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An Algebraic Approach to Network Coding
Ralf Koetter, Member, IEEE,and Muriel Médard, Senior Member, IEEE

Abstract—We take a new look at the issue of network capacity. It
is shown that network coding is an essential ingredient in achieving
the capacity of a network. Building on recent work by Li et al., who
examined the network capacity of multicast networks, we extend
the network coding framework to arbitrary networks and robust
networking. For networks which are restricted to using linear net-
work codes, we find necessary and sufficient conditions for the fea-
sibility of any given set of connections over a given network. We
also consider the problem of network recovery for nonergodic link
failures. For the multicast setup we prove that there exist coding
strategies that provide maximally robust networks and that do not
require adaptation of the network interior to the failure pattern in
question. The results are derived for both delay-free networks and
networks with delays.

Index Terms—Algebraic coding, network information theory,
network robustness.

I. INTRODUCTION

T HE ISSUE of network capacity has generally been consid-
ered in the context of networks of links exhibiting ergodic

error processes. Channel coding theorems and capacity regions
can be found for certain networks of this type, such as broadcast
channels [1]–[3], multiple access channels [4], [5], and relay
channels [6]–[8]. Recently, some renewed attention has been
paid to the capacity of error-free networks. In particular, coding
over error-free networks for the purpose of transmitting mul-
ticast connections has been considered [9]–[11]. For a further,
recent discussion of network coding, refer to [12, ch. 11, 15].

The work in [9] and [10] examined the network capacity of
multicast networks and related capacity to cutsets. Capacity is
achieved by coding over a network. We present a new surpris-
ingly simple and effective framework for studying networks and
their capacity. The framework is essentially algebraic and makes
a straight connection between a given network information flow
problem and an algebraic variety over the closure of a finite
field. While the results of Liet al. [9] and Ahlswedeet al. [10]
contain algebraic elements, (i.e., linear coding [9] and a remark
pertaining to convolutional codes [10]) the presented connection
to concepts from algebraic geometry opens up the opportunity
to employ very powerful theorems in well developed mathemat-
ical disciplines. For networks which are restricted to using linear
codes (later we make precise the meaning of linear codes, since
these codes are not bitwise linear), we find necessary and suffi-
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Fig. 1. Networks with multicast froms to y andz.

cient conditions for any given set of connections to be achiev-
able over a given network. Using our framework, we show that
the case of a multicast connection over a network exhibits a very
special structure, which makes its feasibility verifiable in poly-
nomial time. Moreover, similar to results in [9], we show that
linear codes over a network are sufficient to implement any fea-
sible multicast connection.

For networks where connections are not multicast, we show
that giving the necessary and sufficient conditions for the con-
nections to be feasible is equivalent to the problem of finding a
point in an algebraic variety which, in general, is an NP-com-
plete problem. Moreover, while the cutset conditions are neces-
sary and sufficient to establish the feasibility of a certain set of
connections for multicast connections, the cutset conditions are
only necessary but provably not sufficient for the case of general
connections, i.e., of some arbitrary collection of point-to-point
connections.

The usefulness of coding over error-free networks can be
easily viewed from an example. Consider Fig. 1 (from [9] and
[10]). Each link can transmit a single bit error-free (here,we do
not consider delays). On the left-hand side network, the source
may easily transmit two bits, and , to receivers and ,
by using switching at and broadcasting at and . On the
right-hand side network, a code is required, wheremust code
over the arc . The capacity of such networks is shown to
be the maximum flow from the source to each receiver in the net-
work. This approach may be generalized from directed acyclic
graphs to general directed graphs as long as we consider delays
along the links.

Networks that do not experience ergodic error processes
may be reasonable models for networks that in reality are built
from links exhibiting ergodic failure processes. Appropriate
coding over the links in the network may render those links
in effect error-free and network coding can then be used to
achieve capacity or recovery over an error-free network, with
possible delays due to coding. We do not explicitly consider in
this paper the relation between link coding for ergodic failures
and network coding. All links are assumed to be error free
when they are operational. Links, however, are allowed to fail
altogether.
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Indeed, coding is not only applicable to networks in order to
achieve capacity, but can also be used to recover from network
failures. For an early work pointing into this direction, refer to
Ayanoglu et al. [14], where coding strategies for simple net-
works are suggested. Such failures are different from link er-
rors, described by ergodic processes, which would be typically
dealt with by using channel coding. The failures we consider
entail the permanent removal of an edge, such as would occur
in a network if there were a long-term failure due to a link cut or
other disconnection. We show that network coding can provide
maximal robustness of a network against nonergodic link fail-
ures. Moreover, we prove that there exist coding strategies that
do not require an adaptation to a specific link failure pattern.

II. PROBLEM FORMULATION

A communication network is a collection of directed links
connecting transmitters, switches, and receivers. It may be rep-
resented by a directed graph with a vertex set and
an edge set . We will allow multiple edges between two ver-
tices and hence, is a subset of , where the last
integer enumerates edges between two vertices. Edges (links)
are denoted by round brackets and assumed to be
directed. If no confusion can arise, we also denote edges simply
as . The and of an edge is de-
noted by and .

We define as the set of edges that end at a vertex
and as the set of edges originating at. Formally, we have

Thein-degree of is defined as , while
theout-degree is defined as .

A network is calledcyclic if it contains directed cycles, i.e., if
there exists a sequence of edges
in . A network is calledacyclic if it does not contain directed
cycles. To each link we associate a nonnegative number

, called the capacity of.
Let be

a collection of discrete random processes that are
observable at node . We want to allow communication
between selected nodes in the network, i.e., we want to
replicate, by means of the network, a subset of the random
processes in at some different node . We define a

as a triple ,
where denotes the power set of . The rate

of a connection is defined as
, where is the

entropy rate of a random process.
Given a connection , we call a

and a of , and write and .
For notational convenience, we will always assume that

.
A node can send information through a link

originating at at a rate of at most bits per time unit.
The random process transmitted through linkis denoted by

. In addition to the random processes in , node can
observe random processes for all in . In general,

the random process transmitted through link
will be a function of both and if is in

.
If is the sink of any connection, the collection of

random processes ,
denotes the output at . A connection

is established successfully if a (pos-
sibly delayed) copy of is a subset of .

Let a network be given together with a setof desired con-
nections. We will make a number of simplifying assumptions.

1) The capacity of any link in is a constant, e.g., bits per
time unit.This is an assumption that can be satisfied to an
arbitrary degree of accuracy. If the capacity exceeds
bits per time unit, we model this as parallel edges with unit
capacity. Fractional capacities can be well approximated
by choosing the time unit large enough.

2) Each link in the communication network has the same
delay. We will allow for the case of zero delay, in which
case we call the networkdelay-free. We will always
assume that delay-free networks are acyclic in order to
avoid stability problems.

3) Random processes , are in-
dependent and have a constant and integral entropy rate
of, e.g., bits per unit time. The unit time is chosen
to equal the time unit in the definition of link capacity.
This implies that the rate of any connection

is an integer equal to . This
assumption can be satisfied with arbitrary accuracy by
letting the time basis be large enough and by modeling
a source of larger entropy rate as a number of parallel
sources.

4) The random processes are independent for dif-
ferent . This assumption reflects the nature of a com-
munication network. In particular, information that is in-
jected into the network at different locations is assumed
independent.

In addition to the above constraints, we assume that commu-
nication in the network is performed by transmission of vectors
(symbols) of bits. The length of the vectors is equal in all trans-
missions and we assume that all links are synchronized with
respect to the symbol timing.

Any binary vector of length can be interpreted as an
element in , the finite field with elements. The random
processes , , and can, hence, be modeled
as discrete processes ,

, and ,
that consist of a sequence of symbols from .

We have the following definition of a delay-free (and hence,
by assumption, acyclic) -linear communication network
[9].

Definition 1: Let be a delay-free communication
network. We say that is a -linear network, if for all links
the random process on a link satisfies

where the coefficients and are elements of .
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Definition 1 is concerned with the formation of random pro-
cesses that are transmitted on the links of the network. It is pos-
sible to consider time-varying coefficients and and we
call the networktime-invariantor time-varying, depending on
this choice.

The output at any node is formed from the random
processes for . It will be sufficient for the pur-
pose of this paper to restrict ourselves to the case that
are also linear combinations of the , i.e.,

(1)

where the coefficients are elements of . Indeed, we
will prove in Section III-A that, for linear networks, it suffices
to consider the formation of the by linear functions of

for . The concepts of Definition 1 are illustrated
in the following example network.

We emphasize that we can freely chooseand the field
containing the constants , , and . In particular, we
frequently choose to consider thealgebraic closure of ,
which is defined as the union of all possible algebraic extensions
of . Once we find suitable coefficients in, it is clear that
these coefficients also lie in a finite extension of.

For a given network and a given set of connections, we
formally define a network coding problem as a pair . The
problem is to give succinct algebraic conditions under which
a set of desired connections is feasible. This is equivalent to
finding elements , , and in a suitably chosen field

such that all desired connections can be established suc-
cessfully by the network. Such a set of numbers, , and

will be called asolution to the network coding problem
. If a solution exists, the network coding problem will be

calledsolvable. The solution is time-invariant (time-varying) if
the , and are independent (dependent) of the time.

We also consider the case of networks that suffer from link
failure. Link failures are not assumed to be ergodic processes
and we assume that a link either is working perfectly or is ef-
fectively removed from the network. A link failure pattern can
be identified with binary vectors of length such that each
position in is associated with one edge in. If a link fails, we
assume that the corresponding position inequals one, other-
wise the entry in corresponding to the link equals zero.

We say that a network issolvable under link failure pattern
if it is solvable once the links corresponding to the support of

have been removed. While it is straightforward to investigate the
solvability for a given failure pattern, finding common solutions
for classes of failure patterns is a much more interesting task. We
say that a network solution isstaticunder a set of link failure
pattern, if there exists solutions for the network under any link
failure pattern with the same elements . Static
solutions are particularly desirable because:

1) no new solution has to be found and distributed in the
network if a failure pattern occurs;

2) the individual nodes in the interior network can be obliv-
ious to the failure pattern, i.e., the basic operation per-
formed at a node in the network is independent of the par-
ticular error pattern.

The fundamental questions that we strive to answer in this
paper are the following.

1) Under what conditions is a given linear network coding
problem solvable?

2) How can we efficiently find a solution to a given linear
network coding problem?

3) When does a static solution exist for a network that is
subject to link failures?

The main tools we will use for answering the above ques-
tions involve concepts from algebraic geometry. In particular,
we will relate the network coding problem to the problem of
finding points on algebraic varieties, which is one of the central
questions of algebraic geometry.

In Section III, we introduce part of the algebraic framework.
The goal of the section is to make the reader familiar with some
of the employed concepts. The base theorem is an algebraic re-
formulation of the Min-Cut Max-Flow Theorem. We point out
the algebraic interpretation of this theorem in the context of the
Ford–Fulkerson algorithm.

In Section IV-A, we apply the algebraic framework to acyclic
networks. We rapidly recover and extend the work of Liet al.
[9] and Ahlswedeet al. [10]. In particular, we are able to an-
swer some of the problems left open by the authors [9]. In Sec-
tion IV-B, we address the general network coding problem for
cycle-free networks and we derive necessary and sufficient con-
ditions to guarantee the solvability of a network coding problem.

The case of robust networks that are subject to link failure is
treated in Section V. The main surprising result is that robust
multicast can be achieved with static solutions to the network
coding problem. Section VI extends the results to networks with
delay and networks with cycles.

III. A LGEBRAIC FORMULATION

In this section, we will develop some of the algebraic con-
cepts used throughout this paper. For the reader’s convenience,
we will follow a simple example of a point-to-point connection
in the communication network given in Fig. 2(a).

Let be a communication network. A between
a node and is a partition of the vertex set of into two
classes and of vertices such that contains
and contains . The value of the cut is defined as
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(a)

(b)

Fig. 2. (a) Point-to-point connection in a simple network. (b) The same
network with nodes representing the random processes to be transmitted in the
network.

The famous Min-Cut Max-Flow Theorem can be formulated
as follows.

Theorem 1 (Min-Cut Max-Flow):Let a network with a single
source and a single sink be given, i.e., the only desired connec-
tion is . The network problem is solvable if
and only if the rate of the connection is less than or equal
to the minimum value of all cuts betweenand .

Proof: See [16] and [17].

The Ford–Fulkerson labeling algorithm [16] gives a way for
finding a solution for point-to-point connections provided a net-
work problem is solvable. The algorithm is graph theoretic by
design and finds, under the assumptions made in Section II, a
solution such that all parameters and in Definition 1
are either zero or one.

While the Ford–Fulkerson labeling algorithm provides an
elegant solution for point-to-point connections, the technique is
not powerful enough to handle a more involved communications
scenario. In the remainder of this section, we develop some
theory and notation necessary for more complex setups. We first
consider a point-to-point setup. Let nodebe the only source
in the network. We let
denote the vector of input processes observed at. Sim-
ilarly, let be the only sink node in a network. We let

be the vector of
output processes.

The most important consequence of considering an-
linear network is that we can give atransfer matrixdescribing
the relationship between an input vectorand an output vector
. Let be the system transfer matrix of a network with input
and output , i.e., . For a fixed set of coefficients

, , and , is a matrix whose coefficients are
elements in the field In our case, we go a step further and
consider the coefficients as indeterminate variables. Hence, we
consider the elements of matrix as polynomials over the
ring of polynomials in
the variables , , and .

Example 1: We consider the network of Fig. 2. The fol-
lowing set of equations governs the parameters , and

and the random processes in the network.

It is straightforward to compute the transfer matrix describing
the relationship between and . In particular, let matrices
and be defined as

The system matrix is found to equal

The determinant of matrix equals

. We can choose parameters in an
extension field so that the determinant of is nonzero
over . Hence, we can choose as the identity matrix and

so that the overall matrix is also an identity matrix. One
such solution (found by the Ford–Fulkerson algorithm) would
be to let while all other
parameters of type are chosen to equal zero. Clearly, a
point-to-point communication between and is possible
at a rate of three bits per unit time. We note that, over the
algebraic closure there exists an infinite number of solutions
to the posed networking problem, namely, all assignments to
parameters which render a nonzero determinant of the
transfer matrix .

Inspecting Example 1, we see that the crucial prop-
erty of the network is that the equation

admitted a choice
of variables so that the polynomial didnot evaluate to zero.
The following simple lemma will be the foundation of many
existence proofs given in this paper.

Lemma 1: Let be the ring of polyno-
mials over an infinite field in variables .
For any nonzero element there exists
an infinite set of -tuples such that

.
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Proof: The proof follows by induction over the number of
variables and the fact that is an infinite field.

The following theorem makes the connection between the
network transfer matrix (an algebraic quantity), and the
Min-Cut Max-Flow Theorem (a graph-theoretic tool).

Theorem 2: Let a linear network be given with source node,
sink node , and a desired connection of
rate . The following three statements are equivalent.

1) A point-to-point connection is pos-
sible.

2) The Min-Cut Max-Flow bound (Theorem 1) is satisfied
between and for a rate .

3) The determinant of the
transfer matrix is nonzero over the ring

.

Proof: Most of the theorem is a direct consequence of
the Min-Cut Max-Flow Theorem. In particular, 1) and 2) are
equivalent by Theorem 3. In fact, the theorem only treats
the single-source single-sink case for a network with integer
flows (by assumption). The Ford–Fulkerson algorithm thus
yields edge-disjoint paths between source and sink
nodes. We show the equivalence of 1) and 3). This in turn
will show the equivalence of 2) and 3). The Ford–Fulkerson
algorithm implies that a solution to the linear network coding
problem exists. Choosing this solution for the parameters
of the linear network coding problem yields a solution such
that is the identity matrix and, hence, the determinant of

over does not vanish
identically. Conversely, if the determinant of is nonzero
over we can invert matrix

by choosing parameters accordingly. From Lemma 1,
we know that we can choose the parameters as to make this
determinant nonzero. Hence, 3) implies 1) and the equivalence
is shown.

From Example 1, Lemma 1, and Theorem 2, we conclude
that studying the feasibility of connections in a linear network
scenario is equivalent to studying the properties of solutions to
polynomial equations over the field. The third statement of
Theorem 3 allows us to translate graph-theoretical properties
of a network, like max-flow and connectivity, into an algebraic
condition. Powerful algebraic tools can then be employed to ar-
rive at statements concerning the original network. It is worth-
while to point out that it is sufficient in Theorem 3 to consider
expressions over fields of fixed characteristic. In other words,
if a solution to a point-to-point network problem exists, there
also exists a solution restricted to the algebraic closure of the bi-
nary field . Hence, there is no need or advantage to consider
fields of other characteristic. Nevertheless, it is not clear iflinear
coding strategies are sufficient for a general network problem.
In Section III-A, we investigate the structure of general transfer
matrices and the polynomial equations to which they give rise.

A. Transfer Matrices

In a linear communication network of Definition 1, any node
transmits, on an outgoing edge, a linear combination of the

symbols observed on the incoming edges. This relationship be-
tween edges in a linear communication network is the natural

Fig. 3. Directed labeled line graphG corresponding to the network depicted
in Fig. 2(a).

incidence structure for our problem. We say that any edge
feeds intoedge if is equal to .

We define thedirected labeled line graphof as
with vertex set and edge set

. Any edge is labeled
with the corresponding label . Fig. 3 shows the directed la-
beled line graph of the network in Fig. 2.

We define the adjacency matrix of the graph with ele-
ments given as

otherwise.

Lemma 2: Let be the adjacency matrix of the labeled line
graph of a cycle-free network. The matrix – has a polyno-
mial inverse with coefficients in .

Proof: Provided the original network is acyclic, the
graph is acyclic. Hence, we may assume that the vertices in

are ordered according to an ancestral ordering. It follows
that is a strict upper-triangular matrix and, hence,– is
invertible in the field of definition of . The claim that the
– is invertible in the ring of polynomials rather than the

corresponding quotient field of rational functions follows from
a direct back-substitution algorithm.

In order to consider the case that a network contains mul-
tiple sources and sinks, we consider

as the vector of input processes on all vertices in.
If a vertex in a network is not a source node, we set the cor-
responding parameter equal to zero.
is a vector of length .

Let the entries of a matrix be defined as

otherwise.

Similarly, let
be

the vector of output processes. If is not a sink node of any
connection, we let be equal to zero. is a vector of length

. Let the entries of a matrix be defined
as

otherwise.

Example 2: We consider the network depicted in Fig. 4(a).
The corresponding labeled line graph is depicted in Fig. 4(b).
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(a)

(b)

Fig. 4. (a) Network with two source and two sink nodes. (b) Corresponding
labeled line graph. Labels in (b) are omitted for clarity. The edgee does not
feed into any other edge and no edge feeds intoe , which renders an isolated
vertex in the labeled line graph.

We assume that the network is supposed to accommo-
date two connections , and

. We fix an ordering of edges as
, , . For this

ordering, the adjacency matrix of the labeled line graph is
found to equal (2), shown at the bottom of the page.

Also, matrices and are found to equal (3) and (4), re-
spectively, also shown at the bottom of the page.

From the definition of matrices , and , we can easily
find the transfer matrix of the overall network.

Theorem 3: Let a network be given with matrices, , and
. The transfer matrix of the network is given as

where is the identity matrix.
Proof: Matrices and do not substantially contribute to

the overall transfer matrix as they only perform a linear mixing
of the input and output random processes. In order to find the
impulse responseof the link between an input random process

and an output , we have to add all gains along
all paths that the random process can take in order to

contribute to . It is straightforward to verify that the path
between nodes in the network are accounted for in the series

. Matrix is nilpotent and eventually
there will be a such that is the all zero matrix. Hence, we
can write . The theorem
follows.

The transfer matrix is considered as a matrix over the ring
of polynomials . In the
sequel, we will use a vector to denote the set of variables

, and, hence, we consider as
a matrix with elements in . We will use the explicit form of
the vector only if we want to make statements about a specific
solution of a particular network problem .

We conclude this section with a remark that it is sufficient
to form the output processes by a linear function of
the processes . Indeed, provided a network
problem is solvable, let the output process be equal
to where is an arbitrary
function and the edges are in . By Definition 1, the pro-
cesses are a linear function of the input processes .
Hence, provided that the output equals any particular
input, the function describes a vector space homomorphism
from to for all and,
hence, must be a linear function. This proves that the form
of (1) is no restriction on the solvability of a network coding
problem.

IV. DELAY-FREE NETWORKS

A. Multicast of Information

In its simplest form, the multicast problem consists of the dis-
tribution of the information generated at a single source node
to a set of sink nodes such that all sink nodes
get all source bits. In other words, the set of desired connections
is given by , .
Clearly, each connection must satisfy the cut-set
bound between and . Ahlswedeet al. [10] showed that this
condition is sufficient to guarantee the existence of a coding
strategy that ensures the feasibility of the desired connections.
Li et al.[9] showed that linear coding strategies are sufficient to

(2)

(3)

(4)



788 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 5, OCTOBER 2003

achieve this goal. The following theorem recovers their result in
the algebraic framework developed in Section III.

Theorem 4: Let a delay-free network and a
set of desired connections ,

be given. The network
problem is solvable if and only if the Min-Cut
Max-Flow bound is satisfied for all connections in.

Proof: We have a single source in the network and,
hence, the system matrix is a matrix with dimension

Moreover, by assumption and Theorem 2,
each submatrix corresponding to one con-
nection has nonzero determinant over . We consider
the product of the determinants of the
submatrices. This product is a nonzero polynomial .
By Lemma 1, we can find an assignment for such that

and, hence, the determinants of allsubmatrices
are simultaneously nonzero in. Matrix can be chosen as
a block diagonal matrix which contains on the main diagonal
the inverse of the corresponding submatrices
of . By choosing matrix in this way, we can guarantee
that is the -fold repetition of the identity
matrix, which proves the theorem.

The most important ingredient of Theorem 4 is the fact that all
sink nodes get the same information. Moreover, all sink nodes
receive the entire data that is injected into the network. In other
words, provided that the sink nodes know the part of the system
matrix that describes their connection, there are no interfering
signals in the network. Another interesting aspect of this setup
is that the sink nodes do not have to be aware of the topology of
the network. Knowledge about the overall effects of all coding
occurring in the network is sufficient to resolve their connection.

The construction of special codes for the multicast network
coding problem is rather easy. From the proof of Theorem 4, it
is clear that we are given a polynomial in(the product of the

determinants) and we have to find a point that does not lie
on the algebraic variety cut out by this polynomial. A simple
greedy algorithm will actually suffice to find such a solution.
We formulate this algorithm as follows.

Algorithm 1 Input: A polynomial in in-
determinates ; integer:
Iteration:
1) Find the maximal degree of in
and let be the smallest number such that

.
2) Find an element in such that

and let .
3) If then halt, else , goto
2).
Output: .

The determination of the coefficients renders a network
such that all the transfer matrices between the single source and
any sink node are invertible. Choosing the matrixso that all
these matrices are the identity matrix solves the multicast net-
work problem. The following theorem proves the correctness of

Algorithm 1 and provides a simple bound on the degree of the
extension of that we will have to consider.

Theorem 5: Let a delay-free communication networkand
a solvable multicast network problem be given with one source
and receivers. Let be the product of the determinants of
the transfer matrices for the individual connections and letbe
the maximal degree of with respect to any variable. There
exists a solution to the multicast network problem in, where

is the smallest number such that . Algorithm 1 finds
such a solution.

Proof: We only have to show that Algorithm 1 indeed ter-
minates properly. Also, it suffices to show that we can findin

as the rest of the proof follows by induction. We consider
as a polynomial in with coefficients from .
By the definition of , the coefficients of are not divisible by

and, hence, there exists an element such that
on substituting for at least one of the coefficients evaluates
to a nonzero element of . Substituting for and repeating
the procedure yields the desired solution.

A simple general upper bound on the necessary degree of
the extension field for the multicast problem is given in the fol-
lowing corollary.

Corollary 1: Let a delay-free communication networkand
a solvable multicast network problem be given with one source
and receivers. Let be the rate at which the source gener-
ates information. There exists a solution to the network coding
problem in a finite field with

Proof: Each entry in the matrix has degree at
most one in any variable. Hence, the degree of each variable in
the determinant of a particular transfer matrix is at most. It
follows that the relevant polynomial has degree at most in
any variable.

B. General Network Coding Problem

The situation is much changed if we consider the general net-
work coding problem, i.e., we are given a networkand an ar-
bitrary set of connections. This problem is considerably more
difficult than the multicast problem. Some progress on charac-
terizing the achievable set of connections is found in [13] for the
case of arbitrary nonlinear coding strategies. The set of achiev-
able connections is there bounded within Yeung’s framework
of information inequalities [12]. Here, we focus on linear net-
work coding, which allows us to make concise statements for a
number of network coding problems. In order to accommodate
the desired connections, we have to ensure that: 1) the Min-Cut
Max-Flow bound is satisfied for every single connection; and
2) there is no disturbing interference from other connections.
The following example outlines the basic requirements for the
general case.

Example 3: Let the network be given as depicted in
Fig. 5(a). The corresponding labeled line graph
is given in Fig. 5(b). We assume that we want to
accommodate two connections in the network, i.e.,

.
Vectors and are given as

and
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(a)

(b)

Fig. 5. (a) Network with two source and two sink nodes. (b) Corresponding
labeled line graph.

. It is straightforward to check that the system
matrix is given as

We can write as a block matrix

where denotes the transfer matrix between
and , denotes

the transfer matrix between and
, etc. It is easy to see that the network

problem is solvable if and only if the determinants of
and are unequal to zero, while the matrices

and are zero matrices. Note that the determinant of
and is nonzero over if and only if the Min-Cut
Max-Flow bound is satisfied. Indeed, we have

and

It is interesting to note that the Min-Cut Max-Flow condition is
satisfied for each connection individually and also for any cut
between both sources and both sinks. This condition is guaran-
teed by edge . If edge is removed the determinant of the
transfer matrix would vanish identically, which indicates a vio-
lation of the Min-Cut Max-Flow condition applied to cuts sep-
arating and from and . In order to satisfy ,
we have to choose which implies that equals
zero. However, then, we cannot satisfy the requirements that

and simultaneously and, hence, the
network problem is not solvable. It is worthwhile to point
out that it can be verified that this nonsolvability of the network
coding problem is pertinent to any coding strategy and is not a
shortcoming of linear network coding.

As before, let denote the vector of input processes and let
denote a vector of output processes. Following Example 3, we
consider the transfer matrix in a block form as
such that is the submatrix of describing the transfer
matrix between the input processes atand the output pro-
cesses at . The following theorem states a succinct condition
under which a network problem is solvable.

Theorem 6 (Generalized Min-Cut Max-Flow Condi-
tion): Let an acyclic delay-free linear network problem
be given and let be the corresponding transfer
matrix relating the set of input nodes to the set of output nodes.
The network problem is solvable if and only if there exists an
assignment of numbers to variablessuch that:

1) for all pairs of vertices such that
;

2) if contains the connections ,
, , the

submatrix is a nonsingular
matrix.

Proof: Assume the conditions of the theorem are met and
assume the network operates with the corresponding assignment
of numbers to . Condition 1) ensures that there is no disturbing
interference at the sink nodes. Also, any sink nodecan invert
the transfer matrix and, hence, recover
the sent information.

Conversely, assume that either of the conditions is not sat-
isfied. If Condition 1) is not satisfied, then the collection of
random processes observed on the incoming edges ofis a su-
perposition of desired information and interference. Moreover,
the sink node has no possibility of distinguishing interfer-
ence from desired information and, hence, the desired processes
cannot be reliably reproduced at.

Condition 2) is equivalent to a Min-Cut Max-Flow condition,
which clearly has to be satisfied if the network problem is solv-
able.

Theorem 6 gives a succinct condition for the satisfiability of
a network problem. However, checking the two conditions is a
tedious task as we have to find a solution, i.e., an assignment
to number that exhibits the desired properties. We will sketch
an algebraic approach to this problem in the remainder of this
section.

Let denote all the entries in
that have to evaluate to zero in order to satisfy the first
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condition of Theorem 6. We consider the ideal gener-
ated by and denote this ideal by

. From the Hilbert Nullstellensatz [18], we
know that this ideal is a proper ideal of if and only if
we can find an assignment of numbers forsuch that we can
satisfy the first condition of Theorem 6. In order to satisfy the
second condition of the theorem, we let
denote the determinants of the matrices that
have to be nonzero. Next, we introduce a new variableand
consider the function . We call the ideal

the ideal of
the linear network problemdenoted by . The
algebraic variety associated with is denoted

, given by

Theorem 7: Let a linear network problem be given.
The network problem is solvable if and only if is
nonempty and, hence, the ideal is a proper ideal
of , i.e, .

Proof: Assume first that the ideal is a
proper ideal of . The Hilbert Nullstellensatz implies
that the variety of points where all elements
of vanish is nonempty. Hence, there exists an
assignment to and such that Condition 1 of Theorem 6 is
satisfied. Moreover, for all solutions in the variety
we have and as otherwise 1 is in the
generating set of the ideal and, hence, would be
identified with . Hence, Condition 2) of Theorem 6 is
satisfied and any element ofis a solution of the linear network
problem. Conversely, assume that .
It follows that the variety is empty and there is
no solution which satisfies the required conditions. Indeed,
by choosing a proper value for any solution to the network
coding problem would immediately give rise to a nonempty
variety .

Using Theorem 7, we have reduced the problem of deciding
the solvability of a linear network problem to the problem
of deciding if a variety is empty or not. We can decide this
problem using Buchberger’s algorithm [19] to compute a
Gröbner basis for the ideal . It is well known [19]
that the Gröbner basis of an ideal equals 1 if and only if the
corresponding variety is nonempty. The techniques involving
Gröbner bases exceed the scope of the paper, and we refer
the reader to Coxet al. [19] for a thorough treatment of this
material. We only note that it is well known that, in general, the
complexity of Gröbner basis computations is not polynomially
bounded in the number of variables. Nevertheless, mathematics
software routinely solves large Gröbner basis computations.
A careful study of the structure of
as obtained from network problems, as well as optimizing the
computation of a Gröbner basis for the ideal of a linear network
problem, are important future tasks for deriving efficient
algorithms deciding a network problem.

C. Some Special Network Problems

In a few cases, it is relatively straightforward to satisfy the
conditions of Theorems 6 and 7. These approaches can be sub-
sumed under the principle that the conditions of Theorem 6 can
be satisfied by means of linear algebra alone. The multicast sce-
nario of Section IV-A is the simplest example of this situation.

We start with the case of multiple sources and multiple sinks
in a network coding problem where all sources want to commu-
nicate all their information to all sinks. In other words, the set
of desired connections betweensources and sinks is given
as . One
characterization of this setup is, again, that it is interference free
due to the fact that all sinks are supposed to receive all the in-
formation. This interference-free situation was also exploited in
[15], where a similar theorem was stated in the context of gen-
eral, potentially nonlinear, coding strategies.

Theorem 8: Let a linear acyclic delay-free net-
work be given with a set of desired connections

.
The network problem is solvable if and only if the
Min-Cut Max-Flow bound is satisfied for any cut between all
source nodes and any sink node .

Proof: We consider the transfer matrices between the
source nodes and any of the sink nodes individually. Each
matrix, considered as matrix over , is nonsingular by as-
sumption. Hence, we can find an assignment of numbers to the
variables such that the matrix evaluated at these points is non-
singular over . This holds for each relevant by

matrix. The sink nodes can obtain the desired in-
formation by choosing matrix appropriately.

We note that Theorem 8 contains Theorem 4 as a special case
for . The situations are relatively similar and Theorem 8
can be reduced to Theorem 4 by introducing a super node having
access to the entire information feeding information to the nodes

.

A surprising fact in solving a given set of connections in the
setup of Theorem 8 is that there is no encoding necessary at
the source nodes. This is also clear from the observation that
this case is “interference free.” However, allowing for proper
encoding at the source node is crucial for the general networking
problem. In a number of special cases, we can make use of the
encoding opportunity at the sources to guarantee the existence
of a solution to a network coding problem. In the remaining
theorems of this section, we specialize to the case of one source,
which gives us complete control over the encoding matrix.
The specific type of network coding problem that is covered in
each of the subsequent theorems is specified in the set of desired
connections.

We say that the Min-Cut Max-Flow is satisfied between a
source node and a set of sink nodes at rates

if it is satisfied for any cut seperating a set
from at a rate .

Theorem 9: Let a linear acyclic delay-free net-
work be given with a set of desired connections

such that all
collections of random processes are mutually disjoint, i.e.,

for . The network problem is
solvable if and only if the Min-Cut Max-Flow bound is satisfied
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between and the set of sink nodes at rates
.

Proof: We can assume, without loss of generality, that the
mutually disjoint random processes partition the set

. Hence, the overall transfer matrix is a by
square matrix that is nonsingular by assumption. Choosing
matrix at the source node properly, we can guarantee that
the overall transfer matrix realizes the identity matrix and each
sink node receives the data stream intended for it. Conversely,
assume that the Min-Cut Max-Flow is not satisfied for any
subset of the sink nodes. It follows that the corresponding
submatrix of the transfer matrix contains linearly dependent
columns and, hence, the overall transfer matrix cannot be
nonsingular.

We note that the setup of Theorem 9 breaks down if we allow
more than one source node because this imposes a restriction
on the particular form of matrix . However, we can loosen
the restrictions on the disjointness of the information to be dis-
tributed to different nodes. In particular, we can augment the
set of connections of Theorem 9 by a number of connections

that should receive the entire
information injected into the network at node.

Theorem 10:Let a linear acyclic delay-free network be
given with a set of desired connections

such that the collections of random processes ,
are mutually disjoint for , i.e.,

for , . The network problem is
solvable if and only if the Min-Cut Max-Flow bound is satisfied
between and the set of sink nodes at rates

and between and , at a rate .
Proof: The proof is an extension of the proof of The-

orem 9. The transfer matrix of this proof is augmented by a
number of by square matrices corresponding
to the connections . The matrix that we chose
in the proof of Theorem 9 is nonsingular and, hence, the
product of and the square matrices corresponding to the
connections is nonsingular, too. These matrices
can be inverted by a proper choice of matrix.

Theorem 10 has an interesting corollary for the case of two
sink nodes, which might be best described astwo-levelmulti-
cast. The setup assumes two sinks such that one sink should
receive all the information , while a second sink receives
only a subset of .

Corollary 2: Let a linear acyclic delay-free net-
work be given with a set of desired connections

. The network problem
is solvable if and only if the Min-Cut Max-Flow bound is
satisfied between and at a rate and between
and at a rate .

There are a large number of special cases which can be treated
similarly to the results given in this section. The proofs of the
above theorems should be adaptable to these situations with only
minor modifications.

We now turn our attention to the problem of robust networks.

V. ROBUST NETWORKS

An interesting challenge is added to the problem of network
coding if we assume that links in a network may fail. The ques-

tion then becomes, under which failure pattern a successful net-
work usage is still guaranteed. Let be a failing link.
We assume that any downstream sink node, i.e., any node that
can be reached from via a directed path, can be notified of
the failure of link . However, no other nodes are being notified
of the link failure. Given a network and a link failure pattern

, it is straightforward to consider the network that is ob-
tained by deleting the failing links and applying the results of
Sections II–IV to this setup. We are interested in static solutions
where the network is oblivious to the particular failure pattern.
The idea is that each node transmits on outgoing edges a func-
tion of the observed random processes, such that the functions
are independent of the current failure pattern. Here, we use the
convention that the constant 0 is observed on failing links. We
can achieve the effect of a failing linkby setting parameters

and to zero for all and , which effectively
anihilates the influence of any random process transmitted on
edge . Let be the system matrix for a particular linear
network coding problem. Moreover, let the set of parameters

that are affected by a failing link, i.e., that correspond to
and for all and , be denoted as

For any particular link failure pattern, we define as

The following lemma makes the connection between the net-
work problem without and with a link failure pattern.

Lemma 2: Let be the system matrix of a linear network
coding problem with system matrix . Let be a particular
link failure pattern and let be the system matrix for the
network obtained by deleting the failing links. We have the
following relation between and .

Proof: The effect of a failed link can be modeled by the
fact that no information about a random process is either fed
into a failed link or is fed from the failed link into another link.
Setting the coefficients to zero is compliant with the
assumption that a constant 0 is observed on failed nodes.

Let be the set of failure patterns such that the net-
work coding problem is solvable. For the multicast
scenario, i.e., the case ,

, we have the following surprising result.
Theorem 11:Let a linear network and a set of connec-

tions ,
be given. There exists a common static solution to the network
problems for all .

Proof: Let be any particular failure pattern that renders a
solvable network. Let be the determinant of the transfer
matrix corresponding to connection . We consider
the product . By Lemma 1, we can
find an assignment of numbers tosuch that and, hence,
every single determinant evaluates to a nonzero value
simultaneously. It follows that regardless of error pattern in,
the basic multicast requirements are satisfied.
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Theorem 11 makes very robust multicast scenarios pos-
sible—in a sense, the multicast can be organized as robustly
as possible. It is also interesting to note that choosing the
value of the variables at random from a large enough field
yields a solution, which with high probability achieves max-
imum robustness of the network. We can give an equivalent
to Theorem 5 and Corollary 1. In formulating the following
theorem, the price we have to pay for this exceptional robust-
ness becomes apparent.

Theorem 12:Let a delay-free communication networkand
a solvable multicast network problem be given with one source
and receivers. Moreover, let be a set of failure
patterns from which we want to recover. Letbe the rate at
which the source generates information. There exists a solu-
tion to the network coding problem in a finite field with

.
Proof: Let be the product of the determinants of the

transfer matrices for the individual connections and letbe
the maximal degree of with respect to any variable . Fol-
lowing the proof of Corollary 1, we know thatis bounded by

. Altogether, we have to consider the product of deter-
minants. The theorem follows.

The question arises if statements like Theorem 11 can be de-
rived for a general network problem. The following example
shows that simple network coding problems exist that do not
allow a static solution for different failure patterns in.

Example 4: We consider the network depicted in
Fig. 6. Let the capacity of all edges be one bit per
time unit and let the set of desired connections be
given as , with

.
The example is small enough that it is possible to verify di-

rectly that: 1) the network coding problem is solvable for any
single failure involving a single link; and 2) there does not exist
a static solution for any (linear or nonlinear) coding strategy.

We show how this observation is reflected in the alge-
braic setup of our approach. Let the input vectorand the
output vector be given as and

. The transfer matrix is found to
equal

where account for the way the elements ofare fed
into the network, while account for the linear
mixing being performed at the sink nodes.

The ideal of the network coding problem
is generated by the polynomials ,

and we can easily find a point in the corresponding variety.

(a)

(b)

Fig. 6. (a) Communication network with two source nodes(v ; v ) and two
sink nodes(u ; u ). (b) Corresponding labeled line graph.

Next, we consider the case that link fails. According to
Lemma 2, we find the corresponding transfer matrix by
letting all variables be zero. Hence,
the ideal is generated by

. Similarly,
we consider the case that link fails in which case we find
that and is generated by

.
A necessary condition for the existence of a common

solution to the network problems obtained if either or
fails is that the smallest ideal containing and

is a proper ideal of or, in other
words, the intersection of the corresponding varieties is not
empty.

The ideal is generated by
, and it can be

seen that the condition that either of , or has to be
equal to zero leads to a situation in which either the equation

or cannot be
satisfied. Hence, and and there does not exist
a static solution which allows for failure of the link or .

VI. NETWORKSWITH DELAY

So far, we have dealt with delay-free (and hence, by assump-
tion, cycle-free) networks. The extension to networks with de-
lays is relatively straightforward (while technical) for the multi-
cast scenario. The general scenario requires considerably more
technical tools. The main problem in the treatment of the gen-
eral setup is that the system matrix is a matrix over the polyno-
mial ring whose coefficients are rational functions in
a delay variable . Hence, the natural field of consideration is
the algebraic closure of the field of rational functions in.
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Given an acyclic network with delay, we can either operate
the network in a continuous mode where information is con-
tinuously injected into the network or we can operate the net-
work in a burst-oriented mode. In the latter mode, each vertex
transmits information on an outgoing node only if an input has
been observed on all incoming links. This approach, taken by
Li et al. [9], leads to a situation where a network with delay can
be thought of as instantaneous and the results of Section IV-A
apply. The time fraction during which a particular link is idle
can be controlled by choosing the frame length large enough.

Here, we treat the case of continuous operation of a network
with delay. The problem arises that the same injected informa-
tion can take different routes causing different delays through
the network. This delay necessitates memory at the sink nodes.

We now consider input random processes , output
random processes , and random processes
transmitted on a link as power series in a delay parameter

, i.e., ,
and .

Also, as before, given a particular ordering
of sources and sinks we use the the notation

and
, to

denote the vectors of random processes that are input and
output of the system.

In this paper, we restrict ourselves to interior network nodes
that operate in a memoryless fashion, which means that any in-
ternal node of the network can take linear combinations of the
symbols observed simultaneously on its incoming edges. How-
ever, this turns out to be too restrictive for the general linear net-
work problem. Still, memoryless operation of the nodes is suffi-
cient to treat a robust multicast scenario. Nevertheless, even for
this case, we will see that we have to allow for memory at the
sink (or source) nodes. Formally, we have the following defini-
tion.

Definition 2 (Networks With Delay):Let be
a communication network with delay. We say that is a

-linear network if for all edges in the random process
on a link satisfies

where the coefficients and are elements of .
The output at any node can be formed from the ob-

served random processes atin any suitable fashion. However,
it turns out that it is sufficient to consider linear operation at the
output, i.e., we have

where the coefficients and are elements of and
accounts for the memory required at sink node.

The process of encoding information at the network nodes
and feeding it into outgoing edges can again be captured in the
adjacency matrix of the corresponding directed line graph.
We distinguish the case of acyclic networks with delay from the
case of a network that contains cycles.

Lemma 3: Let be the adjacency matrix of the labeled line
graph of a cycle-free network. The matrix has a
polynomial inverse in the ring .

Proof: Using an ancestral ordering of the edges in the net-
work, we see that can be written as an upper trian-
gular matrix with entries from the ring .
The claim follows by using a back-substitution algorithm to give
an explicit form of the inverse .

Lemma 4: Let be the adjacency matrix of labeled line
graph of a network . The matrix has a inverse in the
field of rational functions .

Proof: The determinant of is nonzero, which can
be seen from letting be equal to zero. Hence, the matrix is
invertible over its field of definition which can be taken to be

.
As in the case of delay-free networks, we consider the system

matrix . The entries of are defined as the rational functions
, where is the response of the

system to an excitation . The system matrix is again com-
posed of the multiplication of three matrices , , and
a matrix defined as in Section III-A. However, now
matrices and in general also contain rational func-
tions in .

In particular, the entries of a matrix are now
defined as

otherwise.

Similarly, the entries of a matrix are defined as

otherwise.

We will call matricesconstant, polynomial, andrational, de-
pending on their domain of definition. Also, we call a rational
matrix realizable if all entries in are realizable rational
functions, i.e., any entry in is defined when evaluated at .

The following theorem gives the equivalent of Theorem 5 for
the case of networks with delay.

Theorem 13:Let a communication network with delay be
given with rational matrices , . Let be the adja-
cency matrix of the corresponding labeled line graph. The
transfer matrix of the network is given as

where is the identity matrix.
Proof: The proof is essentially identical to the proof of

Theorem 3 and is, therefore, omitted.
The base theorem underlying the development in Section IV

is Theorem 2. The following reformulation applies to networks
with cycles.

Theorem 14:Let a communication network be given. The
following three statements are equivalent.
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1) A point-to-point connection is pos-
sible.

2) The Min-Cut Max-Flow bound is satisfied for a rate .
3) The determinant of the transfer matrix is

nonzero over the field

Proof: Again, most of the theorem is a direct consequence
of the Min-Cut Max-Flow Theorem, which also is true in the
case of cyclic networks. Statements 1) and 2) are equivalent by
this theorem. The Ford–Fulkerson algorithm yields a solution to
the network problem that satisfies the requirements of a linear
solution. Hence, we can associate a system transfer matrix with
this solution which, consequently, has to have a nonzero deter-
minant.

Conversely, if the determinant of is nonzero, we can invert
matrix by choosing parameters and accordingly.
From Lemma 1, we know that we can choose the parameters so
as to make this determinant nonzero. Hence, 3) implies 1) and
the equivalence is shown.

We are now in a position to state the main results concerning
networks with cycles in a multicast and robust multicast setup.
We start with a formulation of the multicast scenario.

Theorem 15:Let a communication network and a
set of connections , ,

be given. The network problem is
solvable if and only if the Min-Cut Max-Flow bound is satisfied
for all connections in .

Proof: After changing the field of constants from to
, the field of rational functions in , the proof is essen-

tially the same as the proof of Theorem 4. The determinants of
the relevant transfer matrices can be considered as the ratio of
polynomials from the ring . By Lemma 1, we can find
an assignment of such that all determinants are nonzero in

and, hence, that all submatrices are invertible. Again,
we can choose a realizable matrix , as a matrix with ele-
ments from such that is the -fold repetition of
where is a large enough integer andis the
unit matrix.

Corollary 3: Let a linear network be given with a set of
desired connections ,

. The network problem is solvable if and only if
the Min-Cut Max-Flow bound is satisfied for any cut between
all source nodes and any sink node .

Li et al.give a result for the multicast problem that concerns
the achievability of the Min-Cut Max-Flow bound in networks
with cycles. The codes employed in their setup are time-varying
and the question is raised if a time-invariant multicast network
exists that satisfies the simultaneous Min-Cut Max-Flow bound.
An important consequence of the proof of Theorem 15 is the
following corollary, which answers this question affirmatively.

Corollary 4: Let a communications network and a
set of connections , ,

be given. The network problem has a
time-invariant solution if and only if the Min-Cut Max-Flow
bound is satisfied for all connections in.

Proof: The proof follows from the proof of Theorem 15.
In particular, the individual determinants can be made nonzero

by choosing the assignment ofover rather than . It
should be noted that while the operations performed at the inte-
rior nodes of the network are time-invariant, the individual sink
nodes have to implement rational functions (involving memory)
in order to output the (possibly delayed) input .

The same arguments that lead to the derivation of robust net-
works and Theorem 11 can be extended to the case of networks
with delays allowing the sink nodes to implement rational func-
tions in . In particular, following Corollary 4, such a robust
solution can be made time-invariant.

By now, it should be clear that all the particular network prob-
lems treated in Section IV-C have an equivalent formulation for
networks with cycles. For brevity, we will not reformulate these
theorems.

VII. CONCLUSION

We have presented an algebraic framework for investigating
capacity issues in networks using linear codes. The introduced
technique makes a connection between certain systems of poly-
nomial equations and the solutions to network problems. The
use of algebra in this context is a significant and enabling tool,
since it is possible to capitalize on powerful theorems in this
well-established field of mathematics.

We see many roads opening up for further research. The in-
vestigation of network behavior under randomly chosen codes
is an intriguing question in the context of self-organizing net-
works. Other avenues are a structured investigation of network
management requirements for robust networks. In particular, re-
lating a change in a network to the change in receiver function
can give insight into the minimum number of bits required to
respond to failure scenarios.

Other issues involve the development of protocols that capi-
talize on the insights from network coding. More theoretical is-
sues address questions about the sufficiency of network coding
as well as a general separability of network coding and coding
for ergodic link failures.
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