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Abstract

A very important property of the usual pinhole model for camera projection is that 3D
lines in the scene are projected in 2D lines. Unfortunately, wide-angle lenses (specially low-
cost lenses) may introduce a strong barrel distortion which makes the usual pinhole model fail.
Lens distortion models try to correct such distortion. In this paper, we propose an algebraic
approach to the estimation of the lens distortion parameters based on the rectification of lines
in the image. Using the proposed method, the lens distortion parameters are obtained by
minimizing a 4 total-degree polynomial in several variables. We perform numerical experiments
using a lens distortion calibration pattern to show the performance of the proposed method.

1 Introduction

Typically, wide angle lenses tend to suffer from barrel distortion and tele lenses from pincushion
distortion. Both effects tend to be stronger at the extreme ends of zoom lenses, especially on low-
cost compact cameras, web-cam, etc.

Lens distortion correction is an important issue in camera calibration where the pinhole model is
used (see for instance [8], [9] or [10]) The basic standard model for barrel and pincushion distortion
compensation (see for instance [1] , [7] or [5]) is a radial distortion model given by the following
expression: (

x̂ − xc

ŷ − yc

)
= L(r)

(
x − xc

y − yc

)
(1)

where (x, y) are the original point coordinates (distorted), (x̂, ŷ) are the corrected (undistorted) point
coordinates, (xc, yc) is the center of the camera distortion model (usually the center of the image),
r=
√

(x − xc)2 + (y − yc)2 and L(r) is the function which defines the shape of the distortion model.
Usually, L(r) is approximated by a Taylor expansion, that is

L(r) = k0 + k1r + k2r
2 + k3r

3 + .........
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where the set {ki}i=0,.Nk
are the distortion parameters. The complexity of the model is given by the

number of terms of the Taylor expansion we use to approximate L(r).

In this paper, we use the general approach to determine L(r) by imposing the requirement that
the projection of 3D lines in the image has to be 2D straight lines. This approach has been used in
[4], where authors use as measure of distortion a least square approximation of edges that should be
a projection of 3D lines, they take for the distortion error the sum of squares of the distances from
the point to the line. In this paper we propose a new distortion error model inspired in the residual
variance obtained when edges are approached by using an standard linear regression model. The
main advantage of our formulation is that it yields to a general 4 degree polynomial in the distortion
parameters ki, that can be minimized using powerful techniques of computer algebra. In particular,
we directly obtain solutions of the minimization problem without any kind of initialization of the
distortion parameters, which is one of the main drawback in the usual bundle adjustment schemes
because of the existence of a lot of local minima where the solution can be trapped. In fact, the
solution provided by our method could be used as an initialization for the bundle adjustment schemes.

The paper is organized as follows: In section 2 we introduce the measure of the distortion error
we propose based on a linear regression analysis. In section 3 we present the algebraic analysis of
the proposed measure of the distortion error. In section 4 we present the numerical aspects of the
algorithm we have implemented to estimate the distortion parameters. In section 5 we present the
numerical experiments we have performed and finally, in section 6 we present some conclusions.

2 Measure of the distortion error.

Let {(xi, yi)}i=1,..,N be the projection of a set of 3D aligned points in the 2D image, {(x̂i, ŷi)}i=1,..,N

the corrected (undistorted) points using the distortion model (1) and k = (k0, k1, ...., kNk
)T the

distortion parameters. A linear regression analysis, to study the relation between variables x̂i and
ŷi, yields to the least square minimization problem

R(m, n) =
1

N

N∑
i=1

(ŷi − mx̂i − n)2

It is well-known that this minimization problem attaints its minimum at

m =
Ŝxy

Ŝxx

n = ŷi − Ŝxy

Ŝxx

x̂i

where ŷi and x̂i are the average of the respective variables and

Ŝxx =
1

N

N∑
i=1

(x̂i − x̂i)
2 Ŝyy =

1

N

N∑
i=1

(ŷi − ŷi)
2 Ŝxy =

1

N

N∑
i=1

(ŷi − ŷi)(x̂i − x̂i).

Moreover, the residual variance of the variable zi = ŷi − mx̂i − n is given by

Vr =
ŜxxŜyy − Ŝ2

xy

Ŝxx

.

2



On the other hand, if we change the role of x and y in the regression analysis the associated residual
variance Vr changes by replacing Ŝxx by Ŝyy in the denominator of the above expression. Therefore
the minimal residual variance we obtain by using linear regression is given by

Vmin =
ŜxxŜyy − Ŝ2

xy

max{Ŝxx, Ŝyy}
(2)

In particular we obtain that ŜxxŜyy − Ŝ2
xy ≥ 0, and the points {(x̂i, ŷi)}i=1,..,N lie in a straight line if

and only if ŜxxŜyy − Ŝ2
xy = 0. On the other, the denominator of the above expression, max{Ŝxx, Ŝyy},

does not usually changes a lot between the distorted and undistorted set of points. Based on this
analysis of the residual variance Vr, we propose to use as measure of the distortion error the value

Ê(k) = ŜxxŜyy − Ŝ2
xy.

Using the distortion model (1) we obtain:

Ŝxx =
1

N

N∑
i=1

(
Nk∑
j=0

kj

(
xi (ri)

j − xi (ri)
j
))2

= kT Ak

Ŝyy =
1

N

N∑
i=1

(
Nk∑
j=0

kj

(
yi (ri)

j − yi (ri)
j
))2

= kT Bk

Ŝxy =
1

N

N∑
i=1

(
Nk∑
j=0

kj

(
xi (ri)

j − xi (ri)
j
))( Nk∑

j=0

kj

(
yi (ri)

j − yi (ri)
j
))

= kT Ck

where ri=
√

(xi − xc)2 + (yi − yc)2, and A, B, C are (Nk + 1) × (Nk + 1) matrix given by

Am,n =
1

N

N∑
i=1

((ri)
m xi − (ri)

m xi)((ri)
n xi − (ri)

n xi)

Bm,n =
1

N

N∑
i=1

((ri)
m yi − (ri)

m yi)((ri)
n yi − (ri)

n yi)

Cm,n =
1

N

N∑
i=1

((ri)
m xi − (ri)

m xi)((ri)
n yi − (ri)

n yi).

Therefore, the distortion error measure Ê(k) can be expressed as

Ê(k) = kT AkkTBk−k
T
CkkT Ck (3)

which is a 4 degree polynomial in the variables k. In the general case, where we use several edge
segments to fit the distortion parameters, we simply add the above expression for all the edge
segments.

Of course, the global minimum of Ê(k) corresponds to the trivial solution k ≡ 0. To avoid this
problem, usually k0 is fitted to one (k0 = 1). As it is explained in section 4, in this paper we use
another approach, we fit k0 by minimizing the sum of the square distance between the distorted and
undistorted points
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3 Algebraic analysis of the distortion error measure.

In this section, we see how to approach the problem by means of computer algebra techniques. For
simplicity in the exposition, we present the results for polynomials with real coefficients, but it must
be said that they are valid over more general polynomials rings; for further details on this topic we
refer the reader to [6] or [2].

As mentioned in section 2, one needs to minimize the distortion error measure function Ê(k),
which is real polynomial in the variables k. Minimizing a polynomial in several variables can be
reduced to compute the solutions of an algebraic system of equations, namely the one generated by
its gradient. In our case:

S :=

{
∂Ê(k)

∂ki
= 0

}
i=0,...,Nk

The case where only one variable is considered, say kp, is easy and it just requires to approximate
the real roots on the univariate polynomial

∂Ê(kp)

∂kp
.

However, when more than one variable appear the problem is not so trivial. In order to approach
this new situation, one can apply computer algebra techniques to prepare symbolically the algebraic
system S before numerical methods are executed. In addition, even though computer algebra ma-
chinery is applied, the problem can be more handle depending on the number of variables. In fact,
the case of two variable can be treated by means of symbolic linear algebra techniques while the case
of more than two variable requires abstract algebra techniques. In both cases, the underlining theory
comes from algebraic geometry and commutative algebra. To be more precise, we first describe in
detail how to approach the problem when two variable are considered, and afterward we give a brief
description on how to proceed in the general case.

So, let us assume that we are working with two variables, say kp, kq. Observe that this is the case
when working with two distortion parameters, and that the system S turns to be

S :=

{
∂Ê(kp, kq)

∂kp
= 0,

∂Ê(kp, kq)

∂kq
= 0

}
.

In order to compute the solutions of S we apply the so called resultant-based method. Let us describe
this method. For this purpose, let G1(kp, kq) and G2(kp, kq) be two bivariate polynomials with real
coefficients. Choosing one variable, say kq, as a main variable, we can write G1 and G2 as

G1(kp, kq) = an(kp)k
n
q + · · · + a1(kp)kq + a0(kp),

G2(kp, kq) = bm(kp)k
m
q + · · ·+ b1(kp)kq + b0(kp),

where ai(kp) and bi(kp) are univariate polynomials with real coefficients, and an(kp), bm(kp) are not
identically zero, with n > 0 and m > 0. In this situation, the resultant of G1 and G2 with respect to
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the variable kq (we denote it by Reskq(G1, G2)) is defined as the determinant of the (n+m)× (n+m)
matrix ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

an(kp) an−1(kp) · · · a0(kp) 0 · · · 0
0 an(kp) an−1(kp) · · · a0(kp) · · · 0
...

. . .
. . .

...
0 0 · · · an(kp) an−1(kp) · · · a0(kp)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

m

bm(kp) bm−1(kp) · · · b0(kp) 0 · · · 0
0 bm(kp) bm−1(kp) · · · b0(kp) · · · 0
...

. . .
. . .

...
0 0 · · · bm(kp) bm−1(kp) · · · b0(kp)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Observe that Reskq(G1, G2) is a real univariate polynomial in the variable kp. Therefore, the variable
kq has been eliminated. For our purposes, the main applicable properties on resultants are the
following.

Theorem 1 Let G1(kp, kq), G2(kp, kq) as above, and let G(kp) = Reskq(G1, G2). Then, it holds that

1. G(kp) is identically zero if and only if G1 and G2 have a common non–constant factor.

2. If (λ, µ) ∈ C2 is a common root G1 and G2 then G(λ) = 0.

3. If G(λ) = 0 then one of the following statements holds

3.1. an(λ) = bm(λ) = 0,

3.2. ∃µ ∈ C such that (λ, µ) is a common root of G1 and G2.

Proof: see Theorem 4.3.3, pp. 98, in [6]. �

The geometrical meaning of Theorem 1 is as follows. Let G1, G2 and G be as above. Then we
can see G1 and G2 as curves in the kpkq-coordinate plane R

2. In this situation, the real roots of G
are the kp-coordinates of the real intersection points of the two curves (see Figure 1).

In order to apply Theorem 1, first, note that in the construction of Reskq(G1, G2), we have required
that degkq

(G1) > 0 and degkq
(G2) > 0. Let us see that this assumption is not a loos of generality

for our purposes. Indeed, if degkq
(G1) = 0 (similarly if degkq

(G2) = 0), then G1 only depends on kp.
Then, if degkq

(G2) = 0, then G2 is also univariate and the real solutions of {G1(kp) = G2(kp) = 0}
are the real roots of the greatest common divisor of both polynomials. On the other hand, if
degkq

(G2) > 0, for each real root α of the univariate polynomial G1(kp), one has to determine the
real roots of the univariate polynomial G2(α, kq). That is, if degkq

(G1) = 0, degkq
(G2) > 0, the real

solutions of the system {G1(kp) = G2(kp, kq) = 0} are

{(α, βα) ∈ R
2 |G1(α) = 0, G2(α, βα) = 0}.

Moreover, if the following conditions are satisfied:

(i) the conditions on the degree are fulfilled (i.e. degkq
(G1) > 0 and degkq

(G2) > 0),
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Figure 1: Geometric interpretation of the resultant G = Reskq(G1, G2).

(ii) gcd(G1, G2) = 1 (i.e. the greatest common divisor of both polynomials is 1),

(iii) and either an(kp) or bm(kp) is a constant polynomial (note that an and bm are, by definition,
not identically zero),

then Theorem 1 implies that all the solutions (in the particular the real ones) of the system {G1(kp, kq) =
0, G2(kp, kq) = 0} can be obtained from the roots of G(kp); this process is known as the lifting process.

We have already seen that hypothesis (i) (see above) can be assumed w.l.o.g. Let us see how to
proceed in general with hypotheses (ii) and (iii).

• Hypothesis (ii). If gcd(G1, G2) = D �= 1, dividing G1, G2 by D one gets two new polynomials,
say G∗

1 and G∗
2, fulfilling the gcd condition, and the solutions of {G1 = 0, G2 = 0} are the

solutions of D = 0 union the finitely many solutions of {G∗
1 = 0, G∗

2 = 0}. Moreover, note that
since in our case the polynomials come from empirical data the most expectable situation is
that the polynomials are coprime, i.e. its gcd is 1.

• Hypothesis (iii). If none of the polynomials an(kp), bm(kp) is constant, one can check whether
taking kp as a main variable the property holds. If for none of the variables kp and kq the
requirement hods, then one can always apply a linear change of coordinates such that the
new polynomials verifies the property; note that applying the inverse of the linear change of
coordinates to the solutions of the new system one gets the solutions of the initial one. In order
to deterministically choose this linear change of coordinate, one reasons as follows. We express
one of the polynomials, say G1, as a sum of homogenous polynomials (recall that a bivariate
polynomial H(kp, kq) is homogeneous of degree r is H(tkp, tkq) = trH(kp, kq) where t is a new
variable):

G1(kp, kq) = Hr(kp, kq) + · · ·+ H1(kp, kq) + H0(kp, kq),

6



where Hi is homogeneous of degree r. So, Hi collects all terms in G1 of total degree i; or
equivalently Hi is the i-degree part of the Taylor expansion of Gi around (0, 0). In this situation,
if (1, b) ∈ R2 is such that Hr(1, b) �= 0 then

G1(kp + bkq, kq) = Hr(1, b)k
r
q + terms of lower degree

and therefore the requirement is achieved.

The next proposition shows that, in our case, hypothesis (iii) always holds.

Proposition 2 If the edge points {(xi, yi)}i=1,..,N are not aligned then hypothesis (iii) always holds.

Proof: From (3), in the particular case of the distortion model, one has that

∂Ê(kp, kq)

∂kq

= b3(kp)k
3
q + b2(kp)k

2
q + b1(kp)kq + b0(kq)

where
b3(kp) = 4(AppBpp − C2

pp).

Therefore b3(kp) is constant, and b3(kp) = 0 if and only if the points ((ri)
p xi−(ri)

p xi, (ri)
p yi−(ri)

p yi)
lie on a line. In particular there exist a, b such that, for each i,

a((ri)
p xi − (ri)

p xi) + b((ri)
p yi − (ri)

p yi) = 0

Dividing the above expression by (ri)
p, (we assume that (ri)

p �= 0, because otherwise the above
equation is trivial) we obtain that, for every i,

a(xi − xi) + b(yi − yi) = 0.

So, in particular the original points (xi, yi) lie on a line, which is a trivial case because no model
distortion is needed. Therefore we conclude that, except for the trivial case where the initial distorted
points are aligned, the leading polynomial coefficient b3(kp) is constant and different from 0. Thus,
hypothesis (iii) holds. �

Summarizing, one can derive the following algorithm to compute the real solutions of

S :=

{
∂Ê(kp, kq)

∂kp
= 0,

∂Ê(kp, kq)

∂kq
= 0

}
,

where we assume w.l.o.g. that hypotheses (i),(ii), and (iii) hold. Note that, once these solutions are
known, minimizing the distortion error measure function Ê(kp, kq), in the compact set of analysis, is
trivial.

1. Determine G1 := ∂Ê
∂kp

and G2 := ∂Ê
∂kq

.

2. Determine G(kp) := Reskq(G1, G2) and approximate the real roots of G(kp). Let R = {α1, . . . , αs}
be the set of real roots of G.
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3. For each α ∈ R approximate the common real roots of the univariate polynomials G1(α, kq)
and G2(α, k2). Let Rα be the set of this real common roots.

4. The real solutions of S are {(α, βα)/α ∈ R and βα ∈ Rα}.

In the general case, i.e. when working with s > 2 variables, say kp1, . . . , kps, the problem cannot
be approached so directly by means of resultants. Nevertheless, one can apply Gröbner basis tech-
niques or multivariate-resultants (see [3] and [6] for further information). The basic idea of Gröbner
basis, as a tool for solving algebraic systems, is to provide a new algebraic system of equations
equivalent to S (i.e. with the same solutions) but much simpler, and such that it has a suitable
structure (“triangular”) to compute the solutions. Roughly speaking, Gröbner basis can be seen as
a generalization of the gaussian elimination when the equations are not linear.

For instance, let us consider the algebraic system of equations⎧⎨
⎩

G1(kp1, kp2, kp3) = k2
p2
− k2

p1
− 1 = 0

G2(kp1, kp2, kp3) = k2
p1

+ k2
p3
− 4 = 0

G3(kp1, kp2, kp3) = k3
p1
− 2kp1 − 2 + k2

p2
+ kp1k

2
p3

k2
p2
− p3

p1
k2

p2
− kp1k

2
p3

= 0

Applying Gröbner basis one gets the following equivalent system⎧⎨
⎩

G∗
1(kp1, kp2, kp3) = k2

p1
+ k2

p3
− 4 = 0

G∗
2(kp1, kp2) = k2

p2
− k2

p1
− 1 = 0

G∗
3(kp1) = (kp1 − 1)(k2

p1
− 2) = 0

from where one deduces that the original system has 12 solutions, namely:

(1,
√

2,
√

3), (1,
√

2,−
√

3), (1,−
√

2,
√

3), (1,−
√

2,−
√

3),

(
√

2,
√

3,
√

2), (
√

2,
√

3,−
√

2), (
√

2,−
√

3,
√

2), (
√

2,−
√

3,−
√

2),

(−
√

2,
√

3,
√

2), (−
√

2,
√

3,−
√

2), (−
√

2,−
√

3,
√

2), (−
√

2,−
√

3,−
√

2).

Note that, geometrically these 12 solutions correspond to the 12 intersection points of two cylinders
and three planes (see Figure 2)

Nevertheless, the computational complexity of the Gröbner basis method is doble exponential in
the number of the polynomial variables, i.e. s, while the resultant-based method is polynomial in
time and more stable numerically. We leave, as future research work, the applications of the Gröbner
basis method to the current problem.

4 The algorithm.

We will use an iterative scheme to estimate the distortion parameters k. We note by kn the distortion
parameter at step n, and by (x̂n

i , ŷn
i ) the corrected (undistorted) points at step n. We will analyse

separately the update of kn
0 and kn

i for i > 0. The initial values for the distortion parameters are
k0 = (1, 0, ...., 0). In each step, first we select the distortion parameters we want to update, it can
be 1 or 2 distortion parameters. The case to update more of 2 distortion parameters simultaneously
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Figure 2: Geometric interpretation of the solutions.

is much more complex and it requires, in general, the use of Gröbner basis techniques. We do not
consider here this situation and we leave it as future research work.

Let us consider, for instance, that at step n we want to update coefficients kn
p , kn

q with 1 ≤ p, q ≤
Nk. We express kn+1

p = kn
p + εp, kn+1

q = kn
q + εq and (x̂n+1

i , ŷn+1
i ) as

(
x̂n+1

i − xc

ŷn+1
i − yc

)
=

(
Nk∑
j=0

kn
j (ri)

j + εp (ri)
p + εq (ri)

q

)(
xi − xc

yi − yc

)
.

To find εp, εq we minimize the distortion measure error with respect to εp and εq using the algebraic
approach presented in the above section.

In order to update kn
0 we use a different approach. Usually k0 is fitted to 1, in this paper we

fit kn
0 in order to minimize the sum of the square distance between the distorted and the corrected

(undistorted) points. i.e. we minimize :

H(kn
0 ) =

N∑
i=1

(x̂n
i − xi)

2 + (ŷn
i − yi)

2

a straightforward computation leads to

H(kn
0 ) =

N∑
i=1

(
(kn

0 − 1) ri +

Nk∑
j=1

kn
j (ri)

j+1

)2

and the minimum of H(kn
0 ) is given by

kn
0 = 1 −

∑Nk

j=1 kn
j (ri)

j+2∑Nk

j=1 (ri)
2

(4)
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An interesting advantage of this approach is that the resolution of the undistorted image is similar
to the resolution of the original (distorted) image. This is a very useful property if we need to generate
the undistorted image from the original distorted one. We notice that k0 plays the role of a zoom
factor to fit the undistorted and distorted image as much as possible.

We point out that, in order to simplify the notation, we always state the algorithms for a single
edge segment. To generalize it to a collection of edge segments is straightforward just by adding the
influence of it segment, i.e. we build a single polynomial to minimize just by adding the polynomial
associated to each edge segment.

Therefore the derived algorithm for performing the numerical experiments can be structured in
the following steps :

1. We compute the edges of the image using an edge detection algorithm with subpixel precision.

2. We select some collections of edge points, that will be used to fit the distortion parameters.

3. We initialize k0 = (1, 0, ...., 0) and do until convergence:

(a) We select the distortion coefficients we want to update at scale n

(b) We minimize Ê(kn) with respect to such coefficients

(c) We update kn
0 using (4).

Remark: Point coordinates normalization. It is well known that when we deal with algebraic
methods (see for instance [7]) it is usually better to normalize the point coordinates before computing
the algebraic solution of the problem. Following this strategy, at a fist step, we normalize the edge
points (xi, yi) using the transformation

x′
i =

(xi − xc)

A
y′

i =
(yi − yc)

A

where A is given by

A =

√∑N
i=1(xi − xc)2 + (yi − yc)2

2N

we compute the distortion parameters k′
i for the normalized edge points {(x′

i, y
′
i)}N

i=1 Finally, in order
to recover the distortion parameters ki for the original edge points we have just to take into account
that following the above expressions and (1) we have that

ki =
k′

i

Ai
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4.0.1 Inversion of the radial distortion model

For some applications we need to invert the radial distortion model. For instance, to build the
undistorted version of the image it is usually better to use the inverted of the radial distortion
model. So we look for a radial function G(r̂) such that(

x − xc

y − yc

)
= G(r̂)

(
x̂ − xc

ŷ − yc

)

where
r̂ =

√
(x̂ − xc)2 + (ŷ − yc)2.

From the above expression we obtain that

r = G(r̂)r̂.

On the other hand we have (
x̂ − xc

ŷ − yc

)
= L(r)

(
x − xc

y − yc

)
and therefore

r̂ = L (G(r̂)r̂)G(r̂)r̂

So we conclude that G(r̂) is a root of the polynomial

P (λ) = 1 − L(λr̂)λ = 1 −
Nk∑
i=0

kir̂
iλi+1.

In order to minimize the distance between the undistorted point (x̂, ŷ) we choose, among all possible
real roots of P (λ), the one nearest to 1.

5 Numerical Experiments.

Throughout this section, we will assume that the distortion center (xc, yc) is known. Moreover, in
the presented numerical experiments, we always take as distortion center the center of the image.

To perform the experiments we will use the simple planar lens distortion calibration pattern that
we have created (see figure 3). We have printed this calibration pattern and we have taken photos of
the printed image with a low cost wide-angle lens camera. The advantage of this calibration pattern
is that we can easily identify the rectangles presented in the image, and automatically select the edge
segments and points we will use for the estimation of the distortion model parameters. In figure 4
we illustrate the image obtained by the camera and the automatically selected edge points.

We analyze the performance of the method using 1 or 2 distortion parameters, we will also
compare the results obtained by using k0 = 1 and k0 computed using (4).

The achieved quantitative results are presented in table 1. In the first line we present the residual
variance (given by (2)) for the original distorted image. In the next 8 lines we present the results
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Figure 3: Lens distortion calibration pattern used in the experiments.

Figure 4: A photo taken with a wide-lens camera on a printed version of image in figure 3. The small
squares represent the location of the edge points we use to estimate the distorsion parameters.
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iter k0 k1 k2 k3 k4 Vmin

1 1 0 0 0 0 1.321e+02
1 1 2.6e-04 0 0 0 2.891e+00
1 7.7e-01 2.0e-04 0 0 0 1.734e+00
1 1 0 1.2e-07 0 0 2.095e+00
1 9.0e-01 0 1.1e-07 0 0 1.704e+00
1 1 0 0 8.0e-11 0 8.736e+00
1 9.4e-01 0 0 7.6e-11 0 7.706e+00
1 1 0 0 0 5.8e-14 1.736e+01
1 9.6e-01 0 0 0 5.5e-14 1.590e+01
1 1 1.4e-04 5.9e-08 0 0 1.021e+00
1 8.3e-01 1.2e-04 5.0e-08 0 0 7.097e-01
1 1 2.0e-04 0 2.1e-11 0 1.310e+00
1 8.1e-01 1.6e-04 0 1.7e-11 0 8.676e-01
1 1 2.2e-04 0 0 1.1e-14 1.560e+00
1 8.0e-01 1.8e-04 0 0 8.6e-15 1.007e+00
1 1 0 2.3e-07 -6.7e-11 0 6.143e-01
1 8.7e-01 0 2.0e-07 -5.9e-11 0 4.676e-01
1 1 0 1.8e-07 0 -2.8e-14 5.337e-01
1 8.8e-01 0 1.6e-07 0 -2.5e-14 4.115e-01
1 1 0 0 2.6e-10 -1.3e-13 5.971e-01
1 9.0e-01 0 0 2.3e-10 -1.2e-13 4.863e-01
1000 8.8e-01 4.3e-05 1.1e-07 0 -1.1e-14 5.360e-01
1000 9.0e-01 -2.3e-05 1.7e-07 1.1e-11 -3.3e-14 3.981e-01

Table 1: Estimated distortion parameters using the proposed method. On the left of each line we
present the number of iterations we perform, next, we present the obtained distortion parameters
using different choices for the distortion parameters to be estimated and on the right we present the
residual variance given by (2).

obtained using 1 distortion parameter and k0 = 1 and k0 computed using (4). We observe that the
best result (minimal residual variance) is obtained for k0 = 9.1e−01 and k2 = 1.1e−07. In the next
12 lines we present the results obtained using 2 distortion parameter and k0 = 1 and k0 computed
using (4). We observe that the best result (minimal residual variance) is obtained for k0 = 8.9e−01,
k2 = 1.6e − 07 and k4 = −2.5e − 14. Finally in the last 2 lines we presents the results obtained by
iterations of the algorithm (1000 iterations), updating each time 1 or 2 distortion parameters. First
we present the results by iterations of the 1 distortion parameter estimation model (residual variance
= 5.360e − 01) and next we present results obtained by iterations of the 2 distortion parameter
estimation model (residual variance = 3.981e − 01)

First, we notice that, when we apply a single iteration of the algorithm, the best results are
obtained using even distortion parameters (i.e. k2, k4, k6.....) which is coherent with the fact that
the even distortion parameters are more relevant than odd distortion parameters (see for instance
[1]). On the other hand we can appreciate the improvement in the residual variance distortion
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Figure 5: Distortion correction obtained from image in figure 4 by applying the proposed method.

error when we use the original distorted image (Vmin = 1.3e + 02), when we use the distortion
parameters k0 and k2 (Vmin = 1.9e + 00) and when we use the distortion parameters k0, k2 and k4

(Vmin = 4.2e−01). Finally we observe that when we use multiple iterations of the algorithm updating
each time different lens distortion parameters the results are improved, however we observe that we
can get better results using a single iteration of the 2 parameter distortion model than using 1000
iterations of the 1 parameter distortion model.

To illustrate the visual effect of the obtained undistorted image we present in figure 5 the undis-
torted image using the estimated lens distortion model with the lower residual variance given by
k0 = 9.0e − 01, k1 = −2.3e − 05, k2 = 1.7e − 07, k3 = 1.1e − 11 and k4 = −3.3e − 14.

To illustrate also de edge displacement between the distorted and undistorted image when we fit
k0 using (4), we present in figure 6 the location of edges in the distorted and undistorted image.

6 Conclusions

In this paper we present an algebraic approach to radial lens distortion parameter estimation based
on edge line rectification. We propose a distortion error measure based on a linear regression analysis.
We present an algebraic analysis of the distortion error measure. We have implemented the proposed
method for 1 or 2 distortion parameter models. We also propose to estimate the distortion parameter
k0 by minimizing the square distance between the distorted and undistorted edge points.

The numerical experiences we have presented are very promissing. We have implemented an
algorithm which allow to update by iterations all the distortion parameters of the distortion model.
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Figure 6: Illustration of the edge points location displacement after the distortion correction of the
image in figure 4.

The residual variance in the linear regression approximation of the edge lines is strongly reduced in
the undistorted image, and the barrel distortion is properly removed. An important advantage of
our method is that it does not require initialization for the distortion parameter ki. In particular it
can be used as initialization of the distortion parameter in bundle adjustment calibration techniques.
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