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Abstract

Algebra offers an elegant and powerful approach to understand regular languages and finite automata.
Such framework has been notoriously lacking for timed languages and timed automata. We introduce the

notion of monoid recognizability for data languages, which includes timed languages as special case, in a

way that respects the spirit of the classical situation. We study closure properties and hierarchies in this

model and prove that emptiness is decidable under natural hypotheses. Our class of recognizable languages

properly includes many families of deterministic timed languages that have been proposed until now, and

the same holds for non-deterministic versions.

� 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

The class of regular languages can be characterized in various ways: finite automata, rational
expressions, monadic second order logic, extended temporal logics, finite monoids. . . [23]. Fol-
lowing the terminology of Henzinger et al. [17], we thus get a fully decidable class of languages, i.e.
a class of languages closed under boolean operations and for which emptiness is decidable. All
these characterizations constitute not only one of the cornerstones of theoretical computer science
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but also form the fundamental basis for much more practical research on verification (see e.g.
[13]).

Among all these equivalences, the simplest is undoubtedly the purely algebraic one claiming
that a word language is regular if and only if it is monoid recognizable , i.e. it is the inverse image
by a morphism of some subset of a finite monoid. Aside of its simplicity, this equivalence leads to
several beautiful theorems making a bridge between formal languages and algebra. A most fa-
mous example is due to Sch€uutzenberger [24] who showed that the class of languages recognized by
aperiodic monoids coincides with the class of star-free languages. Note that this result, together
with a theorem of Kamp [18], yields an algorithm to decide whether a recognizable language can
be defined by a linear temporal logic formula.

Real-time systems, the situation is far from being so satisfactory. The original class of timed
automata, proposed by Alur and Dill [4] has a decidable emptiness problem, but is not closed under
complement. Several logical characterizations [17,25] or even Kleene-like theorems [2,3,6,9,10]
have been proposed for the whole class of timed automata but no purely algebraic one. Besides,
interesting subclasses of timed automata, closed under complement, have been proposed and often
logically characterized. For instance, (recursive) event-clock automata [5] are closed under com-
plement and can be characterized in a nice logical way [17]. But once again, even if a related notion
of counter-free timed languages has been defined, no algebraic characterization exists.

We propose in this paper a purely algebraic characterization for timed languages. In fact, we
deal with a more general framework than timed languages, the so-called data languages. We
consider a finite alphabet of actions R and a set of data D (this set of data could be some time
domain but also anything else). A data word is thus a sequence of pairs ða; dÞ, where a 2 R and
d 2 D. As we will explain in details in Section 3, the monoid recognizability for data languages
cannot be obtained through the simple notion of morphism, as is the case for regular formal
languages. We propose in this paper another mechanism, based on registers. We obtain in this
way, for any set of actions R and any set of data D, a class of so-called ‘‘monoid recognizable’’
data languages. Note that similar situations arose in other contexts. For example, it has been
shown in [7] that the class NC1 of languages recognized by boolean circuits of logarithmic depth
can be characterized in algebraic terms, using the notion of programs of polynomial length instead
of morphisms. Another example is the algebraic characterization of PSPACESPACE using the leaf lan-

guages approach [16].
The class of monoid recognizable data languages is closed under boolean operations. In this

class, two hierarchies naturally occur, depending on which monoid and how many registers are
used. As first result, which shows the interest of our approach, the choice of the monoid is
fundamental. More precisely, we prove that, like in the formal language case, two different va-
rieties of monoids recognize two different sets of data languages. This implies that increasing the
number of registers cannot help if the monoid is not powerful enough. On the contrary, if the
monoid M is fixed, then the number of registers can be bounded by some constant depending only
on R and M .

We next define a notion of deterministic data automata and, as one of our two main theorems,
we prove that a data language is monoid recognizable if and only if it is accepted by some data
automaton. Note that the translation from monoid to automaton and vice versa is simple and very
close to what happens in formal language theory, which emphasizes the elegance of the proposed
approach.
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We then focus on the problem of deciding emptiness of languages recognized by data automata,
or equivalently, monoid recognizable. We propose a simple and nice condition related to the
registers and the data domain under which emptiness is decidable. More precisely, under this
condition, we propose our second main result: an algorithm to transform a data automaton A
into a finite automaton recognizing the classical formal language of those words of R� that can be
obtained from a data word accepted by A by erasing the data. The idea of this construction is
similar to the region automaton construction of Alur and Dill [4].

Hence the class of data languages recognized by monoids, where the condition above holds,
forms a fully decidable class of data languages. If the set of data D is a time domain, our rec-
ognizable data languages contain all the timed languages recognized by deterministic timed au-
tomata [4] or their deterministic extensions [12,14]. But our class also contains a lot of timed
languages which cannot be recognized by any timed automaton (even non-deterministic ones).

We also briefly study three possible extensions of our model. First, we extend in a natural way
the set of operations on registers that we can perform (registers can be erased or swapped). The
model obtained using this larger class of updates is not more expressive than the original model,
but the new operations are very natural and useful macros to represent systems. We then consider
non-deterministic data automata (or equivalently a non-deterministic notion of monoid recog-
nizability). Then we get a larger class of data languages, still closed under union and intersection
but not anymore by complementation. On the contrary, this new class is closed by concatenation
and iteration. Once again, emptiness can be decided, by an algorithm similar to the one used in the
deterministic case. Finally, we show that if we extend the power of the registers and allow
computations to be performed on them, then what monoid is used to recognize the language
becomes essentially irrelevant.

This paper is a long version of [11].

2. Basic definitions

If Z is any set, Z� denotes the set of finite sequences of elements in Z. We consider throughout
this paper a finite alphabet R and an unrestricted set of data D. Among the elements of D, we
distinguish a special initial value, denoted by ?.

A data word over R and D is a finite sequence ða1; d1Þ . . . ðap; dpÞ of ðR�DÞ�. A data language is
a set of data words.

If kP 1 is the number of registers, a k-register update, or simply an update, is an application up

from Dk �D into Dk, such that there exists a set Iup 	 f1; . . . ; kg and up maps ððdiÞi¼1;...;k; dÞ onto
ððd 0iÞi¼1;...;kÞ where d 0i ¼ d if i 2 Iup and d 0i ¼ di if i 62 Iup. In the sequel, on the pictures, an update up
will be precisely written as the set Iup.

If � is an equivalence defined on Dk and if h 2 Dk, we denote h the class of h modulo �.

3. Monoid recognizability

Intuitively, the principle of monoid recognizability consists in mapping the words of a free
monoid C� (where C can be either finite or infinite) into a finite monoid M and to define a language
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by the set of words which are mapped on a given subset F of M . Of course, ‘‘interesting’’ map-
pings will allow to deduce properties of the language from properties of a monoid which rec-
ognizes it.

In the formal language case, the best known and most studied method to define monoid rec-
ognizability is to use simply a morphism u from C� into M . In such a framework, to decide if a
word w 2 C� belongs or not to the language L, it is sufficient to run the procedure presented as
Algorithm 1. Then, it can be shown that a word language is monoid recognizable if and only if it is
regular. Apart from its simplicity, this equivalence leads to several beautiful theorems making a
bridge between formal languages and algebra [22].

Algorithm 1 The mechanism for formal languages
# % Initialization
# m :¼ 1
# % Computation
# While not end of w do
# Read the next letter a of the word
# Compute uðaÞ
# Compute m :¼ muðaÞ
# Endwhile
# % Output
# If m 2 F then output ‘‘yes’’ else output ‘‘no’’

Unfortunately, using such a simple mechanism for data languages is hopeless if we want an in-
teresting class of languages. Indeed, since the image of R�D would be finite, the simple language
fða; dÞða; d 0Þ j d 6¼ d 0g would not be monoid recognizable as soon as D is infinite.

Hence, we need some kind of auxiliary memory to take care of the values of the data. This will
lead of course to a more complicated mechanism than morphisms. Here, we propose to use a finite
number of registers as auxiliary memory. Roughly, and intuitively, a data word w will be in the
language if and only if the procedure described in Algorithm 2 answers ‘‘yes’’.

Algorithm 2 A mechanism that uses registers
# % Initialization
# m :¼ 1
# all the registers are set to ?
# % Computation
# While not end of w do
# Read the next letter ða; dÞ of the word
# Update the registers with the new data d using a and m
# Compute the new value m in the monoid from the old value,
# a and the registers
# Endwhile
# % Output
# If m 2 F then output ‘‘yes’’ else output ‘‘no’’
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We need now to precise how the registers are updated and how the successive values in the
monoid are computed.

In order to maintain the relevance of the monoid, the whole mechanism has to be very simple
and, in particular, has to be unable to perform any computation. To this purpose, we first use the
notion of updates as defined in the previous section. Then, the new value in the monoid does not
depend on the exact data stored in the registers but only on a finite and bounded information from
these registers.

All this leads to the formal definition of a k-register mechanism.

Definition 1. A k-register mechanism over a finite monoid M is a triple q ¼ ½ðupm;aÞm2M ;a2R;�;u�
where:
• for each ðm; aÞ 2 M � R, upm;a is a k-register update,
• � is an equivalence of finite index on Dk,
• u is a morphism from ðR�Dk=�Þ

�
into M .

Note that if k ¼ 0, a k-register mechanism reduces to a morphism from R� into M .
If q is a k-register mechanism over a finite monoid M and if w ¼ ða1; d1Þða2; d2Þ . . . ðan; dnÞ is a

data word of ðR�DÞ�, the computation of q over w yields the element of M given by the com-
putation described in Algorithm 3 (where h is an array of size k corresponding to the k registers
and h denotes the equivalence class by � of the registers h). The output of this computation is
denoted by qðwÞ.

Algorithm 3 Computation in a k-register mechanism
# % Initialization
# m :¼ 1
# 816 j6 k; h½j� :¼?
# % Computation
# For i :¼ 1 to n do
# h :¼ upm;aiðh; diÞ
# m :¼ muðai; hÞ
# Endfor
# % Output
# Output m

In the following, if w ¼ ða1; d1Þða2; d2Þ . . . ðan; dnÞ is a data word of ðR�DÞ�, the value of h at step i
of the loop is denoted by hi and the value of m at step i is denoted by mi.

From this definition of k-register mechanism, we can now define the notion of data language
recognized by a monoid M .

Definition 2. Let L be a data language over R and D and let M be a finite monoid. We say that M
recognizes L if there exists a subset F of M and a k-register mechanism q ¼ ½ðupm;aÞm2M ;a2R;�;u�,
such that

L ¼ q�1ðF Þ

P. Bouyer et al. / Information and Computation 182 (2003) 137–162 141



A data language is said to be monoid recognizable if there exists some finite monoid recognizing
it.

Example 3. The data language L ¼ fða; dÞða; d 0Þ j nP 1; d 6¼?; d 6¼ d 0g over fag and D is rec-
ognized by the finite monoid M ¼ f1; y; y2; 0g with y3 ¼ 0 and 0x ¼ x0 ¼ 0 for any x 2 M .

To this aim, we use two registers. Thus, we define the 2-register mechanism q ¼
½ðupm;aÞm2M ;a2R;�;u� in the following way:
• The updates are up1;a such that Iup1;a ¼ f1g and if z 2 M n f1g, upz;a such that Iupz;a ¼ f2g.
• � has two equivalence classes, namely h6¼ ¼ fðd; d 0Þ j d 6¼ d 0g and h¼ ¼ D2 n h 6¼.

• The morphism u : ðfag � fh 6¼; h¼gÞ� ! M is defined by uða; h6¼Þ ¼ y and uða; h¼Þ ¼ 0.
With these definitions, L is accepted by M using q (with F ¼ fy2g).

As an example of computation, consider the data word ða; dÞða; d 0Þ with d 6¼? and d 6¼ d 0.

In the monoid M 1M !a
d

y !a
d 0

y2

Values of the two registers
?
?

� �
d
?

� �
d
d 0

� �
Equivalence classes h¼ h 6¼ h6¼

We must notice that the registers do not compute anything. For example, taking D ¼ Q, with only
one register we could have computed the difference d 0 � d instead of putting the data d 0 in a
second register. But this is not allowed in our model.

Example 4. The data language fða; d1Þ . . . ða; dnÞða; dÞ j nP 1, d 62 fd1; . . . ; dngg over fag and D
(where D is infinite) is not recognized by any finite monoid. Intuitively, an unbounded number of
data should be stored, which is not allowed.

Proposition 5. Assume D reduces to f?g. A formal language is recognizable if and only if its image

is a monoid recognizable data language. Assume D is finite. If a data language is monoid recog-
nizable, then it is also a recognizable formal language. The converse also holds.

Proof. The first property is obvious, as R and R�D are then in bijection.
For the second property, we assume that D is a finite set of data and that L 	 ðR�DÞ� is a data

language recognized by the finite monoid M , using the k-register mechanism q ¼
½ðupm;aÞm2M ;a2R;�;u�. The morphism u : ðR�Dk=�Þ

� ! M can be extended in a natural way into a
morphism u : ðR�DkÞ� ! M . Note that ðR�DkÞ is finite. We define the morphism

w : ðR�DÞ� ! ðM �DkÞðM�D
kÞ

ða; dÞ7! ðm; hÞ7!ðm0; h0Þ such that
h0 ¼ upm;aðh; dÞ
m0 ¼ m:uða; h0Þ

( !

and F 0 as the set of functions r : ðM �DkÞ ! ðM �DkÞ such that, if 1M is the neutral element of
M , rðð1M ;?kÞÞ is of the form ðf ; hÞ where f is in F , the accepting set for L, and h 2 Dk. It is easy to
see that the morphism w ‘‘simulates’’ the mechanism q.
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Conversely, assume L 	 ðR�DÞ� is regular. There exists a finite monoid M , F 	 M and a
morphism w : ðR�DÞ� ! M , such that L ¼ w�1ðF Þ. Using a mechanism with one register, that is
always updated, we can easily see that L is a monoid recognizable data language. �

If M is a finite monoid and k an integer, the set of data languages over R and D recognized by M
using k registers, is denoted by LM ;kðR;DÞ, or simply LM ;k. We also set LM ¼

S
k LM ;k and

Lk ¼
S

M LM ;k.

Proposition 6. The set LM ;k is closed under complementation. If L1 2 LM1;k1
and L2 2 LM2;k2

, then
L1 [ L2 and L1 \ L2 are in LM1�M2;k1þk2

.

Proof. The set LM ;k is closed under complementation. Let L 2 LM ;k be a data language. Assume q is
a k-register mechanism and F is a subset of M such that L ¼ q�1ðF Þ (as in Definition 2). Let
ða1; d1Þ . . . ðap; dpÞ be a data word. Then the following equivalence holds:

ða1; d1Þ . . . ðap; dpÞ 2 L() qðða1; d1Þ . . . ðap; dpÞÞ 2 F

Thus,

ða1; d1Þ . . . ðap; dpÞ 62 L() qðða1; d1Þ . . . ðap; dpÞÞ 2 M n F

If L1 2 LM1;k1
and L2 2 LM2;k2

, then L1 [ L2 and L1 \ L2 are in LM1�M2;k1þk2
.

Let L1 2 LM1;k1
and L2 2 LM2;k2

.
Assume that for i ¼ 1; 2, qi ¼ ½ðupðiÞm;aÞm2M ;a2R;�i;ui� is a ki-register mechanism and Fi 	 Mi is a

subset of Mi such that Li ¼ q�1
i ðFiÞ.

We define k ¼ k1 þ k2, M ¼ M1 �M2 with the classical product. We also define the equivalence
� on Dk by

h1h2 � h01h
0
2 () h1 �1 h01 and h2 �2 h02

and the morphism uða; h1:h2Þ ¼ ðu1ða; h1Þ;u2ða; h2ÞÞ. We finally define for each m 2 M and each
a 2 R the k-register update upm;a such that

Iupm;a ¼ I
upð1Þm;a

[ ðk1 þ I
upð2Þm;a
Þ

The language L1 [ L2 is then recognized by M using the mechanism q ¼ ½ðupm;aÞm2M ;a2R;�;u� for
F ¼ ðF1 �M2Þ [ ðM1 � F2Þ whereas L1 \ L2 is recognized by M using q for F ¼ F1 � F2. �

From the algebraic point of view, the soundness of our definition is assessed by the following
result, which shows that the structure of the monoid is really fundamental and plays a role similar
to what happens in the framework of formal languages. Note that, in particular, this result proves
that increasing the number of registers cannot help if the monoid is not powerful enough.

Let L be a language on R. We define the data language

LD ¼ fða1; d1Þ . . . ðan; dnÞ j a1 . . . an 2 L and di 2 Dg
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Lemma 7. Let M be a finite monoid and L a language defined on the alphabet R. Then, L is rec-

ognized by M () LD is recognized by M .

Proof. We prove the two implications separately.
Assume that L is recognized by M . There exists a morphism u : R� ! M and some F 	 M such

that L ¼ u�1ðF Þ. It is easy to see that M recognizes LD (using no register).
Assume that LD is recognized by M using the k-register mechanism q ¼ ½ðupm;aÞm2M ;a2R;�;u�

and F 	 M . In particular, if a1; . . . ; an is in R�, the image of the data word ða1;?Þ . . . ðan;?Þ in
ðR�Dk=�Þ

�
, considering the computation of Fig. 3, is ða1;?kÞ . . . ðan;?kÞ. We define a morphism

w : R� ! M by wðaÞ ¼ uðða;?kÞÞ. Then,

a1 . . . an 2 L() ða1;?Þ . . . ðan;?Þ 2 LD
() qðða1;?Þ . . . ðan;?ÞÞ 2 F

() uðða1;?kÞ . . . ðan;?kÞÞ 2 F

() wða1 . . . anÞ 2 F

Thus, M recognizes the language L and the conclusion easily follows. �

This establishes that the role of the monoid is fundamental, in the sense that two different
varieties of monoids (see [22] for a definition of this notion) recognize two different sets of
data languages. This is an easy implication of the previous lemma and of the variety theorem
[22].

The following statements make precise the relative role of the monoid and of the registers.
For example, each additional register strictly increases the class of data languages being
recognized, as in timed automata each additional clock increases also the power of the au-
tomata [15]. On the other hand, if the monoid and the alphabet are fixed, then the hierarchy
on registers collapse.

Proposition 8.
(1) The sequence ðLkðR;DÞÞk is strictly monotonic.
(2) If M is a fixed finite monoid, the sequence ðLM ;kðR;DÞÞk collapses, more precisely,

LM ;2jM�Rjþ1 ¼ LM ;2jM�Rj .

Proof.
(1) Assume that D is an infinite set of data. We will prove that the data language

Lk ¼ fða; d1Þ; . . . ; ða; dnÞ j 8i; j i � j mod k � 1 ) di ¼ djg

over fag and D is recognized by a finite monoid using k registers, but is recognized by no finite
monoid using strictly less than k registers.

Intuitively, Lk can be recognized by a finite monoid with k registers as follows. Reading a data
word ða; d1Þ . . . ða; dnÞ, the first k � 1 data are recorded in the first k � 1 registers. Then the data dk
is put in the last register and the equality dk ¼ d1 is tested through the equivalence relation on Dk.
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Hence the next data dkþ1 is put in the last register and the equality dkþ1 ¼ d2 is once again tested
through the equivalence relation on Dk. The process continues until the last data letter is read or
an error occurs. The main difficulty is to know with which register the last one has to be com-
pared. This is done thanks to the monoid which roughly keeps this information through the whole
computation.

More formally, we first define the monoid M as follows. The elements of M are:

0

mi; where i 2 f0; . . . ; k � 1g;
niI; where i 2 f1; . . . ; k � 1g and I 	 f1; . . . ; kg

and the composition law is given by:

mk ¼ 1

niI � mj ¼ 0

mj � niI ¼
0 if jþ i mod k � 1 62 I

mjþimod k�1 otherwise

�
niI � njJ ¼ niþj mod k�1H ; where H ¼ fh 2 J j h� j 2 Ig

It is left to the reader to verify that this composition law is indeed associative.
We can now define the k-register mechanism q ¼ ½ðupm;aÞm2M ;a2R;�;u�.
• The updates are:

upmi;a such that Iupmi ;a ¼ fiþ 1g for 06 i6 k � 2

upx;a such that Iupx;a ¼ fkg for any x which is not of the form mi

• The equivalence relation � on Dk is such that

ðhiÞ16 i6 k � ðh
0
iÞ16 i6 k if

either hk ¼ h0k ¼?
or hk 6¼? and h0k 6¼?
and fi j hi ¼ hkg ¼ fi j h0i ¼ h0kg

8><>:
and has thus 1þ 2k�1 equivalence classes.

• The application u is defined by

uða; hÞ ¼ m if hk ¼?
nfi j hi ¼ hkg if hk 6¼?

�
We claim that the monoid M defined above recognizes the language Lk with the k-register
mechanism q and fmi j 06 i6 k � 1g as set of final elements. A computation of q on a data word
ða; d1Þ . . . ða; dk�1Þða; dkÞða; dkþ1Þ is given by the following picture.
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ða; d1Þ . . . . . . ða; dk�1Þ ða; dkÞ ða; dkþ1Þ
?
:

:

:

?

0BBBB@
1CCCCA

1

d1

?
:

:

?

0BBBB@
1CCCCA

m

d1

:

:

dk�1

?

0BBBB@
1CCCCA

mk�1

d1

:

:

dk�1

dk

0BBBB@
1CCCCA

ak

d1

:

:

dk�1

dkþ1

0BBBB@
1CCCCA

akþ1

From the definition of the elements of q, it holds

ak ¼ mk�1 � uða; ðd1; . . . ; dk�1; dkÞÞ
¼ mk�1 � nfi j dk ¼ dig

¼
0 if k mod k � 1 ¼ 1 62 fi j dk ¼ dig; i:e:; dk 6¼ d1

m otherwise

�
and

akþ1 ¼ m � uða; ðd1; . . . ; dk�1; dkþ1ÞÞ
¼ m � nfi j dkþ1 ¼ dig

¼
0 if 2 mod k � 1 ¼ 2 62 fi j dkþ1 ¼ dig; i:e:; dkþ1 6¼ d2

m2 otherwise

�
We will now prove that Lk is not recognized by any finite monoid with at most k � 1 registers.
Assume the contrary and let M be some finite monoid and let q ¼ ½ðupm;aÞm2M ;a2R;�;u� be a
h-register mechanism (with h6 k � 1) recognizing Lk.

For any data word w ¼ ða; d1Þ . . . ða; dkÞ of length k, we define the sequence ðhiÞ06 i6 k as in Al-
gorithm 3. The data wordw is thus said to be read on the path c ¼ ðh1; . . . ; hkÞ. For such a given path
c, we denote byEðcÞ the set of all the data words read on c. Since the vectors hi are of size h, there exists
for any path c an integer nðcÞ 2 f1; . . . ; kg such that, for any data word ða; d1Þ . . . ða; dkÞ read on the
path c, the last data vector hk does not contain the data indexed by nðcÞ.

Now let us consider a subsetD ofD (which is infinite by hypothesis) of size b > Nk, whereN is the
number of equivalence classes of�. The set ðfag � DÞk has bk elements. Since the number of paths is
Nk, there exists some path c such that EðcÞ contains at least bk=Nk > bk�1 data words of ðfag � DÞk.
Let us consider the equivalence relation  on the elements of ðfag � DÞk defined as follows:

u  v if 8i 6¼ nðcÞ; ui ¼ vi

Since D is of size b,  has bk�1 equivalence classes. Hence the set EðcÞ contains at least two data
words

ða; d1Þ . . . ða; dnðcÞÞ . . . ða; dkÞ
and

ða; d1Þ . . . ða; d 0nðcÞÞ . . . ða; dkÞ
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of ðfag � DÞk which are  -equivalents. The computations of q on these two words are represented
by the following figure.

ða; d1Þ . . . ða; dnðcÞÞ . . . ða; dkÞ
" " " " "
h1 hnðcÞ�1 hnðcÞ hk�1 hk

¼ ¼ � � ¼
h01 h0nðcÞ�1 h0nðcÞ h0k�1 h0k
# # # #

ða; d1Þ . . . ða; d 0nðcÞÞ . . . ða; dkÞ
As hk ¼ h0k, for any data word w, if the data word ða; d1Þ . . . ða; dnðcÞÞ . . . ða; dkÞw is in L then the
data word ða; d1Þ . . . ða; d 0nðcÞÞ . . . ða; dkÞw is also in L. However, this is impossible since dnðcÞ 6¼ d 0nðcÞ.
Thus L is not recognized by any finite monoid with strictly less than k registers.
(2) Updates are parameterized by a pair ofM � R, thus, considering a data languageL recognized by

a finite monoid M with k þ 1 registers using the mechanism ½ðupm;aÞm2M ;a2R;�;u�, and assuming
that k is greater than the powerset of the cardinality of M � R, we get that at least two registers
are updated in the same way by all the updates. More precisely, defining the application

k : f1 . . . kg ! Pðfupm;a j ðm; aÞ 2 M � RgÞ
i 7!fupm;a j ðm; aÞ 2 M � R and i 2 Iupm;ag

k cannot be injective. There exist thus two integers i 6¼ j such that kðiÞ ¼ kðjÞ. We assume, without
loss of generality, that i and j are respectively k and k þ 1, and we define the equivalence relation
 on the set Dk by

ðd1; . . . ; dkÞ  ðd 01; . . . ; d 0kÞ () ðd1; . . . ; dk; dkÞ � ðd 01; . . . ; d 0k; d 0kÞ
We get easily that L is recognized by M using the k-register mechanism ½ðup0m;aÞm2M ;a2R; ;w� where
Iup0m;a ¼ Iupm;a n fk þ 1g and w is defined from u in an obvious way. We then get that LM ;kþ1 ¼ LM ;k

as soon as kP 2jM�Rj. �

Remark 9. This proposition shows in particular that for a fixed monoid and a fixed alphabet, the
number of registers can be bounded. This result becomes of course false if only the monoid is fixed.

For instance, let M be the finite monoid f1; 0; xg with x2 ¼ x. For any integer k, let us define
Rk ¼ fa0; a1; . . . ; ak�1g. For any data word u 2 ðRk �DÞ� and any i ¼ 1; . . . ; k � 1, we set liðuÞ as
the data d (if it exists) such that u ¼ u0 ðai; dÞ u00 where u00 does not contain any ai; and we set
liðuÞ ¼? if the data does not exist. For each k, we define now the data language

Lk ¼ u ða0; d 01Þ . . . ða0; d 0nÞ j u 2 ððRk n fa0gÞ
(

� DÞ�and for each j; d 0j 2
[k�1

i¼1

fliðuÞg
)

We claim that

Lk 2 LM ;kðRk;DÞ n
[
k0<k

Lk0

Indeed, define the k-register mechanism q ¼ ½ðupm;aÞm2M ;a2R;�;u� where � is defined by the two
equivalence classes
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h ¼ fh 2 Dk j 916 i6 k � 1 such that h0 ¼ hig and h0 ¼ Dk n h

The updates upz;ai are defined by Iupz;ai ¼ fig if 06 i6 k � 1 and z 2 M . The morphism
u : ðD � fh; h0gÞ� ! M is finally defined by uða0; hÞ ¼ x, uða0; h

0Þ ¼ 0 and uðai;�Þ ¼ x if
16 i6 k � 1. Using this construction, M recognizes Lk.

To prove that Lk is not recognized by any monoid using strictly less than k registers can be done
without difficulty using a construction similar to the one presented in the proof of the previous
proposition.

4. Data automata

In this section, we define a notion of recognizability by data automata and prove its equivalence
with monoid recognizability.

Definition 10. A data automaton over R and D is a tuple A ¼ ðQ; q0; F ; k;�; T Þ where:
• Q is a finite set of states,
• q0 2 Q is the initial state,
• F 	 Q is the set of final states,
• k is an integer,
• � is an equivalence relation of finite index defined on Dk, and
• T 	 ðQ�Dk=� � R� U �Dk=� � QÞ is a finite set of transitions (U is a set of updates)
such that the following determinism hypotheses hold:
• for each tuple ðq; g; aÞ 2 Q�Dk=� � R, there is a (unique) update up such that any transition
ðq; g; a; up0; g0; q0Þ 2 T satisfies up0 ¼ up, and

• if ðq; g; a; up; g0; q01Þ and ðq; g; a; up; g0; q02Þ are in T , then q01 ¼ q02.

A data word ða1; d1Þ . . . ðan; dnÞ is accepted by the data automaton A if there exists a
path in A

q0 �����!g1;a1;up1;g01

d1

q1 �����!g2;a2;up2;g02

d2

q2 . . . qn�1 �����!gn;an;upn;g0n

dn
qn

such that the sequence ðhiÞi¼0;...;n defined by

h0 ¼?k and hiþ1 ¼ upiþ1ðhi; diþ1Þ

satisfies hi�1 ¼ gi for 16 i6 n, hi ¼ g0i for 16 i6 n and qn 2 F .
The set of data words that are accepted by A is denoted by LðAÞ.

Example 11. The data language described in Example 3,

L ¼ fða; dÞða; d 0Þ j d 6¼?; d 6¼ d 0g

is recognized by the following data automaton (h¼ and h6¼ are defined in Example 3):
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We claim that this notion of recognizability by data automata is equivalent to the notion of
monoid recognizability in the following sense.

Theorem 12. Let L be a data language over R and D. Then L is recognized by a data automaton if

and only if it is recognized by a finite monoid.

We thus have a result similar to the formal language case. As it appears below, the transformations
from monoids to automata and from automata to monoids are very close to the ones used in formal
languages. We believe that this similarity emphasizes the appropriateness of our approach.

Proof.
If implication. First, assume that L 	 ðR�DÞ� is recognized by a finite monoid M using the k-
register mechanism q ¼ ½ðupm;aÞm2M ;a2R;�;u� and the accepting set F 	 M . We construct a data
automaton over R and D, A ¼ ðQ; q0; F ; k;�; T Þ, as follows:
• k and � comes from the k-register mechanism,
• Q ¼ M and q0 ¼ 1M

• T ¼ fðm; g; a; upm;a; g0;m0Þ j m 2 M , g; g0 2 Dk=�, a 2 R, m0 ¼ muða; g0Þg.
We will prove that A is a valid deterministic data automaton and that LðAÞ ¼ L. First, note that if
m is a state of A, if g is a given equivalence class and if a is an action, there is a unique update up

such that A has a transition ðq; g; a; up;�;�Þ, namely up ¼ upm;a. Moreover if g0 is an equivalence
class, the state m0 such that ðm; g; a; upm;a; g0;m0Þ is a transition of A is uniquely determined. Thus,
A satisfies the determinism hypothesis of Definition 10.

Assume the data word w ¼ ða1; d1Þ . . . ðap; dpÞ is in L. The sequences ðhiÞi¼0;...;n and ðmiÞi¼0;...;n
defined by:

h0 ¼?k

hiþ1 ¼ upmi;aiþ1
ðhi; diþ1Þ

�
and

m0 ¼ 1M

miþ1 ¼ mi uðaiþ1; hiþ1Þ

�
satisfy mn 2 F . Consider the following run in A

1M �������!h0;a1;up1M ;a1
;h1

d1

m1 �������!h1;a2;upm1 ;a2
;h2

d2

m2 . . . ���������!hn�1;an;upmn�1 ;an ;hn

dn
mn

h0 h1 h2 hn

It is a valid accepting path for w in A because hiþ1 ¼ upmi;aiþ1
ðhi; diþ1Þ and miþ1 ¼ miuðaiþ1; hiþ1Þ.

Conversely, suppose w ¼ ða1; d1Þ . . . ðap; dpÞ is in LðAÞ. Consider the run

1M �����!g1;a1;up1;g01

d1

m1 ������!g2;a2;up1;g02

d2

m2 . . . �����!gn;an;upn;g0n

dn
mn

h0 h1 h2 hn

where h0 ¼?k and hiþ1 ¼ upmi;aiþ1
ðhi; diþ1Þ satisfy hi ¼ giþ1 and hiþ1 ¼ g0iþ1.
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Thus, we have that h0 ¼?k, hiþ1 ¼ upmi;aiþ1
ðhi; diþ1Þ, m0 ¼ 1M , miþ1 ¼ miuðaiþ1; hiþ1Þ satisfy

mn 2 F and w 2 L.

Only if implication. Now, assume that L 	 ðR�DÞ� is recognized by the data automaton
A ¼ ðQ; q0; F ; k;�; T Þ. We define M as the set of applications from Q�Dk=� into itself. We claim
that L is recognized by M . The morphism u : ðR�Dk=�Þ

� ! M is induced by the application
ða; g0Þ7!½ðq; gÞ7!ðq0; g0Þ� where q0 is the unique state for which there exists a transition
ðq; g; a; up; g0; q0Þ in A (the unicity of q0 comes from the determinism of A). For any m 2 M ,
suppose mððq0; g0ÞÞ ¼ ðq; gÞ (g0 is the equivalence class of ?k). Because of determinism again, for
any a, there is a unique up such that there exists a transition ðq; g; a; up;�;�Þ and we define
upm;a ¼ up. We finally define F ¼ fm j mððq0;?kÞÞ 2 F �Dk=�g. We note L0 the data language
accepted by M using the k-register mechanism ½ðupm;aÞm2M ;a2R;�;u� and the set F .

Assume w ¼ ða1; d1Þ . . . ðap; dpÞ is in L using the following computation:

q0 ������!g1;a1;up1;g01

d1

q1������!g2;a2;up1;g02

d2

q2 . . . ������!gn;an;upn;g0n

dn
qn

h0 h1 h2 hn

where h0 ¼?k and hiþ1 ¼ upiþ1ðhi; diþ1Þ. It satisfies hi ¼ giþ1, hiþ1 ¼ giþ1 and qn 2 F . Let m0 be the
identity function on Q�Dk=�. Let miþ1 be the composition of mi with uðaiþ1; hiþ1Þ ¼ uðaiþ1; g0iþ1Þ,
i.e. of mi with ½ðq; aÞ7!ðq0; g0iþ1Þ� for the unique q0 such that there exists a transition of the form
ðq; a; aiþ1; up; g0iþ1Þ. Assuming inductively that miððq0;?kÞÞ ¼ ðqi; hiÞ, we thus get q0 ¼ qiþ1 and
miþ1ððq0;?kÞÞ ¼ ðqiþ1; hi þ 1Þ and thus w 2 L0.

Conversely, assume that w ¼ ða1; d1Þ . . . ðap; dpÞ is in L0. Hence the sequences defined by

h0 ¼?k

hiþ1 ¼ upmi;aiþ1
ðhi; diþ1Þ

�
and

m0 ¼ 1M

miþ1 ¼ miuðaiþ1; hiþ1Þ

�
satisfy the property that mnððq0;?kÞÞ ¼ ðq; hÞ for some q 2 F . We define ðqi; hiÞ by ðqi; hiÞ ¼ mi

ððq0;?kÞÞ and we claim that

q0 �������!h0;a1;upm0 ;a1
;h1

d1

q1�������!h1;a2;upm1 ;a2
;h2

d2

q2 . . . ���������!hn�1;an;upmn�1 ;an ;hn

dn
qn

h0 h1 h2 hn

is a valid accepting path in A. Hence, w 2 L.
The equivalence between monoids and automata is now proved. �

We can notice that the translations from monoids to automata and vice versa do not change
neither the set of updates, nor the number of registers and the equivalence.

We say that a data language is recognizable if it is recognized by some data automaton (which is
equivalent to being recognized by a finite monoid).

5. Comparison with timed automata

One of the main motivation of this work was to find an algebraic characterization of timed
languages. It is clear that if we consider as data domain D a classical time domain (for example N
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or Qþ or Rþ), then timed languages reduce to our data languages (since we can easily handle the
monotonicity condition on time).

Proposition 13. Let A be a (deterministic) timed automata with n clocks over a timed domain D.
There exists a (deterministic) data automaton with 2nþ 2 registers which recognizes the same
language.

Sketch of proof. We assume that the definition of a (deterministic) timed automaton is known,
otherwise, we refer to [4].

Let us consider a deterministic timed automaton A with n clocks, fx1; . . . ; xng. A clock x0 is
added to the set of clocks to represent the universal time, i.e. x0 is never reset in A. There exists an
equivalence relation defined on Dn, namely �, such that if g is a guard appearing in A, then g is an
union of equivalence classes (� can for example be the region equivalence). We construct a
(deterministic) data automaton B with 2nþ 2 registers in the following way.

The set of states of B is Q� F where Q is the set of states of A and F is the set of functions
f : fx0; . . . ; xng ! f0; . . . ; 2nþ 1g such that for all 06 i6 n, f ðxiÞ 2 fi; nþ 1þ ig. Intuitively, the
value of the clock xi will be alternatively kept by the two registers i and nþ 1þ i.

The equivalence � in B is defined by:

ðhiÞ06 i6 2nþ1 � ðh
0
iÞ06 i6 2nþ1

m

8f 2 F ;

ðhf ðx0Þ � hf ðxiÞÞ16 i6 n � h0f ðx0Þ � h0f ðxiÞ

� �
16 i6 n

or

ðhf ðx0Þ � hf ðxiÞÞ16 i6 n < 0 and h0f ðx0Þ � h0f ðxiÞ

� �
16 i6 n

< 0

0B@
1CA

h0 < hnþ1 () h00 < h0nþ1

� �
h0 > hnþ1 () h00 > h0nþ1

� �

8>>>>>>>><>>>>>>>>:
Consider a transition in A:

For each function f in F , we construct transitions in B in the following way:

where
• h is any equivalence class of �,
• a is such that Ia ¼ f0; 1; . . . ; 2nþ 1g n ff ðx0Þ; . . . ; f ðxnÞg,
• f 0 2 F is such that
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f 0ðx0Þ ¼
0 if f ðx0Þ ¼ nþ 1

nþ 1 if f ðx0Þ ¼ 0

�

f 0ðxiÞ ¼
f ðxiÞ if xi 62 C

nþ 1þ i if xi 2 C and f ðxiÞ ¼ i

i if xi 2 C and f ðxiÞ ¼ nþ 1þ i

8><>:
• h0 is any equivalence class of � such that

ðbiÞ06 i6 2nþ1 2 h0 ) ðbf 0ðx0Þ � bf ðxiÞÞ16 i6 n 2 g and bf 0ðx0Þ > bf ðx0Þ

The data automaton B that we just constructed is deterministic and recognizes the same data (or
timed) language as A. �

Hence any timed language accepted by some deterministic timed automaton (as defined by [4])
is also recognized by a data automaton with the time domain as data domain.

Conversely, data automata allow the recognition of a much larger class of languages. Indeed all
the languages accepted by the extension of timed automata proposed in [12] are also recognized by
data automata. And even, for example, the language fða; sÞða; 2sÞ . . . ða; nsÞ j s 2 Qþg is recog-
nized by a data automaton whereas it is known that this language cannot be recognized by a timed
automaton, even in the extension proposed by [14].

We can also define more exotic languages which are monoid recognizable as for instance the set
fða; t1Þ . . . ða; tnÞ j 8i, ti is a prime numberg. Namely, it suffices to consider a monoid with two
elements, one register and an equivalence relation of index 2. The first class contains all the prime
numbers and the second class all the others.

6. Decidability of the emptiness problem

We first note that the general class of recognizable data languages is undecidable: we can
easily simulate a two counter machine [20] using a data automaton. We propose a
condition that determines a class of data automata for which the emptiness problem is
decidable.

As a preliminary, given a register update up, we define a relation on Dk=�, denoted by!up , in the
following way:

h!up h0 iff 9v 2 h; 9d 2 D; upðv; dÞ 2 h0

In order to capture decidability in our model, we define the following condition:

Condition ðyÞ : h!up h0 iff 8v 2 h; 9d 2 D; upðv; dÞ 2 h0

This condition is quite natural: it specifies that two equivalent register vectors have the same
future behaviours (condition ðyÞ is a bisimulation relation w.r.t. the transition relation defined by
!up ). Fig. 1 illustrates this decidability condition.

If q ¼ ½ðupm;aÞm2M ;a2R;�;u� is a k-register mechanism, we say that q satisfies the condition ðyÞ
whenever condition ðyÞ holds for every classes of � and for every update upm;a.
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We will prove that this simple condition ensures the decidability of the emptiness problem. The
principle of the proof of this result is similar to the one of region construction as defined by Alur
and Dill [4].

Theorem 14. Let L be a recognizable data language over R and D. Assume L is recognized by the

finite monoid M using the k-register mechanism q such that q satisfies the condition ðyÞ. Then the
emptiness of L is decidable in complexity PSPACESPACE.

Proof. Let L 	 ðR�DÞ� be a recognizable data language. We assume that M is a monoid which
recognizes L using a k-register mechanism q ¼ ½ðupm;aÞm2M ;a2R;�;u� that satisfies condition ðyÞ. As
in the proof of Theorem 12, we construct a data automaton A whose transitions are

m ������!g; a; upm;a; g0

muða; g0Þ
Of course, L ¼ LðAÞ. From A, we construct a finite automaton B ¼ ðQ; I; F ; T Þ, where
Q ¼ M �Dk=�, I ¼ ð1M ;?kÞ, F ¼ P �Dk=� (P is the acceptance set for the monoid recogniz-
ability) and T is defined by

ððm; gÞ; a; ðm0; g0ÞÞ 2 T () m������!g; a; upm;a; g0

m0 and g �!upm;a g0
We will prove that, as condition ðyÞ holds, this finite automaton accepts

UndataðLÞ ¼ fa1 . . . an j 9d1; . . . ; dn; ða1; d1Þ . . . ðan; dnÞ 2 Lg
Assume that A accepts the data word w ¼ ða1; d1Þ . . . ðan; dnÞ. The following path accepts w:

m0 ������!g1;a1;upm0 ;a1
;g0

1

d1

m1������!g2;a2;upm1 ;a2
;g0

2

d2

m2 . . . ��������!gn;an;upmn�1 ;an ;g
0
n

dn
mn

h0 h1 h2 hn

In particular, for each i, hiþ1 ¼ upmi;aiþ1
ðhi; diþ1Þ, hi ¼ gi and hiþ1 ¼ g0i. Hence, for each i, gi ���!upmi ;aiþ1 g0i

and there is a transition ððmi; giÞ; aiþ1; ðmiþ1; g0iÞÞ in B. Thus, the following path of B accepts the
word UndataðwÞ ¼ a1 . . . an.

ðm0; g1Þ!
a1 ðm1; g01Þ ¼ ðm1; g2Þ!

a2 ðm2; g02Þ ¼ ðm2; g3Þ . . .!
an ðmn; g0nÞ

Conversely, if a1 . . . an is a word accepted by B through the path

ðm0; g0Þ!
a1 ðm1; g1Þ!

a2 ðm2; g2Þ . . .!
an ðmn; gnÞ

It means that for each i, ðmi; gi; aiþ1; upmi;aiþ1
; giþ1;miþ1Þ is transition of A and that gi !

upmi ;aiþ1
giþ1.

We define h0 ¼?k and inductively hiþ1 by: as hi ¼ gi, there exists diþ1 such that

Fig. 1. Decidability condition ðyÞ.
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upmi;aiþ1
ðhi; diþ1Þ 2 giþ1; we thus define hiþ1 as upmi;aiþ1

ðhi; diþ1Þ. Hence the following path accepts
ða1; d1Þ . . . ðan; dnÞ in A:

m0 �������!g0;a1;upm0 ;a1
;g1

d1

m1�������!g1;a2;upm1 ;a2
;g2

d2

m2 . . . ����������!gn�1;an;upmn�1 ;an ;gn

dn
mn

h0 h1 h2 hn

The proof is now complete: B accepts UndataðLÞ.
L is empty if and only if UNDATAUNDATAðLÞ is empty. We can decide emptiness by applying the usual

non-deterministic algorithm to the constructed automaton. Since this automaton has jM �Dk=�j
states, the algorithm can be implemented in space logðjM �Dk=�jÞ, which is polynomial in the size
of the input. �

We will now show that condition ðyÞ can often be easily decided.
We define cupupðhÞ ¼ fv0 j 9v 2 h; 9d 2 D; v0 ¼ upðv; dÞg and cupup�1ðh0Þ ¼ fv j 9d 2 D; upðv; dÞ

2 h0g.
With these definitions,

Condition ðyÞ () ½cupupðhÞ \ h0 6¼ ; ) cupup�1ðh0Þ \ h ¼ h�
Thus, if cupup, cupup�1, \ and ¼ are computable, then condition ðyÞ is also computable.

Moreover, the updates we use do not compute anything, and the condition can be further
simplified. If X is a subset of f1 . . . kg, we define pX the projection over the components of X . If up
is an update, we define �up as the following product: if R is a subset of Dk�jIup j and if R0 is a subset
of DjIup j, R�up R0 ¼ fv 2 Dk j pupðvÞ 2 R and pupðvÞ 2 R0g where up ¼ f1 . . . kg n Iup. Condition ðyÞ
is then equivalent to:

ðpupðhÞ
�

� upDjIup jÞ \ h0 6¼ ;
�
) pupðhÞ 	 pupðh0Þ

Thus, if � is defined in such a way that:
(1) we can compute pupðhÞ
(2) we can compute pupðhÞ �up DjIup j
(3) we can decide ðpupðhÞ �up DjIup jÞ \ h0 6¼ ;
(4) we can decide pupðhÞ 	 pupðh0Þ
then we can decide ðyÞ !

We note that all the operations from the previous list are elementary operations on equivalence
classes.

Example 15. Let us reconsider data automata constructed from timed automata, as described in
Section 5. We will prove that such data automata satisfy condition ðyÞ. Assume A is a timed
automaton and consider one of the transitions of the corresponding data automaton,

ðq; f Þ ���!h;a;a;h0 ðq0; f 0Þ
where there exists b 2 h with aðb; dÞ 2 h0 (d 2 D). Take now c 2 h. We have that b � c, thus

ðbf ðx0Þ � biÞ16 i6 2n �2 ðcf ðx0Þ � ciÞ16 i6 2n
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There exists a successor of c such that

ðd � biÞ16 i6 2n �2 ðd 0 � ciÞ16 i6 2n

It is obvious that aðc; d 0Þ 2 h0. This proves that data automata constructed from timed automata,
as in Section 5, satisfy the decidability condition ðyÞ.

7. Extensions of the model

The data automata model we did consider can only store data in the registers, no operation can
be performed before updating the registers. In this section, we study several extensions of the
model defined in Section 4.

7.1. Erasing and swapping registers

The first extension we consider allows to erase and to swap registers. In this section, an update
of the registers is then a function up which assigns to each register, either the data currently
read, or the value of an other register, or the empty data, namely ?. More formally, an update
is a function up such that there exists an application r : f1; . . . ; kg ! f1; . . . ; kg [ f?g [ fcg such
that

ðh0iÞi¼1;...;k ¼ upððhiÞi¼1;...;k; dÞ () 8i;
h0i ¼? if rðiÞ ¼?
h0i ¼ d if rðiÞ ¼ c

h0i ¼ hrðiÞ otherwise

8><>:
Proposition 16. Data automata using this extended type of updates are as expressive as data
automata.

Proof. Let A ¼ ðQ; k;R;D;�; q0; F ; T Þ be a data automaton using extended updates, as described
above. We construct a data automata B with simple updates, as defined in Section 4, that rec-
ognizes the same data language.

We denote by F the set of functions f : f1; . . . ; kg ! f0; 1; . . . ; kg. Intuitively, the value of the
f ðiÞth register in the transformed automaton correspond to the value stored in the ith register in
the original data automaton. The register ‘‘0’’ is a particular register which is never updated and
thus always contains the value ?. Let us now construct the data automaton B ¼ ðQ0; ðk þ 1Þ;R;D;
�; q00; F 0; T 0Þ in the following way:
• Q0 ¼ Q� F ,
• q00 ¼ ðq0; IdÞ, where IdðiÞ ¼ i for every register i,
• F 0 ¼ F � F ,
• � is defined as:

h � h0 () 8f 2 F ; ðhf ðiÞÞi¼1;...;k � h0f ðiÞ

� �
i¼1;...;k

• if ðq; g; a; up; g0; q0Þ 2 T , then for every f in F , ððq; f Þ; g; a; up0; g0; ðq0; f 0ÞÞ is in T 0 if
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ðhf ðiÞÞ16 i6 k 2 g) ðhiÞ06 i6 k 2 g
ðhf ðiÞÞ16 i6 k 2 g0 ) ðhiÞ06 i6 k 2 g0

f 0ðiÞ ¼ f ðjÞ if up puts the value of register j in register i. We denote I the set of i such that
f 0ðiÞ is defined. If the cardinality of I is k, then f 0 is totally defined. Otherwise, there is a reg-
ister, different from 0, say h, which is not in f 0ðIÞ. For every register i to which up assigns the
current value of the data, we set f 0ðiÞ ¼ h. For every register i to which up assigns the value
?, we set f 0ðiÞ ¼ 0.
up0 writes the current value in the register h, if defined in the previous item.

From this construction, it is easy to show that A and B accept the same data language. �

Erasing or swapping registers are thus macros with no additional expressive power. However,
these macros can be very useful. For instance, they are used below to simplify the proof of
Proposition 19.

Note that the proof of Proposition 16 also shows that we could restrict our model to updating
at most one register on each transition.

7.2. Non-deterministic models

Up to now, we only considered models that are deterministic, i.e. for each data word, there
is a unique possible execution on it. Now, we will consider a non-deterministic version of the
models. We thus define non-deterministic data automata as in Definition 2, but without the
determinism condition. We define a non-deterministic k-register mechanism as a triple
½ðUm;aÞm2M ;a2R;�;u� where the only difference with Definition 1 is that Um;a is a set of updates
instead of simply a unique update. We hence say that a finite monoid M non-deterministically
recognizes a data language L whenever there exists a non-deterministic k-register mechanism
that recognizes L in the same way as Definition 2. We also say that a data language is nd-
recognizable whenever it is recognized by some non-deterministic data automaton. Some
properties which are true for deterministic data automata are also true for non-deterministic
data automata:

Proposition 17.
• A data language is non-deterministically recognized by a finite monoid if and only if it is nd-rec-

ognizable.
• Condition ðyÞ ensures the decidability of the emptiness problem, i.e. if a data language is recog-

nized by a non-deterministic data automaton that satisfies the condition ðyÞ, then we can test
for its emptiness.

• The class of nd-recognizable data languages is strictly more expressive than the class of recogniz-
able data languages.

Proof. The two first points of the theorem can be proved in the same way as Theorems 12 and 14.
We just need to present the proof of the last point, namely that there exists a data language which
is nd-recognizable but not recognizable.

Consider the data language L accepted by the following non-deterministic data automaton:
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Then L ¼ fða; d1Þ . . . ða; dnÞ j 916 i < j < n; di ¼ dj 6¼?g. Moreover, one can prove that L is
not recognized by any (deterministic) data automaton.

Suppose L is accepted by a data automaton A using k registers. There are finitely many paths of
length k þ 1 in A. For each such path c, we define

EðcÞ ¼ fða; d1Þ . . . ða; dkþ1Þ read through the path c and i 6¼ j) di 6¼ djg

There exists an integer nðcÞ such that the data indexed by nðcÞ (of a data word read through the
path c) is not stored at the end of the path c. Using a combinatorial argument (see the proof of
Proposition 8), there exists two data words in some EðcÞ that differ only on the data nðcÞ.

q0 �!ða;d1Þ
q1 . . . qnðcÞ�1 �!

ða;dnðcÞÞ
qnðcÞ . . . qk �!ða;dkþ1Þ

qkþ1

h0 h1 hnðcÞ�1 hnðcÞ hk hkþ1

¼ ¼ ¼ � � ¼
h00 h01 h0nðcÞ�1 h0nðcÞ h0k h0kþ1

q0 �!ða;d1Þ
q1 . . . qnðcÞ�1 �!

ða;d 0
nðcÞÞ

qnðcÞ . . . qk �!ða;dkþ1Þ
qkþ1

As hk ¼ h0k, for each w, ða; d1Þ . . . ða; dnðcÞÞ . . . ða; dkþ1Þ is in L if and only if
ða; d1Þ . . . ða; d 0nðcÞÞ . . . ða; dkþ1Þ is in L. Of course, this is not true. Hence, L is not accepted by any
(deterministic) data automaton. �

Corollary 18. The class of recognizable data languages is not closed under concatenation.

Proof. Consider the previous data language L. Although it is not recognizable, this language is the
concatenation of the two following recognizable data languages:

fða; d1Þ . . . ða; dpÞ j di 2 Dg and ða; d0Þ . . . ða; dnÞ j 916 j < n; dj ¼ d0g

which are recognized by the following data automata.

Proposition 19. The class of nd-recognizable data languages is closed under union, intersection,
concatenation and finite iteration. It is not closed under complementation.

Proof. For union and intersection, the classical constructions suffice. Let next L1 and L2 be data
languages that are accepted by data automata with respectively k1 and k2 registers. Then we will
prove that L1 � L2 is accepted by a data automaton with k ¼ maxðk1; k2Þ registers. We will use
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Proposition 16 to prove this result. Assume that, for i ¼ 1; 2, Ai ¼ ðQi; ki;R;D;�i; q0;i; Fi; TiÞ. We
construct the automaton A ¼ ðQ; k;R;D;�; q0; F ; T Þ, using extended updates as in Section 7.1,
such that
• Q ¼ Q1 [ Q2

• h � h0 if hj1...li �i h0j1...li for i ¼ 1; 2
• q0 ¼ q0;1

• F ¼ F2 if I2 \ F2 ¼ ;
F1 [ F2 if I2 \ F2 6¼ ;

�
• q ���!g;a;up;g0

q0 2 T ()

either q ���! G;a;up;G0q0 2 T1 with G) g and G0 ) g0

or q ���!G;a;up;G0
q0 2 T2 with G) g and G0 ) g0

or q 2 F1 and 9i ����!?k2 ;a;up;G0
q0 2 T2 with i 2 I2; G0 ) g0

and up puts the current data in the registers of up
and puts ? in the other registers ðProposition 16 is used:Þ

8>>>>>>><>>>>>>>:
The data automatonA recognizes the data language LðA1Þ � LðA2Þ: assume that the data word w is
in LðA1Þ � LðA2Þ, we can write w ¼ uv where u 2 LðA1Þ and v 2 LðA2Þ and consider the executions
in A1 for u and in A2 for v:

q0 ! . . . qn�1 �����!gn;an;upn;g0n

dn
qn and q00 ������!g1;a01;up1;g01

d 0
1

q01. . .

h0 hn�1 hn h00 h01

where for each i, gi ) Gi and g0i ) G0i, and up1 is defined as in T . It is an execution which accepts w
in A. Thus, LðA1Þ � LðA2Þ 	 LðAÞ.

Conversely, if w 2 LðAÞ, assume that w can be read in A on the following run:

q0 ! . . . qn�1 ������!Gn;an;upn;G0n

dn
qn ������!G0n;a

0
1
;up1;G01

d 0
1

q01 . . .

h0 hn�1 hn h01

This run can be splitted into two parts: one in A1 and an other in A2:

q0 ! . . . qn�1 ������!gn;an;upn;g0n

dn
qn et q00 ������!g1;a01;up1;g01

d 0
1

q01 . . .

h0 hn�1 hn h00 h01

These runs accept respectively u and v such that juj ¼ n and w ¼ uv. Thus, u 2 LðA1Þ and
v 2 LðA2Þ and thus w 2 LðA1Þ � LðA2Þ.

The proof is now complete: A recognizes LðA1Þ � LðA2Þ.
Note that we could have constructed directly a data automata, as initially defined, to recognizes

the data language LðA1Þ � LðA2Þ, but the use of Proposition 16 makes the proof much easier.
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A similar construction can handle the iteration, because, in the previous construction, the
number of registers is not increased.

Finally, the data language L considered in the proof of Proposition 17 is nd-recognizable. We
can prove that the complement of this data language, namely

L ¼ fða; d1Þ . . . ða; dnÞ j 816 i < j < n; di 6¼ djg

is recognized by no finite monoid (of course when D is infinite). The proof uses similar arguments
as the ones of the proof of Proposition 17 or of Proposition 8. �

7.3. More general updates

The updates used in the model are very simple, we can only ‘‘write a data in a memory’’, but we
cannot perform any calculation. The following question arises: does all that precedes generalize to
models in which updates can perform calculations. In this section, an update is now a general
function up : Dk �D ! Dk.

Considering the simple updates of registers, we showed that the monoid played a very im-
portant role: ‘‘different’’ monoids do not recognize the same data languages. Extending the up-
dates, the relevance of the monoid is lost.

Proposition 20. Let L be a language over the finite alphabet R. Assume that L is recognized by a

finite monoid M . Then the data language LM ¼ fða1;m1Þ . . . ðan;mnÞ j a1 . . . an 2 Lg over R and M is
recognized by the monoid N ¼ f1; x; yg with zx ¼ x and zy ¼ y.

Proof. We assume that L 	 R� is recognized by M . There exists a morphism u : R� ! M , a subset
P 	 M such that L ¼ u�1ðPÞ. Let us now define k ¼ 1 (there is only one register) and D ¼ M .
Then, for each z 2 N , for each a 2 R, we define upz;a : M �M ! M by upz;aðm; dÞ ¼ muðaÞ. We
define also a morphism w : ðR�MÞ� ! N by

wða;mÞ ¼ x if m 2 P
y if m 2 M n P

�
Then, using this construction, we can prove that N recognizes the data language LM . �

Remark 21. We note that allowing more general updates enlarges the class of data languages that
can be recognized by a monoid. For example, let L be the data language

fða; p1Þ . . . ða; pnÞ j 8i; pi prime number and i 6¼ j) pi 6¼ pjg
over fag �N. This data language is not recognizable, but is recognized by a monoid using more
general updates (like, for example, upððhiÞi¼1;2; dÞ ¼ ðd; h2 � dÞ).

However, allowing more general updates like functions Dk �D ! Dk, the results on equiva-
lence between monoids and automata and on decidability still hold, because these results do not
depend on the updates.
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8. Comparison with existing works

Up to our knowledge, there is no real existing work on the relation between algebra and timed
languages. To achieve our goal, we have been led to consider the more general framework of data
languages. Forgetting the internal structure of C ¼ R�D, C can be viewed as an infinite alphabet,
and thus it is much relevant to compare our work to previous works done on languages on infinite
alphabets.

In a chronological order, the first work on infinite alphabets has been proposed by Autebert et al.
[1]. Several notions of rational and recognizable sets of words have been proposed, among which the
following: a languageLdefined on an infinite alphabetD is saidH -rational if for every finite alphabet
X , for every alphabetical morphism u : D� ! X �, uðLÞ is regular (i.e accepted by a finite automaton).
It is easy to see that every H -rational language is also recognizable, as a data language, but the
converse is not true. Note that the authors do not propose any automaton or logic-based formalism.

An other related work is proposed by Kaminski and Francez in [19]. A notion of register

automata, quite close to our formalism, is proposed. The class of languages accepted by these
automata is closed under union, intersection, concatenation and finite iteration, but it is not
closed under complementation. Like our model, an automaton cannot perform any calculation
with the registers, but it can only store the data which are read. However, the constraints allowed
in this model are restricted to the comparison of the current data with a data stored in one of the
registers. A consequence of this restriction is that the letters read in the word are intuitively not
very important, such an automaton can only ‘‘count’’ the number of times a letter appears in a
word. No other formalism (algebraic or logical) is proposed for this model. Our model is thus an
extension of the formalism proposed in [19].

The last work we can compare our work with has been done by Neven et al. in [21]. The register
automata proposed in [19] are further studied and the class of pebble automata is also proposed. In
these automata, some letters of a word can be marked and we can impose conditions on the
marked letters. Some logical formalisms are also proposed, but the hierarchies between subclasses
of automata and subclasses of the logics are not comparable.

9. Conclusion

We have proposed in this paper a notion of monoid recognizability for data languages. We also
gave an automaton characterization of this notion. Hence, the picture for data languages is rather
close to the one for classical formal languages. As an instance of our results, we can deal with
timed languages. And, in this framework, our results can be seen as an interesting algebraic
characterization for timed languages.

A logical characterization of data languages has been proposed [8], extending the work of [25]
on timed automata. This theory of data languages has now to be developed. For instance, a
notion of aperiodic data language can naturally be defined and has to be studied, with the three
points of view, namely monoids, automata and logic.

In the timed framework, any timed language recognized by deterministic timed automata is
monoid recognizable. But the exact relations with the numerous sets of timed languages that have
been proposed in the literature, see for instance [17], have to be investigated.
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Besides the case of time, there is another, probably more theoretical, instance of data languages
which could be worth to study: the case where the set of data D is finite. We have seen that a data
language is monoid recognizable if and only if it is a recognizable formal language (see Propo-
sition 5). But, given a finite monoid M , it remains to characterize the class of data languages that
are recognized by M and, in particular, to compare it with the class of formal languages recog-
nized by M . Some other aspects could be of interest, like decomposition theorems �aa la Krohn-
Rhodes.

At least, another interesting direction will also consist in understanding the exact relation
between the power of the monoid and the power of the updates. In this paper, we have investi-
gated the two extreme cases. If updates on registers can only choose to store or to skip a data, then
the structure of the monoid is crucial. On the contrary, if the updates can do heavy computations,
then the monoid is nearly useless. All cases in between have still to be studied.
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