 0.4 5.1 5.6 

base # 4 3 5 6 7 4 1 
stage 1 1 0 1 0 1 1 
ft 3.8 9.2 0.4 5.1 5.6 3.8 9.2 

Route 3 frequency = 5 

base # 1 8 9 10 3 8 9 10 3 
stage 1 0 1 1 1 0 1 1 
ft 3.6 9.8 1. 3 8.2 3.6 9.8 1. 3 8.2 

base # 8 9 10 1 
stage 1 0 1 1 
ft 3.6 9.8 1. 3 8.2 

Route 4 frequency = 6 

base # , 13 6 9 10 14 13 6 9 ... 
stage 0 1 0 1 1 0 1 0 
ft 1. 8 6.5 4.1 1. 3 9.4 0.8 6.5 4.1 

base # lO 14 13 6 9 10 1 
stage 1 1 0 1 0 1 1 
ft 1. 3 9.4 0.8 6.5 4.1 1. 3 8.2 

Route 5 frequency = 20 

base # 1 11 12 9 10 3 11 12 9 
stage 0 1 0 1 1 l 1 0 



1 C'7 

ft 1.1 6.S 6.1 1.3 8.2 6.1 6.5 6.1 

base # 
stage 
ft 

10 
1 

1. 3 

3 
1 

8.2 

11 
l 

6.1 

12 

6.5 

9 
0 

6.1 

10 
1 

1. 3 

Route 6 frequency = 15 

base # 
stage 
ft 

base # 
stage 
ft 

1 11 
0 

1.1 

11 3 
0 1 

6.1 5.3 

3 
1 

5.3 

10 
l 

6.9 

10 3 
l 1 

6.9 8.2 

3 

8.2 

1 
1 

5.8 

11 
0 

6.1 

Route 7 frequency = 25 

base # 
stage 
"" .... - '-

base # 
stage 
ft 

l 8 3 9 
0 

7.7 
0 1 

4.0 3.1 

10 3 
1 1 

1.3 8.2 

8 3 
0 1 

3.6 3.1 

10 3 
1 1 

1.3 8.2 

9 
0 

7.7 

10 
l 

1. 3 

Route 8 frequency = 5 

base # 
stage 
ft 

1 

base # 9 
stage 0 
ft: 10.9 

9 
0 

10.9 

10 
1 

1. 3 

10 3 
1 1 

1.3 8.2 

3 
1 

8.2 

l 
1 

6.1 

11 9 
1 0 

6.1 10.9 

3 
1 

8.2 

3 
1 

5.3 

1 
l 

5.8 

10 
1 

6.9 

8 3 
0 1 

3.6 3.1 

3 
1 

8.2 

10 
1 

1. 3 

l 
1 

5.8 

3 
1 

8.2 

3 
1 

8.2 

9 
0 

7.7 

11 
1 

6.l 

stage - 1 if crew needs to rest at that base, 0 otherwise. 

ft = expected flight time in hours. 

All ground t:imes (loading and unloading) are 2.3 hours at 
each base. 
For ~omputational purposes only bases with stage=l are 
considered, since only those may need the allocation 
of crews. The flight and ground time required on 
any leg where a stage=O base is visited, is 
added to the flight time between the previous base 
with stage=l and the next base with stage=l. 
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4.2 TWO-PHASE METHOu 

A computer program designed fer the Two-Phase Method, was 

run for the available data. As in the previous section, re-

sults for this method were ob~ained for three different var-

iants of the problem. 

4.2 .1 Problem 1 

In this problem the minimum number of days (makespan) re-

quired for the completion of the jobs where all the restric-

tions over planes and crews are satisfied, is sought. For a 

given number of planes (18), the number of crews in the sys-

tem were varied in order to obtain the maximum utilization 

rate for this fixed number of planes. The minimum number of 

days required to complete the jobs for 18 planes and 52 

crews is 30.520 days with a corresponding (maximum) utiliza-

tion rate of 19.952 hour/day per plane. 

Next, the program was run for different number of crews 

in the system. Figure 7 presents a plot of the number of 

crews versus the utilization rate. The results for this are 
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given below. 

Number of Maximum 

crews Utilization Rate 

52 19.952 

49 19.336 

45 18.679 

40 17.398 

35 15.762 

26 11.850 

The average number of iterations required for this prob-

lem is 5.6 iterations with an average of 200.00 seconds of 

total execution time. 

As will be discussed later in this chapter, Problem 1 re-

quires a larger number of iterations than Problems 2 and 3 

to obtain a good solution. Hence, the execution time re-

quired for this problem is also greater. This problem con-

sumes up to three times the execution time required for 

Problems 2 and 3 with the same number of resources in the 

.:;ystem. 
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4.2.2 Problem 2 

The objective of this problem is to maximize the utiliza-

tion rate of the planes when a fixed period of time T j is 

required between the commencement of any two consecutive op-

erations of the missions. For these given Tj, j=l, ... ,n the 

sequence of missions for each plane is fixed in Phase I. 

Also, an upper bound for the number of crews required in the 

system for a non-delay schedule is obtained. A minimum time 

of 84.875 days, with an average idle time of 0.00 hours, and 

a maximum average utilization rate 7.174 hour/day per plane, 

was obtained for this problem with 52 crews and 18 planes 

available in the system, in 1 iteration and 34.16 seconds of 

execution time. 

For the utilization rate obtained above, the computer 

program was run for 6 different number of crews and 4 diffe-

rent number of planes in the system. The results are given 

in Table 3 and Figures 8 through 11. From this information a 

minimum of 24 crews and 10 planes is required in the system 

to complete all the jobs within the same number of days that 

52 cr~ws and 18 planes need to complete all the jobs, alt-

hough some idle ti.me is incurred. The actual completion 

time in this problem is 84. 875 days with an average idle 

time of 43.931 hours. Since fewer planes are available in 

the system, the average utilization rate increases to a 

(maximum) value of 12.914 hours/day per plane. 
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The average number of iterat1cns for a fixed number of 

crews and different number cf planes in the system varies 

between 1 and 5 itera~ions. It is of some interest to ob-

serve that this average number of iterations becomes larger 

when the number of crews and planes required in the system 

is closer to the op~imal combination obtained by ~his a~gor-

ithm. For the combination of 24 crews and 10 planes in the 

system, 4 iterations were necessary in 66.68 seconds of exe-

cution time. A maximum number of 8 iterations was required 

for the combination of 24 crews and 18 planes, with the com-

putational effort being 150.01 cpu seconds. 

The upper bounds fer the number of crews required when 

different numbers of planes are available in the system are: 

Number of planes 

18 

14 

10 

8 

Upper bound 

51 

51 

44 

44 
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TABLE 3 

Average Utilization Rate per Plane 

Number o: Planes 

18 14 10 8 

52 7.174 9.224 12.914 15.686 
( 0. 00 )* (0.00) (0.00) (0.00) 

en ::: 40 7.174 9.224 12.914 15.686 
al ( l. 96) (4.73) (0.000 (2.95) 1-1 u 
~ 32 7.174 9.224 12.914 15.686 
0 (7.86) (11.23) (6.18) (5.40) 
1-1 
al 

..Cl 30 7.174 9.224 12.914 15.686 
9 (4.57) (ll.23) (9.83) (7.08) 
z 

24 7.714 9.222 12.914 15.784 
(39.51) (42.33) (43.93) (88.57) 

16 5.770 7.497 10.395 12.167 
(627.30) (530.84) (498.47) (584.33) 

* ( • ) hours of idle time 
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4.2.3 Problem 3 

In this problem the missions are spread so that at most 

one operation of each mission is being flown at any given 

time. This problem coresponds to Problem 3 presented in 

Chapter I. 

A minimum idle time of 0.00 hours was obtained for Prob-

lem 3 in only one iteration with an average utilization rate 

of 5.161 hours/day per plane. Since 117.98 was the minimum 

number of days required to complete the jobs, Tj as defined 

above cannot complete the missions over the specified plan-

ning horizon of 90 days. However, notice that an optimum 

solution was obtained by the Two-Phase Method within one it-

eration in 33. 86 seconds of execution time. Also an upper 

bound of 47 crews was obtained for the number of crews re-

quired in the system for a non-delay schedule. 
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4.3 ONE-PHASE METHOD 

The computer program for this method was run using the 

data provided by the 3rooks Air Force base. The three vari-

ants of the problem stated in Chapter I were solved. 

problem is discussed below. 

4.3.1 Problem 1 

Each 

Given the data from Table 1 the maximum utillization rate 

for the planes in the system is sought. In this problem 

there exist no restrictions on the completion time of the 

jobs. This means that the purpose of the problem is to find 

the minimum number of days necessary to complete all the 

jobs, when the number of crews, as well as the number of 

planes in the system, is fixed. For this case a program was 

run producing a minimum average idle time of 5. 04 days in 

30.312 days and a maximum average utilization rate of 20.089 

hour/day per plane. 

The program was run for a different number of crews and a 

fixed n~mber of planes in the system. Results for this 

problem are given below. Figure 7 shows the rate of change 

of the utilization rate of planes for different numbers of 
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crews in the system. 

Number of Maximum 

crews Utilization Rate 

52 20.089 

49 19.903 

45 19.099 

40 17.719 

35 16.168 

26 12.090 

An average of 4 iterations were required in order to ob-

tain a good solution for this problem. This number of itera-

tions implies an average of 140.00 cpu seconds of execution 

time. 

4.3.2 Problem 2 

For Problem 2 presented in Section 1 the available data 

was used in order to obtain a maximum utilization rate of 

planes. For Problem 2 a minimum average of 0. 00 hours of 

idle time was obtained in 89.19 days (a 90 day period is de-

sired) which yields a maximum average utilization rate of 

6.827 hour/day per plane. Only one iteration was required 

in 25.12 seconds of execution time. 

For the given completion time obtained in Problem 2, the 

computer program was run for 6 different number of crews and 
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4 different number of planes in the system in order to ob-

tain a desirable plane-crew configuration for the problem. 

Table 4 shows the maximum average utilization rate per plane 

obtained for each case. Figure 7 presents a plot of the uti-

lization rate versus the number of crews in the system for a 

fixed number of planes. 

From Table 4 and Figure 8 through 11 a non monontone in-

crease in the average utilization rate of planes is ob-

served. These fluctuations in the average utilization rate 

is a consequence of the initial distribution of crews among 

bases. When the system has more crews than required in ord-

er to obtain a fixed utilization rate, no idle time for 

planes exists, although a better allocation of crews is pos-

sible, producing a better utilization rate due to different 

sequences of missions that can be flown by each plane. 

Since the re-distribution of crews depends on the idle time 

at the previous iteration of the algorithm, the process is 

terminated and no improvement is obtained. However, if the 

number of crews in the system is smaller than or closer to 

the required number of crews in the system for a fixed uti-

lization rate, a larger number of different distributions is 

attempted, thereby producing better solutions. 

The number of iterations required to obtain a good solu-

tion for this problem ranges between 1 and 8 with an average 
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of 2 iterations. This program was run for a fixed number of 

crews and different number of planes. It was noticed that 

the number of iterations was ir.creased when the number of 

crews and planes in the system were closer to the best com-

bination obtained for this algorithm. Hence the execution 

time also increased for these combinations. A maximum of 8 

iterations were required for a combination of 18 planes and 

24 crews consuming a maximum of 180. seconds of execution 

time. 

From the information given in Table 4 and Figure 8 

through 11, a minimum makespan of 88.048 days for a maximum 

average utilization rate of 8.892 hours/day per plane is ob-

tained with 24 crews and 14 planes in the system The solu-

tion for this combination was obtained in 1 iteration in 

37.08 seconds of execution time. 
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TABLE 4 

Average Utilization Rate per Plane 

Number of Planes 

18 14 10 8 

52 6.827 8.711 12. 244 15.253 
(0.00)* (0.00) (0.00) (0.00) 

40 6.793 8.711 12.244 15.289 Cl) 
( 2 . 13 ) (0.00) (0.00) (2.34) ::: 

<!) ,.... 
u 32 6.813 8.727 11.994 15.044 
~ (15.01) 
0 

(14.85) (8.63) (14.08) 
,.... 30 6.813 8.710 12.218 15.035 <!) 

(29.29) (22.78) (14.85) (15.89) ..0 

9 
24 6.686 8.892 12.258 15.305 z 

(131.57) (150.84) (28.53) (23.19) 

16 5.894 7.476 10.567 13.354 
(732.49) (727.43) (655.64:) (498.93) 

*( • ) hours of idle time 
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4.3.3 Problem 3 

The available data was al so implemented for Problem 3 

with the One-Phase MethQd. Al~hough in Problem 3, a minimum 

idle time of 0.00 hours was ~b~ained, 117.98 days were re-

quired to complete the jobs, which yields an average utili-

zation rate of 5.161 hour/day per plane. Therefore Problem 3 

does not satisfy the 90 day requirement of our problem. How-

ever, notice that for Problem 3 a minimum idle time was ob-

tained in only one iteration and 26.83 seconds of execution 

time. 

Since this problem could not be solved within the desired 

period of time given the maximum number of crews and planes 

available in the system, the program was not executed for 

any other combination of crews and planes. 

4.4 COMPARISON OF THE PROPOSED METHODS 

The Two-Phase Method and the One-Phase Method, proposed 

in this thesis for the solution of the Air Force Crew Allo-

cation and Scheduling Problem were primarily designed to 

find the minimum makespan T (overall completion time for all 

the jobs) for the problem. However, these methodologies can 

be also employed for different variants of the problem to 

obtain other valuable information for our problem. Although 

both methods can be used to obtain essentially the same in-
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formation, several advantages exist in one method over the 

other depending on the variant of the problem to be solved. 

These advantages are discussed below. 

The Two-Phase Method provides an upper bound for the num-

ber of crews required in the system. This upper bound can 

reduce the number of times the program needs to be run in 

order to obtain the minimum number of crews and planes re-

quired in the system to attain a given utilization rate. 

The initial distribution of crews obtained in the Two-

Phase Method gives better initial solutions than the distri-

bution of crews obtained by the One-Phase Method. As was 

seen before, the initial distribution obtained in the former 

method is based upon the distribution of crews among bases 

for a non-delay schedule performed in Phase I of this meth-

od. Since this initial distribution is a good starting allo-

cation of crews among bases, and the minimization of idle 

time depends directly on the allocation of crews in the sys-

tem, the initial solution obtained by this method is better 

than the one obtained by the One-Phase Method. 

A comparison of these two methods based on the three var-

iants of the problem presented in Chapter I is given below. 

A slight difference is found in the number of iterations re-

quired in t~ese two methods before a solution for Problem 2 

is obtained. This number of iterations is directly proper-
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tional to the number of ~rews and planes available in the 

system. This is obvious, since the number of possible ex-

changes of missions between pla~es ir.creases with the number 

of planes. In the same manner, an ir.crease in the number of 

crews implies more possible different arrangements of the 

crews among the bases. In the Two-Phase Method an average of 

3 iterations were required to find a solution to the problem 

while in the One-Phase Method an average of 2 iterations 

were performed. The difference in the number of iterations 

is more noticeable, when the available crews in the system 

becomes closer to the minimum number required for a given 

utilization rate. 

The average number of iterations required in the Two-

Phase Method and the One-Phase Method, versus the number of 

crews in the system for Problem 2 is provided in Figure 12. 

In reading this figure, it is important to note that when 

the number of crews available in the system becomes closer 

to the number of crews necessary in the system for a fixed 

utilization rate, the number of iterations before a solution 

is cbt:ained, increases. 

Al though the number of iterations required by the One-

Phase Met:hod is smaller than the Two-Phase Method for the 

three variants of the problem, the execution time cf these 

methods is comparable. 
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The similarity in the execution time between the proposed 

methods is a consequence of the execution time required for 

each iteration in these methods. Since the Two-Phase Method 

fixes the sequence of missions fer each plane in Phase ,. 
J. I 

less effort is required for the simulation process conducted 

in this method. The simulation process becomes shorter than 

the simulation process performed in the One-Phase Method. 

This remark is explained by the fact that the tie-breaking 

rules required for the assignment of missions to planes are 

considered only once in the former method (Phase I is con-

ducted only once in the execution of the program) while in 

the latter method, each iteration requires an assignment of 

missions to planes, thereby significantly increasing the si-

mulation effort. 

However, in Problem 1 a significant difference exists in 

the execution time required for each algorithm. An average 

of 140.00 seconds is required to obtain a good solution in 

the One-Phase Method while 200.00 seconds of execution time 

is needed in the Two-Phase Method. This fact is explained by 

the ~umber of iterations required. The Two-Phase Method re-

quires twice the number of iterations required by the One-

Phase Method in order to obtain a good solution. The in-

crease in the number of iterations is a consequence of the 

sequence of missions which is fixed in Phase I of the meth-



od. Therefore no flexibility exists in order to improve the 

sequence of missions, hence a better solution can be ob-

tained only wi't.h a better dist:::-ibution of crews. In the 

One-Phase Method more flexibi l.i ty exists producing better 

quality solutions. That is, while in the former method, a 

different sequence of missions can be flown on each itera-

tion, in the latter method this sequence is fixed in the 

first phase of the method and remains the same during all 

the iterations. 

In general the average utilization rate of planes ob-

tained from the Two-Phase Method is better than the solution 

obtained from the One-Phase Method in Problem 2. The dif-

ference obtained in the solutions of these methods generally 

remains within an average utilization rate of 0.60 hour/day 

per plane as was observed in the figures for Problem 2. 

However, the solution obtained for Problem 1 by the One-

Phase Method is superior to the one obtained by the Two-

Phase Method. The difference in the average utilization rate 

of planes obtained by these two methods is approximately 

0.30 hours/day per plane. 

Hence, from an overall viewpoint of compromising between 

computational effort and solution quality, the Two-Phase 

Method is recommended over the One-Phase Method for Problem 

2. Furthermore, when there is a large number of resources 



130 

in the system, considerably lesser computational effort is 

required, by the former method. However, for smaller sized 

problems, good solutions (combi~a~ions of planes and crews) 

may be obtained by the One-Phase Method with the required 

computational effort being comparable with that for the 

Two-Phase Method. 

However, from the figures, it is observed that the One-

Phase Method produces better quality solutions with lesser 

computational effort than the Two-Phase Method for Problem 

l. 

Actually, from the observations made in this thesis, it 

appears that a combination of the methods may be an overall 

effective alternative. Such a composite method may use Phase 

I and the first iteration of Phase II of the Two-Phase Meth-

od, and then after redistributing the crews among the bases, 

it may switch over to the One-Phase Method. In this manner, 

the tendency of the Two-Phase Method to produce good quality 

initial solutions may be combined with the flexibility of 

the One-Phase Method in later iterations. 
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4. 5 SUMMARY 

This thesis proposes two solution methodologies for the 

Brooks Air Force Base Crew Allocation and Scheduling Prob-

lem. A mathematical formulation of the relaxation of the 

problem is provided to show the difficulty of the problem. 

Since a mathematical approach is not computationally feasi-

ble for this problem, heuristic solution procedures have 

been developed. 

A review of the available literature concerned with the 

scheduling aspects of the problem is presented. A compari-

son of the problem under consideration with the problems in 

the literature is provided in order to show that no solution 

procedure exists in the literature that can be directly ap-

plied to this problem. Also the similarities of the pro-

posed methodologies with the solution procedures developed 

for similar problems in the literature have been discussed. 

The two proposed methods have been discussed in detail 

and heuristic scheduling rules have been provided which may 

be generally incorporated into other heuristic approaches as 

wel 1. Furthermore, computational experience has been ob-

tained with these methodologies using data from the Brooks 

Ai::::- Force base. Based on the results obtained, the Two-

Phase Method is recommended over the One-Phase Method for 

Problem 2. However for Problem 1 the One-Phase Method is re-
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commended over the Two-Phase Method, since better quality 

solutions are obtained. For Problem 3 neither method appears 

superior; therefore no preference exists, similar solutions 

are obtained with compa~able compu~ational effort. 

A composite method may be an over al 1 alternative solu-

tion. This method combines the good quality initial solution 

of the Two-Phase Method with the flexibility of the One-

Phase Method. 
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AIR FORCE CREW ALLOCATION AND SCHEDULING PROBLEM 

by 

Minerva Rios Perez 

ABSTRACT 

This thesis addresses an airline crew allocation and 

scheduling problem faced by certain divisions of the United 

States Air Force. Three variants of the problem under con-

sideration were posed by the Brooks U.S. Air Force Base. 

This thesis reports on experience with two heuristic methods 

developed, each applicable to the different variants of the 

problem. Al though the problem described herein is peculiar 

to this situation, the heuristic scheduling and dispatching 

rules developed have been found to be very effective, and 

are generally applicable in other related contexts of rout-

ing, and crew and vehicle scheduling problems as well. The 

two algorithms developed have been applied to a coded set of 

real world data. The results indicate that each one of the 

~wo methods is preferable over the other for one of the two 

variants 0£ the problem, and they are equally effective for 

the third variant. 

The observations made in this study suggest an overall 

effective composite technique for this class of problems. 
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