
Zentrum für Technomathematik
Fachbereich 3 – Mathematik und Informatik

An ALE FEM for solid-liquid phase
transitions with free melt surface
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Abstract

A finite element method is introduced which is capable to simulate
the melting of solid material with a free melt surface. Especially in a
micro scale situation, the free capillary surface and its interplay with
the solid-liquid interface play an important role. The method is applied
to the engineering process of melting the tip of a thin steel wire by
laser heating. The mathematical system comprises heat conduction,
radiative boundary conditions, and solid-liquid phase transition as well
as the fluid dynamics in the liquid region and a free capillary surface.
A sharp interface mesh–moving method (complemented by occasional
remeshing) is used to track the liquid/solid interface as well as the
capillary free boundary.

1 Introduction

We study the temperature-driven melting and solidification of material with
a free capillary melt surface. The most important aspect of this process is
the interplay of two free moving boundaries, the solid-liquid interface and
the capillary free boundary of the melt. Both free boundaries are connected
at a triple line, where the capillary surface meets the solid boundary. The
movement of this triple line is an important aspect of the overall process,
both from the modeling and the numerical point of view.

Especially for small dimensions (around 1mm or less), the capillary forces
at the melt surface get dominant compared to other influences like gravity,
and it is possible to melt a relatively large amount of material, while the
process and geometry stay in a stable configuration. We describe a numerical
method that is able to compute both geometric and flow aspects for the
dynamic process in a stable manner.

The two main aspects, the solid-liquid phase transition and the liquid
flow with a capillary boundary condition, are already intensively studied
separately, and numerical methods for the approximation of solutions have
been known for years. The solid-liquid phase transition can be modeled
(mathematically and numerically) by various versions of the Stefan problem,
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see for example [14, 19]. Viscous free surface flows are modeled by the
Navier-Stokes equations with capillary boundary conditions [8].

The coupled problem, in particular with a free capillary surface, is stud-
ied much less. Some aspects are included in models for Czochalsky growth
of semiconductor crystals, where the dimensions are relatively large [16].
The solidification of melt drops on a surface was studied in [2] by a simple
model with a planar interface. Techniques using isotherms as coordinates
(like the Isotherm Migration Method [12]) have successfully been applied to
steady 2D cases, but are restricted to simple geometries and isotherm shapes
[1, 17]. Anode melting was studied for example in [3], where the fluid flow in
the liquid phase is neglected and a simplified 1D approach for the shape of
the computational domain is used, and in [4], using finite volume methods
and a transformation to a rectangular computational domain. Multi phase
field models are able to model the neighbourhood of a triple junction ac-
curately with high resolution [15, 18], but usually without considering any
flow effects.

Our model leads to a coupled system of Stefan and Navier-Stokes equa-
tions, see Section 2, where the solution of the Stefan problem defines the
solid subdomain Ωs(t) and the solution of the Navier-Stokes equations with
capillary boundary determines the shape of the liquid subdomain Ωl(t). In
Section 3, an Arbitrary Lagrangian Eulerian Finite Element method is pre-
sented that is able to compute a numerical solution in a robust way. A 2D
rotational symmetric version was implementated for the simulation of the
melting of initially cylindrical geometries. Numerical results, presented in
Section 4, demonstrate the stability of the method and its applicability even
in a situation where a relatively large amount of the geometry is melted.

Figure 1: Material accumulation from experiments (source: BIAS).

This research is motivated and initiated by the engineering application of
melting the end of thin wires by laser heating in order to accumulate material
for a subsequent micro forming process [22], see Fig. 1. The Collaborative
Research Centre 747 “Micro cold forming”, located at the University of
Bremen, studies such aspects of the production of micro components.
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2 Mathematical model

In this section we present the continuum model, describing the laser heat-
ing, heat transport, the phase transition, and the fluid dynamical problem
together with the free capillary surface condition. The crucial aspect here is
given by the time dependence of the domains for the respective subproblems.
Due to the wide range of temperatures, ranging from room temperature up
to much more than the melting temperature of the material, radiative cool-
ing will be considered in the model. Convective cooling on the boundary
and Marangoni effects are neglected here in order to keep the model simple.

Figure 2: Sketch of the geometry.

Hereafter, we work in non–dimensional units. The derivation of the
corresponding scalings are given in the Appendix. For t ∈ [t0, t̄ ], let Ω(t) =
Ωs(t) ∪ Ωl(t) ∪ ΓS(t) ⊂ R

3 denote the time dependent domain, its solid
and liquid subdomains and the solid-liquid interface at time t, respectively.
Likewise, let ΓC(t) denote the free capillary surface, ΓR(t) the solid sides
and ΓB the bottom, see Fig. 2; ν(t, x) is the outer normal to Ω(t) or Ωl(t) if
taken on ΓS(t). For convenience we define the moving boundary ΓM(t) :=
ΓC(t) ∪ ΓS(t).

The system is modeled by the Stefan problem in the whole domain for the
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temperature T : Ω(t) → R and the incompressible Navier-Stokes equations
with Boussinesq approximation in the liquid phase Ωl(t) for the velocity field
u : Ωl(t) → R

3 and pressure p : Ωl(t) → R:

∂tu + u · ∇u−∇ ·

(

1

Re
D(u) − pI

)

= −
Bo

We
e2 +

Gr

Re2
Te2 in Ωl(t), (1a)

∇ · u = 0 in Ωl(t), (1b)

∂tT + u · ∇T −
1

RePr
△T = 0 in Ωl(t), (1c)

∂tT −
qls

RePr
△T = 0 in Ωs(t), (1d)

where D(u) := ∇u + (∇u)T . Here, Re, Bo, We, Gr, and Pr denote the
Reynolds, Bond, Weber, Grashof, and Prandtl numbers, respectively, and qls

is a quotient of solid and liquid material parameters, see also the Appendix.
Finally, e2 denotes the vertical unit vector.

On the capillary boundary ΓC(t), we impose:

u · ν = VΓC
· ν, (2a)

σν =
1

We
Kν, (2b)

as boundary conditions, where VΓC
denotes the velocity of the free boundary,

K the sum of the principle curvatures and σ := 1

Re
D(u) − pI is the stress

tensor.
On the solid-liquid interface ΓS(t), conditions for u, T and for the normal

velocity of the interface VΓS
are prescribed:

u · ν = (1 − qρ)VΓS
· ν, (3a)

u− u · ν ν = 0, (3b)

T = 0, (3c)

1

RePr
[(∇T )l − qls(∇T )s] =

qρ

Ste
VΓS

. (3d)

Eq. (3a) reflects mass balance with qρ = ρs

ρl
being the ratio of the

densities of solid and liquid, respectively. Eq. (3d) is the Stefan condition,
Ste being the Stefan number, and reflects thermal energy balance. On the
outer boundary we need further thermal boundary conditions. External
heating and radiative cooling conditions are imposed on ∂Ω(t) \ ΓB ,

1

RePr
∂νT = La Il + Em

(

T 4
a − (Tm + T )4

)

on ΓC(t),

qκ

RePr
∂νT = La Il + Em

(

T 4
a − (Tm + T )4

)

on ΓR(t),
(4)
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with La and Em the laser absorption and emissivity parameters, Ta, Tm the
ambient and melting temperatures, Il the Gaussian laser intensity distribu-
tion function [21] and qκ the ratio of thermal conductivity coefficients. At
the bottom ΓB we assume a non-flux condition,

∂νT = 0 on ΓB. (5)

A typical initial condition for the experimental process would be given
by Ω(t0) = Ω0 at room temperature, T (·, t0) ≡ −1, and thus Ωl(t0) = ∅.
However, as the sharp interface formulation given above does not contain
any model for nucleation for a new phase, at t = 0 we start from a tiny
liquid region Ωl(0) 6= ∅ and a corresponding temperature T0 = 0 on ΓS(0)
and vanishing velocity field,

T (x, 0) = T0(x) on Ω(0), u(x, 0) = 0 on Ωl(0). (6)

instead.

3 Numerical method

This section introduces the numerical method used to discretize system
(1) – (6). A 2D rotational symmetric version of the problem is solved using
Navier [8], a finite element solver for flow problems with capillary surfaces
based on unstructured triangular grids. The Navier–Stokes equations are dis-
cretized by the Taylor-Hood element in space, i.e. piecewise quadratics for
the velocities and piecewise linears for the pressure, and the fractional–step
θ scheme in an operator splitting variant in time, see [11, 7]. As Navier is
able to handle a time dependent capillary surface, the discretization of time
dependent domains is already included into the code. It features a semi–
implicit, variational treatment of the curvature terms in the Navier-Stokes
equations and a decoupling of the flow from the geometry problem. The free
capillary boundary is represented by isoparametric elements, i.e. piecewise
quadratics, in combination with the variational treatment yielding a very
precise discretization of the curvature terms.

For the Stefan subproblem, the solid-liquid interface is represented as an
interior boundary of the triangulation, thus leading to sharp interface track-
ing. The heat equation on both subdomains is discretized by the fractional–
step θ scheme in time, too, and piecewise quadratic elements in space.

The evolution of the time dependent domain Ω(t) is realized by discretiza-
tions of the boundary conditions (2a), (3d) and a corresponding mesh moving

in the interior. An ALE (Arbitrary Lagrangian Eulerian) formulation is used
for the PDEs on the time dependent domains, see for instance [13].

As Ω(t) and its subdomains Ωl(t),Ωs(t) deform considerably during the
process, mesh moving alone is not sufficient to maintain mesh quality. Thus
a complete remeshing is performed when needed.

In the following, we describe this method in more detail.
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3.1 Meshes, finite element spaces, and ALE formulation

Let 0 = t0 < · · · < tN = t̄ be a partition of our time interval and set
τn := tn+1 − tn. The time dependent domain Ω(t) is approximated by
discrete, triangulated domains Ωn ≈ Ω(tn). In each time step, the new
domain Ωn+1 is parametrized over Ωn. An ALE formulation is based on this
parametrization.

Since the geometric situation given is rotationally symmetric and the
Reynolds numbers are rather small, we restrict ourselves to describing a
corresponding rotationally symmetric method, i.e. d = 2. The full 3D
method would be analogous.

We now describe the situation in more detail. For time interval (tn, tn+1),
let the discrete domain Ωn ≈ Ω(tn) be given. Let T n be a regular, conform-
ing triangulation of Ωn which respects the solid-liqid interface Γn

S, and Σn

the corresponding partition of the exterior and interior boundaries Γn :=
∂Ωn ∪ Γn

S into the edges of T n on Γn,

Ω̄n =
⋃

T∈T n

T, Γn =
⋃

S∈Σn

S.

The liquid and solid subdomains Ωn
l ,Ωn

s are given by the union of fully liquid
resp. solid mesh elements in T n

l ,T n
s . Finally, we define the discrete moving

boundary by Γn
M := Γn

C ∪ Γn
S.

For the definition of the Finite Element spaces on isoparametric meshes,
let T̂ denote the reference simplex in R

d and Ŝ the reference simplex in R
d−1

(in the case d = 2, this means the unit interval). For each T ∈ T n and for
each S ∈ Σn there exist invertible quadratic mappings

FT : T̂ → R
d, FT (T̂ ) = T,

FS : Ŝ → R
d−1, FS(Ŝ) = S.

Our discretization of the Stefan problem is realized using a piecewise
quadratic finite element space over Ωn for time step tn+1, with temperature

T n+1 ∈ W n := {wh ∈ C0(Ω̄n) : wh ◦ FT ∈ P2 ∀T ∈ T n}.

The Navier-Stokes equations are approximated by P2/P1 Taylor-Hood
finite elements on Ωn

l , i.e.

u
n+1 ∈ V

n := {vh ∈ C0(Ω̄n
l )d : vh ◦ FT ∈ P

d
2 ∀T ∈ T n

l },

pn+1 ∈ Qn := {qh ∈ C0(Ω̄n
l ) : qh ◦ FT ∈ P1 ∀T ∈ T n

l }.

The change of the domain shape is determined by the movement of the
capillary surface Γn

C and the solid-liquid interface Γn
S, details are given below.

In order to keep a good mesh quality, vertices on the solid boundary ∂Ωn
s \Γn

S
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are also allowed to move in tangential direction. All edge movements are
parametrized via the corresponding finite element spaces, so the capillary
surface and the phase boundary move piecewise P2, while it is sufficient to
move the solid boundary piecewise P1. Accordingly we define the space of
boundary movement E

n,

E
n :=

{

eh ∈ C0(Γn)d : eh ◦ FS ∈

{

P
d
2 ∀S ∈ Σn ∩ Γn

M ,

P
d
1 ∀S ∈ Σn ∩ (∂Ωn

s \ Γn
S)

}

.

Given a boundary deformation Ψn+1 ∈ E
n, we need to deform the whole

domain, and thus an extension operator E : En → X
n, where

X
n ⊂ {vh ∈ C0(Ω̄n)d : vh ◦ FT ∈ P

d
2 ∀T ∈ T n}

is an appropriate finite element space with trace space E
n. We take X

n

to be piecewise linear in the interior of Ωn
l ,Ωn

s and piecewise quadratic on
Γn

M , although other choices are possible. The extension operator E will be
defined by solution of a discrete Laplace equation,

(∇E(Ψn+1),∇xh) = 0 ∀xh ∈ X
n, xh = 0 on Σn,

E(Ψn+1) = Ψn+1 on Σn.
(7)

With Υn+1 := E(Ψn+1) given, we set Ωn+1 = Υn+1(Ωn), and the time
discrete equations for velocity u

n+1 and temperature T n+1 in the bulk are
augmented by an additional ALE advection term

uALE · ∇u
n+1 or uALE · ∇T n+1,

respectively, with uALE = (Υn+1 − Id)/τn accounting for the mesh move-
ment.

3.2 Decoupling of geometry and PDEs in the bulk

Assume that Ωn,un, pn, T n for some n ∈ {0, . . . , N −1} are known. We now
decouple the computation of Ωn+1 and the bulk terms by assuming Ωn as
fixed and solving the equations on the fixed domain, where (un+1, pn+1) and
T n+1 are again decoupled. The geometry is then updated according to the
respective boundary conditions on the two moving boundaries Γn

C and Γn
S .

Except for the initial phase, where Ωl(t) = ∅, the typical geometric shape
of Ω(t) is like in Fig. 3. Thus from one time step to the next one, it is conve-
nient to solve the heat equation problem and then use the velocity VΓS

from
the Stefan condition (3d) to update ΓS . Likewise, the kinematic boundary
condition (2a) can be used to define the update of Γn

C . The procedure for
every substep n′ of the fractional–step θ scheme is then as follows:
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Figure 3: Typical form of Ω0 (left) and the triangulation near the top (middle
and right).

1. Solve the Navier-Stokes equations (meaning a quasi-Stokes or Burgers
problem, depending on the fractional step in the θ splitting scheme, see
[11]) on the fixed domain Ωn′

using T n′

in the buoyancy term in (1a),
giving u

n′+1. The virtual position of the new free boundary enters in
the equation as a stabilizing term, see [6, 8] for details.

2. Calculate T n′+1 on the fixed domain Ωn′

l ∪ Ωn′

s by treating Γn′

S as
internal Dirichlet boundary and using u

n′+1 in the convection term in
equation (1c).

3. Use the kinematic boundary condition from (2a) and the Stefan condi-
tion from (3d) to obtain the boundary deformation Ψn′+1, see below.
(Alternatively, this can also be done just once per full timestep, namely
after the last fractional step. In this case, n′ in the geometry update
is understood as said timestep.)

We now specify how to derive the geometry update Υn′+1 : Ωn′

→ Ωn′+1

from the boundary conditions. As u
n′+1 and T n′+1 are known after step 2

of the procedure, we can define the new boundary position Ψn+1 ∈ E
n by
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its nodal values at boundary nodes x,

Ψn′+1 : Γn′

→ R
3,

Ψn′+1(x) := id
Γn′ +











u
n′+1(x), x ∈ Γn′

C \ Γn′

S

V
n′+1

Γn′

S

(x), x ∈ Γn′

S

0 x ∈ ∂Ωn \ Γn′

M

,

∂Ωn′+1 := Ψn′+1(Γn′

).

(8)

Using the extension operator E from Section 3.1, we obtain the update

Υn′+1 = E(Ψn′+1), Ωn′+1 = Υn′+1(Ω
n′

).

As the definition of Ψn′+1 does not allow for movement of boundary nodes in
the solid phase, leading to a rapid deterioration of the triangles containing
the triple point, the boundary conditions for E from Eq. (7) are relaxed to
allow for tangential movement on Γn′

R :

E(Ψn′

) = Ψn′

on ∂Ωn′

\Γn′

R ,

E(Ψn′

) · ν = 0 on Γn′

R .

A few remarks on the above method:

1. In practice, the grid updates are quite small, so taking smoothing by
a discrete Laplace operator like in Eq.(7) as extension is sufficient, see
[6]. Note that the ALE convection term uALE, accounting for the
mesh moving, is given by

uALE = Υ̇.

2. The term [(∇T )l − qls(∇T )s] is discontinuous across element bound-
aries on Γn′

S in general because the temperature is continuous only.

Thus the L2–projection V
n′+1

Γn′

S

of the jump term to the space of piece-

wise quadratic functions on Γn′

S is used. This matches well with the
update of Γn

S arising from Eq. (8) and the velocity boundary condition
from Eq. (3a).

3. The phase boundary is a non–material surface, meaning that its move-
ment is not related or influenced by the movement of the material
(physical) points on it at any given instant. In fact, the mesh and the
material points move independent of each other, as shown in Fig. 4.
This in turn means that the movement of Γn′

S does not introduce any
singularities to the boundary conditions on Γn′

C and Γn′

S .
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4. As the triple point xt itself is non–material, it is moved with the grid
on Γn′

S , see also Fig. 4. It is clear that xt can only move tangentially

in ∂Ωn′

, so the full update x̃t(tn′+1) = xt(tn′) + V
n′+1

Γn′

S

(xt(tn′)) is suit-

ably projected to the isoparametric surface ∂Ωn′

to obtain xt(tn′+1) =
Ψn′+1(xt(tn′)).

5. Since the update of Γn′

C is defined by u|Γn′

C
, large tangential velocities

would lead to a quick distortion of the mesh. The same problem may
arise from the movement of Γn′

S . In order to avoid this, a curve smooth-

ing is used that equilibrates the boundary node distribution by moving
boundary nodes along the geometry.

Figure 4: Movement of the grid points • (left) and of some arbitrary material
points ⋄ (right) on ΓC ∪ ΓS.

3.3 Remeshing

As the domain evolves, the mesh is deformed by the movement of ΓC and ΓS .
Especially when one of the subdomains Ωl,Ωs is small compared to the other,
the change in relative sizes of the subdomains Ωl,Ωs can be quite large. A
good quality of the mesh cannot be guaranteed by a refinement/mesh moving
strategy alone, thus a complete remeshing of the whole domain is necessary.

Remeshing is performed either in fixed time intervals (e.g. every N time-
steps), or when a certain condition for the maximum angle of a triangle (i.e.
140◦) is violated, or when the volume of a triangle has changed considerably
(i.e. a factor of five).
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To implement such a remeshing, we use the 2D mesh generator Trian-

gle [20], with additional refinement performed using Navier’s own refine-
ment algorithms [5] to guarantee certain element sizes at selected boundaries.

Remeshing (i.e. at timestep n) is done as follows:

1. Write out ∂Ωn and Γn
S as planar straight line graph (PSLG), let Tri-

angle generate the new grid and re-import it into Navier.

2. Refine the new mesh near Γ̃n
S and Γ̃n

C , i.e. so that certain edge lengths
are not exceeded.

3. Correct the new Γ̃n
C to obtain the new, piecewise quadratic Γn

C .

Since Triangle can only generate straight simplices, all edge mid-
points and any newly inserted nodes lie on straight edges, although
the boundary was piecewise quadratic before, resulting in (relatively)
large oscillations of the free surface. Thus the boundary has to be
corrected after remeshing. This is achieved by projecting edge mid-
points and newly inserted nodes of the new (straight) mesh onto the
old geometry (see Fig. 5).

Figure 5: A triangle was refined during remeshing. Points lying on the
straight boundary edge are projected to their appropriate positions on
the old (curved) edge (dashed line).

4. Transfer the old data (un, T n and grid velocities for the ALE formu-
lation) onto the new grid by appropriate projections onto the corre-
sponding finite element space.

The calculation of the projections requires the evaluation of the old
functions on the new grid. For this, an implementation of a highly
efficient algorithm from [10] is used, which is based on a stack structure
exploiting the neighbouring relations of elements in the mesh.

Because of the remeshing, the velocity and pressure spaces change
at time step n. Thus an interpolated or simple L2 projection of the
velocity from the old mesh is no longer discretly divergence free on
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the new mesh in general. Using these velocities would result in strong
erroneous pressure peaks. This has to be cured by projecting the old
u

n directly onto the space of discretely divergence free function on the
new mesh via the L2 inner product, see [9].

4 Numerical results

In this section, we present numerical results obtained by the discussed
method. Simulations were run with different space discretizations, coeffi-
cients La ∈ [2 · 103, 104], Em ∈ {0, 9 · 10−4}, qρ ∈ {0, 1.125} and the rest
of the parameters as given in the Appendix. When not stated otherwise,
the simulations were done with La = 104 (corresponding to approx. 120W),
Em = 9 · 10−4, qρ = 1.125, a time step size of 2 · 10−4 (5000 timesteps corre-
spond to 100ms), and a domain corresponding to a wire of 1mm diameter.

4.1 Melting a wire end

Figure 6: Domain and mesh at t10000 for parameters La = 4 · 103, 6 · 103, 8 ·
103, 104 (from left to right).

At the start of the simulation, the phase boundary moves quite fast due
to the rapid heating by the laser and therefore expands quickly. A relatively
frequent remeshing is needed at this stage. As the domain evolves and the
phase boundary moves further away from the heated boundary, the phase
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transformation and thus the mesh moving and deforming slows down, which
results in a relatively stable mesh quality without too frequent remeshings.
Due to the small length scale, surface tension is dominant, so the liquid
subdomain remains stable even for relatively large melt regions (see Fig. 6).

(a) t500 (b) t1500 (c) t5000

Figure 7: Grid and domain with temperature isolines at different timesteps.

Fig. 7 shows the domain at different timesteps, along with the grid and
temperature isolines. For n = 500, the relatively large deformation of the
grid shortly before a remeshing operation can be seen, while the other two
pictures show how the domain typically looks like if the phase boundary has
slowed down.
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(b) Em = 0

Figure 8: Maximum radius of the liquid region over time with and without
radiation.

Fig. 8 shows the maximum radius of the liquid region over time for
different parameters La, as this is of interest for the application. The ra-
dius stays at 1 until the domain reaches the half–sphere configuration and
increases afterwards as the liquid region expands further. Energy loss by
radiation has a significant impact on the radius of the final shape.

The boundary conditions on Γn
S have a significant impact on the flow
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(a) t500

(b) t2500

(c) t5000

Figure 9: Domain and velocity field at different timesteps for parameters
La = 4 · 103, 6 · 103, 8 · 103, 104 (from left to right).
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(a) qρ = 1 (b) qρ = 1.125

Figure 10: The flow field at t250 with different values qρ.

field. If the mass density in the liquid is lower than in the solid (meaning
qρ > 1), equation (3a) is an inhomogeneous Dirichlet condition. At the start
of the simulation, this boundary condition dominates the flow field, while
for qρ = 1 the flow field is dominated by free convection (see Fig. 10).

(a) qρ = 1 (b) qρ = 1.125

Figure 11: The flow field at t3000 with different values qρ.

After the liquid phase has reached a half–sphere configuration, the mo-
tion of the free capillary surface dominates the flow field. As the influence of
convection is lower than the influence of the Dirichlet condition, this happens
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sooner for the case qρ = 1. Even though the liquid phase enlarges consid-
erably, the geometry stays stable and occasional remeshing keeps the grid
from deteriorating. A comparison of the evolution for different parameters
La can be found in Fig. 9.

Due to the explicit treatment of the phase boundary movement, a CFL
condition restricts the space and time distretization parameters, but not sig-
nificantly beyond the usual bounds for the solver. Our numerical experience
is that refinement at the phase boundary is not needed to ensure its stability
in the mesh moving method.

4.2 Remeshing issues

The remeshing introduces some technical problems. If the temperature is
transferred to the new grid by L2 projection, the gradients at the phase
boundary are not preserved and generally do not match with the current
phase boundary velocity. This leads to oscillations in the phase boundary
velocity, but these decay quickly (see left part of Fig. 12) and have no
significant influence on the stability.
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Figure 12: The maximum phase boundary velocity over time (left) and the
maximum pressure with and without boundary correction (right) near a
timestep with remeshing.

Another difficulty is presented by the free capillary surface. During
remeshing, boundary edges might be refined, so that the old shape does not
correspond to an equilibrium configuration according to the new discrete
curvature. This can lead to capillary waves running over the free surface,
which in turn have an influence on the velocity and the pressure.

To illustrate the impact of a mismatch of geometries, the boundary cor-
rection from Section 3.3 is omitted in the remeshing process, causing all
edges in the domain to be straightened out. The resulting peak in the max-
imum pressure and a comparison to the case with boundary correction (in
which the effect is due to the refinement of the capillary boundary) can be
found in Fig. 12.
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4.3 Conservation of thermal energy
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Figure 13: Relative error in the total thermal energy contained in Ω over
time for the case without radiation (left) and the total thermal enery in the
domain with and without radiation (right).

In contrast to working with an enthalpy formulation, the mesh moving
scheme does not conserve the thermal energy exactly due to the time dis-
cretization of Eq. (3d). The actual loss/gain in energy is therefore an aspect
in assessing the reliability of the method.

Our numerical experience is that for timestep sizes needed by the rest
of the overall scheme, little to no additional refinement is neccessary at the
phase boundary to keep the relative error below 0.8 % at all times (see
Fig. 13 for an example). The same figure shows the significant influence
of radiation on the total thermal energy contained in Ω, which is directly
related to the maximum radius of the material accumulation (Fig. 8).

5 Conlusions

We presented an ALE Finite Element Method capable of simulating a melt-
ing process with a free capillary surface in a stable and robust manner. The
model includes convective heat transfer, radiative cooling at the boundary,
phase change, the incompressible viscous flow in the liquid phase and dif-
ferent material data in the two phases, and features a decoupling of the
temperature, the velocity and pressure, and the geometry.

Since the grid is moved along with the phase boundary, relatively large
mesh deformations can occur, which are cured by occasional remeshings.
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Appendix

If the dimensional quantities are denoted by an asterisk, we obtain the nondi-
mensional values by setting

x =
x∗

L
, t =

t∗

t̂
, U =

L

t̂
, T =

T ∗ − T ∗
m

T ∗
m − T ∗

a

, u =
u∗

U
, p =

p∗

ρlU2
,

with the scales L = 5 · 10−3m, t̂ = 0.1s, the ambient and melting
point temperatures T ∗

m = 1470K,T ∗
a = 293.15K and the mass density

ρl = 7015 kg
m3 .

The dimensionless coefficients are the Reynolds, Prandtl, Weber, Bond,
Grashof and Stefan numbers

Re =
ULρl

µ
, Pr =

µcpl

κl
, We =

ρlU
2L

γ
, Bo =

ρlgL2

γ
,

Gr =
gβρ2

l (T
∗
m − T ∗

a )L3

µ2
, Ste =

cpl(T
∗
m − T ∗

a )

Λ
,

and the additional dimensionless parameters for the laser, emissivity,
thermal conductivity, mass density and thermal diffusivity

La =
Imax

ρlcplU(T ∗
m − T ∗

a )
, Em =

εkSB(T ∗
m − T ∗

a )3

ρlcplU
.

qκ =
κs

κl
, qρ =

ρs

ρl
, qls =

qκcpl

qρcps
, Ta =

T ∗
a

T ∗
m − T ∗

a

, Tm =
T ∗

m

T ∗
m − T ∗

a

.

These are obtained from the mass densities ρl, ρs, the specific heat ca-
pacities cpl, cps, the thermal conductivities κl, κs, the latent heat Λ, the
emissivity ε, the maximum laser intensity Imax, the dynamic viscosity µ,
the surface tension γ, the thermal expansion coefficient β and the Stefan-
Boltzmann constant kSB .

Unless stated otherwise, we worked with the values

Re = 3, Pr = 0.1, We = 4 · 10−5, Bo = 0.01,

Gr = 200, La = 104, Em = 9 · 10−4, qρ = 1.125,

qκ = 0.4, qcp = 0.6, Ta = 0.25, Tm = 1.25,

as given by the application.
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