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Abstract

Collaborative and distributed applications, such as dynamic coalitions and virtualized grid comput-
ing, often require integrating access control policies of collaborating parties. Such an integration must
be able to support complex authorization specifications and the fine-grained integration requirements
that the various parties may have. In this paper, we introduce an algebra for fine-grained integration of
sophisticated policies. The algebra is able to support the specification of a large variety of integration
constraints. To assess the expressive power of our algebra, we prove its completeness and minimality.
We then propose a framework that uses the algebra for the fine-grained integration of policies expressed
in XACML. We also present a methodology for generating the actual integrated XACML policy, based
on the notion of Multi-Terminal Binary Decision Diagrams.

1 Introduction

Many distributed applications such as dynamic coalitions and virtual organizations need to integrate and
share resources, and these integration and sharing will require the integration of access control policies.
In order to define a common policy for resources jointly owned by multiple parties applications may be
required to combine policies from different sources into a single policy. Even in a single organization, there
could be multiple policy authoring units. If two different branches of an organization have different or
even conflicting access control policies, what policy should the organization as a whole adopt? If one policy
allows the access to certain resources, but another policy denies such access, how can they be composed into
a coherent whole? Approaches to policy integration are also crucial when dealing with large information
systems. In such cases, the development of integrated policies may be the product of a bottom-up process
under which policy requirements are elicited from different sectors of the organization, formalized in some
access control language, and then integrated into a global access control policy.

When dealing with policy integration, it is well known that no single integration strategy works for every
possible situation, and the exact strategy to adopt depends on the requirements by the applications and the
involved parties. An effective policy integration mechanism should thus be able to support a flexible fine-
grained policy integration strategy capable of handling complex integration specifications. Some relevant
characteristics of such an integration strategy are as follows. First, it should be able to support 3-valued
policies. A three-valued policy may allow a request, deny a request, or not make a decision about the request.
In this case we say the policy is not applicable to the request. 3-valued policies are necessary for combining
partially specified policies, which are very likely to occur in scenarios that need policy integration. When
two organizations are merging and need policy integration, it is very likely that the organizations are unaware
or might not have jurisdiction over each other resources, and thus a policy in one organization may be
“NotApplicable” to requests about resources in the other organization. Second, it should allow one to specify
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the behavior of the integrated policy at the granularity of requests and effects. In other words, one should be
able to explicitly characterize a set of requests that need to be permitted or denied by the integrated policy.
For example, users may require the integrated policy to satisfy the condition that for accesses to an object
Oi policy P1 has the precedence, whereas for accesses to an object Oj , policy P2 has precedence. Third,
it should be able to handle domain constraints requiring the integrated policy to be applied to a restricted
domain instead of the original domain. And fourth, it should be able to support policies expressed in rich
policy languages, such as XACML with features like policy combining algorithms.

The problem of policy integration has been investigated in previous works. The concept of policy com-
position under constraints was first introduced by Bonatti et al. [4]. They proposed an algebra for composing
access control policies and use logic programming and partial evaluation techniques for evaluating algebra
expressions. Another relevant approach is by Wijesekera et al. [15] who proposed a propositional framework
for composing access control policies. Those approaches have however a number of shortcomings. They
support only limited forms of compositions. For example, they are unable to support compositions that take
into account policy effects or policy jumps (i.e., if P1 permits, let P2 makes decision, otherwise P3 makes
decision). They only model policies with two decision values, either “Permit” or “Deny”. It is not clear the
scope or expressive power of their languages since they do not have any notion of completeness. They do
not provide an actual methodology or an implementation for generating the integrated policies. Neither they
related their languages to any language used in practice.

In this paper we propose a framework for the integration of access control policies that addresses the
above shortcomings. The overall organization of our integration framework is outlined in Figure 1. The core
of our framework is the Fine-grained Integration Algebra (FIA). Given a set of input policies P1, P2, · · · ,
Pn, one is able to specify the integration requirements for these input policies through a FIA expression,
denoted as f(P1, P2, · · · , Pn) in Figure 1. The FIA expression is then processed by the other components of
the framework in order to generate the integrated policy. We demonstrate the effectiveness of our framework
through an implementation that supports the integration of XACML policies. We choose XACML because
of its widespread adoption and its many features, such as attribute-based access control and 3-valued pol-
icy evaluation. We use Multi-Terminal Binary Decision Diagrams (MTBDD) [9] for representing policies
and generating the integrated policies in XACML syntax. The novel contributions of this paper can be
summarized as follows:

• We propose a fine-grained integration algebra for language independent 3-valued policies. This is the
first time that such an algebra has been proposed.

• We introduce a notion of completeness and prove that our algebra is minimal and complete with
respect to this notion.

• We propose a framework that uses the algebra for the fine-grained integration of policies expressed in
XACML. The method automatically generates XACML policies as the policy integration result.
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The rest of the paper is organized as follows. Section 2 introduces background information and pre-
liminary definitions concerning XACML. Section 3 presents our fine-grained integration algebra. Section
4 discusses the expressivity of the algebra. Section 5 presents the detailed algorithms for generating well-
formed integrated XACML policies. Section 6 reviews related works on policy integration. Finally, Section
7 concludes the paper.

2 Preliminaries
2.1 An Overview of XACML

XACML [1] is the OASIS standard language for the specification of access control policies. XACML
policies include three main components: a Target, a Rule set and a Rule combining algorithm. The Target
identifies the set of requests that the policy applies to. Each Rule consists of Target, Condition and Effect
elements. The rule Target has the same structure as the policy Target. It specifies the set of requests that the
rule applies to. The Condition element may further refine the applicability established by the target. The
Effect element specifies whether the requested actions should be allowed (“Permit”) or denied (“Deny”).
The restrictions specified by the target and condition elements support the notion of attribute-based access
control under which access control policies are expressed as conditions against the properties of subjects
and protected objects. If a request satisfies both the rule target and rule condition predicates, the rule is
applicable to the request and will yield a decision as specified by the Effect element. Otherwise, the rule is
“NotApplicable” and the effect will be ignored. The Rule combining algorithm is used to resolve conflicts
among applicable rules with different effects.

We now introduce an example of XACML policies that will be used throughout the paper.

Example 1 Consider a company with two departments D1 and D2. Each department has its own access
control policies for the data under its control. Assume that P1 and P2 are the access control policies of
D1 and D2, respectively, regulating access to the company’s customer information. P1 contains two rules,
P1.Rul11 and P1.Rul12. P1.Rul11 states that the manager is allowed to read and update the customer
information in the time interval [8am, 6pm]. P1.Rul12 states that any other staff is not allowed to read
the customer information. P2 also contains two rules, P2.Rul21 and P2.Rul22. P2.Rul21 states that the
manager and staff can read the customer information in the time interval [8am, 8pm], and P2.Rul22 states
that the staff cannot update the customer information. The two policies in XACML syntax can be found in
Appendix. For simplicity, we adopt the following succinct representation in most discussion, where “role”,
“act” and “time” are attributes representing information on role, action and time, respectively.

P1.Rul11: role=manager, act=read or update, time= [8am, 6pm], effect= Permit.
P1.Rul12: role=staff, act=read, effect = Deny.
P2.Rul21: role=manager or staff, act=read, time = [8am, 8pm], effect = Permit.
P2.Rul22: role=staff, act=update, effect = Deny.

2.2 Policy Semantics

Before we introduce our algebra we need to find a suitable definition of policy semantics. Even though dif-
ferent approaches to the definition of such semantics are possible [4, 15], we propose a simple yet powerful
notion of semantics according to which the semantics of a policy is defined by the set of requests that are
permitted by the policy and the set of requests that are denied by the policy. This simple notion will provide
us with a precise characterization of the meaning of policy integration in terms of the sets of permitted and
denied requests.

In our work, we assume the existence of a finite set A of names. Each attribute, characterizing a sub-
ject or an object or the environment, has a name a in A, and a domain, denoted by dom(a), of possible
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values. The following two definitions introduce the notion of access request (request, for short) and policy
semantics.

Definition 1 Let a1, a2, ..., ak be attribute names, and let vi ∈ dom(ai) (1 ≤ i ≤ k). r ≡ {(a1, v1), (a2,
v2), · · · , (ak, vk)} is a request.

Example 2 Consider policy P1 from Example 1. An example of request to which this policy applies is that
of a manager wishing to read customer information at 10am. According to Definition 1, such request can be
expressed as r ≡ {(role, manager), (act, read), (time, 10am)}.

Definition 2 Let P be a 3-valued access control policy. We define the semantics ofP as a 2-tuple 〈RP
Y , RP

N 〉,
whereRP

Y andRP
N is the set of requests that are permitted and denied by P respectively, andRP

Y

⋂

RP
N = ∅.

Note that a policy P is not applicable to requests not in RP
Y ∪ RP

N . P can be viewed as a function
mapping each request to a value in {Y, N,NA}. Also, our approach to formulating the policy semantics is
independent of the language in which access control policies are expressed. Therefore, our approach can be
applied to languages other than XACML.

3 A Fine-grained Integration Algebra
The Fine-grained Integration Algebra (FIA) is given by 〈Σ, PY, PN, +, & ,¬, Πdc〉, where Σ is a vocabulary
of attribute names and their domains, PY and PN are two policy constants, + and & are two binary operators,
and ¬ and Πdc are two unary operators.

3.1 Policy Constants and Operators in FIA
We now describe the policy constants and operators in FIA. In what follows, P1 ≡ 〈RP1

Y , RP1

N 〉 and P2 ≡

〈RP2

Y , RP2

N 〉 denote two policies to be combined, and PI ≡ 〈RPI
Y , RPI

N 〉 denotes the policy obtained from the
combination. Operators on policies are described as set operations.
Permit policy (PY) . PY is a policy constant that permits everything.
Deny policy (PN) . PN is a policy constant that denies everything.
Addition (+) . Addition of policies P1 and P2 results in a combined policy PI in which requests that are
permitted by either P1 or P2 are permitted, requests that are denied by one policy and is not permitted by
the other are denied. More precisely:

PI = P1 + P2 ⇐⇒ RPI
Y = RP1

Y ∪ RP2

Y ∧ RPI
N = (RP1

N \RP2

Y ) ∪ (RP2

N \RP1

Y )

A binary operator can be viewed as a function that maps a pair of values {Y, N,NA} to one value. We
give this view of addition, intersection, and two other derived binary operators to be introduced later in
Table 1. A binary operator is represented using a matrix that illustrates the effect of integration for a given
request r. The first column of each matrix denotes the effect of P1 with respect to r and the first row denotes
the effect of P2 with respect to r.

P1 + P2

!
!

!
!!P1

P2 Y N NA

Y Y Y Y
N Y N N
NA Y N NA

P1 & P2

!
!

!
!!P1

P2 Y N NA

Y Y NA NA
N NA N NA
NA NA NA NA

P1 − P2

!
!

!
!!P1

P2 Y N NA

Y NA NA Y
N NA NA N
NA NA NA NA

P1 ! P2

!
!

!
!!P1

P2 Y N NA

Y Y Y Y
N N N N
NA Y N NA

Table 1: Policy combination matrix of operator +, & ,−, !

One partial order on the set {Y, N,NA} is the information order: Y > NA, N > NA, as both Y and N

provide more information about a request than NA. The + operator can be viewed as taking maximum on
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the strict order Y > N > NA, which can be obtaining by using the information order and prefering Y to
N .
Intersection ( & ) . Given two policies P1 and P2, the intersection operator returns a policy PI which is
applicable to all requests having the same decisions from P1 and P2. More precisely,

PI = P1 & P2 ⇐⇒ RPI
Y = RP1

Y ∩ RP2

Y ∧ RPI
N = RP1

N ∩ RP2

N

The intersection operator can be viewed as taking minimum on the information order. The integrated
policy makes a decision only when the two policy agrees.
Negation (¬) . Given a policy P , ¬P returns a policy PI , which permits (denies) all requests denied
(permitted) by P . The negation operator does not affect those requests that are not applicable to the policy.
More precisely:

PI = ¬P ⇐⇒ RPI
Y = RP

N ∧ RPI
N = RP

Y

Domain projection (Πdc) The domain projection operator takes a parameter, the domain constraint dc, and
restricts the policy only to the set of requests identified by dc.

Definition 3 A domain constraint dc takes the form {(a1, range1), (a2, range2), · · · , (ak, rangek)}1,
where a1, a2, ..., ak are attribute names, and rangei(1 ≤ i ≤ k) are sets of values from the vocabulary Σ.
Given a request r = {(ar1

, vr1
), · · · , (arm , vrm)}. We say r satisfies dc if the following condition holds: for

each (arj , vrj ) ∈ r (1 ≤ j ≤ m), if there exists (arj , rangei) ∈ dc, then vrj ∈ rangei.

The semantics of Πdc(P ) is given by

PI = Πdc(P ) ⇐⇒ RPI
Y = {r|r ∈ RP

Y and r satisfies dc}, RPI
N = {r|r ∈ RP

N and r satisfies dc}

3.2 FIA expressions

The integration of policies may involve multiple operators, and hence we introduce the concept of FIA
expressions.

Definition 4 A FIA expression is recursively defined as follows:

- If P is policy, then P is a FIA expression.

- If f1 and f2 are FIA expressions so are (f1) + (f2), (f1)& (f2), and ¬(f1).

- If f is a FIA expression and dc is a domain constraint then Πdc(f) is a FIA expression.

In FIA expressions, the binary operators are viewed as left associative and unary operators are right
associative. The precedence are ¬ and Πdc together have the highest precedence, following by & , and then
by +. For example, P1 + ΠdcP2 + ¬P3 & P4 is interpreted as ((P1 + (ΠdcP2)) + ((¬P3)& P4).

Theorem 1 FIA has the following algebraic properties.

• Commutativity: P1 + P2 = P2 + P1; P1 & P2 = P2 & P1;

• Associativity: (P1 + P2) + P3 = P1 + (P2 + P3); (P1 & P2)& P3 = P1 & (P2 & P3);

• Adsorption: P1 + (P1 & P2) = P1; P1 & (P1 + P2) = P1;

• Distributivity: P1+(P2 & P3) = (P1+P2)& (P1+P3); P1 & (P2+P3) = (P1 & P2)+(P1 & P3);

Πdc(P1 + P2) = (ΠdcP1) + (ΠdcP2); Πdc(P1 & P2) = (ΠdcP1)& (ΠdcP2)
1In case of an ordered domain, these sets can be represented by ranges.
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• Complements: PY = ¬PN; PN = ¬PY;

• Idempotence: P1 + P1 = P1; P1 & P1 = P1;

• Boundedness: P1 + PY = PY;

• Involution: ¬(¬P1) = P1.

3.3 Derived Operators
In this section, we introduce some commonly used operators. They are defined using the core operators.
Not-applicable policy (PNA) . PNA is a policy constant that is not applicable for every request. It is defined
as PNA = PY & PN.
Effect projection (ΠY and ΠN ) . ΠY (P ) restricts the policy P to the requests allowed by it. It is defined
as: ΠY (P ) = P & PY. Similarly, ΠN (P ) restricts the policy P to the requests denied by it; it is defined
as ΠN (P ) = P & PN. We are overloading Π to denote both effect projection and domain projection; the
meaning should be clear from the subscript.
Subtraction (−) . Given two policies P1 and P2, the subtraction operator returns a policy PI which is
obtained by starting from P1 and limiting the requests that the integrated policy applies only to those that
P2 does not apply to. The subtraction operator is defined as:

P1 − P2 = (PY & (¬(¬P1 + P2 + ¬P2))) + (PN & (P1 + P2 + ¬P2)) .

To see why this is correct, observe that ¬P1 + P2 + ¬P2 will deny a request if and only if P1 allows it
and P2 gives NA for it. Thus PY & (¬(¬P1 +P2 +¬P2)) allows a request if and only if P1 allows it and P2

gives NA it, and is not applicable for all other requests. Similarly, PN & (P1 + P2 + ¬P2) denies a request
if and only if P1 denies it and P2 gives NA for it.
Precedence (!) . Given two policies P1 and P2, the precedence operator returns a policy PI which yields the
same decision as P1 for any request applicable to P1, and yields the same decisions as P2 for the remaining
requests. The precedence operator can be expressed as P1 + (P2 − P1). By limiting P2 to requests that P1

does not decide, this operator can be used as a building block for resolving possible conflicts between two
policies.

4 Expressiveness of FIA

In this section, we first show that our operators can express the standard policy-combining algorithms defined
for XACML policies as well as other more complex policy integration scenario. We then show that the
operators in FIA are complete in that any possible policy integration requirements can be expressed using a
FIA expression.

4.1 Expressing XACML Policy-Combining Algorithms in FIA

In XACML there are four standard policy-combining algorithms as follows:
Permit-overrides : The combined result is “Permit” if any policy evaluates to “Permit”, regardless of the
evaluation result of the other policies. If no policy evaluates to “Permit” and at least one policy evaluates
to “Deny”, the combined result is “Deny”. The combination of policies P1, P2,..., Pn under this policy-
combining algorithm can be expressed as P1 + P2 + · · · + Pn .
Deny-overrides : The combined result is “Deny” if any policy is encountered that evaluates to “Deny”. The
combined result is “Permit” if no policy evaluates to “Deny” and at least one policy evaluates to “Permit”.
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Deny-overrides is the opposite of permit-overrides. By using the combination of the negation and addition
operator, we can express deny-overrides as ¬((¬P1) + (¬P2) + · · · + (¬Pn)).
First-one-applicable : The combined result is the same as the result of the first applicable policy. This
combining algorithm can be expressed by using the precedence operator. Given policies P1, P2, ..., Pn, the
expression is P1! P2 ! · · ·! Pn.
Only-one-applicable : The combined result corresponds to the result of the unique policy in the policy set
which applies to the request. Specifically, if no policy or more than one policies are applicable to the request,
the result of policy combination should be “NotApplicable”; if only one policy is considered applicable, the
result should be the result of evaluating the policy.

When combining policies P1, · · · , Pn under this policy-combining algorithm, we need to remove from
each policy the requests applicable to all the other policies and then combine the results using the addition
operator. The final expression is : (P1 − P2 − P3 − · · ·− Pn) + (P2 − P1 − P3 − · · ·− Pn) + · · ·+ (Pn −
P1 − P2 − · · ·− Pn−1).

4.2 Expressing Complex Policy Integration Requirements in FIA

Our algebra supports not only the aforementioned policy-combining algorithms, but also other types of pol-
icy combining requirements, like rule constraints. A rule constraint specifies decisions for a set of requests.
It may require that the integrated policy has to permit a critical request. Such an integration requirement can
be represented as a new policy. Let P be a policy, and c be the policy specifying an integration constraint.
We can combine c and P by using the first-one-applicable combining-algorithm. The corresponding expres-
sion is c ! P . Another frequently used operator is to find the portion of a policy P1 that differs compared to
a policy P2, which can be expressed as: P1 & (¬P2).

By using the two policy constants, we can easily modify a policy P as an open policy or a closed policy.
An open policy of P allows everything that is not explicitly denied, which can be represented as P ! PY. A
closed policy of P denies everything that is not explicitly permitted, which can be represented as P ! PN.

Our algebra can also express the policy jump, a feature in the iptables firewall languages. The specific
requirement is that if a request is permitted by policy P1, then the final decision on this request is given by
policy P2; otherwise, the final decision is given by policy P3. This can be expressed using

ΠY (P1 & P2) + ΠN (¬P1 & P2)) + ΠY (¬P1 & P3) + ΠN (¬P1 &¬P3))

Among the four sub-expressions, the first one gives Y when both P1 and P2 do so, and gives NA in all
other cases. Similarly, the second sub-expression gives N when P1 gives Y and P2 gives N , and gives NA

otherwise. The third and fourth subexpressions deal with the case that P1 answers N .
Next, we elaborate the example mentioned in the introduction where the combination requirements are

given for parts of a policy.

Example 3 Consider the policies introduced in Example 1. Assume that the policies must be integrated
according to the following combination requirement: for users whose role is manager, the access has to be
granted according to policy P1; for users whose role is a staff, the access has to be granted according to
policy P2.

The resultant policy will consist of two parts. One part is obtained from P1 by restricting the policy to
only deal with managers. Such extraction can be expressed in our algebra as Πdc1(P1) where dc1 = {(role,
manager), (act, {read,update}), (time, [8am, 8pm])}. The other part is obtained from P2 by restricting
the policy to only deal with staff. Correspondingly, we can use the expression: Πdc2(P2) with dc2 =
{(role, staff), (act, {read,update}), (time, [8am, 8pm])}. Finally, we have the following expression
representing the integrated policy : Πdc1(P1) + Πdc2(P2). The integrated policy PI is thus: PI .RulI1:
role=manager, act=read or update, time=[8am, 6pm], effect=Permit.
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PI .RulI2: role=staff, act=read, time=[8am, 8pm], effect=Permit.
PI .RulI3: role=staff, act=update, effect=Deny.

4.3 Completeness
While we have shown that many policy integration scenarios can be handled by the operators in the algebra,
our list of examples is certainly not exhaustive. A question of both theoretical and practical importance is
whether FIA can be combined to express all possible ways of integrating policies, that is, whether FIA is
complete. Addressing this question requires choosing a suitable notion of completeness. There are different
degrees of completeness, and we show that FIA is complete in the strongest sense. First, while Table 1 gave
the policy combination matrices for the four binary operators, many other matrices are possible, and each
such matrix can be viewed as a binary operator for combining two policies. As there are three possibilities
for each cell in a matrix, namely, Y , N , and NA, and there are nine cells, the total number of matrices is
39 = 19683. We show that each such matrix can be expressed using 〈PN, PY, +, & ,¬〉. Second, when n

(n > 2) policies are combined, policy combination can be expressed using a n-dimensional matrix. We also
show that each such n-dimensional matrix can be expressed using 〈PN, PY, +, & ,¬〉. Finally, a fine-grained
integration may use different policy combination matrices for different requests. We show that this can be
handled by using the operator Πdc in addition to 〈PN, PY, +, & ,¬〉.

Theorem 2 (Binary completeness). Given any policy combination matrix M , let M(P1, P2) denote the
result of combining two policies P1 and P2 using M . There exists a FIA expression fI(P1, P2) that is
equivalent to M(P1, P2). That is, fI(P1, P2) = M(P1, P2) for any two policies P1 and P2.

Proof. When all entries in M are NA, fI(P1, P2) = PY & PN. For the case that M has at least one entry that
is not NA, we use the divide-and-conquer methodology. We transform the problem of finding an expression
for M into finding sub-expressions for each entry in M . We number the cells in M from 1 to 9, by starting
from the top-left cell and going right first. We then consider nine simple matrices SM1, SM2, ..., SM9 (see
Figure 2). In each simple matrix, at most one entry is not NA.

NA

1

P1
P2

e1

P1
P2

SM9

P1
P2

SM2

e2

P1
P2

e1 e2 e3

e7 e8

e4 e6e5

e9

e9

... ...Y
N

NANY

NA

NA NA
NA
NANA

NANA
NA

Y
N

NANY

NA

NA NA
NANANA

NA

NAY
N

NANY

NA

NA
NA
NANA

NANA
NA

NA

Y
N

NANY

NA

SM

Figure 2: Policy combination matrix transformation

If no cell in M is NA, then let fi(P1, P2) denote the FIA expression corresponding to the nine simple
matrices. fI(P1, P2) is thus the addition of the expression corresponding to each simple matrix, that is:
fI(P1, P2) = f1(P1, P2) + f2(P1, P2) + ... + f9(P1, P2). If M contains NA somewhere in the nine cells,
then we only need to add up the expressions corresponding to the cells that are not NA. For example, if cells
1 and 4 are not NA, then fI(P1, P2) = f1(P1, P2) + f4(P1, P2).

Now our task is to find proper expressions for each fi(P1, P2). Let f ′
i(P1, P2) denote the expression that

is equivalent to a policy matrix where the i’th cell is Y , and all other cells are either N or NA. Then when
ei = Y , we have fi(P1, P2) = f ′

i(P1, P2)& PY and when ei = N , we have fi(P1, P2) = ¬f ′
i(P1, P2)& PN.

Expressions f ′
i(P1, P2), 1 ≤ i ≤ 9 are shown in Table 2.
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To summarize, FIA can express any policy combination matrix.

Theorem 2 has proved the completeness when considering two policies. We now extend our complete-
ness result to any number of policies. The proof of Theorem 3 is shown in appendix.

Theorem 3 (General completeness) Given n (n > 2) policies P1, P2, ..., Pn, let M∗(P1, P2, ... , Pn) be
a n-dimensional policy combination matrix which denotes the combination result of the n policies. There
exists a FIA expression fI(P1, P2, ..., Pn) that is equivalent to M∗(P1, P2, ..., Pn).

So far, we have proved the completeness in the scenario when there is one n-dimensional combination
matrix for all requests. In the following theorem, we further consider the fine-grained integration when there
are multiple combination matrices each of which is corresponding to a subset of the requests.

Definition 5 LetRΣ denote the set of all requests in the vocabulary Σ. A fine-grained integration specifica-
tion is given by [(R1, M

∗
1 ), (R2, M

∗
2 ), · · · , (Rk, M

∗
k )], where R1, R2, · · · , Rk form a partition of RΣ, i.e.,

RΣ = R1 ∪ R2 ∪ ... ∪ Rk (k ≥ 1) and Ri ∩ Rj = ∅ when i .= j, and each M∗
i (P1, .., Pn) (1 ≤ i ≤ k) is

a n-dimensional policy combination matrix. This specification asks requests in each set Ri to be integrated
according to the matrix M∗

i .

Theorem 4 Given a fine-grained integration specification [(R1, M
∗
1 ), (R2, M

∗
2 ), · · · , (Rk, M

∗
k )], if for each

Ri, there exists dci,1, · · · , dci,mi such that Ri = R(dci,1) ∪ · · · ∪ R(dci,mi)(where R(dci,j) denotes the
set of requests satisfying dci,j), then there exists a FIA expression fI(P1, P2, ..., Pn) that achieves the
integration requirement.

Proof. We first use the domain projection operator Πdc to project each policy according to dc1,1, · · · , dck,mk
.

For requests in each R(dci,j), there is one fixed M∗
i . By Theorem 3, there is a FIA expression (denoted as

fi,j) for integrating policies Πdci,j (P1), ..., Πdci,j (Pn) according to M∗
i . Finally, fI is the addition of all

fi,j’s.

We note that the above theorem requires that each Ri in the partition to be expressible in finite number
of domain constraints. This condition is always satisfied when the set of all requests is finite. However,
when the set if infinite, it may not hold. For example, if one requires all requests that satisfy a predicate
uses one combination matrix and all other requests use another matrix, but the predicate is uncomputable,
then we cannot generate a FIA expression to achieve this. However, we believe that requirements that are
likely to occur in practice will satisfy the condition that each Ri is expressible in finite number of domain
constraints.

4.4 Minimal Set of Operators

Recall that FIA has {PY, PN, +, & ,¬, Πdc}. The operator Πdc is needed to deal with fine-grained inte-
gration. Operators {PY, PN, +, & ,¬} are complete in the sense that any policy combination matrix can be
expressed using them. A natural question is among the set Θ = {PN, PY, PNA, +, & ,¬, ΠY , ΠN ,−, !},

"
"

"
"

"
P1

P2 Y N NA

Y f ′

1 = P1 &P2 f ′

2 = P1 &(¬P2) f ′

3 = ¬(¬P1 + P2 + (¬P2))
N f ′

4 = (¬P1)&P2 f ′

5 = (¬P1)& (¬P2) f ′

6 = ¬(P1 + P2 + (¬P2))
NA f ′

7 = ¬(¬P2 + P1 + (¬P1)) f ′

8 = ¬(P2 + P1 + (¬P1)) f ′

9 = PY − (P1 + P2)

Table 2: Expressions for f ′
i(P1, P2)
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what subsets are minimally complete. We say a subset of Θ is minimally complete, if operators in the subset
are sufficient for defining all other operators in Θ, and any smaller subset cannot define all operators in Θ.
The following theorem answers this question. The only redundancy in {PY, PN, +, & ,¬} is that only one
of PY and PN is needed.

Theorem 5 Among the 10 operators in Θ, there are 12 minimally complete subsets. They are the 12 ele-
ments in the cartesian product {¬}× {PY, PN}×{ ΠY , ΠN , & }× {+, !}.

Details of the proof are in the appendix. Here, we summarize the key lemmas that lead to the result:
• The policy constant PN cannot be expressed using Θ \ {PY, PN}. When given ¬, PY and PN can be

derived from each other.
• The unary operator ¬ cannot be expressed using Θ \ {¬}.

• The binary operator & cannot be expressed using Θ \ {& , ΠY , ΠN}. Given ¬, ΠY and ΠN can be
expressed from each other. ΠY can be expressed using {& , PY}. And & can be expressed using
{PN, +,¬, ΠN}.

• The binary operator + cannot be expressed using Θ \ {+, !}. However, + can be expressed using
{PN,¬, & , !} or {PN,¬, ΠN , !}, and ! can be expressed using {PN, +,¬, & }.

In summary, among the 10 operators in Θ, for completeness, we must have ¬, one in {PY, PY}, one in
{ΠY , ΠN , & }, and one in {+, !}. There are 12 combinations. It is not difficult to verify that every such
combination is in fact complete. For example, once we have {¬, PN, ΠN}, adding + allows us to derive
& , and then derive !, adding ! allows us to derive + and then & . There are thus 12 minimally complete
subsets in Θ.

5 Integrated Policy Generation

In this section, we present an approach to automatically generate the integrated policy given the FIA policy
expression. Internally, we represent each policy as a Multi-Terminal Binary Decision Diagram (MTBDD)
[9], and then perform operations on the underlying MTBDD structures to generate the integrated policy. We
have chosen a MTBDD based implementation of the proposed algebra because (i) MTBDDs have proven to
be a simple and efficient representation for XACML policies [8] and (ii) operators in FIA can be mapped to
efficient operations on the underlying policy MTBDDs. Our approach consists of three main phases:

1. Policy representation: For each policy Pi in the FIA expression f(P1, P2, ..., Pn), we construct a
policy MTBDD, TPi .

2. Construction of the integrated policy MTBDD: We combine the individual policy MTBDD struc-
tures according to the operations in the FIA expression to construct the integrated policy MTBDD.

3. Policy generation: The integrated policy MTBDD is then used to generate the actual integrated
XACML policy.

5.1 Policy Representation

Recall from section 2 that we characterize a policy P as a 2-tuple 〈RP
Y , RP

N 〉, where RP
Y is the set of requests

permitted by the policy, and RP
N is the set of requests denied by the policy. Alternatively, we can define P

as a function P : R → E from the domain of requests R onto the domain of effects E, where E =
{Y, N, NA}.

10



An XACML policy can be transformed into a compound Boolean expression over request attributes [2].
A compound Boolean expression is composed of atomic Boolean expressions (AE) combined using the
logical operations ∨ and ∧. Atomic Boolean expressions that appear in most policies belong to one of the
following two categories: (i) one-variable equality constraints, a !c , where a is an attribute name, c is a
constant, and ! ∈ {=, .=}; (ii) one-variable inequality constraints, c1 " a ! c2, where a is an attribute name,
c1 and c2 are constants, and ", ! ∈ {<,≤, >,≥}.

Example 4 Policy P1 from Example 1 can be defined as a function :

P1(r) =

{

Y, if role = manager ∧ (act = read∨ act = update) ∧ 8am ≤ time ≤ 6pm

N, if role = staff ∧ act = read

where r is a request of the form {(role, v1), (act, v2), (time, v3)}.

We now encode each unique atomic Boolean expression AEi in a policy into a Boolean variable xi such
that: xi = 0 if AEi is false; xi = 1 if AEi is true. To determine unique atomic Boolean expressions
we use the following definition.

Definition 6 Two atomic Boolean expressions ai !i ci and aj !j cj are equal iff ai = aj ∧ !i = !j ∧ ci = cj .
Two atomic Boolean expressions ci1 "i ai !i ci2 and cj1 "j aj !j cj2 are equal iff ai = aj ∧ "i = "j ∧ !i =
!j ∧ ci1 = cj1 ∧ ci2 = cj2.

Example 5 The Boolean encoding for policy P1 is given in Table 3.

x0 x1 x2 x3 x4

role = manager role = staff act = read act = update 8am ≤ time ≤ 6pm

Table 3: Boolean encoding for P1

Using the above Boolean encoding, a policy P can be transformed into a function P : Bn 2→ E, over a
vector of Boolean variables, #x = x0, x1, · · · , xn, onto the finite set of effects E = {Y, N, NA}, where n is
the number of unique atomic Boolean expressions in policy P . A request r corresponds to an assignment of
the Boolean vector #x, which is derived by evaluating the atomic Boolean expressions with attribute values
specified in the request.

Example 6 After Boolean encoding, the policy P1 is transformed into the function :

P1(#x) =

{

Y, if x0 ∧ (x2 ∨ x3) ∧ x4

N, if x1 ∧ x4

The transformed policy function can now be represented as a MTBDD. A MTBDD provides a compact
representation of functions of the form f : Bn 2→ R, which maps bit vectors over a set of variables (Bn)
to a finite set of results (R). The structure of a MTBDD is a rooted acyclic directed graph. The internal
(or non-terminal) nodes represent Boolean variables and the terminals represent values in a finite set. Each
non-terminal node has two edges labeled 0 and 1 respectively. Thus when a policy is represented using a
MTBDD, the non-terminal nodes correspond to the unique atomic Boolean expressions and the terminal
nodes correspond to the effects. Each path in the MTBDD represents an assignment for the Boolean vari-
ables along the path, thus representing a request r. The terminal on a path represents the effect of the policy
for the request represented by that path. Note that different orderings on the variables may result in different
MTBDD representations and hence different sizes of the corresponding MTBDD representation. Several
approaches for determining the variable ordering that results in an optimally sized MTBDD can be found in
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[10]. For examples discussed in this paper, we use the variable ordering x0 ≺ x1 ≺ x2 ≺ x3 ≺ x4 ≺ x5.
The MTBDD of the policy P1 is shown in Figure 3, where the dashed lines are 0-edges and solid lines are
1-edges.

Compound Boolean expression representing the policies to be integrated may have atomic Boolean
expressions with matching attribute names but overlapping value ranges. In such cases, we need to transform
the atomic Boolean expressions with overlapping value ranges into a sequences of new atomic Boolean
expressions with disjoint value ranges, before performing the Boolean encoding. A generic procedure for
computing the new atomic Boolean expression is described below.

Assume that the original value ranges of an attribute a are [d−1 , d+
1 ], [d−2 , d+

2 ], ..., [d−n , d+
n ] (the super-

script ‘-’ and ‘+’ denote lower and upper bound respectively). We sort the range bounds in an ascending
order, and then employ a plane sweeping technique to obtain the disjoint ranges: [d′−1 , d′+1 ], [d′−2 , d′+2 ], ...,
[d′−m , d′+m ], which satisfy the following three conditions: (i) d′−i , d′+i ∈ D, D = {d−1 , d+

1 , ..., d−n , d+
n }; (ii)

∪m
i=1[d

′−
i , d′+i ] = ∪n

j=1[d
−
j , d+

j ]; and (iii) ∩m
i=1[d

′−
i , d′+i ] = ∅.

Consider policy P2 from Example 1. We can observe that the atomic Boolean expression 8am ≤
time ≤ 6pm in P1 refers to the same attribute as in the atomic Boolean expression 8am ≤ time ≤ 8pm

in P2 and their value ranges overlap. In order to distinguish these two atomic Boolean expressions during
the later policy integration, we split the value ranges and introduce the new atomic Boolean expression
6pm ≤ time ≤ 8pm. The expression 8am ≤ time ≤ 8pm in P2 is replaced with (8am ≤ time ≤
6pm ∨ 6pm ≤ time ≤ 8pm). Boolean encoding is then performed for the two policies by considering
unique atomic Boolean expressions across both policies.

Example 7 By introducing another atomic Boolean expression 6pm ≤ time ≤ 8pm, i.e. x5, the trans-
formed function for policy P2 is :

P2(#x) =

{

Y, if (x0 ∨ x1) ∧ x2 ∧ (x4 ∨ x5)

N, if x1 ∧ x3

Using the same variable ordering x0 ≺ x1 ≺ x2 ≺ x3 ≺ x4 ≺ x5 we construct the MTBDD for P2

shown in Figure 3.

x

1x 1x 1x

0x

1x

2x 2x
2x 2x

3x 3x 3x
3x 3x3x

4x 4x
4x

5x5x 5x

N NA Y N NA Y

P1 P20

NAN

0x

1x 1x

2x

3x

2x

3x 3x 3x

4x 4x 4x

5x 5x 5x

1 2P  + P

Y

Figure 3: MTBDDs of P1, P2 and P1 + P2

5.2 Construction of Integrated Policy MTBDD

Given the FIA expression f(P1, P2, ..., Pn) and the MTBDD representations TP1 , TP2 , ..., TPn of the poli-
cies P1,P2,...,Pn respectively, we construct the integrated policy MTBDD TPI , by performing the operations
(specified in f ) on the individual policy MTBDDs.
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Procedure Apply(Node1, Node2, OP )
Input : Node1, Node2 are MTBDD nodes, OP is a policy operation
1. initiate NodeI // NodeI is the combination result
2. if Node1 and Node2 are terminals then
3. NodeI ← (Node1 OP Node2, null, null)
4. else
5. if Node1.var = Node2.var then
6. NodeI .var ← Node1.var
7. NodeI .left ← Apply(Node1.left, Node2.left, OP )
8. NodeI .right ← Apply(Node1.right, Node2.right, OP )
9. if Node1.var precedes Node2.var then
10. NodeI .var ← Node1.var
11. NodeI .left ← Apply(Node1.left, Node2, OP )
12. NodeI .right ← Apply(Node1.right, Node2, OP )
13. if Node2.var precedes Node1.var then
14. NodeI .var ← Node2.var
15. NodeI .left ← Apply(Node2.left, Node1, OP )
16. NodeI .right ← Apply(Node2.right, Node1, OP )
17. return NodeI

Figure 4: Description of the Apply procedure

Operations on policies can be expressed as operations on the corresponding policy MTBDDs. The
negation¬ operation can be performed by interchanging the terminal Y and N . Many efficient operations
have been defined and implemented for MTBDDs [9]. In particular, we use the Apply operation defined
on MTBDDs to perform the FIA binary operations {+,−, &, !}. We introduce a new MTBDD operation
called Projection to perform the domain projection operation Πdc defined in FIA.

The Apply operation combines two MTBDDs by a specified binary arithmetic operation. A high level
description of the Apply operation is shown in Figure 4, where var, left, right refer to the variable, left
child and right child of a MTBDD node, respectively. The Apply operation traverses each of the MTBDDs
simultaneously starting from the root node. When the terminals of both MTBDDs are reached, the specified
operation is applied on the terminals to obtain the terminal for the resulting combined MTBDD. A variable
ordering needs to be specified for the Apply procedure.

Example 8 The integrated MTBDD TPI for the policy expression f(P1, P2) = P1 + P2 is obtained by
using MTBDD operation Apply(TP1 .root, TP2 .root, +), where “root” refers to the root node of the
corresponding MTBDD. Figure 3 shows the integrated policy MTBDD. The same variable ordering x0 ≺
x1 ≺ x2 ≺ x3 ≺ x4 ≺ x5 has been used in the construction of the integrated policy MTBDD.

The procedure for performing the effect projection operation is the following. For ΠY , those paths in
TP that lead to N are redirected to the terminal NA. Similarly, for ΠN , those paths in TP that lead to Y

are redirected to the terminal NA.
For the domain projection operation with domain constraint dc, we traverse the policy MTBDD from

the top to the bottom and check the atomic Boolean expression associated with each node (denoted as
Node). There are two cases. If the atomic Boolean expression of Node contains an attribute specified in
dc, we simply replace the attribute domain with the new domain given by dc. Otherwise, it means Node

represents an attribute no longer applicable to the resulting policy, and hence we should remove it. After
removing Node, we need to adjust the pointer from its parent node by redirecting it to Node’s left child
which leads to the path when N is not considered. After all nodes have been examined, those nodes that
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have no incoming edges are also removed. If the projection operation contains both types of constraints, we
apply one constraint first and then apply the other by using previous two algorithms.

Thus, given any arbitrary FIA expression f(P1, P2, ..., Pn), we can use a combination of the Apply,
not, ProjectionMTBDD operations on the policy MTBDDs to generate the integrated policy MTBDD.
An example is given below.

Example 9 Consider the FIA policy expression for the only-one-applicable policy combining algorithm
together with the domain constraint dc = {(role, manager), (act, {read, update}, (time, [8am, 8pm])}.
Here, f(P1, P2) = Πdc((P1 − P2) + (P2 − P1)). The integrated MTBDD can be obtained by using the
Apply and Projection operations as follows :

Projection(Apply(Apply(TP1 .root, TP2 .root,−), Apply(TP2 .root, TP1 .root,−), +), dc).

5.3 XACML Policy Generation

In the previous section, we have presented how to construct the integrated MTBDD given any policy ex-
pression f . Though such integrated MTBDD can be used to evaluate requests with respect to the integrated
policy, they cannot be directly deployed in applications using the access control system based on XACML.
Therefore, we develop an approach that can automatically transform MTBDDs into actual XACML policies.
The policy generation consists of three steps :

1. Find the paths in the combined MTBDD that lead to the Y and N terminals, and represent each path
as a Boolean expression over the Boolean variable of each node.

2. Map the above Boolean expressions to the Boolean expressions on actual policy attributes.
3. Translate the compound Boolean expression obtained in step 2 into a XACML policy.

We first elaborate on step 1. In the MTBDD, each node has two edges, namely 0-edge and 1-edge. The
0-edge and 1-edge of a node labelled xi correspond to edge-expressions x̄i and xi respectively. A path in
the MTBDD corresponds to an expression which is the conjunction of edge-expressions of all edges along
that path. We refer to this as a path-expression. Those paths leading to the same terminal correspond to the
disjunction of path-expressions.

Next, we replace Boolean variables in the path-expressions with the corresponding atomic Boolean
expressions by using the mapping built in the Boolean encoding phase. During the transformation in each
path-expression, we need to remove some redundant information. For instance, the resulting expression may
contain an attribute with both equality and inequality functions like (role = manager) ∧ (role .= staff).
In that case, we only need to keep the equality function of the attribute.

The last step is to generate the actual XACML policy from the compound Boolean expression obtained
in previous step. Specifically, for each path-expression whose evaluation is Y , a permit rule is generated; and
for each path-expression whose evaluation is N , a deny rule is generated. Attributes that appear in conditions
of the rules in original policies still appear in conditions of the newly generated rules, and attributes that
appear in targets in the original policies still appear in targets in the integrated policy. Here we do not
distinguish the policy target with rule target. Instead, all targets appear as rule targets.

Note that the number of rules generated for the integrated policy depends on the number of paths leading
to Y (N ) which may be exponential in the number of nodes in the MTBDD. To address this issue, we propose
to leverage existing BDD path-minimization techniques [6, 7] that minimize the number of paths leading
to one-terminal in a BDD along with logic minimization techniques [5]. Our preliminary results by using
Espresso [5] show a significant reduction (from 75% to 99%) in the number of rules generated.

Example 10 Consider policies P1 and P2 in Example 1. Figure 5 shows an example of P1+P2. The left part
of the figure shows the paths leading to the N terminal and the corresponding Boolean expressions which
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PolicyId=P1+P2
<RuleId=R1 Effect=Deny>

<Target>
<Subject role=staff>
<Action act=update>

</Target> </Rule>
<RuleId=R2 Effect=Deny>

<Target>
<Subject role=staff>
<Action act=read>

</Target>
<Condition time .= [8am, 6pm] AND time .= [6pm, 8pm]>

</Rule>
<RuleId=R3 Effect=Permit> · · ·

Figure 5: The integrated XACML policy representing P1 + P2

can be transformed as follows: (role = staff ∧ act = update) ∨ (role = staff ∧ act = read ∧ time .=
[8am, 6pm] ∧ time .= [6pm, 8pm])

The right part of the figure shows the corresponding deny rules for the integrated policy.

6 Related Work
In the literature, many efforts have been devoted into policy composition [3, 4, 12, 14, 15]. Few approaches
have been proposed for dealing with the fine-grained integration of XACML policies. Approaches most
closest to ours are by Mazzoleni et al. [11], Bonatti et al. [4], Wijesekera et al. [15] and Backes et al. [3].

Mazzoleni et al. [11] have proposed an extension to the XACML language, called policy integration
preferences, using which a party can specify the approach that must be adopted when its policies have to
be integrated with policies by other parties. They do not discuss mechanisms to perform such integrations.
Also, the integration preferences discussed in this work are very limited and do not support fine-grained
integration requirements. Bonatti et al. [4] have proposed an algebra for combining authorization specifica-
tions that may originate from heterogenous independent parties. They model an access control policy as a
set of ground (variable-free) authorization terms, where an authorization term is a triple of the form (subject,
object, action). They propose an implementation of their algebra based on logic programming and partial
evaluation techniques. Unlike our work which can handle 3-valued policies, their model does not explicitly
support negative authorizations. Also, our implementation is based on representations used in model check-
ing techniques which have been proven to be very efficient. In addition, we also provide mechanisms to
synthesize a concrete integrated policy resulting from the evaluation of a policy expression. Wijesekera et
al. [15] have proposed a propositional algebra for access control. They model policies as nondeterministic
transformers of permission set assignments to subjects and interpret operations on policies as set-theoretic
operations on the transformers. Their work does not discuss an implementation for the algebra. Backes et
al. [3] have proposed an algebra for combining enterprise privacy policies. They define conjunction, dis-
junction and scoping operations on 3-valued EPAL [13] policies. In contrast to our work, the don’t care
value is treated as a special value that can only be used by the default rulings of a policy and they do not
have an implementation of their algebra.
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7 Conclusion
In this work we have proposed an algebra for the fine-grained integration of language independent policies.
Our operations can not only express existing policy-combining algorithms but can also express any arbitrary
combination of policies at a fine granularity of requests, effects and domains, as we have proved in the
completeness theorem. Based on this algebra, we propose a framework for integration of XACML policies.
We also discuss the generation of an actual XACML policy representing the integrated policy corresponding
to a FIA policy expression.
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Appendix

Theorem 3 Given n (n ≥ 2) policies P1, P2, ..., Pn, let M∗(P1, P2, ... , Pn) be a n-dimensional policy
combination matrix which denotes the combination result of the n policies. There exists a FIA expression
fI(P1, P2, ..., Pn) that is equivalent to M∗(P1, P2, ..., Pn).
Proof. We prove this theorem by induction. The base case is when n = 2, which is true according to
Theorem 2.

Assuming that when n = k−1 the corollary holds, we now consider the case when n = k. As shown in
Table 4, M∗(P1, ..., Pk) has 3k entries in total, each of which is denoted as ei,j (1 ≤ i ≤ 3, 1 ≤ j ≤ 3k−1).
Take entries ei,1 to ei,3k−1 as a (k-1)-dimensional policy combination matrix, and we have three such (k-1)-
dimensional policy combination matrices corresponding to the policy Pk’s effect. Based on the assumption,
we obtain the FIA expression for each cell for the k − 1 policies as shown in the column of fk−1(P1, ...,
Pk−1).

P1, P2, ..., Pk−1 Pk M∗ fk−1(P1, P2, ..., Pk−1)

Y, Y, ..., Y Y e1,1 fk−1

1,1 (P1, P2, ..., Pk−1)... ... ... ...
NA,NA, ..., NA Y e1,3k−1 fk−1

1,3k−1(P1, P2, ..., Pk−1)

Y, Y, ..., Y N e2,1 fk−1

2,1 (P1, P2, ..., Pk−1)... ... ... ...
NA,NA, ..., NA N e2,3k−1 fk−1

2,3k−1(P1, P2, ..., Pk−1)

Y, Y, ..., Y NA e3,1 fk−1

3,1 (P1, P2, ..., Pn−1)... ... ... ...
NA,NA, ..., NA NA e3,3k−1 fk−1

3,3k−1(P1, P2, ..., Pk−1)

Table 4: n Policies

Next, we extend fk−1(P1, ..., Pk−1) to fk(P1, ..., Pk) for each cell in M∗ (in what follows we use fk−1

and fk for short). According to the effect of Pk and ei,j , we summarize the expressions of fk in Table 5.
Note that we do not need to consider the cell where ei,j is NA.

Pk ei,j fk
i,j

Y Y fk−1

i,j &(Pk&PY)

Y N fk−1

i,j &[¬(Pk&PY)]

N Y fk−1

i,j &[¬(Pk&PN)]

N N fk−1

i,j &(Pk&PN)

NA Y fk−1

i,j

NA N fk−1

i,j

Table 5: n Policies

Finally, we add up fk for all the cells and obtain the expression f(P1, P2, ..., Pk).
We have shown that the corollary holds for n = 2, and we have also shown that if the corollary holds

for n = k − 1 then it holds for n = k. We can therefore state that it holds for all n.
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Theorem 5 Among the 10 operators inΘ, there are 12 minimally complete subsets. They are the 12 elements
in the cartesian product {¬}× {PY, PY}×{ ΠY , ΠN , & }×{ +, !}.
Proof.

• The policy constant PN cannot be expressed using Θ \ {PY, PN}. When given ¬, PY and PN can be
derived from each other: PY = ¬PN and PN = ¬PY.
We need to show that, there does not exist a policy expression using operators in Θ \ {PY, PN} that is
equivalent to PN. Consider the information ordering among the three values: Y > NA and N > NA.
The key observation is that the operators in Θ \ {PY, PN} are all non-increasing in the information
ordering.
Suppose, for the sake of contradiction, that a policy expression f(P1, P2, · · · , Pn) constructed from
Θ\{PY, PN} and policy variables P1, · · · , Pn is equivalent to PN. Then this must mean that no matter
what actual policies are used to instantiate P1, · · · , Pn, the result is PN. Let e0 = f(PNA, PNA, · · · , PNA) =
PN. We now use a structural induction to show that e0 must gives NA for every request; thus con-
tradiction. For the base case, we have policy constant PNA, this is true. For the unary operators, if e

gives NA for a request, then ΠY (e), ΠN (e), and ¬(e) are also NA. For the binary operators +, −, &,
and !, if both operands are NA for a request, then the result is also NA for the request.

• The unary operator ¬ cannot be expressed using Θ \ {¬}.
The key observation is that without ¬, one cannot switch Y and N .
Suppose, for the sake of contradiction, that e0(P ) is equivalent to ¬P . Let P be a policy that returns
Y on q1 and N on q2. Then e0(P ) must return N on q1 and Y on q2, i.e., it must give (N, Y ) on
q1 and q2. We use structural induction to show that the result e0(P ) gives for q1 and q2 must be
among (Y, N), (Y, Y ), (N, N), (NA,NA), (Y,NA), (NA, N). That is, if the answer for q1 is N ,
then the answer for q2 must be N , and if the answer for q2 is Y , the answer for q1 must be Y . Hence
contradiction. For the base case, this holds for P and the three constants PY, PN, PNA. One can verify
that the six pairs are closed under ΠY , ΠN , +,−, & , !.

• The binary operator & cannot be expressed using Θ \ {& , ΠY , ΠN}. Given ¬, ΠY and ΠN can be
expressed from each other: ΠY (P ) = P &¬PN, ΠN (P ) = ¬ΠY (¬P ). ΠY can be expressed using
{& , PY} by definition, and & can be expressed using {PN, +,¬, ΠN}.
Assume, for the sake of contradiction, that e0(P1, P2) is equivalent to P1&P2. Let P1 be a policy
that returns (Y, Y ) on q1 and q2, and P2 returns (Y, N) on q1 and q2. Then e0(P1, P2) must return
(Y,NA) on q1 and q2. We show this is not possible. The key insight here is that without & , ΠY , ΠN ,
one cannot get information asymmetry Y or N for one request and NA for another from symmetric
policies.
We use a structural induction to show that the result e(P1, P2) gives for q1 and q2 must be among the
following set: {(Y, N), (Y, Y ), (NA,NA), (N, Y ), (N, N)}. This holds for all P1, P2, PY, PN, PNA.
One can verify that the set is closed under ¬, +,−, !.
Given {PN, +,¬}, & can be expressed using either ΠY or ΠN :

P1 & P2 = (P1 5 P2) + ¬(¬P1 5 ¬P2),

where
P1 5 P2 = ΠY (P1) − (ΠN (PN + P2)),

and − can be defined using ΠY , ΠN as:

P1 − P2 = (ΠY (¬(¬P1 + P2 + ¬P2))) + (ΠN (P1 + P2 + ¬P2)) .
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The effect of P1 5 P2 is to authorize any request that is authorized by both P1 and P2, and to be NA

for all other requests.

• The binary operator + cannot be expressed using Θ \ {+, !}. However, + can be expressed using
{PN,¬, & , !} or {PN,¬, ΠN , !}, and ! can be expressed using {PN, +,¬, & }.
Suppose, for the sake of contradiction, that an expression e0(P1, P2) constructed from P1, P2 and
Θ \ {+, !} is equivalent to P1 + P2. Let P1 be a policy that returns (Y,NA) on q1 and q2, and P2 be
a policy that returns (NA, N) on q1 and q2. Then e0(P1, P2) must return (Y, N) on q1 and q2.
We use a structural induction to show that the result e(P1, P2) gives for q1 and q2 must be among
(Y, Y ), (Y,NA), (N, N), (N,NA), (NA, Y ), (NA, N), (NA,NA). Hence contradiction. This is sat-
isfied by P1, P2, PY, PN, PNA. One can verify that these seven values are closed under¬, ΠY , ΠN ,−, & .
The + operator can be expressed using {PN,¬, & , !}:

P1 + P2 = (P1 & PY) ! (P2 & PY) ! (P1 & PN) ! (P2 & PN).

Similarly, the + operator can be expressed using {PN,¬, ΠN , !}:

P1 + P2 = (ΠY P1) ! (ΠY P2) ! (ΠNP1) ! (ΠNP2).

Recall that the operator ! is defined using + and − as P1 ! P2 = P1 + (P2 − P1), and P1 −
P2 = (PY & (¬(¬P1 + P2 + ¬P2))) + (PN & (P1 + P2 + ¬P2)). Thus, ! can be expressed using
{PN,−,¬, & }.

In summary, among the 10 operators in Θ, for completeness, we must have ¬, one in {PY, PY}, one in
{ΠY , ΠN , & }, and one in {+, !}. There are 12 combinations. It is not difficult to verify that every such
combination is in fact complete. For example, once we have {¬, PN, ΠN}, adding + allows us to derive
& , and then derive !, adding ! allows us to derive + and then & . There are thus 12 minimally complete
subsets in Θ.

19



<xml version=”1.0” encoding=”UTF-8”?>
<Policy PolicyId=P1>

<Rule RuleId=”Rul11” Effect=”Permit”>
<Target>

<Subjects>
<Subject>

<SubjectMatch MatchId=”Name-Match”>
<AttributeValue DataType=”#string”>
manager </AttributeValue>
<SubjectAttributeDesignator AttributeId=”role”
DataType=”#string”/ >

</SubjectMatch>
</Subject>

</Subjects>
<Actions>

<Action>
<ActionMatch MatchId=”function:string-equal”>

<AttributeValue DataType=”#string”>
read </AttributeValue>
<ActionAttributeDesignator AttributeId=”act”
DataType=”#string”/ >

</ActionMatch>
</Action>
<Action>

<ActionMatch MatchId=”function:string-equal”>
<AttributeValue DataType=”#string”>
update </AttributeValue>
<ActionAttributeDesignator AttributeId=”act”
DataType=”#string”/ >

</ActionMatch>
</Action>

<Actions>
<Condition>
<Apply FunctionId=”Time-In-Range”>

<Apply FunctionId=”Time-one-and-only”>
<SubjectAttributeDesignator AttributeId=”time”

DataType=”#time”/ >
</Apply>
<AttributeValue DataType=”#time”>

08:00 </AttributeValue>
<AttributeValue DataType=”#time”>

18:00 </AttributeValue>
</Apply>
</Condition>
</Target>

<Rule RuleId=”Rul12” Effect=”Deny”>
<Target>

<Subjects>
<Subject>

<SubjectMatch MatchId=”Name-Match”>
<AttributeValue DataType=”#string”>
staff </AttributeValue>
<SubjectAttributeDesignator AttributeId=”role”
DataType=”#string”/ >

</SubjectMatch>
</Subject>

</Subjects>
<Actions>

<Action>
<ActionMatch MatchId=”function:string-equal”>

<AttributeValue DataType=”#string”>
read </AttributeValue>
<ActionAttributeDesignator AttributeId=”act”
DataType=”#string”/ >

</ActionMatch>
</Action>

</Actions>
</Target>

</Rule>

Figure 6: Policy P1

<xml version=”1.0” encoding=”UTF-8”>
<Policy PolicyId=P2>

<Rule RuleId=”Rul21” Effect=”Permit”>
<Target>

<Subjects>
<Subject>

<SubjectMatch MatchId=”Name-Match”>
<AttributeValue DataType=”#string”>
manager </AttributeValue>
<SubjectAttributeDesignator AttributeId=”role”
DataType=”#string”/ >

</SubjectMatch>
</Subject>
<Subject>

<SubjectMatch MatchId=”Name-Match”>
<AttributeValue DataType=”#string”> staff
</AttributeValue>
<SubjectAttributeDesignator AttributeId=”role”
DataType=”#string”/ >

</SubjectMatch>
</Subject>

</Subjects>
<Actions>

<Action>
<ActionMatch MatchId=”function:string-equal”>

<AttributeValue DataType=”#string”>
read </AttributeValue>
<ActionAttributeDesignator AttributeId=”act”
DataType=”#string”/ >

</ActionMatch>
</Action>

<Actions>
<Condition>
<Apply FunctionId=”Time-In-Range”>

<Apply FunctionId=”Time-one-and-only”>
<SubjectAttributeDesignator AttributeId=”time”

DataType=”#time”/ >
</Apply>
<AttributeValue DataType=”#time”>

08:00 </AttributeValue>
<AttributeValue DataType=”#time”>

20:00 </AttributeValue>
</Apply>
</Condition>
</Target>

<Rule RuleId=”Rul12” Effect=”Deny”>
<Target>

<Subjects>
<Subject>

<SubjectMatch MatchId=”Name-Match”>
<AttributeValue DataType=”#string”>
staff </AttributeValue>
<SubjectAttributeDesignator AttributeId=”role”
DataType=”#string”/ >

</SubjectMatch>
</Subject>

</Subjects>
<Actions>

<Action>
<ActionMatch MatchId=”function:string-equal”>

<AttributeValue DataType=”#string”>
update </AttributeValue>
<ActionAttributeDesignator AttributeId=”act”
DataType=”#string”/ >

</ActionMatch>
</Action>

</Actions>
</Target>

</Rule>

Figure 7: Policy P2
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