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AN ALGEBRA FOR THE CONDITIONAL

MAIN EFFECT PARAMETERIZATION

Arman Sabbaghi

Purdue University

Abstract: The conditional main effect (CME) parameterization system resolves

the long-standing aliasing dilemma of the traditional orthogonal components sys-

tem for two-level regular fractional factorial designs. However, the algebra of the

CME system is not yet fully understood, which impedes the development of

general results on this system that possess a broad scope of application across

designs. We establish a comprehensive algebra for the CME system based on

indicator functions. Our algebra facilitates the derivations of general partial

aliasing relations for a wide variety of two-level designs. By means of our alge-

bra, we illuminate the implications of traditional design criteria under the CME

system for resolution IV designs. A novel feature of our algebra is that it enables

immediate and simple D-efficiency calculations for two-level regular designs and

models consisting of multiple conditional and traditional effects.

Key words and phrases: Complex aliasing, experimental design, regular fractional

factorial design.
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1. Introduction

Two-level regular fractional factorials are convenient designs for inference on

main effects and interactions in experiments with many factors and run size

constraints. Their traditional method of analysis is based on the orthog-

onal components parameterization of factorial effects (Wu and Hamada,

2009, p. 274). From the time of Finney (1945), the major disadvantage of

regular designs was thought to be that, under this traditional system, any

two aliased effects could not be disentangled without follow-up runs (Wu,

2015). Su and Wu (2017) recently resolved this long-standing dilemma by

employing a reparameterization of the traditional main effects and two-

factor interactions into main effects and conditional main effects (CMEs).

In contrast to the orthogonal components system, the analysis of regular

designs under the CME system parallels the analysis of nonregular designs

due to the existence of partial aliasing among conditional and traditional

effects. From the work of Hamada and Wu (1992) on the analysis of non-

regular designs and partial aliasing, this feature of the CME system can be

used to eliminate the need for follow-up runs to perform conclusive analyses

on regular designs. Wu (2015, p. 615) first noted this saving grace of the

CME system and its utility for real-life applications. Su and Wu (2017) then

proposed an analysis strategy for resolution III and IV designs under this
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system based on partial aliasing relations among conditional and traditional

effects. They leveraged the structure of their groupings of CMEs to develop

simple rules for selecting parsimonious and interpretable models that can

yield unambiguous inferences in two-level regular fractional factorials.

The innovation of the CME system created several novel avenues of

study for both experiments and observational studies. Mukerjee, Wu, and

Chang (2017) introduced a new effect hierarchy for this system, and devel-

oped a design strategy with a minimum aberration criteria to sequentially

minimize the bias in estimation of main effects by successive iterations in

the effect hierarchy. Mak and Wu (2018) proposed an analysis strategy

for general observational data under this system that can perform bi-level

variable selection and separate active effects from correlated groups of inert

effects. A unified and insightful review on this system, the above recent

advances, and related topics is provided by Wu (2018).

A significant feature of the CME system that has yet to be addressed is

its algebra, which is not as transparent as the Galois field theory of the tra-

ditional orthogonal components system. The lack of an accessible algebra

for the CME system impedes the development of general results on CMEs

that can be broadly applied across the vast spectrum of two-level designs.

For example, Su and Wu (2017, p. 10) noted that, although they could de-
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termine partial aliasing relations between conditional and traditional effects

in small regular designs, their approach would not be feasible for deriving

general partial aliasing relations in large designs. Also, Mukerjee, Wu,

and Chang (2017) considered simple models consisting of traditional effects

and just one CME, because more general models involving any number of

conditional and traditional effects would incur heavy algebra under their

framework. These examples highlight the need for an algebra that can

facilitate the derivation of general results and properties under the CME

system for broad types of two-level designs.

We establish an algebra for the CME system based on indicator func-

tions for two-level designs. Fontana, Pistone, and Rogantin (2000) intro-

duced the indicator function based on the algebraic perspective of Pistone

and Wynn (1996). They applied indicator functions to address multiple

aspects of the classification of unreplicated two-level regular fractional fac-

torials. Ye (2003) extended indicator functions to two-level nonregular frac-

tions with replicate runs for ranking designs. Ye (2004) then used indicator

functions to prove that a two-level design with no partial aliasing under

the orthogonal components system must be a two-level regular fractional

factorial, potentially with replicate runs. The orthogonal components sys-

tem was always considered in these and other investigations on two-level

Statistica Sinica: Newly accepted Paper 

(accepted author-version subject to English editing)



5

designs that involved indicator functions. In contrast, we use an orthogo-

nal basis of functions whose span contains indicator functions to explicitly

represent both conditional and traditional effects, and we define an inner

product of these representations using the indicator function for a two-level

design whose properties under the CME system are to be studied. The

contributions of our algebra are three-fold. First, as opposed to the work

of Su and Wu (2017), it facilitates general derivations of partial aliasing re-

lations among conditional and traditional effects for broad classes of large

designs. For example, Properties 2–5 of Su and Wu (2017, p. 3–6) follow as

simple calculations under our inner product, with no or rather weak con-

ditions. Second, our algebra illuminates the implications of the maximum

clear two-factor interactions (Wu and Hamada, 2009, p. 217) and minimum

aberration (Fries and Hunter, 1980) design criteria for CME analysis of

resolution IV designs. Third, it enables immediate and simple D-efficiency

calculations for two-level regular designs and models consisting of multiple

CMEs, main effects, and two-factor interactions. This particular contribu-

tion distinguishes our work from that of Mukerjee, Wu, and Chang (2017).

We begin in Section 2 with a review of the CME system, its connec-

tions with traditional effects and nonregular designs, and its groupings of

effects. Our algebra is defined in Section 3. We apply our algebra in Section
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4 to derive general partial aliasing relations among conditional and tradi-

tional effects. Our study of the implications of traditional design criteria

for the CME analysis of resolution IV designs is in Section 5. The ap-

plication of our algebra for D-efficiency calculation is described in Section

6. Illustrative examples of our results are provided throughout the latter

three sections, and their proofs are in the supplement. A practical appli-

cation that demonstrates the importance of our results for real-world CME

analyses is in Section 7. Our concluding remarks are in Section 8.

2. Review of the Conditional Main Effect System

Let Dr denote the 2
r full factorial for r ≥ 2 factors, with the levels of factors

A1, . . . , Ar denoted by − and +. A fraction of Dr is denoted by F ⊆ Dr.

As described by Cheng (2014, p. 71–75), main effects and interactions for a

two-level design Dr are defined as contrasts of all of its 2r treatment effects

α(s1, . . . , sr), where s1, . . . , sr ∈ {−,+} denote the factors’ levels. The

α(s1, . . . , sr) are unknown, and factorial effects are generally estimated by

least squares linear regression (Cheng, 2014, p. 81–83). A CME is similarly

defined as a contrast of the treatment effects that captures the main effect

of one factor conditional on the level of a second, and its estimation is also

performed using regression. A general description of the CME contrast is
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given by Wu and Hamada (2009, p. 164) and Cheng (2014, p. 71–72).

To illustrate traditional and conditional effects, consider D2 and let

α = (α(−,−), α(−,+), α(+,−), α(+,+))T, where α(s1, s2) is the treatment

effect for (s1, s2) ∈ {−,+}2. The main effects of A1 and A2 are ME(A1) =

2−1(−1,−1, 1, 1)Tα and ME(A2) = 2−1(−1, 1,−1, 1)Tα respectively, and

their interaction is INT(A1, A2) = 2−1{(−1,−1, 1, 1) ⊙ (−1, 1,−1, 1)}Tα,

where ⊙ is the Hadamard product. The CMEs of A1 given A2 are

CME(A1 | A2+) = {(−1,−1, 1, 1)⊙ (0, 1, 0, 1)}Tα,

CME(A1 | A2−) = {(−1,−1, 1, 1)⊙ (1, 0, 1, 0)}Tα.

The sum and difference of CME(A1 | A2+) and CME(A1 | A2−) effec-

tively define ME(A1) and INT(A1, A2), respectively (Wu and Hamada,

2009, p. 164), and thereby reparameterize them. Wu (2018, p. 252) provides

physical interpretations of these effects, and the connections between them.

If we let y = (y(−,−), y(−,+), y(+,−), y(+,+))T denote the observed out-

comes, where y(s1, s2) is the response for the experimental unit assigned

(s1, s2) ∈ {−,+}2, then the estimators of these effects are M̂E(A1) =

2−1(−1,−1, 1, 1)Ty, M̂E(A2) = 2−1(−1, 1,−1, 1)Ty, ̂INT(A1, A2) =

2−1(1,−1,−1, 1)Ty, ̂CME(A1 | A2+) = (0,−1, 0, 1)Ty, ̂CME(A1 | A2−) =

(−1, 0, 1, 0)Ty, respectively. Correlations between the estimators of tradi-
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tional effects and CMEs, and among estimators of distinct CMEs them-

selves, are strictly less than one in absolute value. Consequently, the in-

clusion of CMEs with traditional effects in the analysis of a regular design

will introduce partial aliasing relations, and result in the design becoming

of the nonregular type in its analysis (Wu, 2018, p. 251).

To simplify the exposition in the paper, our references to partial alias-

ing relations or correlations between effects in a design signify the aliasing

relations or correlations between their corresponding estimators. Formal

definitions of groups of conditional and traditional effects that facilitate

discussions of design properties under the CME system follow below.

Definition 1 (Twin CMEs (Su and Wu, 2017)). For distinct factors A1

and A2, CME(A1 | A2+) and CME(A1 | A2−) are twins, with A1 the

parent effect, A2 the conditioned effect, and conditioned levels + and −,

respectively.

Definition 2 (Parent-child pair (Mak and Wu, 2018)). For distinct factors

A1 and A2, CME(A1 | A2s), with s ∈ {−,+}, and its corresponding parent

main effect ME(A1) constitute a parent-child pair.

Definition 3 (Uncle-nephew pair (Mak and Wu, 2018)). For distinct fac-

tors A1 and A2, CME(A1 | A2s), with s ∈ {−,+}, and its corresponding

conditioned main effect ME(A2) constitute a uncle-nephew pair.
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Definition 4 (Sibling CMEs (Su and Wu, 2017)). For distinct factors

A1, A2, and A3, CME(A1 | A2s) and CME(A1 | A3s
′), with s, s′ ∈ {−,+},

are siblings.

Definition 5 (Cousin CMEs (Mak and Wu, 2018)). For distinct factors

A1, A2, and A3, CME(A1 | A2s) and CME(A3 | A2s), with s ∈ {−,+}, are

cousins.

Definition 6 (Family of CMEs (Su and Wu, 2017)). For a fraction F ⊆ Dr,

any two CME(Ai | Ajs) and CME(Al | Aks
′), with i, j, l, k ∈ {1, . . . , r} and

s, s′ ∈ {−,+}, whose corresponding two-factor interactions INT(Ai, Aj)

and INT(Al, Ak) are fully aliased in F belong to one family of CMEs of F ,

and are referred to as family members.

For a regular fractional factorial, any two of its distinct families must be

disjoint by virtue of the Galois field theory construction of regular designs.

Also, by inspection, a two-factor interaction INT(A1, A2) that is orthogonal

to all other main effects and two-factor interactions in a regular fraction (i.e.,

a clear two-factor interaction) corresponds to the trivial family of CMEs

{CME(A1 | A2+),CME(A1 | A2−),CME(A2 | A1+),CME(A2 | A1−)}.

The number of non-trivial families, each of which contain distinct pairs of

factors in their CMEs, in a regular fraction is equal to the number of the

design’s aliasing relations that contain more than one two-factor interaction.
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3. Indicator Functions and the Inner Product for the Condi-

tional Main Effect System

A design F ⊆ Dr with distinct runs is completely specified by its indicator

function FF : {−,+}r → R, defined by Fontana, Pistone, and Rogantin

(2000, p. 153) as

FF(x) =



















1 if x ∈ F ,

0 otherwise.

This function generalizes traditional design descriptions, e.g., those based

on defining relations, via the concept of an algebraic variety (Fontana et al.,

2000, p. 150). Indicator functions also exist for designs with replicate runs

(Ye, 2003), but they are not considered in this paper.

From Fontana, Pistone, and Rogantin (2000, p. 152–153) and Ye (2003,

p. 985), FF is expressed as a unique linear combination of the following

set of orthogonal functions over {−,+}r. Let Pr denote the power set

of {1, . . . , r}. For each I ∈ Pr, define XI : {−,+}r → R as XI(x) =

∏

i∈I xi, with Xφ ≡ 1 being a constant function. Then {XI : I ∈ Pr} is an

orthogonal basis of functions over {−,+}r, and

FF(x) =
∑

I∈Pr

bF ,IXI(x)

for unique bF ,I ∈ R. Each XI in this basis represents a traditional effect.
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For example, X{i} represents ME(Ai), and X{i,j} represents INT(Ai, Aj) for

distinct i, j ∈ {1, . . . , r}. For any fraction F ⊆ Dr, the work of Fontana,

Pistone, and Rogantin (2000, p. 154) yields that bF ,φ = 2−r|F| and bF ,I =

2−r
∑

x∈F XI(x) for I ∈ Pr. The indicator function coefficients bF ,I encode

information on correlations between effects in F . This fact is illustrated for

the case of regular designs and traditional effects in the following proposition

of Fontana, Pistone, and Rogantin (2000, p. 154).

Definition 7. The symmetric difference of I, J ∈ Pr is I△J = (I ∪ J) −

(I ∩ J).

Proposition 1 ((Fontana et al., 2000)). The correlation between any two

traditional effects in a regular design F ⊆ Dr that correspond to I, J ∈ Pr

and do not belong in the defining contrast subgroup of F is bF ,I△J/bF ,φ.

The orthogonal basis of functions above underlies our algebra for the

CME system. Specifically, CMEs are easily expressed using this orthogonal

basis, with CME(Ai | Aj+) and CME(Ai | Aj−) for distinct i, j ∈ {1, . . . , r}

represented by X+
i|j ≡ 2−1(X{i} + X{i,j}) and X−

i|j ≡ 2−1(X{i} − X{i,j}),

respectively. In these expressions, CMEs are again seen to be functions of

traditional effects, and can be considered as additional factors of interest in

the study of a two-level design. We then apply the indicator function of a

fraction to define the following inner product of the functions over {−,+}r
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that correspond to conditional and traditional effects, and thereby establish

our algebra for the CME system.

Definition 8. For a fractional factorial design F ⊆ Dr, and i, j, l, k ∈

{1, . . . , r}, s, s′ ∈ {−,+}, and I, J ∈ Pr,

〈XI , XJ | F〉 = 2−r
∑

x∈Dr

FF(x)XI(x)XJ(x),

〈

Xs
i|j, XI | F

〉

= 2−r
∑

x∈Dr

FF(x)X
s
i|j(x)XI(x),

〈

Xs
i|j, X

s′

l|k | F
〉

= 2−r
∑

x∈Dr

FF(x)X
s
i|j(x)X

s′

l|k(x).

As we will demonstrate in the following sections, partial aliasing relations

and other properties for a two-level design under the CME system can be

derived in a simple and unrestricted manner by this inner product involving

coordinate-free representations of conditional effects, traditional effects, and

the design’s indicator function.

It is important to note that if one wishes to utilize a different orthog-

onal basis that contains functions corresponding to CMEs, then one must

necessarily select a set of conditional and traditional effects that are orthog-

onal in Dr. However, such selections may fail to permit a coordinate-free

presentation, and unduly restrict the CMEs that could be studied under the

corresponding algebra, thereby frustrating one’s ability to comprehensively

understand the CME system for broad types of two-level designs.
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4. Partial Aliasing Relations Under the Conditional Main Effect

System

The inner product in Definition 8 facilitates derivations of partial aliasing

relations among conditional and traditional effects. Our formal descrip-

tions, and illustrative examples, of them follow below.

Lemma 1 ((Fontana et al., 2000; Ye, 2003)). For F ⊆ Dr and I, J ∈ Pr,

〈XI , XJ | F〉 = 〈Xφ, XI△J | F〉 = bF ,I△J .

Proposition 2. For F ⊆ Dr and any i, j, l, k ∈ {1, . . . , r}, with i 6= j, l 6= k,

and s, s′ ∈ {−,+},

〈

Xs
i|j, X

s′

l|k | F
〉

= 2−2
(

bF ,{i}△{l} + s′bF ,{i}△{l,k} + sbF ,{i,j}△{l} + ss′bF ,{i,j}△{l,k}

)

.

Corollary 1. The correlation between CME(Ai | Ajs) and CME(Al | Aks
′)

in a regular design F ⊆ Dr of resolution at least III for any i, j, l, k ∈

{1, . . . , r}, with i 6= j, l 6= k, and s, s′ ∈ {−,+} is

2−1b−1
F ,φ

(

bF ,{i}△{l} + s′bF ,{i}△{l,k} + sbF ,{i,j}△{l} + ss′bF ,{i,j}△{l,k}

)

.

Proposition 3. For F ⊆ Dr and any i, j ∈ {1, . . . , r}, with i 6= j, and

I ∈ Pr, s ∈ {−,+},

〈

Xs
i|j, XI | F

〉

= 2−1(bF ,{i}△I + sbF ,{i,j}△I).
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Corollary 2. For a regular design F ⊆ Dr of resolution at least III and

any i, j ∈ {1, . . . , r}, with i 6= j, and I ∈ Pr, s ∈ {−,+}, the correlation

between CME(Ai | Ajs) and the traditional effect corresponding to I is

2−1/2b−1
F ,φ

(

bF ,{i}△I + sbF ,{i,j}△I

)

.

Thus:

(a) If ME(Ai) is aliased with the traditional effect corresponding to I in

F , then the correlations of CME(Ai | Aj+) and CME(Ai | Aj−) with

the latter effect are 2−1/2.

(b) If INT(Ai, Aj) is aliased with the traditional effect corresponding to I

in F , then the correlations of CME(Ai | Aj+) and CME(Ai | Aj−)

with the latter effect are 2−1/2 and −2−1/2, respectively.

(c) If neither ME(Ai) nor INT(Ai, Aj) are aliased with the traditional

effect corresponding to I in F , then the correlations of CME(Ai |

Aj+) and CME(Ai | Aj−) with the latter effect are zero.

These results clearly demonstrate that partial aliasing relations among con-

ditional and traditional effects in a design are immediately obtained from

its indicator function coefficients.
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Table 1: The 23−1
III design defined by A3 = A1A2.

A1 A2 A3

− − +

− + −

+ − −

+ + +

Example 1. For our first, simple illustration of these results, consider the

23−1
III design F in Table 1 with indicator function FF(x) = 1/2+X{1,2,3}(x)/2.

Suppose we wish to calculate the correlation between the siblings CME(A1 |

A2+) and CME(A1 | A3−) in F . We immediately have from Corollary 1 and

the indicator function coefficients that this correlation is 1/2. Now suppose

we wish to calculate the correlations of CME(A1 | A2+) and CME(A1 |

A2−) with ME(A3) in F . We immediately have from Corollary 2(b) that

their respective correlations are 2−1/2 and −2−1/2.

Example 2. To illustrate the utility of these results for larger designs

that are of interest in practice, let F1 denote the minimum aberration 29−4
IV

design, and F2 the 29−4
IV design that maximizes the number of clear two-

factor interactions, which are provided by Wu and Hamada (2009, p. 254).

Following the notation of Wu and Hamada (2009, p. 215), the defining

Statistica Sinica: Newly accepted Paper 

(accepted author-version subject to English editing)



16

contrast subgroups of F1 and F2 are

{1236, 1247, 1258, 13459, 3467, 3568, 24569, 4578, 23579, 23489, 12345678,

15679, 14689, 13789, 26789} and

{1236, 1247, 1348, 23459, 3467, 2468, 14569, 2378, 13579, 12589, 1678, 25679,

35689, 45789, 123456789},

respectively, with the identity elements excluded from these subgroups with-

out essential loss of information. For this example, suppose CME(A1 | A2+)

and CME(A1 | A2−) are of substantive interest for inference. Corol-

lary 2 immediately yields that, in F1, these CMEs are correlated with

INT(A3, A6), INT(A4, A7), and INT(A5, A8), whereas in F2 they are only

correlated with INT(A3, A6) and INT(A4, A7). The absolute magnitudes of

these correlations are all equal to 2−1/2. Accordingly, we may choose design

F2 over F1 to be able to obtain more conclusive inferences on these selected

CMEs. Another immediate, and related, result is that F2 has fewer CMEs

that are aliased with at least one main effect or two-factor interaction (ex-

cluding the corresponding parent main effect and two-factor interaction)

than F1. Note that our orthogonal basis of functions enables us to derive

these properties of F1 and F2 in a coordinate-free manner, so that we can

easily consider any conditional and traditional effects for such large designs.
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We will continue to explore the properties of F1 and F2 in later examples.

The properties of CMEs that were derived by Su and Wu (2017, p. 4–

6) follow as simple corollaries of our Propositions 2 and 3, with the formal

proofs provided in the supplement.

Corollary 3 ((Su and Wu, 2017)). Twin CMEs are orthogonal.

Corollary 4 (Property 2 of Su and Wu (2017)). In regular designs, a CME

is orthogonal to all traditional effects except for those fully aliased with its

parent main effect or corresponding two-factor interaction.

Corollary 5 (Property 3 of Su and Wu (2017)). Sibling CMEs are corre-

lated in regular designs of resolution at least III.

Corollary 6 (Properties 4 and 5 of Su andWu (2017)). In regular designs of

resolution at least IV, non-twin CMEs in a family are correlated, and CMEs

with different parents and non-aliased corresponding two-factor interactions

are orthogonal.

Example 3. Consider designs F1 and F2 from Example 2. Recall that one

difference between them is that F2 has fewer CMEs that are aliased with at

least one main effect or two-factor interaction (excluding the corresponding

parent main effect and two-factor interaction) than F1. Another difference
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that is obtained from Corollary 6, and the fact that F1 has less aberration

than F2, is that F1 has fewer non-twin CME family members with different

parent effects but the same interaction effect than F2. In general, the

makeup of CME families can be an important consideration when choosing

between several candidate designs for a robust type of CME analysis. An

illustration of this is provided in the practical application of Section 7,

in which four 28−3
IV designs are considered that have different CME family

compositions with respect to three distinct temperature factors.

Two additional properties relating to uncle-nephew effect pairs and

cousin CMEs are also immediate from Propositions 2 and 3.

Corollary 7. Uncle-nephew effect pairs are orthogonal in regular designs

of resolution at least III.

Corollary 8. Cousin CMEs are orthogonal in regular designs of resolution

at least IV.

These orthogonalities can be useful to consider when it is of interest to

entertain models involving CMEs and their conditioned main effects.
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5. Traditional Design Criteria and Conditional Main Effects in

Resolution IV Designs

In this section, we apply our derived partial aliasing relations to illumi-

nate the implications of the maximum clear two-factor interactions and

minimum aberration criteria for the CME analysis of resolution IV regu-

lar designs. Our focus on resolution IV regular designs corresponds to an

original motivation for the maximum clear two-factor interactions criterion,

namely, the comparison and rank-ordering of regular designs that have the

same number of clear main effects but different numbers of clear two-factor

interactions (Mukerjee and Wu, 2006, p. 64).

Definition 9. A CME is clear in a design if it is orthogonal to all main

effects, excluding its parent main effect, and two-factor interactions, ex-

cluding its corresponding two-factor interaction.

Proposition 4. For the class of 2r−p
IV fractional factorials, a design has the

maximum number of clear two-factor interactions if and only if it has the

maximum number of clear CMEs.

Corollary 9. A fractional factorial with the maximum number of clear

two-factor interactions among 2r−p
IV designs minimizes the total number of

CMEs across families containing more than four members for the class of
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2r−p
IV designs.

Example 4. We illustrate these implications of the maximum clear two-

factor interactions criterion using the 27−2
IV designs F3 and F4 with respective

defining contrast subgroups {1236, 12457, 34567} and {1236, 3457, 124567}.

The identity elements in each are excluded without essential loss of informa-

tion. From Wu and Hamada (2009, p. 254), F3 has the maximum number

of clear two-factor interactions among 27−2
IV designs. Thus, we can imme-

diately conclude from Proposition 4 that F3 has more clear CMEs than

F4. We also observe that F3 has three families containing more than four

members in each, because it has three aliasing relations containing more

than one two-factor interaction, and F4 has six families containing more

than four members in each, because it has six aliasing relations containing

more than one two-factor interaction. In the notation of Wu and Hamada

(2009, p. 215), these aliasing relations for F3 are

12 = 36 = 457 = 1234567,

13 = 26 = 23457 = 14567,

16 = 23 = 24567 = 13457,

and these aliasing relations for F4 are

12 = 36 = 123457 = 4567,

Statistica Sinica: Newly accepted Paper 

(accepted author-version subject to English editing)



21

13 = 26 = 1457 = 234567,

16 = 23 = 134567 = 2457,

34 = 1246 = 57 = 123567,

35 = 1256 = 47 = 123467,

37 = 1267 = 45 = 123456.

Note that each of these families has exactly eight members. Hence, in

comparison to F4, F3 has a smaller total number of CMEs across its fam-

ilies that contain more than four members in each, which corresponds to

Corollary 9.

To present the implications of the minimum aberration criterion for

CME analysis, we introduce notation for the number of distinct factor pairs

among the CMEs in a design’s family.

Definition 10. For a design F ⊆ Dr with TF families, let Nt(F) denote the

number of distinct factor pairs among the CMEs in its family t = 1, . . . , TF .

Example 5. The distinct factor pairs in the three families of F3 that con-

tain more than four members are {(A1, A2), (A3, A6)}, {(A1, A3), (A2, A6)},

and {(A1, A6), (A2, A3)}, so Nt(F3) = 2 for all of these families t = 1, 2, 3.

Also, Nt(F4) = 2 for all of the families t = 1, . . . , 6 of F4 that contain more

than four members.
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Using Definition 10, we reformulate in Lemma 2 the expression of Cheng,

Steinberg, and Sun (1999) and Cheng (2014, p. 172) for a regular design’s

count of defining words of length four in terms of the numbers of two-

factor interactions in its aliasing sets into a corresponding expression for

minimum aberration designs under the CME system. We then combine it

with Corollary 1 to characterize in Proposition 5 how minimum aberration

designs minimize aggregate measures of correlations among CMEs.

Lemma 2. For the class of 2r−p
IV fractional factorials, a design F∗ has

minimum aberration if and only if

TF∗
∑

t=1

Nt(F
∗){Nt(F

∗)− 1} ≤

TF
∑

t=1

Nt(F){Nt(F)− 1}

for all 2r−p
IV designs F .

Proposition 5. A fractional factorial with minimum aberration among

2r−p
IV designs minimizes, for each exhaustive selection of CMEs such that

no two involve the same pair of factors, both the sum of absolute correla-

tions and the sum of squared correlations among non-sibling effects for the

class of 2r−p
IV designs.

Example 6. For each exhaustive selection of CMEs in F3 such that no

two involve the same pair of factors, the sum of absolute correlations and

the sum of squared correlations among non-sibling effects are 1.5 and 0.75,
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respectively. The corresponding sums for F4 are 3 and 1.5. The inequal-

ities 1.5 < 3 and 0.75 < 1.5 in these two respective sums correspond to

Proposition 5 and the fact that F3 is the minimum aberration 27−2
IV design.

From Proposition 4 and Corollary 9, a resolution IV design with the

maximum number of clear two-factor interactions among its peer class of

2r−p
IV designs could be useful for entertaining models composed of main ef-

fects, non-sibling CMEs, and two-factor interactions. Proposition 5 demon-

strates that the minimum aberration 2r−p
IV design could be useful when it

is desired to conduct an experiment with minimum aggregate correlations

among distinct types of CMEs. Ultimately, these implications facilitate im-

mediate comparisons of large designs under the CME system for practical

applications.

Example 7. We illustrate the immediate applicability of this section’s re-

sults for the larger designs F1 and F2 from Example 2. By inspection, F1

has 13 families that contain more than four members in each. One such

family has 16 CMEs, and the remainder have 8 CMEs. Also, F2 has 7

families that contain more than four members, each with 12 CMEs. The

total number of CMEs across the above families of F1 is 112, whereas the

corresponding number for F2 is 84. The smaller number for F2 corresponds

to Corollary 9 and the fact that F2 has the maximum number of clear two-
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factor interactions among 29−4
IV designs. Now, for each exhaustive selection

of CMEs in F1 such that no two involve the same pair of factors, the sum

of absolute correlations and the sum of squared correlations among non-

sibling effects are 9 and 4.5, respectively. The corresponding sums for F2

are 10.5 and 5.25. The inequalities 9 < 10.5 and 4.5 < 5.25 in these two

respective sums corresponds to Proposition 5 and the fact that F1 is the

minimum aberration 29−4
IV design. Besides demonstrating the applicability

of our results for large designs, this example also illustrates that, as in the

case for the orthogonal components system, the maximum clear two-factor

interactions and minimum aberration criteria may disagree on the choice of

design for a CME analysis.

6. D-Efficiency Under the Conditional Main Effect System

Our algebra reduces D-efficiency calculations for general classes of designs

and models under the CME system. We demonstrate this result for reso-

lution III and IV regular designs and models consisting of multiple main

effects, two-factor interactions, and CMEs. Negligible additions of notation

will be introduced when extending these calculations to other designs and

models.

We first describe the assumptions and notations utilized in this section.
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We assume that the factors for a regular design F ⊆ Dr are partitioned into

two sets S1 and S2, with a selection of conditional and traditional effects

involving the factors in S1 of interest, and a selection of only traditional

effects involving the factors in S2 of interest. For i ∈ {1, 2}, we let STrad
i

denote the set of functions ZI ≡ 2|F|−1XI that correspond to the selected

traditional effects involving the factors in Si. Similarly, we let SCME
1 denote

the set of functions Zs
i|j ≡ 22(s2rbF ,{j} + |F|)−1Xs

i|j, where 2−1(s2rbF ,{j} +

|F|) is the number of runs in F in which Aj is at level s ∈ {−,+}, that

correspond to the selected CMEs involving the factors in S1. We specify

the model matrix M for this selection of effects in F as

M =

(

1|F| STrad
1 STrad

2 SCME
1

)

, (6.1)

where 1|F| is the |F| × 1 vector whose entries are all 1, STrad
i is the |F| ×

|STrad
i | matrix whose columns are the contrast vectors for the effects in STrad

i

for i ∈ {1, 2}, and SCME
1 is the |F| × |SCME

1 | matrix whose columns are the

contrast vectors for the CMEs in SCME
1 . We let q = 1 + |STrad

1 |+ |STrad
2 |+

|SCME
1 | denote the number of columns in M .

Example 8. To illustrate these notations, consider the 23−1
III design F from

Example 1. Suppose S1 = {A1, A2} and S2 = {A3}, with STrad
1 = {Z{2}},

SCME
1 = {Z+

1|2}, and STrad
2 = {Z{3}}. The model matrix as specified in
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equation (6.1) for this design and model is then

M =























1 −0.5 0.5 0

1 0.5 −0.5 −1

1 −0.5 −0.5 0

1 0.5 0.5 1























.

Definition 11 ((Montgomery, 2013)). Let F1,F2 ⊆ Dr with |F1| = |F2|,

and suppose that the same sets of effects STrad
1 , STrad

2 , and SCME
1 are of

interest for estimation under them. Let Mi denote the model matrix under

Fi for i ∈ {1, 2}. The relative D-efficiency of F1 to F2 is

{

det(MT

1 M1)

det(MT

2 M2)

}1/q

.

From Definition 11, the D-efficiency calculation for a model matrix M

revolves around det(MTM). The following lemma formally presents the

derivation of det(MTM) under our algebra.

Lemma 3. Consider model matrix M in equation (6.1). For c, d ∈ {1, . . . , q},

let Z(c) and Z(d) denote the functions in {Xφ} ∪ STrad
1 ∪ STrad

2 ∪ SCME
1 that

correspond to columns c and d of M , respectively, with Z(1) = Xφ. Then

entry (c, d) of MTM is 2r
〈

Z(c), Z(d) | F
〉

.

By means of this lemma and our partial aliasing relations under the

CME system, the entries of MTM for a model matrix M containing both
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conditional and traditional effects can be described in a simple and general

manner using indicator function coefficients for the fraction F . We proceed

to formally reduce D-efficiency calculations in this manner for resolution

III and IV regular fractions, and models in which STrad
1 consists of the

main effects for all factors in S1 and STrad
2 consists of all main effects and a

selection of non-aliased two-factor interactions involving the factors in S2.

Proposition 6. Consider a 2r−p
III design F ⊆ Dr, and let its model matrix

M be structured as

M =

(

1|F| STrad
1 SME

2 SINT
2 SCME

1

)

,

where the columns of matrix SME
2 are the main effect contrast vectors in

STrad
2 , and the columns of matrix SINT

2 are the two-factor interaction con-

trast vectors in STrad
2 . Let n1 and n2 denote the number of columns in SCME

1

and SINT
2 , respectively. Then MTM is of the form

MTM =















D1 C1 C2

CT

1 D2 C3

CT

2 CT

3 W















, (6.2)

where

• D1 is the (1+|S1|+|S2|)×(1+|S1|+|S2|) diagonal matrix whose (1, 1)

entry is |F| and whose (c, c) entry for c ∈ {2, . . . , (1 + |S1|+ |S2|)} is

2p−r+2,
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• D2 is the n2×n2 diagonal matrix whose (c, c) entry for c ∈ {1, . . . , n2}

is 2p−r+2,

• W is the n1 × n1 matrix whose (c, d) entry for c, d ∈ {1, . . . , n1}, in

which Zs
i|j and Zs′

l|k respectively correspond to the contrast vectors in

columns c and d of SCME
1 , is

2p−r+2b−1
F ,φ(bF ,{i}△{l} + s′bF ,{i}△{l,k} + sbF ,{i,j}△{l} + ss′bF ,{i,j}△{l,k}),

• C1 is the (1 + |S1| + |S2|) × n2 matrix whose (1, d) entry is 0 for all

d ∈ {1, . . . , n2}, and whose (c, d) entry for c ∈ {2, . . . , (1+|S1|+|S2|)}

and d ∈ {1, . . . , n2}, in which ZI and ZJ respectively correspond to

the contrast vectors in column c of

(

1|F| STrad
1 SME

2

)

and column

d of SINT
2 , is 2p−r+2b−1

F ,φbF ,I△J ,

• C2 is the (1 + |S1| + |S2|) × n1 matrix whose (1, d) entry is 0 for all

d ∈ {1, . . . , n1}, and whose (c, d) entry for c ∈ {2, . . . , (1+|S1|+|S2|)}

and d ∈ {1, . . . , n1}, in which ZI and Zs
i|j respectively correspond to

the contrast vectors in column c of

(

1|F| STrad
1 SME

2

)

and column

d of SCME
1 , is 2p−r+2b−1

F ,φ(bF ,{i}△I + sbF ,{i,j}△I), and

• C3 is the n2 × n1 matrix whose (c, d) entry for c ∈ {1, . . . , n2} and

d ∈ {1, . . . , n1}, in which ZI and Zs
i|j respectively correspond to the

contrast vectors in column c of SINT
2 and column d of SCME

1 , is
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2p−r+2b−1
F ,φ(bF ,{i}△I + sbF ,{i,j}△I).

Also,

det
(

MTM
)

= |F|2(p−r+2)(|S1|+|S2|)det























D2 C3

CT

3 W









−









CT

1

CT

2









D−1
1

(

C1 C2

)















.

Corollary 10. Consider a 2r−p
IV design F ⊆ Dr, and let its model matrix M

be structured as in Proposition 6. Then the entries of matrix C1 in equation

(6.2) are all equal to zero. Also,

det
(

MTM
)

= |F|2(p−r+2)(|S1|+|S2|+n2)det















W −

(

CT

2 CT

3

)









D1 0

0 D2









−1 







C2

C3























.

In Proposition 6, the entries of C1 correspond to correlations between

main effects and two-factor interactions, the entries of C2 correspond to

correlations between main effects and CMEs, and the entries of C3 cor-

respond to correlations between two-factor interactions and CMEs. The

off-diagonal entries of W correspond to correlations between CMEs. Propo-

sition 6 and Corollary 10 reduce D-efficiency calculations to the determinant

of a (n1 + n2) × (n1 + n2) matrix for resolution III designs and the deter-

minant of a n1 × n1 matrix for resolution IV designs, respectively. They

also facilitate immediate characterizations of the D-efficiencies for several

candidate designs under broad classes of models that involve different se-
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lections of main effects, two-factor interactions, and CMEs. These features

of our results are illustrated in the case study in Section 7.

Example 9. For designs F1 and F2 from Example 2, let S1 = {A1, A2, A3, A4, A5},

SCME
1 = {Z+

1|4, Z
−
1|5, Z

+
2|3, Z

−
2|4}, and STrad

2 contain the functions ZI that cor-

respond to the main effects and two-factor interactions from S2 = {A6, A7, A8, A9}.

By virtue of Corollary 10, the D-efficiencies of these designs with respect to

this model containing a large selection of conditional and traditional effects

are reduced to determinants of simple 4× 4 matrices. For design F1,

W −

(

CT

2 CT

3

)









D1 0

0 D2









−1 







C2

C3









=
1

8























1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1























,

and thus det
(

MT

1 M1

)

is non-zero. For design F2,

W −

(

CT

2 CT

3

)









D1 0

0 D2









−1 







C2

C3









=
1

8























1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0























,

and thus det
(

MT

2 M2

)

is 0, so that this model is not estimable by F2.
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7. Practical Application of Conditional Main Effect Analysis

We demonstrate the utility of our algebra for real-world CME analyses by

considering the painted panel experiment of Lorenzen and Anderson (1993,

p. 242–249). The data for this experiment are in the supplement. This case

study illustrates how our results can effectively shed light on the possible

scope of analyses, and the broad equivalencies and subtle differences, for

several candidate designs under the CME system.

The experimenters’ objective was to study the effects of the factors in

Table 2 on painted panel film build. Effects thought a priori to be ac-

tive were all of the main effects, INT(A7, A8), and INT(A1, A5), with the

higher-order interactions assumed inert. They selected a 28−3
IV design which

had INT(A7, A8) and INT(A1, A5) clear, with defining contrast subgroup

{3456, 12457, 2358, 12367, 2468, 13478, 15678}. Three other such designs ex-

ist, with defining contrast subgroups {1236, 1247, 13458, 3467, 24568, 23578,

15678}, {2467, 2357, 15678, 3456, 12458, 12368, 13478}, and {3468, 1248, 23578,

1236, 24567, 13457, 15678} (Wu and Hamada, 2009, p. 254). These designs

are denoted in order by FLA
1 , FLA

2 , FLA
3 , and FLA

4 . We use our algebra to

evaluate their properties under the CME system. This evaluation is im-

portant in practice because additional interactions are typically active but

fully aliased in candidate designs, so that CMEs should be considered to
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Table 2: The factors and their levels in the experiment of Lorenzen and

Anderson (1993, p. 242, 246).

Booth Substrate Fluid Target Booth Base Coat Atomizing Air Fan Air

Humidity Temperature Flow Rate Distance Temperature Temperature Pressure Pressure

A1 A2 A3 A4 A5 A6 A7 A8

70 (+) 100 (+) 20 (+) 15 (+) 90 (+) 85 (+) 50 (+) 50 (+)

50 (−) 70 (−) 0 (−) 12 (−) 70 (−) 65 (−) 40 (−) 40 (−)

yield interpretable and conclusive inferences, and the designs’ properties

under the CME system should be assessed to better inform the final design

selection. For this particular case, our algebra facilitates the understand-

ing of how the chosen design FLA
1 can yield more ambiguous inferences

on CMEs that correspond to potentially active interactions involving the

distinct temperature factors (A2, A5, A6) compared to FLA
2 and FLA

4 .

Our results in Section 4 enable immediate comparisons of the partial

aliasing relations for CMEs in the four designs. Consider the CMEs in-

volving the temperature factors. Proposition 2 and Corollary 1 yield in a

simple manner all of the correlated CMEs that involve them for any of the

designs, and that their absolute correlations are always 1/2, with the sign

equal to the product of their conditioned levels. In FLA
1 and FLA

3 , triples of

Statistica Sinica: Newly accepted Paper 

(accepted author-version subject to English editing)



33

CMEs involving A2, A5, and A6 exist that are correlated. Examples in FLA
1

are CME(A2 | A8s8), CME(A5 | A3s3), and CME(A6 | A4s4), and exam-

ples in FLA
3 are CME(A2 | A7s7), CME(A5 | A3s3), and CME(A6 | A4s4),

for s3, s4, s7, s8 ∈ {−,+}. In contrast, for FLA
2 and FLA

4 only pairs of

CMEs involving these factors exist that are correlated. Examples in FLA
2

are CME(A2 | A1s1) and CME(A6 | A3s3), and examples in FLA
4 are

CME(A2 | A3s3) and CME(A6 | A1s1), for s1, s3 ∈ {−,+}. A practical

consequence of this difference in partial aliasing relations is that FLA
2 and

FLA
4 can yield more conclusive CME analyses than FLA

1 and FLA
3 when more

than one of the temperature factors have active two-factor interactions.

The combination of our results in Section 5 with the previously iden-

tified partial aliasing relations illuminate several properties of the CME

families in these designs. First, Corollary 9 and the fact that each design

has the maximum number of clear two-factor interactions among 28−3
IV de-

signs enable us to immediately conclude that they all have the same (and

minimum) number of CMEs across their non-trivial families. In fact, each

design has 1 non-trivial family that contains 12 members, and 6 non-trivial

families, with each of these families in any one of the designs containing

8 members. Each design also has 13 trivial families (with 4 members in

each such trivial family). Having said that, FLA
1 and FLA

3 differ from FLA
2
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and FLA
4 in the composition of the families involving temperature factors.

Specifically, FLA
1 and FLA

3 have CMEs involving A2, A5, and A6 in their re-

spective families of size 12, whereas FLA
2 and FLA

4 have CMEs involving A2

and A6 just in their families of size 8 and CMEs involving A5 just in their

families of size 4, respectively. Second, we have from Proposition 5 and the

fact that each design has minimum aberration among 28−3
IV designs that for

any exhaustive selection of CMEs such that no two involve the same pair

of factors, their respective sums of absolute correlations and squared corre-

lations among non-sibling CMEs will be equal (and the minimum possible

respective values). These sums are 9/2 and 9/4, respectively. However,

FLA
1 and FLA

3 again differ from FLA
2 and FLA

4 in that for any such selection,

the former two will have larger sums of absolute correlations and squared

correlations among non-sibling CMEs that involve the temperature factors.

The sums for FLA
1 and FLA

3 are 3 and 3/2, whereas the sums for FLA
2 and

FLA
4 are 1 and 1/2, respectively. These results demonstrate that, although

the designs are broadly equivalent in terms of their CME family structures

and aggregate correlations among non-sibling CMEs, they also have subtle

differences for CMEs involving the temperature factors due to their distinct

partial aliasing relations, which are easily derived from our algebra. These

differences again play a role in the CME analysis for FLA
1 in terms of the
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degree of its robustness to the case that another temperature factor besides

A5 has an active two-factor interaction, and the degree to which conclusions

can be obtained on the CMEs of the other temperature factors.

The results in Section 6 facilitate our understanding of the designs’

D-efficiencies for models involving CMEs, main effects, and the previously

identified INT(A7, A8) and INT(A1, A5). Let S1 = {A2, A3, A4, A6}, S2 =

{A1, A5, A7, A8}, S
Trad
1 = {Z{2}, Z{3}, Z{4}, Z{6}}, and

STrad
2 = {Z{1}, Z{5}, Z{7}, Z{8}, Z{1,5}, Z{7,8}}. Then for any of the designs

and choice of SCME
1 , matrix C3 in Proposition 6 has all of its entries equal to

zero, so that det
(

MTM
)

= 2−25det
{

W − CT

2 D
−1
1 C2

}

for the model matrix

M by Corollary 10. This expression can be readily evaluated to characterize

these designs’ D-efficiencies for broad classes of models. For the first exam-

ple, suppose SCME
1 = {Zs

2|3, Z
s′

2|4, Z
s′′

6|3, Z
s′′′

6|4} for s, s′, s′′, s′′′ ∈ {−,+}, which

corresponds to CMEs that involve the two temperature factors besides A5.

The D-efficiencies for all of the designs and choices of conditioned levels in

this case are equal, and immediately reduced to the single calculation

det
(

MTM
)

= 2−25det











































1

8
















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





























.

Statistica Sinica: Newly accepted Paper 

(accepted author-version subject to English editing)



36

For the second example, consider SCME
1 = {Zs

i|j, Z
s′

i|k, Z
s′′

i|l } for distinct

Ai, Aj, Ak, Al ∈ S1 and s, s′, s′′ ∈ {−,+}. The designs’ D-efficiencies are

again equal in this case, and immediately reduce to the determinants of

3 × 3 matrices with the same structure for each such selection of CMEs.

To illustrate, if i = 2, j = 3, k = 4, and l = 6, then det
(

MTM
)

= 2−34

for any of the designs and conditioned levels. The ease with which these

broad D-efficiency characterizations were obtained further highlights the

significance of our algebra for practical applications.

We now perform the CME analysis of the chosen design FLA
1 . The ex-

perimenters concluded by ANOVA that the following were active: ME(A1),

ME(A2), ME(A3), ME(A4), ME(A5), ME(A8), INT(A4, A7), and one or

more of INT(A2, A8), INT(A3, A5), and INT(A4, A6) (Lorenzen and An-

derson, 1993, p. 246–248). More conclusive inferences on the last set of

two-factor interactions cannot be obtained from the traditional analysis be-

cause they are all fully aliased in the chosen design. When considering

the corresponding CMEs, we have from our previous results that FLA
2 and

FLA
4 were preferable designs in that they could have more easily resolved

the ambiguity of which temperature factors have significant effects beyond

main effects. To complete the CME analysis of this experiment, we use the

three rules in the method of Su and Wu (2017, p. 5–6), and conclude that
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CME(A2 | A8−) is significant. Details of the analysis are in the supple-

ment. Thus, we obtain the interpretable, final conclusions from the CME

analysis that substrate temperature has an effect on film build at high air

pressure but not low air pressure, and that, contrary to the experimenters’

prior knowledge, booth temperature does not have any significant effects

beyond its main effect.

8. Conclusion

As recognized by Wu (2018), an important theme for modern experimental

design is the consideration of parameterizations for factorial effects that bet-

ter address real-life problems compared to more traditional systems. The

work in this paper underscores that theme. We developed an accessible al-

gebra for the CME system that facilitates the derivation of general results

and properties for broad types of two-level designs and models consisting of

multiple conditional and traditional effects. The framework for our algebra

is based on indicator functions. Our work is distinct from previous studies

on indicator functions, such as those of Fontana, Pistone, and Rogantin

(2000), Ye (2003), and Ye (2004), because they only consider the applica-

tions of indicator functions for deriving design properties under traditional

effects, whereas we consider their applications via our inner product in Def-
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inition 8 under both conditional and traditional effects. Our studies of

partial aliasing relations, design criteria, and D-efficiency calculations via

our algebra conclusively demonstrate its advantages. Specifically, it enables

both an unrestricted approach to understanding two-level designs under the

CME system, with no limits to the designs or effects that could be consid-

ered, and concise, simple calculations of design characteristics based on a

small selection of indicator function coefficients. This is further supported

by our case study, which highlights both the usefulness of our algebra and

a key advantage of CMEs as interpretable effects in many applications. A

more general lesson of the case study is that our algebra enables easier

comparisons of several large candidate designs under the CME system, and

thereby facilitates more informed choices among them.
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