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An Algebraic Approach to Network Coding

Ralf Koettef Member, IEEEand Muriel MédargdSenior Member, IEEE

Abstract—\We take a new look at the issue of network capacity. It
is shown that network coding is an essential ingredient in achieving
the capacity of a network. Building on recent work by Li et al,, who
examined the network capacity of multicast networks, we extend
the network coding framework to arbitrary networks and robust
networking. For networks which are restricted to using linear net-
work codes, we find necessary and sufficient conditions for the fea- b
sibility of any given set of connections over a given network. We !
also consider the problem of network recovery for nonergodic link
failures. For the multicast setup we prove that there exist coding
strategies that provide maximally robust networks and that do not
require adaptation of the network interior to the failure pattern in
question. The results are derived for both delay-free networks and Fig. 1. Networks with multicast from to y andz.
networks with delays.

Index Terms—Algebraic coding, network information theory,  cient conditions for any given set of connections to be achiev-
network robustness. able over a given network. Using our framework, we show that
the case of a multicast connection over a network exhibits a very
special structure, which makes its feasibility verifiable in poly-
nomial time. Moreover, similar to results in [9], we show that

HE ISSUE of network capacity has generally been consitinear codes over a network are sufficient to implement any fea-

ered in the context of networks of links exhibiting ergodisible multicast connection.
error processes. Channel coding theorems and capacity regiorfor networks where connections are not multicast, we show
can be found for certain networks of this type, such as broadc#sit giving the necessary and sufficient conditions for the con-
channels [1]-[3], multiple access channels [4], [5], and relayections to be feasible is equivalent to the problem of finding a
channels [6]-[8]. Recently, some renewed attention has bgssint in an algebraic variety which, in general, is an NP-com-
paid to the capacity of error-free networks. In particular, codingete problem. Moreover, while the cutset conditions are neces-
over error-free networks for the purpose of transmitting musary and sufficient to establish the feasibility of a certain set of
ticast connections has been considered [9]-[11]. For a furthesnnections for multicast connections, the cutset conditions are
recent discussion of network coding, refer to [12, ch. 11, 15].only necessary but provably not sufficient for the case of general

The work in [9] and [10] examined the network capacity ofonnections, i.e., of some arbitrary collection of point-to-point
multicast networks and related capacity to cutsets. Capacitycinnections.
achieved by coding over a network. We present a new surprisThe usefulness of coding over error-free networks can be
ingly simple and effective framework for studying networks andasily viewed from an example. Consider Fig. 1 (from [9] and
their capacity. The framework is essentially algebraic and makg®)]). Each link can transmit a single bit error-free (here,we do
a straight connection between a given network information flomot consider delays). On the left-hand side network, the source
problem and an algebraic variety over the closure of a finitaay easily transmit two bits,; andb,, to receiversy and z,
field. While the results of Let al.[9] and Ahlswedeet al. [10] by using switching atr and broadcasting d@tand«. On the
contain algebraic elements, (i.e., linear coding [9] and a remaight-hand side network, a code is required, whemaust code
pertaining to convolutional codes [10]) the presented connectiover the ardw, z). The capacity of such networks is shown to
to concepts from algebraic geometry opens up the opportuniig the maximum flow from the source to each receiver in the net-
to employ very powerful theorems in well developed mathema#irork. This approach may be generalized from directed acyclic
ical disciplines. For networks which are restricted to using linegraphs to general directed graphs as long as we consider delays
codes (later we make precise the meaning of linear codes, siafteng the links.
these codes are not bitwise linear), we find necessary and suffiNetworks that do not experience ergodic error processes

may be reasonable models for networks that in reality are built
from links exhibiting ergodic failure processes. Appropriate
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Indeed, coding is not only applicable to networks in order tiie random process(e) transmitted through link = (v, u) €
achieve capacity, but can also be used to recover from netwaik(v) will be a function of bothX'(v) andY (¢/) if ¢’ is in
failures. For an early work pointing into this direction, refer ta';(v).

Ayanoglu et al. [14], where coding strategies for simple net

- If v is the sink of any connection, the collection ofv(v)

works are suggested. Such failures are different from link @andom processe&(v) = {Z(v,1), Z(v,2),..., Z(v,v(v))}

rors, described by ergodic processes, which would be typicalénotes the output aw

dealt with by using channel coding. The failures we consid
entail the permanent removal of an edge, such as would oc

sink(¢). A connection
Br = (v,v',X(v,v")) is established successfully if a (pos-
SiHly delayed) copy oft' (v, v’) is a subset o (v').

in a network if there were a long-term failure due to alink cut or | gt 5 networkg be given together with a sétof desired con-
other disconnection. We show that network coding can provige tions. We will make a number of simplifying assumptions.

maximal robustness of a network against nonergodic link fal
ures. Moreover, we prove that there exist coding strategies t
do not require an adaptation to a specific link failure pattern.

Il. PROBLEM FORMULATION

A communication network is a collection of directed links
connecting transmitters, switches, and receivers. It may be rep2)

resented by a directed gragh= (V, E') with a vertex set” and
an edge sely. We will allow multiple edges between two ver-
tices and hencdy isasubsetoll C V xV xZ,,where the last

integer enumerates edges between two vertices. Edges (links)

are denoted by round brackéts, v, 7) € FE and assumed to be
directed. If no confusion can arise, we also denote edges sim
as(v1, v2). Thehead andtail of an edgee = (v',v,1) is de-
noted byv = head(e) andv’ = tail(e).

We definel’;(v) as the set of edges that end at a vertexV
andl', (v) as the set of edges originatingaformally, we have

I'1(v) ={e € E : head(e) = v}
To(v) ={e € E : tail(e) = v}.

Thein-degreed;(v) of v is defined a$;(v) = [T'r(v)|, while
the out-degre&do (v) is defined ado (v) = |To(v)].

A network is calleccyclicif it contains directed cycles, i.e., if
there exists a sequence of eddes v1), (v1,v2), ..., (Vn,v0)

in G. A network is calledacyclicif it does not contain directed

il- 1

hat ) The capacity of any link i is a constant, e.gm bits per

time unit.This is an assumption that can be satisfied to an

arbitrary degree of accuracy. If the capacity exceeds

bits per time unit, we model this as parallel edges with unit
capacity. Fractional capacities can be well approximated
by choosing the time unit large enough.

Each link in the communication network has the same

delay We will allow for the case of zero delay, in which

case we call the networklelay-free We will always
assume that delay-free networks are acyclic in order to
avoid stability problems.

Random processes(v,1), [ € {1,2,...,u(v)} arein-

dependent and have a constant and integral entropy rate

of, e.g.,m bits per unit time The unit time is chosen

to equal the time unit in the definition of link capacity.

This implies that the rat&(c) of any connectiore

(v,v", X(v,v")) is an integer equal t&X (v,v")|. This

assumption can be satisfied with arbitrary accuracy by

letting the time basis be large enough and by modeling

a source of larger entropy rate as a number of parallel

sources.

4) The random processek (v, [) are independent for dif-
ferentv. This assumption reflects the nature of a com-
munication network. In particular, information that is in-
jected into the network at different locations is assumed
independent.

3)
ply

cycles. To each link € E we associate a nonnegative number In addition to the above constraints, we assume that commu-

C(e), called the capacity of.
Let X(v) {X(v,1), X(v,2),...,X(v,u(v))} be

nication in the network is performed by transmission of vectors
(symbols) of bits. The length of the vectors is equal in all trans-

a collection of u(v) discrete random processes that ammissions and we assume that all links are synchronized with

observable at nodes. We want to allow communication
between selected nodes in the network, i.e., we want

respect to the symbol timing.
toAny binary vector of lengthrn can be interpreted as an

replicate, by means of the network, a subset of the rand@iement inF,, the finite field with2™ elements. The random

processes in¥(v) at some different node’. We define a
connection c as a triple(v,v’, X (v,v")) € V x V x Py (y),
where Py (v) denotes the power set ot'(v). The rate
R(c) of a connectione (v,v', X (v,v")) is defined as
R(c) = Yixnex(we) H(X(v,i)), where H(X) is the
entropy rate of a random proce&s

Given a connection = (v, v’, X' (v,v")), we callv asource
andv’ asink of ¢, and writev = source(c) andv’ = sink(c).
For notational convenience, we will always assume th
source(c) # sink(c).

A nodew can send information through a link = (v, u)
originating atv at a rate of at mos€(e) bits per time unit.
The random process transmitted through linls denoted by
Y (e). In addition to the random processestifv), nodev can
observe random processgge’) for all ¢’ in T';(v). In general,

processesX (v,1), Y(e), and Z(v,l) can, hence, be modeled
as discrete processex (v,1) {Xo(v,1), X1(v,1),...},
Y(e) {Yo(e),Y1(e),...}, and Z(v,l) {Zo(v,1),
Z1(v,1),...} that consist of a sequence of symbols frbm. .

We have the following definition of a delay-free (and hence,
by assumption, acyclicl,~-linear communication network
[9].

Definition 1: LetG = (V, F) be adelay-free communication
aetwork. We say thaf is aF - -linear network, if for all links
the random process(e) on a linke = (v, u, 1) € F satisfies

n(v)
>

Y(e)=Y a.X(v,1)+
=1 e’:head(e’)=tail(e)

[3SI7SY(6/)

where the coefficients,; . andf, . are elements df 5 .
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Definition 1 is concerned with the formation of random prohave been removed. While itis straightforward to investigate the
cesses that are transmitted on the links of the network. It is pesivability for a given failure pattern, finding common solutions
sible to consider time-varying coefficientg . andj.- . and we for classes of failure patterns is a much more interesting task. We
call the networktime-invariantor time-varying depending on say that a network solution sgaticunder a sef of link failure
this choice. pattern, if there exists solutions for the network under any link

The outputZ (v, ) at any node is formed from the random failure patternf € F with the same elements ., f.. .. Static
processed’ (e) for e € I';7(v). It will be sufficient for the pur- solutions are particularly desirable because:

pose of this paper to restrict ourselves to the caseZAltat!) 1) no new solution has to be found and distributed in the
are also linear combinations of thge), i.e., network if a failure patterrf € F occurs;
2) the individual nodes in the interior network can be obliv-
Z(v,j) = Z e ;Y (€) (1) ious to the failure pattern, i.e., the basic operation per-
¢’ head(e’)=v formed at a node in the network is independent of the par-

ticular error pattern.
where the coefficients,. ; are elements oF ;... Indeed, we The fundamental questions that we strive to answer in this

will prove in Section I11-A that, for linear networks, it sufficesPaper are the following.
to consider the formation of th&(«, j) by linear functions of 1) Under what conditions is a given linear network coding
Y (e) for e € T'7(v). The concepts of Definition 1 are illustrated problem solvable?
in the following example network. 2) How can we efficiently find a solution to a given linear
network coding problem?
, 3) When does a static solution exist for a network that is

v X(le?) Vv subject to link failures?

The main tools we will use for answering the above ques-
tions involve concepts from algebraic geometry. In particular,
we will relate the network coding problem to the problem of

Sy— , , finding points on algebraic varieties, which is one of the central
. Y(e?)= Oy X D) ¥ e Y(e) P Y(E) questions of algebraic geometry.
Y(e’) u In Section I, we introduce part of the algebraic framework.
v The goal of the section is to make the reader familiar with some
Zw1)=¢, Y(”) +e,.. Ye') of the employed concepts. The base theorem is an algebraic re-

formulation of the Min-Cut Max-Flow Theorem. We point out
the algebraic interpretation of this theorem in the context of the
We emphasize that we can freely choesand the field=>~  Ford—Fulkerson algorithm.
containing the constants;,, 3. ., ande. ;. In particular, we  |n Section IV-A, we apply the algebraic framework to acyclic
frequently choose to consider taégebraic closure - of F2, networks. We rapidly recover and extend the work oft.il.
which is defined as the union of all possible algebraic extensiofgg and Ahlswedeet al. [10]. In particular, we are able to an-
of FF». Once we find suitable coefficients if, it is clear that swer some of the problems left open by the authors [9]. In Sec-
these coefficients also lie in a finite extensionrof. tion IV-B, we address the general network coding problem for
For a given networlg and a given set of connectiodswe  cycle-free networks and we derive necessary and sufficient con-
formally define a network coding problem as a p@itC). The  ditions to guarantee the solvability of a network coding problem.
problem is to give succinct algebraic conditions under which The case of robust networks that are subject to link failure is
a set of desired connections is feasible. This is equivalenttteated in Section V. The main surprising result is that robust
finding elementsy, ., (e ., ande. ; in a suitably chosen field multicast can be achieved with static solutions to the network
Fa~ such that all desired connections can be established sgéding problem. Section VI extends the results to networks with
cessfully by the network. Such a set of numbers, 3. ., and  delay and networks with cycles.
e.r,; Will be called asolutionto the network coding problem
(G,C). If a solution exists, the network coding problem will be . ALGEBRAIC FORMULATION
calledsolvable The solution is time-invariant (time-varying) if ) ) ) )
thea, ., Ber ., ande., ; are independent (dependent) of the time. In this section, we W|Il_develop some of the algebraic con-
We also consider the case of networks that suffer from Iifi€Pts used throughout this paper. For the reader’s convenience,
failure. Link failures are not assumed to be ergodic proces¥§ Will follow a simple example of a point-to-point connection
and we assume that a link either is working perfectly or is ef? the communication network given in Fig. 2(a).
fectively removed from the network. A link failure pattern can L€t9 = (V. E) be acommunication network. éut between
be identified with binary vectorg of length|Z| such that each & nodev and ”'E'S a partition of the vertex set @ into two
position inf is associated with one edgedn If a link fails, we C|335§§ andS* = V — S of vertices such tha$ containsv
assume that the corresponding positiorfiaquals one, other- @ndS” containsy’. The valueV'(S) of the cut is defined as
wise the entry inf corresponding to the link equals zero.
We say that a network isolvable under link failure pattern V(S) = Z C(e).
if it is solvable once the links corresponding to the support of edges from S to Sb
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Example 1: We consider the network of Fig. 2. The fol-
lowing set of equations governs the parametars, . ., and
ee,; and the random processes in the network.

Y(e1) =a1,e,X(v,1) + az e, X(v,2) + a3, X(v,3)
Y(e2) =a1,e,X(v,1) + a2, X (v,2) + g, X (v,3)
Y(es) =a1,e, X (v,1) + a2,e, X (v,2) + ag,e, X (v, 3)
Y(es) =Pei e Y (e1) + Bes,es Y (€2)
v, Y(es) =Beyes Y (€1) + Bes e; Y (€2)
Z60) Y (e6) =Bes,ecY (€3) + Beyes Y (€4)
XG0 y Y (e7) =Bes.er Y (e3) + Peser Y (e4)
X0,2) Z(v',2) Z(v', 1) =€e, 1Y (€5) + €es1Y (€6) + €er 1Y (€7)
X3 /Vl o ) Z(v',2) =€, 2Y (e5) + €cy 2Y (€6) + €c. 2Y (€7)
Z(v',3) =e¢, 3Y (e5) + €¢q,3Y (€6) + ¢, 3Y (€7).

V2
(b) Itis straightforward to compute the transfer matrix describing

Fig. 2. (a) Point-to-point connection in a simple network. (b) The sani&€ relationship between andz. In particular, let matricest
network with nodes representing the random processes to be transmitted inghel B be defined as
network.
Uley Qle, Al
. A=\ aze, Q2e, Q2
The famous Min-Cut Max-Flow Theorem can be formulated

as follows.

Theorem 1 (Min-Cut Max-Flow):Let a network with a single
source and a single sink be given, i.e., the only desired connec-
tionisc = (v,v’, X(v,v")). The network problem is solvable if
and only if the rate of the connectid®(c) is less than or equal  The system matri¥/ is found to equal
to the minimum value of all cuts betweerandv’.

Proof: See [16] and [17]. ] ﬂe1,85 ﬂe1,e4ﬂe4,es ﬂe1,e4ﬂe4,e7 T

The Ford—Fulkerson labeling algorithm [16] gives a way for M=A 55’6’65 ﬁe?f’;‘ﬁ%eﬁ 582[’;4564’87 B
finding a solution for point-to-point connections provided a net- 3,¢6 e3,e7
work problem is solvable. The algorithm is graph theoretic byhe determinant of matrix M equals det(M) =

A3 ey (3 e, (3 ey

€es,1 €e5,2 Ees,3
B = €cs1 Ces2 o3

€er, 1 €er,2 Eer,3

design and finds, under the assumptions made in Section I4&(A)(5., c. Bey.cs — BeyiesBeyes)(Bey.cs Bes.on —
solution such that all parameters, and . . in Definiton 1 5, . 3. ..} - det(B). We can choose parameters in an
are either zero or one. extension fieldF3* so that the determinant @¥/ is nonzero

While the Ford—Fulkerson labeling algorithm provides aaverF,... Hence, we can choos¢ as the identity matrix and
elegant solution for point-to-point connections, the techniqueis so that the overall matri®/ is also an identity matrix. One
not powerful enough to handle a more involved communicatiossch solution (found by the Ford—Fulkerson algorithm) would
scenario. In the remainder of this section, we develop sorbe to letf., ¢, = fe,,es = Beses = Bes,e, = 1 While all other
theory and notation necessary for more complex setups. We fparameters of typ@., . are chosen to equal zero. Clearly, a
consider a point-to-point setup. Let noddve the only source point-to-point communication between and v’ is possible
in the network. We let = (X (v,1), X (v,2),..., X (v,u(v))) at a rate of three bits per unit time. We note that, over the
denote the vector of input processes observed.aBim- algebraic closur& there exists an infinite number of solutions
ilarly, let v be the only sink node in a network. We letto the posed networking problem, namely, all assignments to

z = (Z(V,1),Zv,2),...,Z(v',v(v"))) be the vector of parameters3.. . which render a nonzero determinant of the
output processes. transfer matrix/. [ ]
The most important consequence of consideringFan- Inspecting Example 1, we see that the crucial prop-

linear network is that we can givetsansfer matrixdescribing erty of the network is that the equatiofp., e, fec,.c, —
the relationship between an input vectoand an output Vector B, . B, e;)(Bey.esBes.er — Bes,erPes.cs) a@dmitted a choice
z. Let M be the system transfer matrix of a network with inpudf variables so that the polynomial ditbt evaluate to zero.
z and outputz, i.e.,z = zM. For a fixed set of coefficients The following simple lemma will be the foundation of many
Qre, Pere, ande.s ;, M is a matrix whose coefficients areexistence proofs given in this paper.

elements in the fieldF2~ In our case, we go a step further and Lemma 1:Let F[X;, X5,..., X,,] be the ring of polyno-
consider the coefficients as indeterminate variables. Hence, mils over an infinite fieldF in variables Xy, Xo, ..., X,,.
consider the elements of matrid as polynomials over the For any nonzero elemetft € F[ X1, X»,. .., X,,] there exists
ring Faol...,a16,...,0e65...,€cr,...] Of polynomials in an infinite set ofn-tuples (xl./a;2,...,wn) € F" such that
the variablesy, ., /38 e ande ;. fz1,29,...,2,) # 0.
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Proof: The proof follows by induction over the number of 81 Be 65
variables and the fact th&tis an infinite field. | 2
The following theorem makes the connection between the
network transfer matrix\/ (an algebraic quantity), and the
Min-Cut Max-Flow Theorem (a graph-theoretic tool).
Theorem 2: Let alinear network be given with source nade
sink nodev’, and a desired connectien= (v, v, X(v,v")) of
rate R(c¢). The following three statements are equivalent.
1) A point-to-point connection = (v, v, X(v,v")) is pos- Be3e7
sible. . . . . Fig. 3. Directed labeled line gragh corresponding to the network depicted
2) The Min-Cut Max-Flow bound (Theorem 1) is satisfiegh Fig. 2(a).
betweerw andv’ for a rateR(c).

3) The determinant of the R(c) x R(c) incidence structure for our problem. We say that any edge
transfer matrix M is nonzero over the ring (u,v) feeds intedgee’ = (v, ') if head(e) is equal tatail (¢').
Foloooiaue, oo Beres - s€er s -] We define thedirected labeled line graplof G = (V, E) as

Proof: Most of the theorem is a direct consequence @(V, &) with vertex sefy = E and edge sef = {(e,€’) €
the Min-Cut Max-Flow Theorem. In particular, 1) and 2) args? : head(e) = tail(e’)}. Any edgee = (e,¢’) € £ is labeled
equivalent by Theorem 3. In fact, the theorem only treatgith the corresponding labgl .. Fig. 3 shows the directed la-
the single-source single-sink case for a network with integbeled line graph of the network in Fig. 2.
flows (by assumption). The Ford—Fulkerson algorithm thus We define the adjacency matriX of the graphg with ele-
yields R(c) edge-disjoint paths between source and sinkentsF; ; given as
nodes. We show the equivalence of 1) and 3). This in turn )
will show the equivalence of 2) and 3). The Ford—Fulkerson F; = {ﬂei,ej head(ez;) = tail(e;)
algorithm implies that a solution to the linear network coding ’ 0 otherwise.

problem exists. Choosing this solution for the parameters| emma 2: Let F be the adjacency matrix of the labeled line

of the linear network coding problem yields a solution sucaph of a cycle-free network. The matrixI—F has a polyno-
that M is the identity matrix and, hence, the determinant Qfia| inverse with coefficients 2. Beres. . .

€3¢

M overFal... cie,....fBere, .- e j; .. ] dO€S not vanish Proof: Provided the original networlg is acyclic, the
overFol...,aue, ..., Bere, .. Eerj, .- ] WE CANINVErt MatriX @ are ordered according to an ancestral ordering. It follows

M by choosing parametets.; accordingly. From Lemma 1, inat 7 is a strict upper-triangular matrix and, hendeF is
we know that we can choose the parameters as to make {Rirtible in the field of definition of". The claim that the
determinant nonzero. Hence, 3) implies 1) and the equivalencer is invertible in the ring of polynomials rather than the

is shown. B corresponding quotient field of rational functions follows from
From Example 1, Lemma 1, and Theorem 2, we conclugggirect back-substitution algorithm. -

that studying the feasibility of connections in a linear network |, order to consider the case that a network contains mul-
scenario is equivalent to studying the properties of solutionsggje sources and sinks, we consider= (z1, 7, .. S Ty) =
polynomial equations over the fieldl. The third statement of (X (01,1), X(01,2), ..., X (01, p(v1)), X (v2, 1), .., X (v,
Theorem 3 allows us to translate graph-theoretical propertiﬁ@lvl))) as the vector of input processes on all vertice¥'in

condition. Powerful algebraic tools can then be employed to gsponding parametei(v) equal to zeroz = (

rive at statements concerning the original network. Itis worths 5 vector of lengthy = S u(wy).

while to point out that it is sufficient in Theorem 3 to consider | et the entries of a x |EZ| matrix A be defined as

expressions over fields of fixed characteristic. In other words,

if a solution to a point-to-point network problem exists, there A = { e, x; = X(tail(e;),1)

also exists a solution restricted to the algebraic closure of the bi- i 0 otherwise.

nary fieldF,. Hence, there is no need or advantage to considerSimilarl let _ — (Z(ei 1

fields of other characteristic. Nevertheless, it is not cleliméfar Y z = (@) = (Z(]),
Z(vh 2) SR Z(”l? V('Ul))‘/ Z(v27 1)/ ) Z(v\V|7V(’U|V\))) be

coding strategies are sufficient for a general network problerﬂ. . .
. . . the vector of output processes.uf is not a sink node of any
In Section IlI-A, we investigate the structure of general transfer

matrices and the polynomial equations to which they give risgonnection, we let(v;) be equal to zera: is a vector of length
poly a y9 v'=73.v(v;). Letthe entries of & x |E| matrix B be defined

as

T1,5L2y - - ,:EH)

7

A. Transfer Matrices

In a linear communication network of Definition 1, any node
v; transmits, on an outgoing edge, a linear combination of the
symbols observed on the incoming edges. This relationship beExample 2: We consider the network depicted in Fig. 4(a).
tween edges in a linear communication network is the natuiihe corresponding labeled line graph is depicted in Fig. 4(b).

B, . — el Fi= Z(head(e;), 1)
“ 700, otherwise.
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Xt 1) v €y Uz’ 1) contribute taZ(v', j). Itis straightforward to verify that the path
’ Z(w’,2) between nodes in the network are accounted for in the series
e I+ F + F? + F3 + -, Matrix F is nilpotent and eventually

there will be aV such that?"" is the all zero matrix. Hence, we

Xv,1) canwrite(/ — F)™' = (I+ F + F?+ F?3 + - --). The theorem

xw2) 5 *u Z(wl) follows. [ |
The transfer matrix¥/ is considered as a matrix over the ring
e e. . of polynomialsFs|...,aue, ..., Ber e, . €(€,5),...]. Inthe
W'T’ o sequel, we will use a vectaf to denote the set of variables
§ 0 S B RN o N S O ... and, hence, we consid&f as
€y amatrix with elements ift[£]. We will use the explicit form of
e, .\ the vector only if we want to make statements about a specific
e, L solution of a particular network proble(y, C).

b We conclude this section with a remark that it is sufficient
() to form the output processe&®(v, ¢) by a linear function of

Fig. 4. (a) Network with two source and two sink nodes. (b) Correspondifye processed (e).e € I';(v). Indeed, provided a network
labeled line graph. Labels in (b) are omitted for clarity. The eglgedoes not P ( )’ I( ) P

feed into any other edge and no edge feedsdptg which renders an isolated prOblem is solvable, let the output procezs_v, E) be e_qual
vertex in the labeled line graph. to Y(Y(e1), Y(e2),...,Y (es,(v))) Wherey(-) is an arbitrary

function and the edges are inI';(v). By Definition 1, the pro-
We assume that the network is supposed to accomnuessed (e) are alinear function of the input procességw, j).
date two connections; = (v,v’,{X(v,1), X(v,2)}) and Hence, provided that the outpdt(v, ) equals any particular

o = (V,u,{X(v',1)}). We fix an ordering of edges asinput, the function)(-) describes a vector space homomorphism
Cv,07 s oty Cous Col 'ty €ol ity €l s Cot s Curwe FOP this from (Y(ei), Y (e2),...,Y (es,(v))) t0 Z(v,£) for all £ and,
ordering, the adjacency matriX of the labeled line grap® is henceg(-) must be a linear function. This proves that the form
found to equal (2), shown at the bottom of the page. of (1) is no restriction on the solvability of a network coding
Also, matricesA and B are found to equal (3) and (4), re-problem.
spectively, also shown at the bottom of the page. [ |
From the definition of matrice$’, A and B, we can easily IV. DELAY-FREE NETWORKS

find the transfer matrix of the overall network. . .
Theorem 3: Let a network be given with matrices, B, and A Multicast of Information

F. The transfer matrix of the network is given as In its simplest form, the multicast problem consists of the dis-
M= A(I - F)’lBT tribution of the information generated at a single source node
to a set of sink nodes, us, ..., uys such that all sink nodes
wherel is the|E| x |E| identity matrix. get all source bits. In other words, the set of desired connections

Proof: MatricesA andB do not substantially contribute tois given by{(v, u1, X (v)), (v, uz, X (v)),. .., (v,unrr, X (v))}.
the overall transfer matrix as they only perform a linear mixin@learly, each connectiofv, u;, X' (v)) must satisfy the cut-set
of the input and output random processes. In order to find theund between andw;. Ahlswedeet al.[10] showed that this
impulse responsef the link between an input random processondition is sufficient to guarantee the existence of a coding
X(v,4) and an outpuf(v’, j), we have to add all gains alongstrategy that ensures the feasibility of the desired connections.
all paths that the random proce&gwv, ) can take in order to Li etal.[9] showed that linear coding strategies are sufficient to

0 Be e 00 Be o, 0 0 0
0 0 0 0 0 Bermesns Bermesn 0
0 0 0 0 0 0 0 0
0 0 0 0 0 Beor e Bewr enn ., 0
=1y 0 0 0 0 0 0 Bes e @
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 Beors renr .
0 0 0 0 0 0 0 0
Ozl’eu.v, 051.,61, 7 alyev_u 0 0 0 0 0
A= e, , @2, ., Qo 0 0 00 0 €©)
0 0 0 Qi1 Qa0 0 0
0 0 Eev,u-,l 0 0 €5U”.u:1 0 &‘eu,.wl
B=[00 0 0 e, 1 0 e i1 0 (4)
00 0 0 e, 0 €eon 2 0
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achieve this goal. The following theorem recovers their result &lgorithm 1 and provides a simple bound on the degree of the
the algebraic framework developed in Section . extension ofF, that we will have to consider.

Theorem 4:Let a delay-free network G and a  Theorem 5:Let a delay-free communication netwagkand
set of desired connection = {(v,u1,X(v)), asolvable multicast network problem be given with one source
(v,u2, X(v)),...,(v,un,X(v))} be given. The network and N receivers. LetF" be the product of the determinants of
problem (G,C) is solvable if and only if the Min-Cut the transfer matrices for the individual connections and let
Max-Flow bound is satisfied for all connectionsdn the maximal degree df' with respect to any variablg. There

Proof: We have a single source in the network andexists a solution to the multicast network problenfin, where
hence, the system matri®/ is a matrix with dimension i is the smallest number such ttgit > §. Algorithm 1 finds
|X (v)] x N|X(v)|. Moreover, by assumption and Theorem 2such a solution.
each|X(v)| x |X(v)| submatrix corresponding to one con-  Proof: We only have to show that Algorithm 1 indeed ter-
nection has nonzero determinant oveg[¢]. We consider minates properly. Also, it suffices to show that we can finch
the product of theN determinants of theX'(v)| x |X(v)| Fa: as the rest of the proof follows by induction. We consifler
submatrices. This product is a nonzero polynonfia F»(£). as a polynomial ifs, s, . . ., &, with coefficients fromF[¢;].
By Lemma 1, we can find an assignmefjt for ¢ such that By the definition ofé, the coefficients of’ are not divisible by
f(§ ) # 0 and, hence, the determinants of Allsubmatrices ¢ — & and, hence, there exists an element F,: such that
are S|multaneously nonzero . Matrix B can be chosen ason substituting:, for &; at least one of the coefficients evaluates
a block diagonal matrix which contains on the main diagontd a nonzero element &%:. Substitutingz; for £; and repeating
the inverse of the correspondifg (v)| x |X'(v)| submatrices the procedure yields the desired solution. ]
of M. By choosing matrixB in this way, we can guarantee A simple general upper bound on the necessary degree of
that M is the N-fold repetition of thd X' (v)| x |X(v)] identity the extension field for the multicast problem is given in the fol-
matrix, which proves the theorem. m lowing corollary.

The mostimportantingredient of Theorem 4 is the fact that all Corollary 1: Let a delay-free communication netwagkand
sink nodes get the same information. Moreover, all sink nodasolvable multicast network problem be given with one source
receive the entire data that is injected into the network. In oth@nd N receivers. Leti? be the rate at which the source gener-
words, provided that the sink nodes know the part of the systéies information. There exists a solution to the network coding
matrix that describes their connection, there are no interferipgoblem in a finite fieldF,» with m < [log,(N R + 1)].
signals in the network. Another interesting aspect of this setup Proof: Each entry in the matri¢/ — F)~' has degree at
is that the sink nodes do not have to be aware of the topologyrest one in any variable. Hence, the degree of each variable in
the network. Knowledge about the overall effects of all codirigie determinant of a particular transfer matrix is at m@stt
occurring in the network is sufficient to resolve their connectiofiollows that the relevant polynomial has degree at nio&t in

The construction of special codes for the multicast netwogky variable. u
coding problem is rather easy. From the proof of Theorem 4, it
is clear that we are given a polynomialgdr(the product of the
N determinants) and we have to find a point that does not & General Network Coding Problem
on the algebraic variety cut out by this polynomial. A simple
greedy algorithm will actually suffice to find such a solution. The situation is much changed if we consider the general net-
We formulate this algorithm as follows. work coding problem, i.e., we are given a netw@rland an ar-

bitrary set of connections. This problem is considerably more
difficult than the multicast problem. Some progress on charac-

Algorithm 1 Input: A polynomial F in in- terizing the achievable set of connections is found in [13] for the
determinates £1,&, ..., &, integer: t=1 case of arbitrary nonlinear coding strategies. The set of achiev-
Iteration: able connections is there bounded within Yeung’s framework
1) Find the maximal degree § of & in F of information inequalities [12]. Here, we focus on linear net-
and let ¢ be the smallest number such that work coding, which allows us to make concise statements for a
2t > 6. number of network coding problems. In order to accommodate
2) Find an element a; in Fy such that the desired connections, we have to ensure that: 1) the Min-Cut
F(&)lg,=a, 70 and let  F — F(§)|¢,=a, - Max-Flow bound is satisfied for every single connection; and
3) If t = n then halt, else ¢ — t+ 1, goto 2) there is no disturbing interference from other connections.
2). The following example outlines the basic requirements for the
Output:  (a1,a,...,a,). general case.

Example 3:Let the networkG be given as depicted in
Fig. 5(a). The corresponding labeled Iline graph
The determination of the coefficients renders a network is given in Fig. 5(b). We assume that we want to
such that all the transfer matrices between the single source asdommodate two connections in the network, i@., =
any sink node are invertible. Choosing the maf8bso that all {(vq,u1,{X (v1,1),X (v1,2)}), (ve, ue,{ X (v2,1),X (v2, 2)})}
these matrices are the identity matrix solves the multicast neectors z and z are given asz = (X(v1,1), X (v1,2),
work problem. The following theorem proves the correctness &f(vy, 1), X (v2,2)) and z = (Z(u1,1), Z(u1,2), Z(us, 1),
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Vi vV,

It is interesting to note that the Min-Cut Max-Flow condition is
satisfied for each connection individually and also for any cut
between both sources and both sinks. This condition is guaran-
teed by edges. If edgeeg is removed the determinant of the
transfer matrix would vanish identically, which indicates a vio-
lation of the Min-Cut Max-Flow condition applied to cuts sep-
aratingv; andv, fromw; andu,. In order to satisfy\» ; = 0,
we have to choos& = 0 which implies thatlet(Ms ) equals
zero. However, then, we cannot satisfy the requirements that
det(Mz2) # 0 andM;; = 0 simultaneously and, hence, the
network problem{g, C) is not solvable. It is worthwhile to point
out that it can be verified that this nonsolvability of the network
coding problem is pertinent to any coding strategy and is not a
shortcoming of linear network coding. [ |

As before, let: denote the vector of input processes and let

€s denote a vector of output processes. Following Example 3, we
consider the transfer matrix in a block form &6 = {M; ;}
€s such that); ; is the submatrix ofd/ describing the transfer
e; matrix between the input processesvatand the output pro-
cesses at;. The following theorem states a succinct condition
e under which a network problefg, C) is solvable.
2 Theorem 6 (Generalized Min-Cut Max-Flow Condi-
e tion): Let an acyclic delay-free linear network problém, C)
be given and let\/ = {M; ;} be the corresponding transfer
(b) matrix relating the set of input nodes to the set of output nodes.
Fig. 5. (a) Network with two source and two sink nodes. (b) Correspondinghe network problem is solvable if and only if there exists an
labeled line graph. assignment of numbers to variablesuch that:
Z(us,2)). It is straightforward to check that the system ) Mij = 0 for all pairs (vi, v;) of vertices such that
matrix M is given as (03, vj, X (vi, v;)) & C; .
2) if C contains the connectiongv;,,v;, X (vi,,v;)),
€ &2 &z O 0 (’UZ‘Q./?)J'./X(’U,L'N’UJ')),...,(U”,’Uj, X(’l}iw’l}j)), the
M| s &5 &G 00 submatrix [M! MT . ... ,MT ] is a nonsingular
0 0 0 &7 &s v(vj) x v(v;) matrix. I

0 0 0 &9 &2
&1 &i&ib &

Proof: Assume the conditions of the theorem are met and

(1) 0 ko £3610 & & 0 0 assume the network (_)perates with the correspo_nding gssignment
<lo o a & Ea3 &og O 0 . pf numbers t@. Conqmon 1) ensures that t_here IS no d_lsturbmg

0 & Ebbs Exatio 0 0 &5 &o6 interference at the sink nodes. Also, any sink negdean invert

0 0 . o 0 0 &y &g the transfer matriM” ;M ., ..., M ;] and, hence, recover

the sent information.
Conversely, assume that either of the conditions is not sat-
M= My Mo isfied. If Condition 1) is not satisfied, then the collection of
M1 Msp random processes observed on the incoming edgesi®h su-
where M;; denotes the transfer matrix betweefP€rposition of desired information and interference. Moreover,

(X (v1,1), X (v1,2)) and (Z(u1,1), Z(u1,2)), My - denotes the sink nodev; has no possibility of distinguishing interfer-

the trar{sfer matrix between(./X(vl.l) X(v1,2)) and ence from desired information and, hence, the desired processes
e ' ggannot be reliably reproduced @t

(Z(u2,1), Z(u2,2)), etc. It is easy to see that the networ o : : _ -
problem (g, C) is solvable if and only if the determinants of Condition 2) is equivalent to a Min-Cut Max-Flow condition,
M, and M, » are unequal to zero, while the matricdf , Which clearly has to be satisfied if the network problem is solv-

We can writeM as a block matrix

and)M, ; are zero matrices. Note that the determinant/f; able. n

and M, is nonzero ovefF,[¢] if and only if the Min-Cut ~ Theorem 6 gives a succinct condition for the satisfiability of

Max-Flow bound is satisfied. Indeed, we have a network problem. However, checking the two conditions is a
tedious task as we have to find a solution, i.e., an assignment

det(M11) = (€11€is — &12€14) &1 (€824 — £22603) to numberfg that exhibits the desired properties. We will sketch

and an algebraic approach to this problem in the remainder of this
section.

det(Ma2) = Let f1(€), f2(€),..., fK(&) denote all the entries i/

E2&4(E17€0 — E18€10) (Eoe — E5€10) (€508 — Ea6éa7).  that have to evaluate to zero in order to satisfy the first
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condition of Theorem 6. We consider the ideal genefs. Some Special Network Problems
ated by f1(£), f2(£),..., fx(§) and denote this ideal by

I(f1, fa, .., fx). From the Hilbert Nullstellensatz [18], we | a few cases, it is relatively straightforward to satisfy the
know that this ideal is a proper ideal B%[¢] if and only if  conditions of Theorems 6 and 7. These approaches can be sub-
we can find an assignment of numbers fosuch that we can symed under the principle that the conditions of Theorem 6 can
satisfy the first condition of Theorem 6. In order to satisfy thge satisfied by means of linear algebra alone. The multicast sce-
second condition of the theorem, we det¢), g2(§), - - -, 9(§)  nario of Section IV-A is the simplest example of this situation.
denote the determinants of thgv;) x v(v;) matrices that  We start with the case of multiple sources and multiple sinks
have to be nonzero. Next, we introduce a new varigpland in a network coding problem where all sources want to commu-
consider the functior, Hlegi(é) — 1. We call the ideal nicate all their information to all sinks. In other words, the set
I(AE), F2(6), - (€)1 — &I, 9(8)) the ideal of of desired connections betweshsources andk’ sinks is given
the linear network problendenoted byldeal((G,C)). The asC = {(vi,u;,X(v;)):i=0,1,...N,j=1,2,...K}.One
algebraic variety associated withlcal((G,C)) is denoted Ccharacterization of this setup is, again, that it is interference free
Var((G,C)), given by due to the fact that all sinks are supposed to receive all the in-
formation. This interference-free situation was also exploited in
n [15], where a similar theorem was stated in the context of gen-
Var((6,€)) = {(a1, a2, an) € F": eral, potentially nonlinear, coding strategies.
flar,a2,...,a,) =0 V f€ldeal((G,C))}.  Theorem 8:Let a linear acyclic delay-free net-
work G be given with a set of desired connections
Theorem 7:Let a linear network probleniG,C) be given. C = {(vi,u;,X(v;)):¢ = 0,1,...N,j = 1,2,...K}.
The network problem is solvable if and only Viar((G,C) is  The network problem(G,C) is solvable if and only if the
nonempty and, hence, the idddkal((G,C)) is a proper ideal Min-Cut Max-Flow bound is satisfied for any cut between all
of F[o, €], i.e,1deal((G,C)) S Faléo, £]. source node$v; : s = 0,1,... N} and any sink node;.
Proof: Assume first that the idealdeal((G,C)) is a Proof: We consider the transfer matrices betweenahe
proper ideal ofF,[&, €]. The Hilbert Nullstellensatz implies SOUrCe nodes and any of th€ sink nodes individually. Each

that the varietyVar({G,C)) of points where all elements matrix, considered as matrix ovEg[(], is nonsingular by as-

S . umption. Hence, we can find an assignment of numbers to the
of Ideal((¢,C)) vanish is nonempty. Hence, there exists a@ariable% such that the matrix evaluated at these points is non-

assignment tg, and{ such that Condition 1 of Theorem 6 is . | . This holds f h rel N b
satisfied. Moreover, for all solutions in the varigyr((g,c)) SMguiar over. This holds for each re evant;_, u(vi) by
we haveé, # 0 andHiL,lg(f) £ 0 as otherwise 1 is in the Dinq ,[_L(UL') matrix. The sink nodes can obtain the desired in-
generating set of the ideal and, henk&al((G,C)) would be formation by choosing matrik appropnately. .
identified with F»[¢, ¢]. Hence, Condition 2) of Theorem 6 is_ \We note that Theorem 8 contains Theorem 4 as a special case
= for N = 1. The situations are relatively similar and Theorem 8
can be reduced to Theorem 4 by introducing a super node having
access to the entire information feeding information to the nodes

satisfied and any element tfis a solution of the linear network
problem. Conversely, assume tHdbal((G,C)) = F2[&o,E].
It follows that the varietyVar((G,C)) is empty and there is o
no solution which satisfies the required conditions. Indeed’’ . . . . . .
A surprising fact in solving a given set of connections in the

by choosing a proper value fg any solution to the network setup of Theorem 8 is that there is no encoding necessary at

coding problem would immediately give rise to a nonemp%e source nodes. This is also clear from the observation that

variety Var((G, C)). this case is “interference free.” However, allowing for proper

Using Theorem 7, we have reduced the problem of decidifgcoding at the source node is crucial for the general networking
the solvability of a linear network problem to the problemyoplem. In a number of special cases, we can make use of the
of deciding if a variety is empty or not. We can decide thigncoding opportunity at the sources to guarantee the existence
problem using Buchberger’'s algorithm [19] to compute af a solution to a network coding problem. In the remaining
Grobner basis for the ide&leal((G,C)). Itis well known [19] theorems of this section, we specialize to the case of one source,
that the Grébner basis of an ideal equals 1 if and only if thghich gives us complete control over the encoding matrix
corresponding variety is nonempty. The techniques involvinghe specific type of network coding problem that is covered in
Grobner bases exceed the scope of the paper, and we reagh oft_he subsequent theorems is specified in the set of desired
the reader to Cost al. [19] for a thorough treatment of this CONnections. _ _ L
material. We only note that it is well known that, in general, the We say that the Mm-Cu.t Max-Flow is satisfied between a
complexity of Grébner basis computations is not polynomiallj°o- € node and a set of sink nodeus, us, ..., ux} at rates
bounded in the number of variables. Nevertheless, mathema /’(‘:'/év’ui)| if it is satisfied for any cut seperating a dét C

. - S ATy, ug, ..., uk } fromov atarate) ] o, |X (v, u)l.
software routinely solves large Grébner basis computatio Theorem 9:Let a linear acyclic delay-free net-
A careful study of the structure dfleal((9,C)) C F2[€0.&] work G be given with a set of desired connections
as obtained from network problems, as well as optimizing the — {(v,uj,X(v,u;)) : j = 1,2,...K} such that all

computation of a Grobner basis for the ideal of a linear netwoggllections of random processes are mutually disjoint, i.e.
problem, are important future tasks for deriving efficient’ (v, u;) N X(v,u;) = 0 for i # j. The network problem is
algorithms deciding a network problem. solvable if and only if the Min-Cut Max-Flow bound is satisfied
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betweenv and the set of sink nodga.;, us, ..., ur } at rates tionthen becomes, under which failure pattern a successful net-
| X (v, u;)]. work usage is still guaranteed. Let (v, u, i) be a failing link.
Proof: We can assume, without loss of generality, that thé/e assume that any downstream sink node, i.e., any node that
mutually disjoint random processé(v,u;) partition the set can be reached from via a directed path, can be notified of
X (v). Hence, the overall transfer matrix i&(v)| by |X(v)|  the failure of linke. However, no other nodes are being notified
square matrix that is nonsingular by assumption. Choosiggthe link failure. Given a network and a link failure pattern
matrix A at the source node properly, we can guarantee thatit is straightforward to consider the netwogk that is ob-
the overall tran;fer matrix realizes th.e identity ma_trix and eaghined by deleting the failing links and applying the results of
sink node receives the data stream intended for it. Convers&{yctions II-IV to this setup. We are interested in static solutions
assume that the Min-Cut Max-Flow is not satisfied for anynere the network is oblivious to the particular failure pattern.
subset of the sink nodes. It follows that the correspondifgye jgea is that each node transmits on outgoing edges a func-
submairix of the transfer matrix contains Ilnearl_y dependept, of the observed random processes, such that the functions
columns and, hence, the overall transfer matrix cannot fe independent of the current failure pattern. Here, we use the

nonsingular. [ | . : L
We note that the setup of Theorem 9 breaks down if we alloc\:ﬁnveml.On that the constant O 'S qbserved on failing links. We
n achieve the effect of a failing linkby setting parameters

more than one source node because this imposes a restricfion ) .
P Be,er @anday . to zero for alle’, ¢’ and?, which effectively

on the particular form of matrix4. However, we can loosen ¢’

the restrictions on the disjointness of the information to be digmhllatel_s :?\3 mflgerl(r:]e of atny randt()m fprocess ;c_rar}smll_tted on
tributed to different nodes. In particular, we can augment tﬁéjgee' ety [€] be the system matrix for a particular linear
etwork coding problem. Moreover, let the set of parameters

set of connection§ of Theorem 9 by a number of connectiond! et

{(v,u, X(v)) : £ = 1,2,... N} that should receive the entire$i that are affected by a f?.l|ll;l/g link, i.e., that correspond to

information injected into the network at node Ber,es Be,er @Ndaye . foOr all ', ¢ and?, be denoted as.
Theorem 10:Let a linear acyclic delay-free netwokk be g — (¢, : ¢, is identified with B/ o, Be.cr OF (e

given with a set of desired connectiahs= {(v, u;, X (v, u;)) : ’ ’ ’

! 1
= 1,2, K}U{(0ue, X)) i b= K+ 1, K +2,... K + for any €', e and ¢}

N} such that the collections of random processgs, u;), For any particular link failure patterfi, we defineB(f) as
X(v,u;) are mutually disjoint fori,j < K, i.e., X(v,u;) N

X(v,u;) = 0 fori # j,i,5 < K. The network problem is B(f)= |J B.

solvable if and only if the Min-Cut Max-Flow bound is satisfied eife=1

betweenw and the set of sink nod€su;, us, ..., ux} atrates  The following lemma makes the connection between the net-
|X (v, u;)| and betweem andu, £ > K ataratd X (v)|. work problem without and with a link failure patteifh

Proof: The proof is an extension of the proof of The- |emma 2: Let M[¢] be the system matrix of a linear network
orem 9. The transfer matrix of this proof is augmented by(?bding problem with system matrid [¢]. Let f be a particular
number of|X (v)| by [X(v)| square matrices correspondingin failure pattern and lef/;[¢] be the system matrix for the
to the connectiongv, us, X' (v)). The matrixA that we chose networkg, obtained by deleting the failing links. We have the

in the proof of Theorem 9 is nonsingular and, hence, ”?Sllowing relation betweed/[¢] and M/ [¢].
product of A and the square matrices corresponding to the = =

connections(v, u, X (v)) is nonsingular, too. These matrices M;¢[€] = M[€]le,.=0v e.eB(f)-

can be inverted by a proper choice of maikix u Proof: The effect of a failed link can be modeled by the

sir;Lhr?gcrg: ivohir::isn?in ;Ttggesgr;? dce?srgrl:zreylfor-tlr:/eclfnsuelti?f tvygct that no information about a random process is either fed
' 9 in¥ a failed link or is fed from the failed link into another link.

cast. The setup assumes two sinks such that one sink sh . o . : _
. ! . . . ) etting the coefficients; € B(f) to zero is compliant with the
receive all the informatiort’(v), while a second sink receives : . .
assumption that a constant 0 is observed on failed nodem
only a subset oft' (v). — :
Let F be the set of failure patterng such that the net-

Corollary 2: Let a linear acyclic delay-free net- ) . .
work G be given with a set of desired connectionvork coding problem(G¢,C) is solvable. For the multicast

C = {(v,u1,X(v,u)), (v, us, X(v))}. The network problem Scenario, i.e., the case = {(v,u;, X(v)), (v, uz, X(v)),
is solvable if and only if the Min-Cut Max-Flow bound is: - (v, un, X (v))} , we have the following surprising result.
satisfied between andu, at a ratelX (v, u;)| and between Theorem 11:Let a linear networkg and a set of connec-
andu; at a ratd X (v)|. m tonsC = {(v,us, X(v)), (v,u2, X(v)), -, (v,un, X(v))}

There are alarge number of special cases which can be tre@@iven. There exists a common static solution to the network
similarly to the results given in this section. The proofs of thBroblems(G;,C) for all f € F.

above theorems should be adaptable to these situations with only Proof: Let f be any particular failure pattern that renders a
minor modifications. solvable network. Leg; ;(£) be the determinant of the transfer

We now turn our attention to the problem of robust networkgatrix corresponding to connectién, u,, X' (v)). We consider
the producty (&) = TT;; [Tc7 97.4(€)- By Lemma 1, we can
find an assignment of numbers ¢asuch thaiy(¢) and, hence,
every single determinant; ;(¢) evaluates to a nonzero value
An interesting challenge is added to the problem of netwosimultaneously. It follows that regardless of error patter#’in

coding if we assume that links in a network may fail. The quethe basic multicast requirements are satisfied. [ |

V. ROBUST NETWORKS
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Theorem 11 makes very robust multicast scenarios pos-
sible—in a sense, the multicast can be organized as robustly
as possible. It is also interesting to note that choosing the
value of the variableg at random from a large enough field
yields a solution, which with high probability achieves max-
imum robustness of the network. We can give an equivalent
to Theorem 5 and Corollary 1. In formulating the following
theorem, the price we have to pay for this exceptional robust-
ness becomes apparent.

Theorem 12:Let a delay-free communication netwaglkand
a solvable multicast network problem be given with one source
and N receivers. Moreover, leF C F be a set of failure
patterns from which we want to recover. LBtbe the rate at
which the source generates information. There exists a solu-
tion to the network coding problem in a finite fieleh- with
m < Nog,(|FINR + 1)].

Proof: Let F' be the product of the determinants of the
transfer matrices for the individual connections andéldie
the maximal degree of’ with respect to any variablg. Fol-
lowing the proof of Corollary 1, we know thatis bounded by
R. Altogether, we have to consider the product\§fF’| deter-
minants. The theorem follows. [ | (b)

The question arises if statements like Theorem 11 can be @g: 6. (a) Communication network with two source nodes. v.) and two
rived for a general network problem. The following exampleink nodeguy, u2). (b) Corresponding labeled line graph.
shows that simple network coding problems exist that do not

allow a static solution for_different failure patternsﬁq . Next, we consider the case that lirk fails. According to
_Example 4: \We Cons_lder the networky deplcted_ N |emma 2, we find the corresponding transfer mati, by

Elg. 6. _Let the capacity of all edges be one _b|t P8Btting all variablest; € B., = {&, &1} be zero. Hence,

time unit and let the set of desired connections Bfe idealldeal((G.,,C)) is generated by(&; & E1o, (€5 €1 +

given asC = {(vy,u1, X(v1)), (v2,uz, X(v2))} With oo e e ereoe 1 66 €0 £10)60 €3 Eabra — 1}, Similarly,

| X(v1)] = |X(vp)] = 1. L . _ we consider the case that link fails in which case we find
The example is small enough that it is possible to verify djf, B.., = {£.61,&) andldeal((G.,,C)) is generated by

rectly that: 1) the network coding problem is solvable for an "

- . . . . . . , , + —1}.
single failure involving a single link; and 2) there does not exis fTA\&n%géiss?r? ggndfﬂlﬁ 5?0€10t)é§s ilxlistefr:fg gf)ffl;) cor}nmon
a static solution for any (linear or nonlinear) coding strategy. solution to the network problems obtained if eitharor e

We show how this observation is reflected in the alggg s that the smallest ideal containingldeal((G., , C)) and
braic setup of our approach. Let the input vectoand the Ideal((G.,,C)) is a proper ideal of[¢), £”,¢] or, in other

output vectorz be given asz = (X(uv,1), X(v,1)) and 546 “the intersection of the corresponding varieties is not
z = (Z(u1,1),Z(us,1)). The transfer matrix}/ is found to empty.
equal The ideal is generated byt & &, £ &1 &3 € 12 & & —
M= & & 0 0 00 1,£763610,80 €6 &26108s &1 — 1, {6 &2 & &2} and it can be
N0 0 & & 000 seen that the condition that either &f, &7, or &1 has to be
1000 0 & & 0 equal to zero leads to a situation in which either the equation
01 0 0 & && 0 0 €0 €6 €2 61085611 — 1 = 00r &, &7 §3 €4 €12 5 §o — 1 cannot be
00 1 0 & && 0 0 satisfied. Hencel € .J and.J = F»[{] and there does not exist
1o o o1 0 o0 0 ¢ a static solution which allows for failure of the lirdg ores. m
0000 1 & ¢o O
0000 O0 1 0 &2 VI. NETWORKSWITH DELAY
= <£5£9 +&ebalio (6581 + E6€284) C1o ) So far, we have dealt with delay-free (and hence, by assump-
§783810 &sé11 + &7838adin tion, cycle-free) networks. The extension to networks with de-

wherets, &, €7, £ account for the way the elementsioéire fed  lays is relatively straightforward (while technical) for the multi-
into the network, whiletg, &10,&11, 12 @account for the linear cast scenario. The general scenario requires considerably more
mixing being performed at the sink nodes. technical tools. The main problem in the treatment of the gen-

The ideal of the network coding probledleal((G,C)) eral setup is that the system matrix is a matrix over the polyno-
is generated by the polynomialg¢zésé&io, (§5& +  mial ringFo(D)[¢] whose coefficients are rational functions in
E6€o€4)E12,&0(E5 €0 + Ecbab10)(Esrr + E1E36,&12) — 1} adelay variableD. Hence, the natural field of consideration is
and we can easily find a point in the corresponding varietihe algebraic closure of the field of rational functiongin
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Given an acyclic network with delay, we can either operate The process of encoding information at the network nodes
the network in a continuous mode where information is comnd feeding it into outgoing edges can again be captured in the
tinuously injected into the network or we can operate the netdjacency matrixt’ of the corresponding directed line graph.
work in a burst-oriented mode. In the latter mode, each vert#e distinguish the case of acyclic networks with delay from the
transmits information on an outgoing node only if an input hasase of a network that contains cycles.
been observed on all incoming links. This approach, taken byLemma 3: Let F’ be the adjacency matrix of the labeled line
Li et al.[9], leads to a situation where a network with delay cagraph of a cycle-free network. The matrix] — DF has a
be thought of as instantaneous and the results of Section IVpAlynomial inverse in the ring»[D, ..., B, ¢, .. .].
apply. The time fraction during which a particular link is idle Proof: Using an ancestral ordermg of the edges in the net-
can be controlled by choosing the frame length large enoughwork, we see thal — DF' can be written as an upper trian-

Here, we treat the case of continuous operation of a netwaglar matrix with entries from the ring.[D, ..., 0., .,,.-.].
with delay. The problem arises that the same injected informBhe claim follows by using a back- substitution algorithm to give
tion can take different routes causing different delays througim explicit form of the inversél — DF)~1. [ |

the network. This delay necessitates memory at the sink noded.emma 4: Let F' be the adjacency matrix of labeled line
We now consider input random processEsév, i), output graph of a networky. The matrix] — DF has a inverse in the
random processesZ(u,j), and random processe¥ (e) field of rational functiond»(D, ..., Beiessee)-
transmitted on a linke as power series in a delay parameter  Proof: The determinant of — DF is nonzero, which can
D, ie., X(v,5)(D) = Y20 Xe(v,5)D" Z(v,5)(D) = be seen from lettingd) be equal to zero. Hence, the matrix is
oo Ze(v, j)D, andY (e)(D) = S°52, Ye(e) D", invertible over its field of definition which can be taken to be
Also, as before, given a particular ordering=2(D,..., s Besieysene)- [
of sources and sinks we use the the notationAs mthe case of delay-free networks, we consider the system
z(D) = (X(v,1)(D), X (v,2)(D),...,X(v,u(v))(D)) and matrix M. The entries of\/ are defined as the rational functions
z2(D) = (Z(v',1)(D), Z(v',2)(D),..., Z(v',v(v'))(D)) to M, ;(D) = z;(D)/z,(D), wherez;(D) is the response of the
denote the vectors of random processes that are input aydtem to an excnatlag( ). The system matrix is again com-
output of the system. posed of the multiplication of three matricd$¢D), B(D), and
In this paper, we restrict ourselves to interior network nodesmatrix(I — DF)~! defined as in Section I1I-A. However, now
that operate in a memoryless fashion, which means that anymmatricesA(D) andB(D) in general also contain rational func-
ternal node of the network can take linear combinations of ttiens in D.
symbols observed simultaneously on its incoming edges. How-n particular, the entries of a x |E| matrix A(D) are now
ever, this turns out to be too restrictive for the general linear netefined as

work problem. Still, memoryless operation of the nodes is suffi- L { ae; (D) ;= X(tail(e;), 1)
i,

cient to treat a robust multicast scenario. Nevertheless, even for .
0, otherwise.

this case, we will see that we have to allow for memory at the
sink (or source) nodes. Formally, we have the following defini- similarly, the entries of & x | 2| matrix B(D) are defined as
tion.

Definition 2 (Networks With Delay)let G = (V,E) be B . — €e;1(D)  z; = Z(head(e;),1)
a communication network with delay. We say thatis a - 0, otherwise.
F.~-linear network if for all edges iry the random process

Y(e) = Zfioyt(@)l)t on alinke = (v, u) satisfies We will call matricesconstant polynomial andrational, de-

pending on their domain of definition. Also, we call a rational
matrix A realizableif all entries in A are realizable rational
Yig (e Z are X (v, 1) + Z Ber Yi(€) functions, i.e_., any entry id _is defined when evaluatediat=0.
’ The following theorem gives the equivalent of Theorem 5 for

the case of networks with delay.
where the coefficients; . andj.. . are elements df. ] Theorem 13:Let a communication networ& with delay be

The outputZ (v, 1) at any node» can be formed from the ob- given with rational matricesl(D), B(D). Let F' be the adja-
served random processedh any suitable fashion. However,cency matrix of the corresponding labeled line gra@phThe
it turns out that it is sufficient to consider linear operation at thgansfer matrix of the network is given as
output, i.e., we have

e’:head(e’)=tail(e)

M = A(D)(I - DF)"'B(D)"

t

Ziy1(v,9) = Z €1 0 Ze(v,7) wherel is the|E| x |E|_identity matrb_(. _
t=t—m(v) Proof: The proof is essentially identical to the proof of
t Theorem 3 and is, therefore, omitted.
+ Z Z g’ﬁ',,j,t_l,yf(e’) The base theorem underlying the development in Section IV
(=t—m(v) ’:head(e’)=v is Theorem 2. The following reformulation applies to networks
with cycles.

where the coefficients;, , , and<(, ; , are elements df and Theorem 14:Let a communication networ be given. The
m(v) accounts for the memory required at sink nede following three statements are equivalent.
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1) A point-to-point connection = (v, v, X (v,v')) is pos- by choosing the assignment ¢fover F' rather thanF'(D). It
sible. should be noted that while the operations performed at the inte-
2) The Min-Cut Max-Flow bound is satisfied for ard®c). rior nodes of the network are time-invariant, the individual sink
3) The determinant of thB(c) x R(c) transfer matrix\/ is nodes have to implement rational functions (involving memory)
nonzero over the field in order to output the (possibly delayed) inptitv). [ |
Fo(D N 3. o o ) The same arguments that lead to the derivation of robust net-
P Blher ey Pelier e a Bglo e s Beyglo e e/t works and Theorem 11 can be extended to the case of networks

Proof: Again, most of the theorem is a direct consequendéth delays allowing the sink nodes to implement rational func-
of the Min-Cut Max-Flow Theorem, which also is true in thdions in D. In particular, following Corollary 4, such a robust
case of cyclic networks. Statements 1) and 2) are equivalentgjution can be made time-invariant.
this theorem. The Ford—Fulkerson algorithm yields a solution to By now, it should be clear that all the particular network prob-
the network problem that satisfies the requirements of a lind&ms treated in Section IV-C have an equivalent formulation for
solution. Hence, we can associate a system transfer matrix wigfworks with cycles. For brevity, we will not reformulate these
this solution which, consequently, has to have a nonzero detéeorems.
minant.

Conversely, if the determinant 8f is nonzero, we can invert
matrix M by choosing parametets ; ande; ;, accordingly.
From Lemma 1, we know that we can choose the parameters siVe have presented an algebraic framework for investigating
as to make this determinant nonzero. Hence, 3) implies 1) agRpacity issues in networks using linear codes. The introduced
the equivalence is shown. m technique makes a connection between certain systems of poly-
We are now in a position to state the main results concerningmial equations and the solutions to network problems. The
networks with cycles in a multicast and robust multicast setugse of algebra in this context is a significant and enabling tool,

VII. CONCLUSION

We start with a formulation of the multicast scenario. since it is possible to capitalize on powerful theorems in this
Theorem 15:Let a communication network; and a well-established field of mathematics.
set of connection€ = {(v,u1,X(v)), (v,u2, X(v)),..., We see many roads opening up for further research. The in-

(v,un,X(v))} be given. The network problentG,C) is vestigation of network behavior under randomly chosen codes
solvable if and only if the Min-Cut Max-Flow bound is satisfieds an intriguing question in the context of self-organizing net-
for all connections irC. works. Other avenues are a structured investigation of network
Proof: After changing the field of constants frof, to management requirements for robust networks. In particular, re-
F2(D), the field of rational functions iD, the proof is essen- lating a change in a network to the change in receiver function
tially the same as the proof of Theorem 4. The determinants@in give insight into the minimum number of bits required to
the IV relevant transfer matrices can be considered as the ratigegpond to failure scenarios.
polynomials from the rindgr»(D)[¢]. By Lemma 1, we can find ~ Other issues involve the development of protocols that capi-
an assignment af such that allV determinants are nonzero intalize on the insights from network coding. More theoretical is-
F(D) and, hence, that alV submatrices are invertible. Again,sues address questions about the sufficiency of network coding
we can choose a realizable matfX D), as a matrix with ele- as well as a general separability of network coding and coding
ments fromF (D) such thatV/ is the N-fold repetition of D7 for ergodic link failures.
where/ is a large enough integer afids the|X (v)| x | X (v)]

unit matrix. [ |
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