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An algebraic approach for solving

boundary value matrix problems:

existence, uniqueness and closed
form solutions

LUCAS JODAR

ABSTRACT. In this paper we show that in an analogous way to the scalar case, the
general solution of a non homogencous second order matrix differential equation may
be expressed in terms of the exponential functions of certain matrices related to the
corresponding characteristic algebraic matrix equation. We introduce the concept of
co-solution of an algebraic equation of the type X*+ A, X + 4o =0, that allows us to
obtain a method of the variation of the parameters for the matrix case and further to
find existence, unigueness conditions for solutions of boundary value problems. These
conditions are of algebraic type, involving the Penrose-Moore pseudoinverse of a
matrix related to the problem. A computable closed form for solutions of the problem
is given. .

1. INTRODUCTION

Second order matrix differential equations with censtant coefficients
appear in the study of vibrational systems [6, 11], electrical, mechanical and
thermal problems [14], as well as when one considers finite approximations
to distributed parameter systems described by partial differential equations

[2].
It is well known that the solution of the Cauchy problem
XO(1) + A, X0+ A X(1) = F() X(0)=Co, XM(0)=C, (L1

where A;, C;, i=1,2, F(t) and X(t) are nxn complex matrices, elements of
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Cixn may be solved considering the standard change X=Y;, X'= Y, and
the equivalent first order extended system

Yl M = 0 i - 1 _ 0 A _ Co
e[ a8 L] wwane 2] w0-[¢] 0

If F(t) is continuous, then the unique solution of problem (1.1) is given by the
expression

X(H=[10] BXP{ICL){,:EO} + J! exp{— SCL)[ F(()s):l ds} (1.3)
1 0

see {5, p. 122], for instance. The expression (1.3) for the solution of problem
(1.1) has some numerical and theoretical inconvenients. So, the expression
(1.3) involves the increase of the dimension of the problem. Also, the
expression (1.3) is not totally explicit because of the existence of the pre-factor
[1,0], and the exponential exp(tCL) is not known in terms of data.

These inconvenients make that expression (1.3) is not useful for the study
of boundary value problems related to the matrix differential equation

X))+ A, X)) + Ao X ()= F() (14)

This motivates a different approach to the boundary value problem. In recent
papers [7, 9, 10], and in an analogous way to the scalar case, explicit
solutions of Cauchy problems and boundary value problems related to
equation (1.4) are given in terms of a pair of solutions X, X, of the matrix
cquation

X4 A, X+ Ag=0 (1.5)

such that the difference X — X, is invertible. However, the method developed
in {7, 9, 10], as well as the one of [8], has the inconvenient that equation (1.5)
may be unsolvable, or that a pair of solutions Xo,X, with X; — X, invertible,
is not available. For instance, if A; =0 and Ay has not square roots, [4], then
the corresponding equation (1.5) is unsolvable.

In order to study boundary value problems related to equation (1.5),
when the algebraic equation (1.5) is possibly unsolvable, we introduce the
concept of co-solution of the algebraic equation (1.5). This generalizes the
concept of solution of the algebraic equation (1.5) and it allows us to
represent the general solution of the homogeneous equation

X+ A, XOt) + Ao X (H) =0 | (1.6)
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in terms of an appropriate pair of co-solutions of equation (1.5). In section 3 a
generalized variation of the parameters method for solving equation (1.4) is
given. We apply this method in order to find existence and uniqueness
conditions_for_solutions-of the boundary value problem

XO(1) 4 A, X (1) + Ao X (5} = F(1)
EIX(0)+E2X(1)(O)=61

F, X(a)+ F2Xa) = G,
0<t<a

(1.7)

where E;, F;, G, fori=1, 2, and A}, for j=0, 1, F(t), X(t), are matrices in Caxn.
By using an appropriate pair of co-solutions of equation (1.5), the problem
(1.7) is transformed into an algebraic system, then considering generalized
inverses of matrices, a representation for the general solution of the boundary
value problem (1.7) is obtained.

If A is a matrix in Cixm, we represent by A™ the Penrose-Moore
pseudoinverse of A. An account of the uses and properties of this concept
may be found in [13].

2. ON THE GENERAL SOLUTION
OF THE MATRIX EQUATION X@(t)+ A, XV(t) + AoX(£)=0

We begin this section by introducing the concept of co-solution of the
equation (1.5).

Definition 1.1. Let us consider the equation (1.5) where A;€Cuxa, for i=0,1.
We say that a pair (X,T) of matrices in Caxn is a co-solution of equation (1.5} if
X #£0 and satisfies

XT? 4+ A; XT+ AgX =0 (2.1)

Example 1. Let us suppose that TeCxxn is a solution of equation (L.5), if
is the identity matrix in Cnxn, then the pair (I,7) is a co-solution of equation
(1.5).

Example 2. Let z be an eigenvalue of the companion matrix C:. defined in
(1.2). From [6], p. 14, the matrix z*I + Az + Ay is singular. Thus there exists
non zero matrices X such that (z2I + A;z + Ag)X =0. So, the pair (X, zl) is a
co-solution of equation (1.5).
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Definition 1.2. Let (X;, T;) be co-solutions of equation (1:5), for i=1,2. We
say that (X, T), i=1.2, is a fundamental pair of co-solutions of equation (1.5), if
the block matrix V defined by

X X
V= 2.2
[X.ﬂ X:TJ 22)

is invertible in Canxon.

Example 3. Let us suppose that T, and T are two solutions of equation
(1.5), then the pair {(1,T;), (I, T;)} define a fundamental pair of co-solutions of
equation (1.5), if and only if, the matrix T, — T is invertible, see lemma 1 of

(81

Next theorem shows that for a very general class of equation of the type
(1.5) a fundamental pair of co-solutions is available and provides a method
for obtaining fundamental pairs of co-solutions.

Theorem 1. let AoA; be matrices in Caxn and let Cp the companion matrix
defined by (1.2). If the matrix C. is similar to a block diagonal matrix
ol j

0o J
a fundamental pair of co-solutions. If P=(P.;), with PyeCnxn, for 1 <i, j<2, isan
invertible matrix in Canxa such that PJ=C.P, then (Pr1d1), (Piada), is a
fundamental pair of co-solutions of equation (1.5).

, Where J; for i=1.2, are matrices in Cyxn, then equation (1.5) has

Proof. Let P=(P;), with P;€C.xn, 1<i, j<2, an invertible block
partitioned matrix satisfying PJ=C..P. From the equality

[le Pujl l:Jl 0:|_|: 0 I :l[Pu Plz].r
Py Py {0 I —Ay —Ai || Pn P

we have
PiyJy =Py (2-3)
Py Jy=—AoPyy— APy c (2.4)
Py, =Py, ' (2.5)
PyyJy= ~ AP — A1 Py (2.6)

From (2.3) and (2.4) we have Py;1J3 = — AgPy; — A, Py1Jy, and from (2.5)-
(26) one gets Plz.]%: —A0P12—A1P12J2- Thus, {(Pliﬂ]l):‘ (PIZ,JZ)} is a
fundamental pair of co-solutions of equation (1.5), because from (2.3)-(2.6) and
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the invertibility of P, it follows that Py; #0 and P,;+#0. Note also that the
matrix V defined by (2.2) is invertible because

V:[ Py Py ]=[P11 P12:|=P
PlIJI PIZJZ P21 PZZ
Thus the result is concluded.

Remark 1. From theorem 1, in order to know the existence of a
fundamental pair of co-solutions of equation (1.5), only it is required that the
Jordan matrix of the companion matrix C. may be expressed as a block
diagonal matrix with two blocks in the diagonal of dimension n. This
information is available from the characteristic polynomial of Cr. If the
condition of theorem 1 is satisfied, in order to construct a fundamental pair of
co-solutions, we need to compute the matrices Py, and Py, but it is an easy
matter because the columns of P aré the vectors of a Jordan basis of the
matrix Ci, [12], chapter 6.

Theorem 2. Let us suppose that equation (1.5) has a fundamental pair (X;,T;)
i=1,2, of co-solutions. Then the unique solution of problem (1.1) takes the form

X()=X, exp(tT)D; + X, exp(tT)D, @7

Dy _1{ Co
HEaH

Proof. If we denote Y(1)=X; exp(tT)D,, for i=1,2, and arbitrary matrices
DieChxn for i=1,2, it follows that

where

and V is given by (2.2).

Y@= X.T; expT)Ds, YOO =X.T? exp(tT)D;, i=12
Hence we have
Y 4+ A YD)+ Ao Y1) = (XiT?+ A, X T+ Ao X)) exp(t THD; =0
because (X T;) is a co-solution of (1.5), for i=1,2. Thus for any matrices D,,D;
in Cnxn, the matrix function X(t) defined by (2.7) is a solution of the

differential equation (1.6). In order to satisfy the Cauchy conditions of (1.1),
the matrices Dy,D,, must verify the system -



150 Lucas Jodar

X=Co=X D+ XD,
X(”(O)=C1 =X, T\D\+X,5D,

Co _ X X D, 2.9
Cof 1 XZ\TT XoTo| [ D,
From the uniqueness for solutions of the Cauchy problem (1.1) and from (2.9)
the result is established.-

or equivalently

3. EXISTENCE, UNIQUENESS AND EXPLICIT SOLUTIONS
OF BOUNDARY VALUE PROBLEMS

Theorem 2 suggests that in analogous way to the scalar case we can
obtain a method of variation of parameters in order to find the general
solution of equation (1.4). Let us consider equation (1.4), where F (¢) defines a
continuous matrix function with values in Caxs, on an interval containing the
origin. Let us suppose that in an analogous way to the scalar case, we are
interested in finding appropriate matrix functions D{t), for i=1,2, such that
the function

X(6)= i‘ X, exp(tT)D{1) (3.1)
i=1

I

1s a solution of equation (1.4). Let us assume that we choose the functions
D) such that :

Xy exp(tT) X exp(tTy) } [D?’(t)}_[() ] (32
X\T expltTy) X2 exp(tTy) | | D80 |~ F) %)

that may be written as

[Xl Xz][exp(rm 0 ] D[ o 3
T XNL]L 0 expiT) [D&“(t)]_[f‘(r)] o

If we assume that (X, T;), (X2,T3) is-a. fundamental pair of co-solutions of
equation (1.5), then the matrix V defined by (2.2) is invertible in Carxzs, and if
we denote by W=(W,), for 1<, j<2, with W,eCaxx, the inverse matrix of V,
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with the same dimensional block partition as ¥, then from (3.3) it follows

that
Dy(r)| [ D2(0) o To
I:DZ([)jl_[Dz(O)]+J; [ Diag(exp(—sTh), exp(—sT2))] W[ F(s)] ds (3.4)

Note that

3 0 —sT) WioF
[Diaglexp(—sT), exp(—sT2)] W[F(S)}=[:E((—§E; WZ FEZ{I

Hence and from (3.4) one gets

D.(:)=Dx(0)+f exp(—sT) W2 F(s) ds
° (3.5)

]

Dy(t)=D5(0) + I exp( —sTa)WaF(s) ds

0

Note that from (3.2), the derivatives X(f) of X(f) defined by (3.1) takes the
expressions

X=X, T; exp(tT)D1(0)+ X2 Tz exp(tT)Da(1),

. (3.6)
X=X, T} exp(tTi)Di(t)+ X213 exp(t T)D(0) + F(1)

and
XO)+ A, XMV (0)+ Ao X()=
=X, T} +A4,X,Th + Ao X ) exp(T)D () +(X2TE+ A X2 T + Ao X2)
exp(t T2)D,(t) + F(t) = F(1)

because of (3.6) and X;TF + A, X T+ AoX;=0, for i= 1,2. Thus, if D{t), for i
=1,2, are defined by (3.5), where D{0), i=1,2, are arbitrary matrices in Caxa,
the matrix function X(t) defined by (3.1) is a solution of equation (1.4).

If Yz} is a solution of equation (1.4) such that 0)=Co, Y"Y0)=C,. Then
we impose to the functions D{¢), i= 1,2, that X(¢) defined by (3.1) satisfies the
same initial conditions that Y¢), this is, taking t=0 in (3.1), (3.6), one gets

Co=X1D1(0)+ X2Dx(0) and C;=X,TiD\(0)+ X, T2D:(0) (3.7

Hence we have that D{0), i=1,2, must be given by

DiOY] [ Co
[02(0)]’V [C] (5)
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As X(1) defined by (3.1) with D0), for i=1,2, defined by (3.8), satisfies the
same initial conditions that Yt), from the uniqueness property, Xt) and X(r)
coincides. This proves that the expression (3.1), (3.5), represents the general
solution of equation (1.4). The following result has been proved:

Theorem 3. Let F(t) be a continuous Cuxn valued Junction defined on «a
interval U of the real line containing the origin. Let us assume that equation
(1.5) has a fundamental pair {(X,,T,), (X 2, o)}, of co-solutions, and let V=1 = W
=(W;), where WeCoxn, for 1<i, j<2, and V is the matrix defined by (2.2).
Then the general solution of equation (1.4) is given by the function X(t) defined
by (3.1), (3.5), where D{0), i=1,2, are arbitrary matrices in Coxn,

Now we will show that the representation (3.1), (3.5), for the general
solution of equation (1.4), may be used to find existence and uniqueness
conditions for solutions of the boundary value problem (1.7), as well as, for
obtaining explicit solutions of them in terms of a fundamental pair of co-
solutions of equation (1.5).

Theorem 4. Let F(t) be a continuous Cax, valued function defined on the
interval [0,a], with a>0, and let us suppose that equation (1.5) has a
Jundamental pair of co-solutions {(X,,T;), (X2, T2)}. Let W=(W;)), W, €Cuxn, be
the inverse of the matrix V defined by (2.2), and let Q be the matrix

Q=G,—(F\X, +F2X,T.)j exp{(a—s)T,) Wiz F(s) ds—
0
(FiX,+F,X,T;) f exp((a—s)T5) W F(s) ds (3.9)
0
where G, is the matrix appearing in (1.7). Then the boundary value problem (1.6)

is solvable, if and only if, the matrix § defined by

_[ E\X,+EX,T E\X,+EX,T, :l (3.10)
(F1 X1+ F2X Ty explaTy) (F\X:+F.X2Ty) explaTh) '

satisfies the property

oo ]

58+ = {(3.11
[Q 0 :
Also, if the condition (3.11) is satisfied, then the solution set of problem (1.7) is

given by the functions X(1) defined by (3.1), (3.5), where D((0), D5(0) take the
Sform
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Dy(0y |_ o+| G +
[DZ(O)]-S. [Q ]+(Iz,,—s SY (3.12)

and Y is an arbitrary matrix in Caxa.

Proof. From theorem 3, the general solution of equation (1.4) is given by
the function X(t} defined by (3.1), (3.5), where D,(0) and D»(0) are arbitrary
matrices in Cnx» In order to find solutions of problem (1.7), we have to find
appropriate matrices D;(0), D2(0) in Cyxs, such that the corresponding
function X{(t), satisfies the boundary value conditions of (1.7). Taking into
account that the functions D?), i= 1,2, defined by (3.5), satisfy

Dy(a)=D(0)+ J exp(—sT,)Wi2F(s) ds
and : (3.13)

a

D(a)=DaA0)+ J exp(—sT3) Wiz F(s) ds

3}

by impossing the boundary value conditions of (1.6) to the expression of X(f),
it follows that D;(0) and D»(0) must verify

E{(X1D:1(0)+ X2 D(0) + Ex(X 1 TiD1(0)+ X, T D2(0) = G,

Fi(X, exp(aT)D1(0)+ X exp(aTz)D2(0)) +
+F2(X, Ty exp(@T)D1(0)+ X, T; exp(aT2)Dy(0)=0Q
where Q is defined by (3.9). Thus, D;(0), for i=1,2, must verify the algebraic

system
D:(0)]_[6G:
Sl:Dz(O)]“[Q :l (3.14)

It is well known, [13], p. 24, that system (3.14) is solvable, if and only if, the
condition (3.11) is satisfied, and that in this case the solution set of system
(3.14) is given by (3.12). Hence the result is established.

Remark 2. In order to find existence conditions for the problem (1.7), we
have to check if the condition (3.11) is satisfied. Thus, we have to compute S,
an easy method for computing the Penrose-Moore pseudoinverse of a matrix
may be found in [3], p. 12.

If the matrix S defined by (3.10) is invertible in Canxa, then S*S=1, and
problem (1.7) has only one solution given by (3.1), (3.5), where

[DI(O)] = S.-l [Gl}
D,(0) 0
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Next example illustrates the developed theory and shows that our
approach is strictly more general than the one developed in the sequence [7-
10].

Example 3. Let us consider a problem of the type (1.7) for the case where

1 1
A, =0, and Ap= —[ 1| An easy computation yields that o(4o)={0, —2}

1

1 1
and o(Cr)={0, 27, —22} and the minimal polynormal q(z) of Ci, coincides

with its characteristic polynomial p(z) =z(z* —2). Note that as o(—Ao)= {0,
2}, then forr any square root B of — Ay, it follows that o(B)={0, ZT}, or a(B)
={0, —l21’}. In the first case, the characteristic polynomial of B is p(z)
=2(z—27) and then p(B)=B(B—-2Z[)=B>—-22B= — 4,—2ZB=0, this is B
= -—2‘17,4[, If 6o(B)={0, —2%} then its characten'stic polynomial is g(z)=2z(z
+21) and g(B)=B(B +2TI) B2+2TB— —A0+22B 0. So, in this case B
=2 TAO An casy computation ylelds that +2° TAO are the unique square
roots of —Ap. In consequence By =2~ 2‘/{0 and Bp=—-2" TAO are the unique
square roots of — Ay, and B; —By= —27A4, is singular.

Thus in this case the corresponding equation (1.5) has not a pair of
solutions whose difference is invertible. On the other hand, as the characteris-

tic and the minimal polynomial of C:. coincide, it follows that the Jordan
canonical form of C. is given by the matrix

J; 0
J=
[0 Jz]
T
0 1 27 9
J = =
! [0 0]’ Iz [0 2—17]

* An easy computation yields that C, =PJP~! where

where

— —
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1 -1 1 -1
and (P,2, J2) define a fundamental pair of co-solutions of equation X 2+ Ao
=0. Taking concrete values of data in (1.7) one gets a family of examples that
can not be studied with the developed technique of [7-10] and for which
theorem 4 is applicable.

1 1 1 -1y,
Thus, taking P1; =|: ], P12=[ ], it follows that (P;i, J4)
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