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Abstract: Internet of Things (IoT) appliances, especially those realized through wireless sensor networks
(WSNs), have been a dominant subject for heavy research in the environmental and agricultural sectors.
To address the ever-increasing demands for real-time monitoring and sufficiently handle the growing
volumes of raw data, the cloud/fog computing paradigm is deemed a highly promising solution. This
paper presents a WSN-based IoT system that seamlessly integrates all aforementioned technologies,
having at its core the cloud/fog hybrid network architecture. The system was intensively validated
using a demo prototype in the Ionian University facilities, focusing on response time, an important
metric of future smart applications. Further, the developed prototype is able to autonomously
adjust its sensing behavior based on the criticality of the prevailing environmental conditions,
regarding one of the most notable climate hazards, wildfires. Extensive experimentation verified its
efficiency and reported on its alertness and highly conforming characteristics considering the use-case
scenario of Corfu Island’s 2019 fire risk severity. In all presented cases, it is shown that through fog
leveraging it is feasible to contrive significant delay reduction, with high precision and throughput,
whilst controlling the energy consumption levels. Finally, a user-driven web interface is highlighted
to accompany the system; it is capable of augmenting the data curation and visualization, and offering
real-time wildfire risk forecasting based on Chandler’s burning index scoring.

Keywords: environmental monitoring; precision agriculture; Internet of Things; wireless
sensor networks; cloud/fog computing; fire risk forecasting; Chandler burning index; wildfires

1. Introduction

There has been a recent spike of research activity in precision agriculture and environmental
sustainability [1]. One popular direction, focuses on the advances of cloud computing enablers [2]
and wireless sensor networks (WSNs) [3]. These systems embed pioneering wireless technologies, such
as ZigBee [4,5], to monitor field conditions in secure and credible ways [6].

The current trend, however, especially when considering the wide proliferation of the Internet-of-Things

(IoT) applications [7,8], and the opportunities that they bring [9], is to employ a cloud/fog computing

environment [10–12], offering computing, networking, and storage support near the end user, minimizing
response times and greatly improving operational capacity and scalability. Cloud servers (typically located
in large data centers) are expected to have increased computational capabilities, whereas fog devices

located in close proximity to the end users will obtain similar, though less-in-power attributes [13],
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and transmute them into suitable candidates for offloading cloud elastic resources and alleviating
the communication overhead and traffic burden.

1.1. Challenges and Motivation

Despite the turn towards these information communication technologies (ICT), current practices
focus heavily on standalone and trivial data logger systems, whose main tasks are data acquisition,
regarding specific environmental facets, from spatially distributed sensors [14]. These initiatives,
although useful, lack sophistication and do not take advantage of the full potential brought about
by the assimilation of cloud/fog IoT platforms.

That being said, the design, implementation, and large-scale installation of a fully functional IoT
platform will provide the involved parties with instant decision-making models, yielding an analytical
understanding of natural systems. When combined with other visualization and knowledge tools,
such as area maps or hazard scale metrics, they can become highly effective actuators for adaptive
field administration, targeted interventions, and personalized notification procedures. Nevertheless,
their programming is considered a devious process that requires expertise and extensive know-how,
since in most cases it relies on custom-designed equipment and non-standard hardware solutions [15].
Therefore, the procurement of a complete design methodology across all system elements is imperative
and the main motivation behind the current work, which attempts to address these issues with
the proposition of a complete field-to-stakeholder IoT solution.

Meanwhile, the challenges that arise are numerous, especially when it comes to monitoring
catastrophic events in nature [16], e.g., floods [17], earthquake activity [18], and volcanic eruptions [19];
or biological dangers to the plantation itself, e.g., vegetation deceases and pest infestations, which
deeply distort the health of the farms, forests, and wild-lands, thereby requiring clear and fast tracking
of the agents that cause them, and a continuous stream of data regarding the conditions that drive their
spreading. For example, consider the work found in [20], which, much like the study presented here,
reports on the development of a WSN-based IoT system, coupled with cloud/fog liturgies, to address
time-sensitive agents that affect the health of olive groves.

Still, one of the major challenging environmental hazards to confront is the wildfire, mainly
due to the large number of different variables affecting this complex phenomenon, which can
wreak havoc on vast areas of land [21]. With that said, the main causal factors remain high
temperature and low relative humidity, especially in prolonged drought during summer seasons,
which is a common sight in regions such as the Mediterranean basin [22]. However, in conjunction
with heterogeneous geographic and micro-climate habitats, such as the ones found in the island regions
of Greece, their appearance becomes increasingly hard to predict. In such circumstances, in order
to offer targeted fire suppression techniques, the WSNs must be deployed in various landscapes
with potentially diversified prevailing conditions (e.g., under different altitudes, wind conditions,
temperature/humidity levels, etc.), making the system complex and hard to manage. Consequently,
the procurement of an ergonomic, adaptable, and easy-to-use IoT system, able to promptly manage
data from various input sources, along with suitable visualization, forecasting, and decision-support
functionality, is of the utmost importance for understanding habitat inter-dependencies and a key
element of the proposed system in the current work.

Lastly, most existing systems for environmental monitoring or fire prediction/detection require
significant computational resources and do not incorporate self-acting operational conformation
towards achieving increased precision and energy conservative automation. To the best of the authors’
knowledge, this is the first complete end-to-end IoT implementation that attempts to tackle these
issues based on local decision-making processes at the fog layer.

1.2. Contribution

The fundamental premise of this paper lies in the presentation of a three-layered cloud/fog
computing architecture, suitable for facilitating smart agricultural applications, especially those related
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to wildfire monitoring, and to propose a low-cost, WSN-based IoT system that seamlessly embeds
the proposed logic. The presented architecture follows the main directions of the cloud/fog computing
paradigm [10] based on the general framework found in [12]. In particular, Guardo et al. [12] revealed
how the cloud/fog hybrid architecture can be effectively utilized in agriculture and they evaluated
it using a prototype of ten nodes. In the current work, the basic principles are similar with an emphasis
on the special case of wildfires; hence, a prototype system of 25 sensing nodes, forming six (6) distinct
WSNs, each equipped with its own sink node, which is in turn connected to a fog device and then
to the remote cloud server, is assumed for evaluation purposes.

The prototype has been developed in the facilities of the Ionian University and is able
to autonomously adjust its operations to mirror the necessity for efficient wildfire alertness and lower
power consumption. To demonstrate its potential, the prototype was put to the test in a controlled
laboratory environment, with the most important evaluation metric being response time, which
is considered vital for smart applications of the future. Experimental results showcase how such
an architecture can indeed improve precision, by effectively reducing the average response time across
all used platforms, with parallel energy efficiency, and high accuracy and throughput rates.

To further validate the criticality-adaptable behavior, the prototype was calibrated to deal with
one of the most imminent threats to rural and outdoor environments, i.e., wildfires. Greece is known
for suffering from heavy fire activity [23]. In fact, the annually burned area exceeds 245, 000 acres of
land, and so the experiment has great value for future farming in the area. As a case-study scenario,
the Island of Corfu was considered for the firefighting period of 2019, to showcase the architecture’s
conforming character under different fire risk ignition severity degrees. Experimentation under these
conditions showed great promise, highlighted the role of fog computing in dealing with such extreme
phenomena, and verified the flexibility of the hardware components used.

Moreover, to better visualize and manage the systems’ outputs, a user-driven graphical user
interface (GUI) has also been developed to accompany the prototype system and assist the involved
parties in the decision-making process, named the Fog-assisted Environmental Monitoring System,
or F.E.MO.S. In short. That being said, F.E.MO.S. provides users with the ability to oversee the whole
sensing process as it enfolds with suitable data curation and visualization. In fact, based on
the two environmental sensed parameters (i.e., temperature and relative humidity), it is capable
of objectively assessing the fire ignition risk, based on the popular "Chandler burning index"
(CBI) [24], and generating an indication of the fire risk severity, subsequently allowing for targeted
countermeasures that will mitigate the hazard. In this direction, automated notification alerts
are generated to instantly mobilize the authorities to take appropriate mitigation actions.

The main contributing factors of the current paper can be summarized in the next bulletpoints.

1. A robust three-layered cloud/fog computing architecture for environmental monitoring, capable
of dynamically conforming its sensing functionality to meet stringent latency requirements
and the needs for energy conservation, and high accuracy and throughput.

2. A thorough presentation of its data flow and operations, starting from the initialization of the field
WSNs and reaching up to the remote cloud infrastructure, in order to contextualize the steps
undertaken from data acquisition to the creation of the appropriate response analysis.

3. The design, analysis, and development of a proof-of-concept prototype, mirroring the given
architecture and utilizing state-of-art and low-cost hardware modules for transparent interactions.

4. Its performance evaluation primarily via the response time metric, which is crucial
for time-sensitive agricultural applications of the future, especially those keeping track of
wildfire activity.

5. The experimentation with real fire risk data considering the fire fighting season of 2019 for Corfu
Island, which demonstrates how the considered approach can be effectively utilized to deal with
such phenomena and showcases its alertness-adjustable character.

6. The implementation of an accompanying user-friendly web application to monitor the system’s
behavior and data curation and acquire real-time information relating to the monitored fields’
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health, including CBI-based fire risk severity forecasting along with the autonomous generation
of appropriate notification alerts to actuate fast mobilization and countermeasures.

The aim here is on timely environmental monitoring, especially regarding wildfire ignition
prediction and early detection; nonetheless, the novelty lies with the considered cloud/fog IoT
solution that can be utilized for a wide range of time-sensitive agricultural applications with simple
system modifications. Since its functionality is easily adjustable to network alterations or ecosystem
changes, it can be easily customized and expanded to map its activity to the farmers’ occasional needs
and demands regarding other smart agriculture and forestry applications.

The remainder of the present paper is organized as follows. In Section 2 necessary background
concepts are summarized. The proposed hybrid cloud/fog computing architecture, networking
principles, and data flow methodology are underscored in Section 3. The evaluation process
is presented in Section 4, while the appliance experiment for the case study of wildfires is showcased
in Section 5. Finally, Section 6 concludes the paper and outlines directions for future work.

2. Literature Background

The current section presents related work regarding IoT systems and WSNs
in the environmental/agricultural monitoring and fire prediction/detection/protection sectors.

2.1. Internet of Things and Wireless Sensor Networks

For both existing and upcoming applications, given the standardization process of the emerging
Fifth-Generation (5G) of mobile communications [25], one of the major aspects that requires careful
consideration is the support of multiple devices with parallel real-time processing of large volumes of
data [26]. This is essential for the assimilation of IoT decision-making functionalities, with low energy
consumption [27] and high accuracy and throughput [28].

An IoT system consists of smart devices that collect, transmit, and act on data they acquire from
the environment, without the need for human intervention [15]. Each IoT device transmits its data
either directly to the Internet or through a gateway, which are then gathered at a central station
for further computation and analysis. However, the centralized paradigm does not always meet
the storage and process requirements for the amount of data. This becomes abundantly obvious when
considering the diversity of these devices and their lightweight and resource-constrained nature [29].

An alternative road refers to the benefits brought by the integration of cloud computing [30].
Moreover, the Internet necessities for low latency and high mobility push the cloud functionality
to the edges of the IoT network [31], making way for fog computing [32], offering higher cognition
and agility [33,34]. That being so, the IoT appliances have made a great leap in the direction of
meeting high quality of service guarantees set by the upcoming 5G era, especially when combined
with heterogeneous WSN systems [35,36].

WSNs generally consist of battery-powered sensor nodes that are spatially distributed in a wide
area, capable of sensing environmental conditions, using powerful processors with low energy
consumption [37], a subject of the utmost importance when realizing IoT platforms [38]. The data
are often transmitted in a multi-hop manner towards a sink node, which can either store them locally
or transmit them to a central location [39], e.g., a collection server.

Until recently, such systems faced many challenges, mainly due to the lack of wide-area
connectivity and energy resources, and sometimes harsh environmental conditions. However, modern
WSNs, though their inbuilt routing and relay capabilities [40], can quickly adjust to topology changes,
allowing their large-scale deployment, even in areas where the battery replenishment may not always
be feasible. A popular WSN configuration nowadays embeds Arduino boards [41] and utilizes
the ZigBee module [5].
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2.2. Related Research in the Agricultural/Environmental Monitoring Sector

Precision agriculture and smart farming [42] are considered two of the most rapidly evolving
sciences of the twentieth century and major pillars for boosting productivity and economic growth [43].
Ergo, modern research turns to the previous ICT solutions and their seamless migration towards
a multidisciplinary model [11] to support these sectors [28,44]. In fact, innovative enablers and wireless
technologies (like SigFox [45], LoRa [46], NB-IoT [47], GSM-IoT [48], and ZigBee [49,50]) have
empowered the involved stakeholders with the ability to experiment, manage, and record the dynamics
of complex systems [51].

With that in mind, many systems, besides deceasing spread [52] or pest infestations [53], now
tackle other aspects for climate protection, as identified in [54]. A recent appliance that meets these
guidelines was described in [55]; the paper details a control system for monitoring field data originating
from camera and sensor nodes deployed in crops. It then actuated the control devices adhering
to threshold constraints relating to specific climate agents.

One of the major WSN obstacles refers to the energy needed to keep the network “alive”.
Many works attempt to address this barrier. Suárez-Albela et al. [56] identified in this regard
the opportunities that arise from smart micro-controllers, such as Orange Pis. Meanwhile in [57],
a green WSN node suitable for fog computing platforms named “FROG” was proposed, which
introduces proactive power management tools for smart farming. In the present project, the WSN
heavy demands on energy are counterbalanced with the use of Arduino boards that have been proven
power-efficient (e.g., in [27]), along with ZigBee antennas, which yield significant energy gains [58].

Likewise, the utilization of Raspberry Pis has also revolutionized the data curation process.
The work in [59] details a WSN, where information is collected by a Raspberry Pi acting as
the base station. In the case of [59], however, the Raspberry Pi was used as a database and web
server to manage the data. Similarly, in [60], the overseeing Raspberry Pi was responsible for data
acquisition and analysis, while in [61] it created appropriate visualization. Contrarily, in the current
study the Raspberry Pis are assigned the role of driving the data processing procedure through fog
computing methods.

Diving deeper into the cloud/fog architecture, the works in [62] proposed a scalable fog network
architecture to increase coverage and throughput. Emphasis was given to cross-layer channel access
and routing, combining inputs generated in multiple networks. However, this work does not involve
the use of open-access hardware and software utilities offered by Arduino and ZigBee, respectively,
as in the current work. On the other hand, Bin Baharudin et al. [63] showcased the benefits of using
Raspberry Pis as fog gateways in a three-layered IoT architecture, similarly to the one incorporated
here, using ZigBee for communication. Clearly, ZigBee has been identified as a reliable and affordable
standard for smart agriculture realization (e.g., [64]), thereby becoming the central field communication
protocol here.

On a different path, the authors in [65] explored agricultural WSNs consisting entirely of Raspberry
Pis. In their system, WSN administration was enabled using a GUI, developed in ”MATLAB”
and installed on the base station’s board. Likewise, Zamora-Izquierdo et al. [66] developed an IoT
platform for greenhouse automation that allows human operators to configure the individual system
components through an ”HTML5” interface. Understandably, GUIs are essential for an enhanced
end-to-end IoT monitoring solution. This is clearly demonstrated in [14] and highly acknowledged
in the current work, which also provides a user-driven GUI for delivering the system outputs
in a user-friendly manner.

The majority of WSNs are deployed in uncontrolled areas, making them vulnerable to various
types of attacks. Souissi et al. [67] try to tackle this issue by introducing trust in three different levels,
namely, the data acquisition level (when the node takes a measurement), the network level (between
the nodes of the network), and the data fusion level (during the aggregation and the processing
of the measurements). Fortino et al. [68] performed a comparison of the existing architectures by
modeling trust in IoT environments. Meanwhile, there is always a possibility that incoming packets
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may suffer from data distortions. To detect such occurrences, a field is usually used, called "checksum."
Alternatively, Cao et al. [69] attempt to overcome this problem by deducing the measurements’
correctness, based on predefined boundaries (e.g., for the temperature the boundary could be set
in the [−5, 40] ◦C). Another problem that WSN-based system operators have to consider is the false
data detection. Casado-Vara et al. [70] offered a distributed algorithm that allows the collected
temperature data to be self-corrected by the neighboring nodes’ readings. In the current project,
simple data validation is conducted in the considered fog computing network, where the fog devices
evaluate the consistency of the received data packets.

Lastly, a special case of IoT refers to their assimilation for the detection and management of
extreme events caused by climate change or other ecological agents. In general, this is a difficult ordeal
due to the complex nature and conditions that lead up to their emergence; however, with WSN-based
IoT infrastructures, new opportunities have come to light [71], enabling time-critical data curation,
while achieving high semantic correlation and efficient risk forecasting [72]. To mention a few,
consider the following for extreme weather estimation [73], air pollution detection [74], earthquake
prediction [18], flood warning [75], landslide analysis [76], oceanic monitoring [77], etc. Unfortunately, one
of the most sensitive and unpredictable hazardous phenomena is the wildfire, which leads to extensive
catastrophes around the globe. The next subsections describe to relevant research into these events.

2.3. Related Research in the Wildfire Monitoring Sector

A plethora of systems have been developed to monitor the wildlands for fire threats.
Nevertheless, the integration of WSNs for fire regime tracking has not yet been thoroughly explored,
although there exists increasing research activity towards this direction (e.g., [78–80]), because
compared to conventional methods, such as satellite imagery, which is affected by weather conditions
(e.g., clouds), the amount of smoke, the image resolution, etc., WSNs offer faster detection [81].

According to Li et al. [82], these WSNs must possess four key aspects, namely, reactivity, reliability,
robustness, and network lifespan elongation. Consequently, exertions are placed in realizing systems
with these attributes. For instance, the research by [83] outlines a novel WSN monitoring methodology
that adopts a maintenance process to detect temperature anomalies. On the other hand, [84] follows
a contiguous approach to the one presented here, to adjust their prototype’s sampling and reporting
rates based on temperature fluctuations, while the work in [85] provided a fire detection WSN
clustering solution with notable reduction in energy consumption. The current study adjusts the response
time of the system by using the risk degree that Greece’s General Secretariat for Civil Protection (GSCP)
publishes every day for the fire fighting season. Additionally, the interval between measurement readings
depends on the risk degree, resulting in energy conservation when the fire risk is low.

Obviously, energy conservation is important to prolonging the WSN’s life. Having this in mind,
the authors of [86] have developed an energy-efficient fire monitoring protocol, i.e., ”EFMP”,
over clustered-based WSNs. Their results showed potential for overall energy consumption
reduction, by forming a multi-layer cluster hierarchy depending on forest fire propagation. Despite
its effectiveness, the EFMP introduces additional system complexity for dynamically computing
the hierarchy. Ergo, alternative communication protocols have also been proposed. For instance,
in [87,88] the authors have designed WSN systems, where the data transactions are conducted over
the ZigBee protocol. Their experimentation results conduced that ZigBee is a powerful enabler for fire
weather monitoring. Similarly, this study uses the ZigBee to realize the communication between
the WSNs’ nodes.

At the same time, many frameworks sanctioned by different emerging ICT have been also
explored, e.g., [89,90], aiming to accomplish reliable field data dissemination, promptly predict wildfire
ignitions, and autonomously launch avoidance responses. Similarly, Kaur and Sood [91] proposed
a fog-assisted IoT framework for forecasting fire incidents. The framework, close to the current
approach, comprises three layers, namely, the data accumulation, fog, and cloud layers.
Experimentation exhibited high precision in assessing the susceptibility of the considered habitat
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towards wildfire spreading. Note that many frameworks, like the ones presented in [92,93], employ
WSNs established by Arduino sensory nodes along with Raspberry Pi gateways, since their highly
customizable and flexible modes allow for the fast adaptation to the ever-changing climate conditions
that favor the fire regime. That being said, the presented study also employs a similar architecture,
using Arduino-powered sensory nodes and Raspberry Pis as intermediary nodes between the WSNs
and the remote cloud server.

Moving on, Roque and Padilla [94] developed a prototype using Arduino Uno that communicates
through Sigfox. Their prototype is able to detect fires utilizing sensors for temperature
and smoke/gas concentrations. Despite their positive performance in terms of response time, their
solution is only able to detect fire. In contrast, the current approach is able to also predict fire
ignitions, by utilizing temperature and humidity readings. The same applies when considering
the case of the LoRaWAN prototype found in [95]. On the other hand, works like [93,96–98] take
a different approach through neural networks, resulting in highly accurate fire models via pattern
recognition, especially when considering long-term monitoring. These works highlight the efficiency
of machine/deep learning approaches that are lightweight enough to run even on Raspberry Pis.
Although the current work does not include such algorithms, it is understandable that they can
easily be embedded in future work to increase precision and timely warnings. Other studies employ
alternative means of detection, e.g., Khan et al. [99] used cameras, while Kalatzis et al. [100] used
unmanned aerial vehicles. However, these are more expensive to deploy and on many occasions do
not fare well under conditions of heavy rain, fog, snow, mist, etc., and so fail to promptly acknowledge
fire incidents.

Whatever the case, the main aim in all the aforementioned works remains the early fire
detection in order to launch appropriate remedy countermeasures (like the ones shown in [101,102]),
and to execute evacuation procedures (e.g., [103]), while conserving precious energy resources [104]
and reducing the end-to-end delay [105], as outlined by [106]. With that said, a close alternative
approach to the one followed here is located in [107], which provides a similar IoT platform
for the semantic correlation of the generated raw data and their interpretation in terms of imposed fire
risk, based on the popular “fire weather index” (FWI) [108]. That particular index is very accurate;
however, it requires costly hardware installations. Contrarily, the IoT solution presented here utilizes
the CBI [24], which is also precise, but most importantly it relies solely on atmospheric agents, making
it a suitable candidate for low-cost implementations. To better contextualize this claim, the following
subsection enlists some of the most popular fire danger indexes (FDI) and their requirements.

2.4. Overview of Fire Danger Indexes

Fire outbreaks are affected by different factors related to various physical processes and events.
To quantify the fire risk situation, different FDIs have been proposed that combine different quantity
environment variables to compute the ignition risk [109].

The McAthur Mark 5 FDI, also known as the ”forest fire danger index” (FFDI), is one of the oldest
measures, dating back to the 1960s. It is mostly utilized in Australia and is characterized by five
ratings, these being low, moderate, high, very high, and extreme. Noble et al. [110] expressed the FFDI
as an equitation based on wind speed, relative humidity, temperature, and drought effects.

Contrarily, the FWI is a fire risk model issued by the Canadian Forestry Service in the 1970s [108].
It is affected by four meteorological parameters regarding the noon temperature, noon relative
humidity, 24 h precipitation levels, and the maximum speed of the average wind. Its mathematical
output procures a number ranging from 0 to 25, which is then suitably mapped to the very low,
low, moderate, high, or extreme fire severity risk indications. Although it is considered a highly
accurate metric, de Groot et al. [111] showed that it requires significant calibration for the classification
thresholds to suit the local weather conditions appropriately.

Compared to FFDI and FWI, a simpler solution has been proposed by Sharples et al. [112], which
is correspondingly called the ”simple fire danger index” (F). F takes into account the wind velocity,
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fuel moisture content, temperature, and relative humidity to divide the fire danger into a five-level
scale that ranges from low to extreme. Although simpler than the FFDI and FWI, it has generated
mixed performance results that depend on the site of deployment [109].

The aforementioned FDIs are costly when observed from the perspective of equipment utilization.
Moreover, they demand a priori the collection of large volumes of data, in order to produce
accurate risk classification, especially when considering highly heterogeneous environments such as
the Mediterranean Basin. The CBI, however, which was initially proposed by the Chandler et al. [24]
in the 1980s, is solely based on weather conditions. Hence, it only requires the air temperature
and relative humidity conditions to calculate the immediate fire risk. This makes CBI cost-efficient,
since it does not postulate high equipment expenses for the collection and analysis of the field data,
rendering it an ideal candidate for low-cost implementations and time-critical applications, as is
the case here.

3. System Design and Configuration

Having discussed relevant literature, it is now feasible to venture forth and thoroughly
present the proposed IoT solution. Although the scope here focuses on wildfire, the presented
architecture is generic and can easily cope and comply with other types of timely environmental
monitoring applications.

3.1. The Considered Cloud/Fog Computing Network Architecture

The particular cloud/fog hybrid architecture proposed here (i.e., Figure 1) follows a simple
layering model to categorize the available services based on resource availability.

Figure 1. The considered three-layered cloud/fog computing IoT architecture for environmental
monitoring, with an emphasis on fire detection applications.

Cloud computing providers commonly employ data centers considering various parameters,
such as user proximity and energy consumption [113]. Thus the top layer, i.e., the cloud layer, usually
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includes a cloud infrastructure, formed by data centers offering amenities and resources, which
are dynamically allocated based on the users’ demands. These services may include, among other
things, storage, networking, and server (computational power, rendering tools, etc.) privileges,
as illustrated in Figure 1.

As expected, cloud data centers are usually situated in remote, safe locations and require
expensive installations. To procure an affordable and scalable solution, the fog computing paradigm
has been proposed. Fog devices, similarly to their cloud-only counterparts, can act as mini data centers
that are generally cheaper and highly accessible, extending the service provisioning to the edges of
the network [114], forming an intermediary layer, i.e., the fog layer. In this way, the computational
burden is alleviated and resources are freed, avoiding traffic bottlenecks and increasing the cloud/fog
system’s overall capacity.

The application layer, located at the bottom layer, corresponds here to agricultural/environmental
monitoring applications that have already been described in Section 2, including the ones that address
the subject of fire handling events, running on the deployed WSNs. The last are comprised of devices
called sensory nodes, capable of monitoring environmental agents, such as temperature and humidity,
and a sink node, which is tasked with collecting all the field readings and reporting back to the higher
layers for further computation. Note that end users also include the various stakeholders that manage
the particular WSNs—farmers, firefighting services, researchers, environmental agencies, etc., possibly
through various GUIs—different displays, smart or mobile devices, diversified platforms, etc., and are
responsible for initiating appropriate countermeasures in cases of emergency (e.g., fire ignition) or
high risk (e.g., when temperature and humidity favor the spreading of wildfire).

Clearly, the end users on most occasions can access fog devices in their near vicinity, without the
necessity for establishing connections with the remote cloud servers. As a result, communication
bandwidth is saved and the proposed architecture can trigger actions with lesser delay, reducing
network congestion near the cloud servers if the need arises.

3.2. Hardware and Software Specifications

In the current subsection, a proposed customizable configuration comprising popular hardware
micro-controllers for realizing the WSNs and a fog computing network is provided. These rely on
market-based low-cost hardware solutions and established software operating systems and formats.

The WSNs are synthesized by sensory nodes, governed by the sink node, which is responsible
for data collection. All nodes consist of Arduino micro-controller boards. Arduino [115] is an
open-source electronics platform, popular for its hosting capacity and simple configuration, which can
easily embed various components and modules, thereby extending its functionality and fast-tracking
the creation of prototypes.

In detail, each sensory node is made of an Arduino Uno. To enable wireless connectivity, the board
is enhanced by an Arduino wireless Secure Digital (SD) shield, with a Digi XBee ZigBee module [116].
The shield encapsulates three different protocol stacks: IEEE 802.15.4, DigiMesh, and ZigBee. The last
one specifies a spacial carrier-sense multiple access with collision avoidance (CSMA/CA) protocol
for creating wireless networks from small, low-power digital radio antennas [59]. Using wireless
communications, although convenient, opens the door to potential security threats. Fortunately,
the XBee makes securing the network a trivial task, since it uses encryption and a secret key, named
the ”network key”, to ensure transmission protection and packet integrity [41].

Regarding the sink node, this differs because of its special properties regarding the collection
and management of all the sensed data. For this reason, an Arduino Mega is utilized, which boasts
greater memory capacity. The sink node is also enhanced with a wireless SD shield and a similar ZigBee
radio module, allowing wireless communication with the Arduino Uno sensors of its assigned WSN.

Dwelling deeper into the WSN connection scheme, according to [117], three basic types of node
roles are identified. The coordinator is a key structural component during the WSN initiation, tasked
with setting up the conditions for its formation, including the selection of the operating channel,
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the assignment of a personal area network (PAN) identity (ID), and the establishment of a suitable
routing traffic plan. There can only be a single coordinator in each WSN; hence, for the system at
hand, the Arduino Mega is assigned this role during the field installation. In comparison, there can
exist multiple routers, which are intermediate nodes with routing properties, tasked with relaying
data from other nodes that cannot directly communicate with the coordinator due to long distances,
i.e., the end devices. The routers and end devices, for the described system, are the Arduino Uno nodes.

The Arduino Mega is also utilized as a gateway for transmitting the field data to the overseeing
fog device, through serial communication. With that said, the fog computing network is formed
by Raspberry Pis, each responsible for receiving and analyzing readings from near WSNs and then
relaying the data, if necessary, to the central cloud computing infrastructure using the local area
network, in this case the Third-Generation (3G) of mobile communication connectivity. Unlike
the Arduino devices, the Raspberry Pis have increased computational power that can be upgraded
with cloud elastic resources, by offloading cloud demands in close proximity to the WSNs [118].
Additionally, they are able to seamlessly connect/interact with the former, thereby making them
an ideal device for hosting fog-related processes.

Of course, there are many alternatives that can be employed to realize both the WSNs and the fog
computing network. For instance, consider the Banana Pis or Orange Pis [119]. Although these
are valid counter-proposals, the Arduino and Raspberry Pi devices were selected due to their extensive
documentation, low-cost peripherals, highly configurable nature, and facile intercommunication.
Similarly, the XBee modules, although they offer less reliability or range than other wireless antennas,
such as the LoRa-based antennas [120], the former were chosen due to their affordable character, ease
of programming, and low network and deployment cost, especially when considering large-scale,
heterogeneous, and geographically distributed installation sites. In any case, the adoption of
an alternative solution is strongly attainable since the elastic and extendable nature of the proposed
system allows for such modifications with ease. That being said, for convenience and to better
contextualize the economic aspects of the utilized hardware, Appendix A describes in more detail
the specifications of the incorporated micro-controllers, whereas Appendix B compares wireless
communication technologies.

3.3. Data Flow and Processing Methodology

The first phase of setting up the system, as depicted in Figure 2, involves the WSN initialization
stage, where all nodes are deployed and then join and form the WSN [41]. This stage refers only
to the WSN since it is assumed that the fog computing network and cloud computing infrastructure
are already fired up and running, awaiting new raw data.

The first to power-on is the ZigBee coordinator, which in turn initializes the remaining WSN
hardware. This is accomplished by initiating the protocol stack and performing an energy detection
scan [4] to obtain a list of secure potential channels. Thereafter, it will continue with an active
scan, where it chooses a free channel and enables the joining process, during which a routing plan
is established. Moreover, due to WSNs being vulnerable to exogenous environmental factors, the clocks
of the individual nodes experience de-synchronization. Hence, the proposed system encompasses
a synchronization period during which the nodes calculate their time offset and synchronize their
clocks accordingly, using as a reference point the coordinator’s time.

Upon completion of the above phase, the various nodes start sensing environmental data.
This occurs at regular intervals using their attached sensory modules. For the project at hand,
which is targeted at fire alertness, the sensors track temperature and humidity, both variables
critical to wildfire spreading. Conveniently, both come packed together in the DHT22 digital
temperature/humidity sensor (also named AM2302 and depicted in Figure A1).
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Figure 2. Flow chart of all processes taking place in the WSNs.

After a sensing period ends, the new data are transmitted towards the sink node over
the established routing paths. If the nodes are too far away to convey the data directly by themselves
(i.e., the coordinator is out of range), then they forward the data to their parent router. This check
is repeated on all nodes along the given route until the data reach the coordinator. For this process
to be reliable, the routers and the coordinator must continuously monitor the wireless channel
for incoming signals.

Upon data reception, the Arduino Mega adopts a new role, forming a gateway for connecting
the WSN with the fog computing network, comprised of several Raspberry Pis. For simplicity, these
are connected with their assigned Arduino Mega devices through serial connections. The Raspberry
Pis, as reported in Figure 3, listen to their serial channel for incoming data so as to initiate a connection.
Note that the Raspberry Pis may potentially communicate with one or more Arduino Mega devices,
collecting, in the second case, data from multiple WSNs.

The moment the Raspberry Pis receive a stream of data, they decide if they will perform
the necessary calculations themselves or forward them to the central server infrastructure.
This depends on the adopted implementation road, since the increased capabilities of the Raspberry
Pis allow for such modifications in their configuration to support customized solutions. For the
case study at hand, a simple distributed approach was considered; ergo, the fog devices’ processing
behavior was developed as follows. For every set of data packets received, a percentage of them
would be computed on the spot by the fog computing network and the rest would be forwarded
to the cloud computing infrastructure. In this way, the trafficking and computational load at the cloud
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servers would remain low and balanced by the fog devices, and so the system’s overall response time
would decrease.

Figure 3. Flow chart of all processes occurring in the cloud/fog side of the proposed system.

The last can be further explained considering that, as the data packets are transmitted along
the route, they are queued inside intermediate node buffers. The same occurs when the data reach
the cloud server. However, if the data arriving rate exceeds the processing rate of the server or the data
gets too many in number and too big in size, this will lead to the creation of network bottlenecks.
In turn, the response time of the system might increase dramatically, especially in cases where there
exist spikes and fluctuations in the sensed data, like in the cases of sudden fire spreading.

At any rate, when the sensed data are collected, computed, and analyzed, a system decision
is generated and a response report is created. In the first case (where the computation takes place
in the fog), the response is directly transmitted through the local area network to the end users’ devices.
Meanwhile, if the computation occurs in the cloud, the generated report travels backward towards
the corresponding fog devices and then to the end users that administrate the corresponding WSNs.

4. Evaluation

The current section validates the effectiveness of the presented cloud/fog architecture
and evaluates its adaptability in terms of reliable monitoring. To do so, an experimental prototype was
designed in a closed control laboratory environment in the facilities of the Ionian University, located
on Corfu Island.
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4.1. Experimentation Setup

The designed experimental prototype comprised 25 Arduino Uno Rev 3 nodes, six (6) Arduino
Mega 2560 nodes, and three (3) Raspberry Pi 3 Model B fog nodes (for more details about these models
consult the Appendix A). In particular, six WSNs were considered, each containing a various number
of Arduino Uno devices and an Arduino Mega coordinator/sink node, along with their arsenal of
sensory and communication modules. Each sink node was linked with a serial cable to a Raspberry Pi.
Following, the three fog devices communicated via 3G with the central cloud infrastructure, comprised
of a virtual machine (VM) server with its accompanying database and storage, located in a different
building of the Ionian University’s facilities, as depicted in Figure 4. The exact setup of the WSNs
in conjunction with the corresponding fog devices is outlined in Table 1. In fact, the number of sensory
nodes varies among the WSNs in order to create diversified traffic load case scenarios (from low to high)
at the respected fog devices and obtain a more objective assessment of their conforming capabilities.

Figure 4. The experimental prototype system setup, programmed and installed in different locations of
the Ionian University’s facilities in Corfu Town.

Table 1. Deployment setup of the WSNs and fog network

WSN ID Number of Sensory Nodes Fog Device

One (1) Eight (8) One (1)
Two (2) Two (2) Two (2)

Three (3) Three (3) Three (3)
Four (4) Three (3) Two (2)
Five (5) Five (5) One (1)
Six (6) Four (4) One (1)

For simplicity, it was assumed that the WSNs are composed of their coordinator and all sensory
nodes were assigned the role of routers in the constructed PANs, leading to more scalability. The sensed
measurements along with the appropriate PAN ID were encapsulated inside data packets at regular
intervals with a +/−5 s of random increment, in order to force diversity in the packet generation rate
and minimize the appearance of packet collisions. In addition, the Arduino Uno timestamped each
packet and encapsulated their own medium access control (MAC) address. Finally, the packets were
marked with a unique ID and flagged based on the processing location (i.e., the fog or the cloud).
The complete structure of a data packet is depicted in the upper part of Figure 4.
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Each Arduino Mega stored the incoming information inside its SD memory card and then
forwarded the data packet its assigned Raspberry Pi. The latter stochastically handled the incoming
sensed data, based on a probability function, deciding whether to process the data locally or convey
the data to the remote cloud server. More information regarding the server’s resources can be found
in Appendix A.

Both fog and cloud performed the same processing by extracting the sensed data and calculating
the average values for each discrete variable. However, if the process took place directly at
the fog network the data packet was flagged with a zero (0), whereas if it was carried out at
the cloud, it was flagged with a one (1). Each data packet was processed once based on its
unique identifier. Then the procured data (e.g., average temperature and humidity) were used
to overwrite the corresponding fields in the data packet, while at the same time being stored in separate
database logs and compatible formats for future reference.

At this point, it is important to state that data probity validation occurs for each data packet
received to ensure that no data corruption exists and to exclude values that are miscalculated.
Initially, the sensory and sink nodes’ antennas perform a checksum on the data packets
to verify their composition. Then, upon reception of a new data packet, the Raspberry Pis also
check the structural integrity of the packet. First, based on the ID and PAN ID fields they
cross-validate the origin of the data packet based on their assigned WSNs and previous observations.
Then the measurement fields (i.e., the HUMIDITY and temperature) are assessed for their correctness,
e.g., they must humidity be float numbers with a defined number of digits. Additionally, to verify
that packets with information losses or distorted data are not taken into consideration, the fog devices
inspect the format of all fields that must meet certain criteria; e.g., the ID and MAC ADDRESS
fields must always process a specific sequence of characters. Data packets that infringe these
conditions are automatically discarded. By embedding such mechanics, the fog devices are able
to filter the data and offer basic data validation. Of course, there are other more sophisticated
ways to verify the data integrity and offer reliability. For example, future work will include
the cross-validation of the data based on pre-defined thresholds regarding the expected environmental
and seasonal conditions in the monitored lands. For instance, during the summer pic a lower
bound of 15 ◦C could be enforced and data packets that violate this constraint will be automatically
dropped. Correspondingly, an upper bound of 50 ◦C could be placed and when violated the fog
devices will assess the credibility of the reading based on the measurements previously obtained
by the other sensory nodes in the immediate neighborhood. If multiple readings are received
in sequence that record extreme heat, especially when originated in multiple sources, then the alarm
will be raised appropriately.

4.2. Experimentation Results

For the presented prototype, response time is one of the most important performance
metrics for timely monitoring and accurate correlation, and is computed as the Round Trip Time

(RTT), i.e., the time that elapses between the moment a sensory node sends a new data packet
and the moment it receives a reply from the cloud/fog system. In other words, the RTT is the sum
of network and processing delays, which can be better observed in Figure 5, where the arrows
depict the transmissions and the gray boxes illustrate the process time at each device. Note that
Figure 5 represents the simplest scenario where the sensor is situated in the sink node’s immediate
neighborhood, i.e., one hop away.
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Figure 5. Calculation of the RTT, for both cloud and fog computing scenarios. The gray boxes
symbolize the processing times along the route, whereas the arrows the transmissions that occur.

In detail, at time t0 the Arduino Uno generates a data packet, hereafter called Data, containing
the newly obtained measurements and their timestamp, which will be forwarded to the Arduino
Mega at t1, when the channel becomes available. Upon reception from the Arduino Mega, the Data

undergoes some processing. When this is over, they are sent to the overseeing Raspberry Pi. Once
there, the fog device decides with a probability P as to where the data process will eventuate, i.e,
locally or remotely.

In the former case, the Raspberry Pi decodes the Data, processes the information, and extracts
the average values, computing all relative information gathered up until that moment from
the specific WSN. The average values are encapsulated into a new data packet, named F_Data, replacing
the corresponding values of the received Data, but keeping intact the values of the ID, TIMESTAMP,
and MAC_ADDRESS fields. Then the F_Data is flagged accordingly, by replacing the value of
the FLAG field, in order for the system to acknowledge the fog network as the processing location.
Next, the F_Data begins its journey back towards the sensor node that generated the measurements.
At the coordinator it stays a period equal to the time it takes for the Arduino Mega to read
the MAC_ADDRESS and decide the route the F_Data must take to reach the respective Arduino Uno.
Finally, it is forwarded to the last, which reads the TIMESTAMP field and compares it to its current
clock, calculating in this way the total RTT. Note again that in order for this procedure to be accurate
there exists a simple clock synchronization method enforced at regular intervals.

In contrast, during the latter case, the Raspberry Pi conveys the data packet to the remote cloud
server VM. The server performs similar actions to the ones described earlier. However, the information
is now encoded into a data packet, named C_Data, and flagged with a value indicating
the corresponding location, i.e., the cloud infrastructure. Similarly, the C_Data then travels backward
the network route until it reaches the appropriate Arduino Uno, which, at that point calculates the RTT.

In Figure 5, the fog processing scenario is depicted through straight-arrow transmissions, whereas
the cloud processing scenario is illustrated through dotted-arrow transmissions. Notice that the F_Data
reaches the Arduino Uno in tm, while the C_Data arrives at tn, where tn = tm + DT. The DT

is the difference between the two calculated RTTs, and is viewed as a measure estimate of the system’s
performance in terms of response time for multiple values of P.

Following the last assumption, Figure 6 encapsulates the results of the approach by presenting
the average achieved RTT, as a function of P, for different experimental runs with varying time
intervals regarding the data packet generation rate. The error bars demonstrate the upper and lower
95% confidence intervals. Clearly, for all depicted cases as P increases the RTT decreases. In fact,
starting from the extreme scenario, where all processing occurs in the remote cloud server, i.e., for P = 0,
the average RTT ≃ 1160 ms. Then, for every increment in P, more operations are performed in the fog



Energies 2020, 13, 3693 16 of 35

network and so the RTT steadily drops, reaching its minimum value for the opposing extreme scenario,
where all processing takes place directly in the fog network, i.e., for P = 1 the average RTT ≃ 1080 ms.
Any spikes in the depicted plots are attributed to cloud/fog processing pulsations and delays posed
by the ZigBee CSMA/CA protocol or other network intermediates during experimentation. What is
more, no clear tendency can be derived by the abatement in the time interval period between sensory
readings, eliciting that the fog network successfully coped with the incoming traffic in all circumstances.
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Figure 6. Experimental results of the system’s total mean RTT as a function of the probability P

for different data packet generation intervals, i.e., for 25 s, 20 s, 15 s, 10 s, and 5 s. The error bars
represent the upper and lower 95% confidence intervals.

To further highlight the latency reduction behavior, Figure 7 decomposes each depicted case of
Figure 6, by showcasing the mean RTT from the viewpoint of the involved fog devices. Even at a lower
level of illustration the behavior still holds, proving once more the response time reduction across
all fog devices as probability P is increased. To complete the system’s RTT deconstruction Figure 8
offers a microscopic view of the system’s RTT decaying behavior by encasing the same results from
the scope of the deployed WSNs. In all six depicted cases the particular decreasing behavior is verified
once more.

Finally, it is noteworthy that the number of WSNs and eventually of sensory nodes (according
to Table 1) does not impact the responsiveness. Actually, all three Raspberry Pis successfully managed
to handle the incoming traffic load, and thus it is further assumed that the RTT is affected by other
processes running at the background during the experiment at the cloud or the fog devices.
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Figure 7. Experimental results of the system’s total mean RTT value, through the viewpoint of the
involved fog devices. The error bars correspond to the 95% upper and lower confidence intervals.
(a) Interval: 25,000 (in ms). (b) Interval: 20,000 (in ms). (c) Interval: 15,000 (in ms). (d) Interval: 10,000
(in ms). (e) Interval: 5000 (in ms).
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Figure 8. Experimental results regarding the mean RTT, through the scope of the deployed WSNs.
The error bars refer to the upper and lower 95% confidence intervals. (a) Interval: 25,000 (in ms).
(b) Interval: 20,000 (in ms). (c) Interval: 15,000 (in ms). (d) Interval: 10,000 (in ms). (e) Interval: 5000
(in ms).

5. System Conformation Based on Wildfire Risk Forecasting

To demonstrate the potential of the presented solution, which does not impose the irreducible
network delays associated with conventional environmental IoT systems, whilst remaining energy
efficient, the prototype is put against one of Greece’s most hazardous states of emergency, i.e., the
wildfires, to determine how well it can react and adapt its behavior to deal with a potential crisis.
Additionally, a user-friendly designed GUI for data visualization and fire risk forecasting is presented.

5.1. The Case of Greece’s Wildfires

According to Greece’s Fire Brigade’s (GFB) official statistics, 8006 forest fires were recorded during
the year 2018 alone [121], while for 2019 the number is much higher, reaching 9502 fire fronts. The year
2007, however, was reportedly the worst of the last thirty years, since the country, during the summer,
was hit by three consecutive heat waves (over 46 ◦C each), which coupled with strong winds and low
relative humidity (around 9%), resulted in forest fires breaking out all over Greece. In fact, according
to the European Space Agency (ESA), Greece has witnessed more wildfire activity during the summer
of 2007 than other European countries have experienced over the last decade [122]. This led to 11,996
forest fires by the end of the year, burning over 675,000 acres of land, which was a European record
for that period. To put this in more perspective, just on Corfu Island, an area of barely 236 square
miles, in the year 2019 alone, 171 wildfires were recorded, burning around 137.5 acres of land, a great
percentage of which consisted of farming lands and forests [121].

To deal with the fire peril and increase the degree of readiness, the GSCP during the firefighting
period (from June the 1st to October the 31st), issues a daily map depicting the fire risk degree
regarding all regions of Greece for the following day. In this way, the GSCP warns the corresponding
authorities to prepare for the possibility of environment-threatening fire events in their respective
regions and the citizens to stay on alert. The map is color-coded based on a five risk rate scale, starting
from green, which indicates low risk, and up to red, which raises alarm to the highest possible level.

Having this information available is important because it allows for targeted adjustments
to the proposed system’s configuration, in order to maximize the effectiveness in detecting such
catastrophic events. Consequently, for the purposes of the current experiment the cloud/fog system
was programmed to autonomously adapt its behavior based on the risk degree scale regarding Corfu
Island, where the experiment takes place. Figure 9 describes this procedure in depth.
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Figure 9. Steps for retrieving the risk degree and relaying the information to a WSN.

Once per day, during the early hours, when the map has been already published, the Raspberry
Pis connect to the website of the GSCP (step a in Figure 9), which holds the information regarding
the updated map [123]. Then they extract the specific risk degree regarding Corfu Island. To do
so, the fog devices recognize the particular pixels that form Corfu on the map and retrieve their
RGB color-code. For example, in Figure 9, where the fire risk for Corfu is set to “medium”, the RGB
color-code is determined as “#A8CAE” (i.e., step b). By reading the particular value, the Raspberry Pis
immediately assess, according to the fire risk degree scale, the risk to be at level two (i.e., step c).
After obtaining this value, they relay the information to their assigned Arduino Mega devices
(i.e., step d), which in turn broadcast the information to their WSN, as illustrated in step e of Figure 9.

By the end of this procedure, all WSNs’ nodes have received the fire risk degree and can modify
their operation accordingly. Specifically, in order to be energy efficient, during the experiment,
the sensors mapped their sampling behavior based on the risk degree that was fed into the WSNs
by the fog devices. As such, when the sensory nodes received a degree of one (1), the interval
period that intervened between two successive sensing periods was stretched to 25 s, with the goal
of preserving battery energy and ensuring that communication bandwidth is not wasted, since there
was no need for heavy monitoring at the time. For every degree that was added to the fire risk scale,
however, the particular interval was autonomously reduced by 5 s. In this way, the generation rate of
the packets was sped up as the risk got higher and continuous monitoring was required.

Table 2 captures the described behavior by presenting the interval period for every fire risk
degree along with the probability P that drives the fog processing. In order to keep the main cloud
infrastructure informed about the general ongoing situation in the fields, even in cases where the fire
risk degree is five, a small percentage of the generated packages are still transmitted to the cloud server.

Table 2. System behavior under the different degrees of the Fire Risk.

Fire Risk Degree Interval Period Value of P

One (1) 25 s 5%
Two (2) 20 s 25%

Three (3) 15 s 50%
Four (4) 10 s 75%
Five (5) 5 s 95%

To test its performance the IoT system was instructed to retrieve each fire risk degree regarding
Corfu, for the firefighting period of 2019. Ergo, 153 values corresponding to the five (5) months, were
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extracted and used as an input. The upper part of Figure 10 illustrates these values organized per
month. Note that only once the risk achieved a degree of four (4), while no days existed that reached
the value of five (5). Having these values stored, made it practicable to use them as system parameters.
Thus, each day was represented with twenty (20) min of experimentation time.
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Figure 10. The fire risk degree (upper part) versus the average RTT in ms (bottom part), per day during
the firefighting season of 2019.

The system’s alertness encapsulates perfectly the change in the fire risk degrees as time goes on.
Specifically, the system’s obtained average RTT over all six deployed WSNs, is adjusted autonomously
by pushing/pulling functionality towards/from the fog computing network, without human
intervention. The result of this procedure is shown in the bottom part of Figure 10. In fact, the average
RTT is reduced as the degrees climb the fire risk scale, enabling faster field-health analysis. In fact,
it reaches its minimum value on the day that reported a fire risk degree of four (4), i.e., RTT ≤ 1110
ms, during the pic of the firefighting season. In comparison, when the fire risk is one (1), most notably
recorded during the beginning and ending of the firefighting season, the mean RTT is maximized,
i.e., RTT ≃ 1160 ms, since most processing activity befalls the cloud server and there is no need
for heavy field monitoring.

Regarding the traffic load, i.e., the data packet generation rate here, the system dynamically adapts
its sampling periods, as validated in the upper part of Figure 11. Ergo, for low risk, the data packet
generation rate is slowed down to save communication bandwidth and conserve precious energy,
untimely elongating the WSNs’ lifespan. The last is perfectly mirrored in the bottom part of Figure 12,
where the energy consumption is visualized per day (i.e., for the 20 min experimental cycle here). This
equates to the sum of the energy spent by all sensory modules, i.e., the temperature/humidity sensor
to generate a new reading or not, plus the energy consumed by all antennas for their two alternate
states, i.e., for transmission or idle respectively. Specifically, the DHT22 when in standby mode uses
50 uA while in reading mode 1.5 mA [124]. As for the XBee antenna, it consumes 31 mA in idle
state and 120 mA in transmission state, respectively [125]. Likewise, as the degrees rise, the demand
for higher precision impels the system to prioritize the need for continuous wildfire monitoring,
thereby increasing the packet generation and transmission rates. In particular, for fire risk equal to one
(1) the number of data packets per day is clustered around 900, translating to roughly 2.567 kJ of energy
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consumption. Contrarily, for the day reporting a degree of four (4), the packet number is launched
to almost double and close to 1800, leading to increased energy consumption, which reports a value of
around 2.572 kJ.
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Figure 11. The traffic load, i.e., the number of transmitted packets (upper part), versus
the corresponding energy consumption (bottom part) in kJ, per day of the firefighting season of 2019.
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Figure 12. The achieved throughput in percent, per day during the firefighting season of 2019.

Although the aforementioned differences, especially in regards to energy consumption, at first
glance might not seem crucial, it is understandable that under a real-world field deployment, where
the number of sensory devices could grow to hundreds or even thousands of nodes and the time
period will be expanded to real days, then the number of transmissions will greatly increase.
However, the distributed fog processing methods adopted here will significantly reduce the RTT

when compared to cloud-only approaches, especially considering the long distances that data packets
will have to transverse to reach the remote cloud server from the field sites. In conjunction with
multi-hop topologies and CSMA/CA re-transmissions and carrier sensing waiting times, it is obvious
that the gap between the energy consumption during a low-risk day and an extreme-risk day will also
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be vastly larger. Moreover, in a real-world scenario, many of the WSNs’ nodes will be assigned the role
of end devices according to the ZigBee standard. Ergo, they will be permitted to enter “sleep” mode,
by powering-off their antennas between transmissions to save additional battery usage. The network’s
lifetime can then be extended until the point of the first router or sink failure, which can jeopardize
the WSN’s connectivity, cutting access to the sink or fog network respectively. Nevertheless, this
can also be addressed with energy-replenishment and harvesting tools, like solar-panel power-banks.
Besides, ZigBee embeds re-routing methods that can promptly establish a new routing plan among
the routers. With that said, it is possible to estimate the lifetime, by computing the average energy
consumption per router/sink for the different fire risk degrees (using past observations), so as to predict
the possible time of failure based on their residual battery energy from the previous day.

To verify that the rise in data packet traffic load does not sever the system’s credibility, Figure 12
depicts the total throughput for each day of the experiment, based on the number of successfully
retrieved data packet IDs. In most circumstances, even during heavy network traffic, the achievable
throughput fluctuates around 80%. A few exceptions (i.e., throughput drops) are clearly attributed
to the underlying CSMA/CA protocol. This finding is crucial because it enables the almost
real-time forecasting/detection of a fire incident, with minimum loss of data, allowing for accurate
monitoring and early notification of the authorities in case of fire ignition, in order to launch
appropriate countermeasures that will mitigate the danger. Additionally, it is clear that the system can
effectively cope with the computational burden, achieving high network performance, and retaining
its accountability intact.

5.2. F.E.MO.S.: The Fog-Assisted Environmental Monitoring System

A key factor for truly providing an end-to-end IoT solution is the ability to visualize the data
in a user-friendly manner through a proper GUI. Besides, as already mentioned the whole purpose
of the considered monitoring cloud/fog system is to offer end users in the application layer
the opportunity to quickly access and make sense of the field data, informing them about the ongoing
status and alerting them regarding potential environmental hazards, like probable wildfire ignitions.
The necessity becomes even more prevalent when the monitored lands are geographically scattered,
with potentially diversified exposure to elements, altitudes, weather conditions, etc., and so the sensed
data may vary substantially among the WSNs, resulting in complexities that jeopardize the decision
making process.

To this end, a simple, yet accurate and extendable, web application has been developed
for visualizing the streams of data arriving from either the cloud or the fog, suitably named
the ”Fog-assisted Environmental Monitoring System”, or F.E.MO.S. in short. Both the server
and the Raspberry Pis feed into F.E.MO.S. In real-time the captured environmental readings from
the WSNs, and then F.E.MO.S. generates proper data-gram charts of their behavior in relation to time.
Figure 13 depicts the web GUI dashboard of the F.E.MO.S. The dashboard is separated into panels,
which are as follows.

Starting from the top central panel, namely, ”Data Visualization”, this is where the generated
field data are plotted and custom-made figures are created regarding the chosen environmental
parameters in relation to time. For the demo prototype system, the possible parameters to choose
from are temperature (in ◦C ) and relative humidity (in %). By default, F.E.MO.S. will plot the mean
values of both, computed by the accumulated data from all installed WSN nodes, to procure an overall
overview of the prevailing weather conditions in the deployment sites during the latest week, as is
the case in Figure 13. Clearly, the generated plots are of high resolution and showcase the precision
of the sensory nodes. Next to the bottom left corner of the panel, an indication of the current
energy consumption (in kJ) is also provided to inform the stakeholders about the nodes’ power
utilization and help them in cases where energy replenishment is required. This value is updated on
an hourly basis.
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Figure 13. The web GUI dashboard of F.E.MO.S.

To customize the plots the left top panel, namely, ”Parameter Editor”, enables the users
to configure the data visualization. In this respect, they may choose from a plethora of available
options, to create targeted filtered queries and generate appropriate plots. The first option determines
the type of system entity. There are mainly three types, these being the fog computing network,
the deployed WSNs, or the sensor nodes themselves. However, in all three, the user is free to select
either an averaged view of all sensory readings or further filter the data source. Ergo, he/she can
designate which specific Raspberry Pi, WSN, or sensory node to explore respectively. A complete map
of the system setup is provided, in the form of a Table, named “System Configuration”, below the
parameter editor, so as to assist the user in searching the appropriate device ID. Moreover, to access
past measurement logs, a precise time period for data retrieval can be specified, in an hour/date format.
Finally, a separate drop-down field is attributed to choosing the desired environmental parameter
to populate the data visualization panel. In Figure 13, a simple user input example is shown, just
before data generation.

While the aforementioned panels focused only on the presentation of the raw data, it was also
considered imperative to augment F.E.MO.S. with cognition behavior, by offering semantic correlation
of the readings in terms of wildfire forecasting, and thus highlight its potential in sensitive and timely
decision-making procedures. To this end, the right top panel, suitably named the ”Fire Risk Forecaster”,
presents the fire risk in each separate deployed WSN, using a color-coded, five-degree scale. To evaluate
the risk, the CBI is utilized here [24], which is based solely on weather conditions. As such, CBI uses
the air temperature and relative humidity to calculate in real-time a numerical index of the fire danger
at the corresponding WSN sites, according to the following formula:

CBI =
((110 − 1.373 × RH)− 0.54 × (10.20 − T))× (124 × 10−0.0142×RH)

60
, (1)
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where T is the current atmospheric temperature (in ◦C) and RH is the current relative humidity
(in %). That number is then equated to the fire risk severity of either low, moderate, high, very high,
or extreme, and mapped to the F.E.MO.S. color-coded scale mentioned earlier based on Table 3.

Table 3. F.E.MO.S. fire risk forecaster scale

Chandler Burning Index Label & Color Code Fire Risk Forecasting Rating

CBI < 50 LOW (Green) 1
50 ≤ CBI < 75 MODERATE (Blue) 2
75 ≤ CBI < 90 HIGH (Yellow) 3

90 ≤ CBI ≤ 97.5 VERY HIGH (Orange) 4
CBI > 97.5 EXTREME (Red) 5

Having this information available in real-time is exceptionally important, since it facilitates
the dynamic conformation of the cloud/fog system to meet the requirements for greater or
lesser environmental monitoring, as explained in Section 5.1. Moreover, it enables the early
notification of the stakeholders and respective authorities for a possible fire threatening event at
the monitored lands, allowing for timely interventions and targeted countermeasures (e.g., the launch
of water-spraying mechanisms). Actually, to further increase mobilization, when the fire risk forecaster
reports a fire risk rating equal or greater than three (3) at any given WSN (i.e., for CBI ≥ 75), F.E.MO.S.
automatically generates and sends alerts to the registered email addresses of the responsible parties.
An example of two such notifications is shown in Figure 14 for the case where the fire risk forecasting
hits the severity score of four (4) and five (5), i.e., for “very high” and ”extreme” danger respectively.

Similarly, F.E.MO.S. also provides in a separate panel the corresponding alert indication.
In Figure 13, it is observable that all WSNs have a fire risk score of one (1), suitably highlighted
with the color green. As a result, the indication is also a green check marker symbol, declaring that
the ongoing situation in the WSN deployment sites is safe, and so there is no need for alarm. Contrarily,
in Figure 15, an example of how a caution warning alert indication will look like in the case where
the fire risk in the WSNs reaches the yellow indication, i.e., ”high”, is given, by zooming in on the fire
risk forecaster and the corresponding notification panel of F.E.MO.S.

(a) Very high fire risk (b) Extreme fire risk
Figure 14. F.E.MO.S. automated notification alert messages for the cases of (a) very high and (b)
extreme fire risk forecasting.
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Figure 15. F.E.MO.S. indication regarding the case of a high fire risk scenario in one or more WSNs.

Lastly, for the users’ convenience, F.E.MO.S. also provides a separate panel containing a map
with all information regarding the marked deployment sites, organized in different layers that follow
the considered three-layered system network architecture. The map is scrollable and flexible to allow
users to explore the installation sites even when the system entities are situated in geographically
different or remote locations, with long distances among them. An instance of the map panel, regarding
the deployment sites of the prototype system, can be seen in the bottom part of Figure 13.

6. Conclusions and Future Directions

A hybrid, three-layered system architecture for smart and timely environmental monitoring,
embedding affordable IoT and WSN appliances, while in its core following a cloud/fog computing
approach, was presented here. The architecture was then extensively studied and its data flow
functions were analyzed in depth, starting from the field nodes and up to the moment the information
was delivered to the appropriate parties. Furthermore, the current work reported on the design
and implementation of a demo prototype that can easily conform its functionality to address critical
environmental challenges, based on the described architecture. To this end, a hardware/software
solution was also proposed that is affordable and suitable for fast prototyping, while utilizing highly
customizable components and controllers capable of networking, communication, measurement
sensing, and processing.

Moreover, extensive experimentation was conducted, in controlled laboratory conditions
in the facilities of the Ionian University, to evaluate the prototype’s performance and highlight
its alertness-conforming characteristics. A popular metric for precision environmental monitoring
was considered, i.e, the response time. Initial experimentation to investigate the system’s elements
interactions and seamless adaptability captured the expected behavior and validated its effectiveness
in dealing with time-sensitive agricultural and environmental applications. In all cases presented,
the average response time was reduced as more operations took place in the intermediate fog
computing network. That being said, for the two extreme cases, i.e., in the cloud-only processing
and fog-only processing, the average RTT values were 1160 ms and 1080 ms respectively, indicating
an overall 80 ms improvement across all system elements without exception.

To further highlight its performance, the developed prototype was put to the test under a real case
scenario involving one of Greece’s most notable environmental hazards, the wildfires. Again the results
support the research claims, as it is shown that the system is able to adapt its operation and alertness,
sufficiently addressing the problem, based on the five-degree fire risk scale retrieved from the GSCP.
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Hence, it was able to reserve communication bandwidth (on average ≃900 data packets) and decrease
energy consumption, when the fire risk was low, all the while increasing its monitoring precision,
effectively raising its sensory readings to almost the double (i.e., ≃1800 data packets), when there
existed high probability of fire ignition, achieving in most cases an average throughput over 80%.

To contextualize the system outputs and augment the data visualization process, a user-driven
web-based GUI was also developed to accompany the prototype and allow users to proactively
partake in the monitoring process. F.E.MO.S., as is its name, provides friendly panels to enable
the filtering of the raw data and the flexible presentation of the monitored environmental conditions
and system entities. Actually, it even goes a step further, by enhancing the decision-making process
and offering real-time CBI-based fire risk forecasting, considering the prevailing weather conditions
at each separate WSN deployment site. To increase alertness and actuate higher mobilization,
targeted alert notifications are generated automatically in cases of emergency, while systematic logs
are maintained to successfully correlate the data and allow the stakeholders to efficiently keep track of
the status and health of the monitored lands and energy consumption levels of the system modules.

The paper also focused on the prototype’s limitations. That being so, the biggest drawback
of the approach is the lack of actual large-scale deployment in a real-world environment, which
due to the poor network connectivity, power limitations, hostile environmental conditions,
multi-hop routing, etc., will certainly affect the credibility and reliability of the sensor readings.
However, the system in its current form can act as a proof-of-concept testbed, to fast test various other
parameters or technologies prior to field deployment and investigate more deeply their implications,
without endangering hardware/software elements. Moreover, it can significantly boost system
debugging and offer insights regarding cases where device/module failures or data corruptions occur.
The last is considered critical for the successful adoption of the approach; therefore, appropriate
actions must also be undertaken to validate the accountability and credibility of the measured
readings with the adoption of appropriate filtering and threshold methods. Other constraints, relating
to automation, diversified network topologies, sensor clock synchronization, power utilization, and so
on, are also taken into consideration during the prototype’s design process, through proper software
solutions and engineering decisions. The latter, although custom-made, remain generic and flexible,
following established practices, and so can be easily modified to fit and include other appliances.
Nevertheless, more research must be conducted towards the direction of securing these functionalities
and augmenting their operations, even under extreme scenarios, e.g., during an actual fire outbreak.
Another subject that raises attention relates to the optimal placement of the sensor nodes. For the
case at hand, this was not necessary; however, during field deployment, this aspect will definitely
go a long way towards alleviating possible WSN bottlenecks, routing issues, transmission collisions,
and ultimately energy consumption. The same applies in the case where a proper subset of sensor nodes
(backbone network) is discovered for each WSN, e.g., using a dominating set methodology, to boost
information collection and dissemination. Obviously, tackling these challenges and limitations will
greatly improve the system’s overall performance, especially when considering that field deployment
will involve a large number of sensory nodes.

With that being said, future guidelines will explore the system’s standardization and its large-scale
deployment in outdoor areas, where its activity will be extensively recorded and documented, as well
as assessed in comparison with alternative techniques and systems. In fact, through mathematical
formulation, it is feasible to identify additional crucial climate variables that lead to the formation
of wildfire devastating events, in order to implement targeted field interventions. To this end,
substitute fire burning indexes, such as the FWI, will be also researched, and their accuracies will
be evaluated. Moreover, with a few tweaks in the code, the considered cloud/fog prototype system
and F.E.MO.S. could be easily configured to support additional sensor modalities, and by extension
alternative agricultural and environmental applications. In this respect, they will be enriched with
extra monitoring tools (e.g., for determining smoke/gas emissions, soil moisture, wind velocity,
pH levels, and rain intensity), which among other things, can also target or detect other environmentally
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hazardous events, for instance, earthquakes, rain floods, volcanic eruptions, tree deaths, pest
infestations, etc. To manage the huge amount of raw data acquired by these additions, machine learning
algorithms will be investigated, which coupled with the F.E.MO.S. forecasting metrics will lead to new
prediction models, fostering high accuracy and enhanced decision-support mechanics. Furthermore,
alternative wireless technologies (e.g., LoRa, NB-IoT, etc.) and hardware controllers (e.g., Orange
Pis) will be tested to discover the optimum configuration. Great effort will be put toward providing
a complete, low-cost IoT solution, reflecting the daily needs and accomplishing alignment with
the expectations of future smart agriculture and environmental protection and preservation.
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CPU Central Processing Unit
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ESA European Space Agency
F Simple Fire Danger Index
FDI Fire Danger Index
FFDI Forest Fire Danger Index
F.E.MO.S. Fog-Assisted Environmental Monitoring System
FWI Fire Weather Index
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PAN Personal Area Network
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SD Secure Digital
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WSN Wireless Sensor Network

Appendix A. The Prototype’s Utilized Hardware and Software Specifications

The utilized hardware micro-controllers for the design of the experimental cloud/fog IoT
prototype include Arduino Uno, Arduino Mega, and Raspberry Pi devices. The current appendix
encloses detailed information regarding technical specifications of these technologies, their selected
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models, and their accompanying modules, in addition to the resources utilized by the remote cloud
server VM.

• Arduino Uno: In the current project implementation, the considered WSN sensors consist of
an Arduino Uno Rev. 3, which is built on top of the Atmel ATmega328P micro-controller. This is in
turn enhanced with a Digi XBee-PRO S2C ZigBee module [116] for wireless communication.
The sensors were equipped with a DHT22 sensory module which is able to calculate
the temperature in the scale of −40 ◦C to 80 ◦C, with a ±5 ◦C inaccuracy, and assess the humidity
atmospheric levels in a scale of 0% to 100%, with an accuracy deviation between 2% and 5%.

• Arduino Mega: For the programming of the WSNs’ sink nodes, an Arduino Mega 2560
micro-controller board was chosen, which is based on the ATmega2560. The sink nodes were
augmented with communication capabilities using a wireless SD shield and a Digi XBee-PRO S2C
module. They were also equipped with an SD memory card to save logs regarding the incoming
readings. Moreover, they serially forwarded the data packets to their overseeing Raspberry Pi at
a data rate of 115,200 bps.

• Raspberry Pi Model B: The fog devices composing the second hierarchy layer of the system’s
architecture, correspond to Raspberry Pis 3 Model B. This model was chosen due to its low-cost
and low-power consumption attributes and its ability for wireless and serial connectivity.
Essentially it is a small computer board that supports a number of different operating systems.
For the purposes of current work, the Debian-based Linux operating system, named “Raspbian”,
was used.

• Cloud Server VM: The cloud server runs on a Unix-based VM, with a four-core central processing
unit (CPU) and 4 GB of random access memory (RAM), which is part of the Ionian University’s
central cloud data center infrastructure, capable of high-speed computation and data transmission.

To put the aforementioned technologies in more perspective, Table A1 enlists technical
specifications of the three micro-controller boards used, whereas Figure A1 depicts them after
their assembly.

Table A1. Technical specifications of the devices used in this paper for the realization of the WSNs
and fog computing network.

Specification Arduino Uno Rev 3 [126] Arduino Mega 2560 [127] Raspberry Pi 3 Model B [128]

Microcontroller ATmega328P ATmega2560 Broadcom BCM2837 64 bit

Connectivity - -
Bluetooth 4.1 Classic/Low Energy, CSI,

10/100 Ethernet, 2.4 GHz 802.11b/g/n wireless
RAM 2 KB SRAM, 32 KB Flash Memory 8 KB SRAM, 256 KB Flash Memory 1GB LPDDR2 (900 MHz)
Pins 14 (of which 6 provide PWM output) 54 (of which 14 provide PWM output) 40-pin GPIO header
CPU Intel Quark (x86) 16 MHz Intel Quark (x86) 16 MHz 4 × ARM Cortex-A53, 1.2 GHz
GPU - - Broadcom VideoCore IV @ 250 MHz

MSRP ≃20 c ≃35 c ≃40 c

Figure A1. From left to right, the utilized Arduino Uno with the attached Digi XBee-PRO S2C module
and DHT22 Temperature and Humidity Sensor, the Arduino Mega with its Digi XBee-PRO S2C module
and microSD card slot, and the Raspberry Pi 3 Model B enclosed in a protective case.

Appendix B. Comparison of Existing Wireless Technologies

The current appendix contains the comparisons of alternative wireless technologies in order
to showcase the affordable character of the adopted approach in the current work and propose
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alternative solutions that can easily be incorporated in future system alterations. As such, Table A2
compares various communication technologies and their characteristics, including the utilized ZigBee.

Table A2. Wireless technologies comparison table [25,58,129–133].

Wireless Technology Range Security Deployment Cost Power Usage Maximum Data Rate

Zigbee ≤100 m LOW LOW LOW 250 Kbps
LoRa ≤20 Km HIGH LOW LOW 50 Kbps

NB-IoT ≤10 Km HIGH HIGH HIGH 200 Kbps
Sigfox ≤50 Km HIGH MEDIUM MEDIUM 100 Bps

BLuetooth ≤50 m HIGH LOW HIGH 2 Mbps
LTE ≤30 Km HIGH MEDIUM MEDIUM 1 Mbps

Z-Wave ≤100 m LOW MEDIUM LOW 100 Kbps
Weigtless ≤5 km HIGH LOW MEDIUM 100 Kbps
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