
An Algebraic Approach to Practical and Scalable Overlay
Network Monitoring

Yan Chen David Bindel Hanhee Song Randy H. Katz
Department of Computer Science Division of Computer Science

Northwestern University University of California at Berkeley
ychen@cs.northwestern.edu (dbindel@cs, coolcoon@uclink, randy@cs).berkeley.edu

Overlay network monitoring enables distributed Internet
applications to detect and recover from path outages and pe-
riods of degraded performance within seconds. For an over-
lay network with n end hosts, existing systems either require
O(n2) measurements, and thus lack scalability, or can only
estimate the latency but not congestion or failures. Our
earlier extended abstract [1] briefly proposes an algebraic
approach that selectively monitors k linearly independent
paths that can fully describe all the O(n2) paths. The loss
rates and latency of these k paths can be used to estimate
the loss rates and latency of all other paths. Our scheme
only assumes knowledge of the underlying IP topology, with
links dynamically varying between lossy and normal.

In this paper, we improve, implement and extensively
evaluate such a monitoring system. We further make the fol-
lowing contributions: i) scalability analysis indicating that
for reasonably large n (e.g., 100), the growth of k is bounded
as O(n log n), ii) efficient adaptation algorithms for topology
changes, such as the addition or removal of end hosts and
routing changes, iii) measurement load balancing schemes,
and iv) topology measurement error handling. Both simula-
tion and Internet experiments demonstrate we obtain highly
accurate path loss rate estimation while adapting to topol-
ogy changes within seconds and handling topology errors.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network monitoring

General Terms
Algorithms, Measurement

Keywords
Overlay, Network measurement and monitoring, Numerical
linear algebra, Scalability, Dynamics, Load balancing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’04, Aug. 30–Sept. 3, 2004, Portland, Oregon, USA.
Copyright 2004 ACM 1-58113-862-8/04/0008 ...$5.00.

1. INTRODUCTION
The rigidity of the Internet architecture makes it extremely

difficult to deploy innovative disruptive technologies in the
core. This has led to extensive research into overlay and
peer-to-peer systems, such as overlay routing and location,
application-level multicast, and peer-to-peer file sharing. These
systems flexibly choose their communication paths and tar-
gets, and thus can benefit from estimation of end-to-end
network distances (e.g., latency and loss rate).

Accurate loss rate monitoring systems can detect path
outages and periods of degraded performance within sec-
onds. They facilitate management of distributed systems
such as virtual private networks (VPM) and content distri-
bution networks; and they are useful for building adaptive
overlay applications, such as the streaming media framework
demonstrated in [2].

Thus it is desirable to have a scalable overlay loss rate
monitoring system which is accurate and incrementally de-
ployable. However, existing network distance estimation
systems are insufficient for this end. These existing systems
can be categorized as general metric systems [3] and latency-
only systems [4, 5, 6, 7]. Systems in the former category
can measure any metric, but require O(n2) measurements
where n is the number of end hosts, and thus lack scala-
bility. On the other hand, the latency estimation systems
are scalable, but cannot provide accurate congestion/failure
detection (see Sec. 2).

We formulate the problem as follows: consider an overlay
network of n end hosts; we define a path to be a routing
path between a pair of end hosts, and a link to be an IP
link between routers. A path is a concatenation of links.
There are O(n2) paths among the n end hosts, and we wish
to select a minimal subset of paths to monitor so that the
loss rates and latencies of all other paths can be inferred.

In an earlier extended abstract [1], we sketched the idea
of a tomography-based overlay monitoring system (TOM)
in which we selectively monitor a basis set of k paths. Any
end-to-end path can be written as a unique linear combina-
tion of paths in the basis set. Consequently, by monitoring
loss rates for the paths in the basis set, we infer loss rates
for all end-to-end paths. This can also be extended to other
additive metrics, such as latency. The end-to-end path loss
rates can be computed even when the paths contain uniden-
tifiable links for which loss rates cannot be computed.

In [1], we only briefly introduce the basic formulation and
model. The following questions remain:
• How scalable is the system? In other words, how will k

grow as a function of n? It is our conjecture that for
reasonably large n (say 100), k = O(n log n) [1].

• In an overlay network, end hosts frequently join/leave
the overlay and routing changes occur from time to time.
How can the system adapt to these efficiently?

• How should the system distribute the measurement load
among end hosts to improve scalability?

• How can the system maintain accuracy when there are
topology measurement errors?

• How does TOM perform under various topologies and
loss conditions, and in the real Internet?

To address these issues, in this paper, we make the fol-
lowing contributions.
• We show that k does grow as O(n log n) through linear

regression tests on various synthetic and real topologies.
We also provide some explanation based on the Internet
topology and the AS hierarchy.

• We design incremental algorithms for path addition and
deletion which only cost O(k2) time, instead of the O(n2k2)
time cost to reinitialize the system.

• We propose randomized schemes for measurement load
balancing.

• We design effective schemes to handle topology measure-
ment errors.

• We evaluate TOM through extensive simulations, and
further validate our results through Internet experiments.

In both simulations and PlanetLab experiments, we es-
timate path loss rates with high accuracy using O(n log n)
measurements. For the PlanetLab experiments, the aver-
age absolute error of loss rate estimation is only 0.0027, and
the average error factor is 1.1, even though about 10% of
the paths have incomplete or nonexistent routing informa-
tion. The average setup (monitoring path selection) time is
0.75 second, and the online update of the loss rates for all
2550 paths takes only 0.16 second. In addition, we adapt
to topology changes within seconds without sacrificing ac-
curacy. The measurement load balancing reduces the load
variation and the maximum vs. mean load ratio signifi-
cantly, by up to a factor of 7.3.

The rest of the paper is organized as follows. We survey
related work in Sec. 2, describe our model and basic static
algorithms in Sec. 3, and evaluate scalability in Sec. 4. We
extend the algorithms to adapt to topology changes in Sec. 5,
and to handle overload and topology measurement errors in
Sec. 6. The methodology and results of our simulations are
described in Sec. 7, and those of our Internet experiments
are presented in Sec. 8. Finally, we conclude in Sec. 9.

2. RELATED WORK
There are many existing scalable end-to-end latency esti-

mation schemes, which can be broadly classified into clustering-
based [6, 7] and coordinate-based systems [4, 5]. Clustering-
based systems cluster end hosts based on their network prox-
imity or latency similarity under normal conditions, then
choose the centroid of each cluster as the monitor. But a
monitor and other members of the same cluster often take
different routes to remote hosts. So the monitor cannot
detect congestion for its members. Similarly, the coordi-
nates assigned to each end host in the coordinate-based ap-
proaches cannot embed any congestion/failure information.

Network tomography has been well studied ([8] provides
a good survey). Most tomography systems assume limited
measurements are available (often in a multicast tree-like
structure), and try to infer link characteristics [9, 10] or
shared congestion [11] in the middle of the network. How-
ever, the problem is under-constrained: there exist uniden-

Overlay Network
Operation Center

End hosts

Figure 1: Architecture of a TOM system.

tifiable links [9] with properties that cannot be uniquely de-
termined. In contrast, we are not concerned about the char-
acteristics of individual links, and we do not restrict the
paths we measure.

Shavitt, et al. also use algebraic tools to compute dis-
tances that are not explicitly measured [12]. Given certain
“Tracer” stations deployed and some direct measurements
among the Tracers, they search for path or path segments
whose loss rates can be inferred from these measurements.
Thus their focus is not on Tracer/path selection.

Recently, Ozmutlu, et al. selected a minimal subset of
paths to cover all links for monitoring, assuming link-by-link
latency is available via end-to-end measurement [13]. But
the link-by-link latency obtained from traceroute is often in-
accurate. And their approach is not applicable for loss rate
because it is difficult to estimate link-by-link loss rates from
end-to-end measurement. A similar approach was taken for
selecting paths to measure overlay network [14]. The mini-
mal set cover selected can only gives bounds for metrics like
latency, and there is no guarantee as to how far the bounds
are from the real values.

Furthermore, none of the existing work examines topology
change, topology measurement errors, or measurement load
balancing problems.

3. MODEL AND BASIC ALGORITHMS

3.1 Algebraic Model
Suppose there are n end hosts that belong to a single or

confederated overlay network(s). They cooperate to share
an overlay monitoring service, and are instrumented by a
central authority (e.g., an overlay network operation cen-
ter (ONOC)) to measure the routing topology and path loss
rates as needed 1. For simplicity, we usually assume sym-
metric routing and undirected links in this paper. However,
our techniques work without change for asymmetric routing,
as evidenced in the PlanetLab experiments. Fig. 1 shows a
sample overlay network with four links and four end hosts;
six possible paths connect the end hosts. The end hosts
measure the topology and report to the ONOC, which se-
lects four paths and instruments two of the end hosts to
measure the loss rates of those paths. The end hosts peri-
odically report the measured loss rates to the ONOC. Then
the ONOC infers the loss rates of every link, and conse-
quently the loss rates of the other two paths. Applications
can query the ONOC for the loss rate of any path, or they
can set up triggers to receive alerts when the loss rates of
paths of interest exceed a certain threshold [2].

We now introduce an algebraic model which applies to
any network topology. Suppose an overlay network spans
s IP links. We represent a path by a column vector v ∈
1As part of the future work, we will investigate techniques
to distribute the work of the central authority.

Symbols Meanings
M total number of nodes
N number of end hosts
n number of end hosts on the overlay
r = O(n2) number of end-to-end paths
s # of IP links that the overlay spans on
t number of identifiable links
G ∈ {0, 1}r×s original path matrix

Ḡ ∈ {0, 1}k×s reduced path matrix
k ≤ s rank of G
li loss rate on ith link
pi loss rate on ith measurement path
xi log(1 − li)
bi log(1 − pi)
v vector in {0, 1}s (represents path)
p loss rate along a path
N (G) null space of G

R(GT) row(path) space of G (== range(GT))

Table 1: Table of notations

{0, 1}s, where the jth entry vj is one if link j is part of the
path, and zero otherwise. Suppose link j drops packets with
probability lj ; then the loss rate p of a path represented by
v is given by

1 − p =
s�

j=1

(1 − lj)
vj (1)

Equation (1) assumes that packet loss is independent among
links. Caceres et al. argue that the diversity of traffic and
links makes large and long-lasting spatial link loss depen-
dence unlikely in a real network such as the Internet [15].
Furthermore, the introduction of Random Early Detection
(RED) [16] policies in routers will help break such depen-
dence. In addition to [15], formula (1) has also been proven
useful in many other link/path loss inference works [10, 9,
17, 14]. Our Internet experiments also show that the link
loss dependence has little effect on the accuracy of (1).

We take logarithms on both sides of (1). Then by defining
a column vector x ∈ �s with elements xj = log (1 − lj), and
writing vT for the transpose of the column vector v, we can
rewrite (1) as follows:

log (1 − p) =

s�
j=1

vj log (1 − lj) =

s�
j=1

vjxj = vT x (2)

There are r = O(n2) paths in the overlay network, and
thus there are r linear equations of the form (2). Putting
them together, we form a rectangular matrix G ∈ {0, 1}r×s.
Each row of G represents a path in the network: Gij = 1
when path i contains link j, and Gij = 0 otherwise. Let pi

be the end-to-end loss rate of the ith path, and let b ∈ �
r

be a column vector with elements bi = log (1 − pi). Then
we write the r equations in form (2) as

Gx = b (3)

Normally, the number of paths r is much larger than the
number of links s (see Fig. 2(a)). This suggests that we
could select s paths to monitor, use those measurements to
compute the link loss rate variables x, and infer the loss
rates of the other paths from (3).

However, in general, G is rank deficient: i.e., k = rank(G)
and k < s. If G is rank deficient, we will be unable to deter-

…
=r

s
r

s

=…k s k

s

(a) Gx = b (b) ḠxG = b̄

Figure 2: Matrix size representations.

mine the loss rate of some links from (3). These links are also
called unidentifiable in network tomography literature [9].

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
111

100

011

G
A

D

C

B

1

2

3 (1,-1,0)

x2 (1,1,0)

row(path) space
(measured)

null space
(unmeasured)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

3

2

1

3

2

1

b

b

b

x

x

x

G

b1

b2

b3 x1

x3

Figure 3: Sample overlay network.

Fig. 3 illustrates how rank deficiency can occur. There are
three end hosts (A, B and C) on the overlay, three links (1,
2 and 3) and three paths between the end hosts. We cannot
uniquely solve x1 and x2 because links 1 and 2 always appear
together. We know their sum, but not their difference.

Fig. 3 illustrates the geometry of the linear system, with

each variable xi as a dimension. The vectors {α �1 −1 0
�T }

comprise N (G), the null space of G. No information about
the loss rates for these vectors is given by (3). Meanwhile,
there is an orthogonal row(path) space of G, R(GT), which

for this example is a plane {α �1 1 0
�T

+ β
�
0 0 1

�T }.
Unlike the null space, the loss rate of any vector on the row
space can be uniquely determined by (3).

To separate the identifiable and unidentifiable components
of x, we decompose x into x = xG +xN , where xG ∈ R(GT)
is its projection on the row space and and xN ∈ N (G) is its
projection on the null space (i.e., GxN = 0). The decom-
position of [x1 x2 x3]

T for the sample overlay is shown
below.

xG =
(x1 + x2)

2

�
�1
1
0

�
� + x3

�
�0
0
1

�
� =

�
�b1/2

b1/2
b2

�
� (4)

xN =
(x1 − x2)

2

�
� 1
−1
0

�
� (5)

Thus the vector xG can be uniquely identified, and con-
tains all the information we can know from (3) and the path
measurements. The intuition of our scheme is illustrated
through virtual links in [1].

Because xG lies in the k-dimensional space R(GT), only k
independent equations of the r equations in (3) are needed to
uniquely identify xG. We measure these k paths to compute
xG. Since b = Gx = GxG + GxN = GxG, we can compute
all elements of b from xG, and thus obtain the loss rate of
all other paths. Next, we present more detailed algorithms.

3.2 Basic Static Algorithms
The basic algorithms involve two steps. First, we select a

basis set of k paths to monitor. Such selection only needs to

be done once at setup. Then, based on continuous monitor-
ing of the selected paths, we calculate and update the loss
rates of all other paths.

3.2.1 Measurement Paths Selection
To select k linearly independent paths from G, we use

standard rank-revealing decomposition techniques [18], and
obtain a reduced system:

ḠxG = b̄ (6)

where Ḡ ∈ �
k×s and b̄ ∈ �

k consist of k rows of G and b,
respectively. The equation is illustrated in Fig. 2(b) (com-
pared with Gx = b).

As shown below, our algorithm is a variant of the QR de-
composition with column pivoting [18, p.223]. It incremen-
tally builds a decomposition ḠT = QR, where Q ∈ �

s×k is
a matrix with orthonormal columns and R ∈ �k×k is upper
triangular.

procedure SelectPath(G)
1 for every row(path) v in G do

2 R̂12 = R−T ḠvT = QT vT

3 R̂22 = ‖v‖2 − ‖R̂12‖2

4 if R̂22 �= 0 then
5 Select v as a measurement path

6 Update R =

�
R R̂12

0 R̂22

	
and Ḡ =

�
Ḡ
v

	

end
end

Algorithm 1: Path (row) selection algorithm

In general, the G matrix is very sparse; that is, there are
only a few nonzeros per row. We leverage this property
for speedup. We further use optimized routines from the
LAPACK library [19] to implement Algorithm 1 so that it
inspects several rows at a time. The complexity of Algo-
rithm 1 is O(rk2), and the constant in the bound is modest.
The memory cost is roughly k2/2 single-precision floating
point numbers for storing the R factor. Notice that the path
selection only needs to be executed once for initial setup.

3.2.2 Path Loss Rate Calculations
To compute the path loss rates, we must find a solution to

the underdetermined linear system ḠxG = b̄. The vector b̄
comes from measurements of the paths. Zhang et al. report
that path loss rates remain operationally stable in the time
scale of an hour [20], so these measurements need not be
taken simultaneously.

Given measured values for b̄, we compute a solution xG

using the QR decomposition we constructed during measure-
ment path selection [18, 21]. We choose the unique solution
xG with minimum possible norm by imposing the constraint
xG = ḠT y where y = R−1R−T b̄. Once we have xG, we can
compute b = GxG, and from there infer the loss rates of
the unmeasured paths. The complexity for this step is only
O(k2). Thus we can update loss rate estimates online, as
verified in Sec. 7.4 and 8.2.

4. SCALABILITY ANALYSIS
An overlay monitoring system is scalable only when the

size of the basis set, k, grows relatively slowly as a function
of n. Given that the Internet has moderate hierarchical

structure [22, 23], we proved that the number of end hosts is
no less than half of the total number of nodes in the Internet.
Furthermore, we proved that when all the end hosts are on
the overlay network, k = O(n) [1].

But what about if only a small fraction of the end hosts
are on the overlay? Because G is an r by s matrix, k is
bounded by the number of links s. If the Internet topology
is a strict hierarchy like a tree, s = O(n), thus k = O(n).
But if there is no hierarchy at all (e.g. a clique), k = O(n2)
because all the O(n2) paths are linearly independent. Tang-
munarunkit et al. found that the power-law degree Internet
topology has moderate hierarchy [22]. It is our conjecture
that k = O(n log n).

In this section, we will show through linear regression on
both synthetic and real topologies that k is indeed bounded
by O(n log n) for reasonably large n (e.g, 100). We explain
it based on the power-law degree distribution of the Internet
topology and the AS (Autonomous System) hierarchy.

We experiment with three types of BRITE [24] router-
level topologies - Barabasi-Albert, Waxman and hierarchi-
cal models - as well as with a real router topology with
284,805 nodes [25]. For hierarchical topologies, BRITE first
generates an autonomous system (AS) level topology with a
Barabasi-Albert model or a Waxman model. Then for each
AS, BRITE generates the router-level topologies with an-
other Barabasi-Albert model or Waxman model. So there
are four types of possible topologies. We show one of them
as an example because they all have similar trends (see [2]
for complete results).

We randomly select end hosts which have the least degree
(i.e., leaf nodes) to form an overlay network. We test by lin-
ear regression of k on O(n), O(n log n), O(n1.25), O(n1.5),
and O(n1.75). As shown in Fig. 4, results for each type of
topology are averaged over three runs with different topolo-
gies for synthetic ones and with different random sets of end
hosts for the real one. We find that for Barabasi-Albert,
Waxman and real topologies, O(n) regression has the least
residual errors - actually k even grows slower than O(n).
The hierarchical models have higher k, and most of them
have O(n log n) as the best fit. Conservatively speaking, we
have k = O(n log n).

Note that such trend still holds when the end hosts are
sparsely distributed in the Internet, e.g., when each end host
is in a different access network. One extreme case is the
“star” topology - each end host is connected to the same
center router via its own access network. In such a topology,
there are only n links. Thus k = O(n). Only topologies with
very dense connectivity, like a full clique, have k = O(n2).
Those topologies have little link sharing among the end-to-
end paths.

The key observation is that when n is sufficiently large,
such dense connectivity is very unlikely to exist in the In-
ternet because of the power-law degree distribution. Tang-
munarunkit et al. found that link usage, as measured by
the set of node pairs (source-destination pairs) whose traf-
fic traverses the link, also follows a power-law distribution,
i.e., there is a very small number of links that are on the
shortest paths of the majority of node pairs. So there is sig-
nificant amount of link sharing among the paths, especially
for backbone links, customer links, and peering links.

Such link sharing can easily lead to rank deficiency of the
path matrix for overlay networks. As an example, consider
an overlay within a single AS. The AS with the largest num-
ber of links (exclusive of customer and peering links) in [26]

100 200 300 400 500 600 700 800 900 1000
0

2000

4000

6000

8000

10000

12000

14000

Number of end hosts on the overlay (n)

R
an

k
of

 p
at

h
sp

ac
e

(k
)

original measurement
regression on n
regression on nlogn
regression on n1.25

regression on n1.5

regression on n1.75

Barabasi-Albert model of 20K nodes

100 200 300 400 500 600 700 800 900 1000
0

2000

4000

6000

8000

10000

12000

Number of end hosts on the overlay (n)

R
an

k
of

 p
at

h
sp

ac
e

(k
)

original measurement
regression on n
regression on nlogn
regression on n1.25

regression on n1.5

regression on n1.75

Waxman model of 10K nodes

100 200 300 400 500 600 700 800 900 1000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Number of end hosts on the overlay (n)

R
an

k
of

 p
at

h
sp

ac
e

(k
)

original measurement
regression on n
regression on nlogn
regression on n1.25

regression on n1.5

regression on n1.75

Hierarchical model of 20K nodes
(AS-level: Barabasi-Albert and router level: Waxman)

100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7
x 10

4

Number of end hosts on the overlay (n)

R
an

k
of

 p
at

h
sp

ac
e

(k
)

original measurement
regression on n
regression on nlogn
regression on n1.25

regression on n1.5

regression on n1.75

A real topology of 284,805 routers

Figure 4: Regression of k in various functions of n under different router-level topologies.

has 5,300 links. Even considering the coverage factor (55.6%
as in Table 2 of [26]), there are at most 9,600 links. Since
there are n(n − 1) paths among n nodes, link sharing must
occur before n = 100; in fact, substantial link sharing is
likely to occur for even smaller n.

Now consider an overlay network that spans two ASes
connected by y customer/peering links, with n/2 nodes in
one AS and n/2 nodes in the other. The n2/2 cross-AS
paths can be modelled as linear combination of 2y × n + 2y
virtual links - bi-directional links from each end host to its y
peering link routers, and y bi-directional peering links. Thus
given y is normally much less than n and can be viewed as
a constant, only O(n) paths need to be measured for the
O(n2) cross-AS paths.

Now consider an overlay on multiple ASes. According
to [27], there are only 20 ASes (tier-1 providers) which form
the dense core of the Internet. These ASes are connected
almost as a clique, while the rest of the ASes have far less
dense peering connectivity. So when the size of an overlay
is reasonably big (e.g., n > 100), the number of customer
and peering links that cross-AS paths traverse tends to grow
much slower than O(n2). For example, a joining end host
may only add one customer link to the overlay topology,
and share the peering links that have been used by other
end hosts. Meanwhile, only a few nodes are needed in a
single AS before link sharing occurs in paths within an AS.

We believe this heavy sharing accounts for our empirical
observation that k = O(n) in a real router-level topology,
and k grows at worst like O(n log n) in several generated
topologies. Note that the real 284,805-router topology repre-

sents a fairly complete transit portion of the Internet [25]. In
our analysis, we conservatively assume that there is only one
end host connecting to each edge router to reduce the possi-
ble path sharing, but we still find k = O(n) when n > 100.

5. DYNAMIC ALGORITHMS FOR
TOPOLOGY CHANGES

During normal operation, new links may appear or dis-
appear, routing paths between end hosts may change, and
hosts may enter or exit the overlay network. These changes
may cause rows or columns to be added to or removed from
G, or entries in G may change. In this section, we design
efficient algorithms to incrementally adapt to these changes.

5.1 Path Additions and Deletions
The basic building blocks for topology updates are path

additions and deletions. We have already handled path ad-
ditions in Algorithm 1; adding a path v during an update
is no different than adding a path v during the initial scan
of G. In both cases, we decide whether to add v to Ḡ and
update R.

To delete a path that is not in Ḡ is trivial; we just remove
it from G. But to remove a path from Ḡ is more compli-
cated. We need to update R; this can be done in O(k2)
time by standard algorithms (see e.g. Algorithm 3.4 in [28,
p.338]). In general, we may then need to replace the deleted
path with another measurement path. Finding a replace-
ment path, or deciding that no such path is needed, can
be done by re-scanning the rows of G as in Algorithm 1;
however, this would take time O(rk2).

procedure DeletePath(v, G, Ḡ, R)
1 if deleted path v is measured then
2 j = index of v in Ḡ
3 y = ḠT R−1R−T ej

4 Remove v from G and Ḡ
5 Update R (Algorithm 3.4 in [28, p.338])
6 r = Gy
7 if ∃ i such that ri �= 0 then
8 Add the ith path from G to Ḡ (Algorithm 1,

steps 2-6)
end

end
9 else Remove v from G

Algorithm 2: Path deletion algorithm

We now describe Algorithm 2 to delete a path v more ef-
ficiently. Suppose v corresponds to the ith row in Ḡ and the
jth row in G, we define Ḡ′ ∈ �

(k−1)×s as the measurement
path matrix after deleting the ith row, and G′ ∈ �

(r−1)×s

as the path matrix after removing the jth row. By deleting
v from Ḡ, we reduce the dimension of Ḡ from k to k − 1.
Intuitively, our algorithm works in the following two steps.

1. Find a vector y that only describes the direction re-
moved by deleting the ith row of Ḡ.

2. Test if the path space of G′ is orthogonal to that direc-
tion, i.e., find whether there is any path p ∈ G′ that
has a non-zero component on that direction. If not, no
replacement path is needed. Otherwise, replace v with
any of such path p, and update the QR decomposition.

Next, we describe how each step is implemented. To find
y which is in the path space of Ḡ but not of Ḡ′, we solve
the linear system Ḡy = ei, where ei is the vector of all
zeros except for a one in entry i. This system is similar to
the linear system we solved to find xG, and one solution is
y = ḠT R−1R−T ei.

Once we have computed y, we compute r = G′y, where
G′ is the updated G matrix. Because we chose y to make
Ḡ′y = 0, all the elements of r corresponding to selected
rows are zero. Paths such that rj �= 0 are guaranteed to
be independent of Ḡ′, since if row j of G could be written
as wT Ḡ′ for some w, then rj would be wT Ḡ′y = 0. If all
elements of r are zero, then y is a null vector for all of G′;
in this case, the dimension k′ of the row space of G′ is k−1,
and we do not need to replace the deleted measurement
path. Otherwise, we can find any j such that rj �= 0 and
add the jth path to Ḡ′ to replace the deleted path.

Take the overlay network in Fig. 3 for example, suppose Ḡ

is composed of the paths AB and BC, i.e., Ḡ =

�
1 1 0
1 1 1

	
.

Then we delete path BC, Ḡ′ = [1 1 0]T and G′ =

�
1 1 0
0 0 1

	
.

Applying Algorithm 2, we have y = [0 0 1]T and r =

[0 1]T . Thus the second path in G′, AC, should be added
to Ḡ′. If we visualize such path deletion in reference to the
geometry of the linear system, the path space of G′ remains
as a plane in Fig. 3, but Ḡ′ only has one dimension of the
path space left, so we need to add AC to Ḡ′.

When deleting a path used in Ḡ, the factor R can be up-
dated in O(k2) time. To find a replacement row, we need to
compute a sparse matrix-vector product involving G, which

takes O(n2 × (average path length)) operations. Since most
routing paths are short, the dominant cost will typically be
the update of R. Therefore, the complexity of Algorithm 2
is O(k2).

5.2 End Hosts Join/Leave the Overlay
To add an end host h, we use Algorithm 1 to scan all

the new paths from h, for a cost of O(nk2). However, it is
inefficient to delete an end host h by directly using Algo-
rithm 2 to delete all affected paths. If Algorithm 2 is used
to delete a path that starts/ends at h, often another path
that starts/ends at h is chosen as a replacement – and soon
deleted in turn. To avoid this behavior, we remove all these
paths from G first, then use the updated G in Algorithm 2 to
select replacements as needed during the removal of paths
that start/end at h. Each path in Ḡ can be removed in
O(k2) time; the worst-case total cost of end host deletion is
then O(nk2).

5.3 Routing Changes
In the network, routing changes or link failures can af-

fect multiple paths in G. Previous studies have shown that
end-to-end Internet paths generally tend to be stable for sig-
nificant lengths of time, e.g., for at least a day [29, 30]. So we
can incrementally measure the topology to detect changes.
Each end host measures the paths to all other end hosts
daily, and for each end host, such measurement load can be
evenly distributed throughout the day. In addition to the
periodic route measurement, if any path is found to have
large loss rate changes, we will check its route instantly.

For each link, we keep a list of the paths that traverse
it. If any path is reported as changed for certain link(s), we
will examine all other paths that go through those link(s)
because it is highly likely that those paths can change their
routes as well. We use Algorithms 1 and 2 to incrementally
incorporate each path change.

Unlike O(n2) approaches (e.g., RON), we need some extra
traceroute measurement. However, the key point is that the
end-to-end routing remains much more stable than its loss
rate, thus requires far less frequent measurement. So the
savings on loss rate probing dwarf the traceroute overhead.

6. LOAD BALANCING AND TOPOLOGY
ERROR HANDLING

To further improve the scalability and accuracy, we need
to have good load balancing and handle topology measure-
ment errors, as discussed in this section.

6.1 Measurement Load Balancing
To avoid overloading any single node or its access link, we

evenly distribute the measurements among the end hosts.
We randomly reorder the paths in G before scanning them
for selection in Algorithm 1. Since each path has equal prob-
ability of being selected for monitoring, the measurement
load on each end host is similar. Note any basis set gen-
erated from Algorithm 1 is sufficient to describe all paths
G. Thus the load balancing has no effect on the loss rate
estimation accuracy.

6.2 Handling Topology Measurement Errors
As our goal is to estimate the end-to-end path loss rate

instead of any interior link loss rate, we can tolerate cer-
tain topology measurement inaccuracies, such as incomplete
routing information and poor router alias resolution.

For completely untraceable paths, we add a direct link
between the source and the destination. In our system,
these paths will become selected paths for monitoring. For
paths with incomplete routing information, we add links
from where the normal route becomes unavailable (e.g., self
loops or displaying “* * *” in traceroute), to where the nor-
mal route resumes or to the destination if such anomalies
persist until the end. For instance, if the measured route is
(src, ip1, “* * *”, ip2, dest), the path is composed of three
links: (src ip1), (ip1, ip2), and (ip2, dest). By treating the
untraceable path (segment) as a normal link, the resulting
topology is equivalent to the one with complete routing in-
formation for calculating the path loss rates.

For topologies with router aliases presenting one physi-
cal link as several links, we have little need to resolve these
aliases. At worst, our failure to recognize the links as the
same will result in a few more path measurements because
the rank of G will be higher. For these links, their cor-
responding entries in xG will be assigned similar values be-
cause they are actually a single link. Thus the path loss rate
estimation accuracy is not affected, as verified by Internet
experiments in Sec. 8. In addition, our system is robust to
measurement node failures and node changes by providing
bounds on the estimated loss rates.

7. EVALUATION
In this section, we present our evaluation metrics, simu-

lation methodology and simulation results.

7.1 Metrics
The metrics include path loss rate estimation accuracy,

variation of measurement loads among the end hosts, and
speed of setup, update, and topology change adaptation.

To compare the inferred loss rate p̂ with real loss rate p, we
analyze both absolute error and error factor. The absolute
error is |p − p̂|. We adopt the error factor Fε(p, p̂) defined
in [9] as follows:

Fε(p, p̂) = max

p(ε)

p̂(ε)
,
p̂(ε)

p(ε)

�
(7)

where p(ε) = max(ε, p) and p̂(ε) = max(ε, p̂). Thus, p and
p̂ are treated as no less than ε, and then the error factor is
the maximum ratio, upwards or downwards, by which they
differ. We use the default value ε = 0.001 as in [9]. If the
estimation is perfect, the error factor is one.

Furthermore, we classify a path to be lossy if its loss rate
exceeds 5%, which is the threshold between “tolerable loss”
and “serious loss” as defined in [20]. We report the true
number of lossy paths, the percentage of real lossy paths
identified (coverage) and the false positive rate, all averaged
over five runs of experiment for each configuration.

There are two types of measurement load: 1) sending
probes, and 2) receiving probes and computing loss rates.
The load reflects the CPU and uplink/downlink bandwidth
consumption. For each end host h, its measurement load is
linearly proportional to, and thus denoted by the number of
monitored paths with h as sender/receiver. Then we com-
pute its variation across end hosts in terms of the coefficient
of variation (CV) and the maximum vs. mean ratio (MMR),
for sending load and receiving load separately. The CV of
a distribution x, defined as below, is a standard metric for
measuring inequality of x, while the MMR checks if there is
any single node whose load is significantly higher than the

average load.

CV (x) =
standard deviation(x)

mean(x)
(8)

The simulations only consider undirected links, so for each
monitored path, we randomly select one end host as sender
and the other as receiver. This is applied to all simulations
with or without load balancing.

7.2 Simulation Methodology
We consider the following dimensions for simulation.

• Topology type: three types of synthetic topologies from
BRITE (see Sec. 7.3) and a real router-level topology
from [25]. All the hierarchical models have similar re-
sults, we just use Barabasi-Albert at the AS level and
Waxman at the router level as the representative.

• Topology size: the number of nodes ranges from 1000
to 20000 2. Note that the node count includes both
internal nodes (i.e., routers) and end hosts.

• Fraction of end hosts on the overlay network: we de-
fine end hosts to be the nodes with the least degree.
Then we randomly choose from 10% to 50% of end
hosts to be on the overlay network. This gives us
pessimistic results because other distributions of end
hosts will probably have more sharing of the routing
paths among them. We prune the graphs to remove
the nodes and links that are not referenced by any path
on the overlay network.

• Link loss rate distribution: 90% of the links are classi-
fied as “good” and the rest as “bad”. We use two dif-
ferent models for assigning loss rate to links as in [10].
In the first model (LLRD1), the loss rate for good links
is selected uniformly at random in the 0-1% range and
that for bad links is chosen in the 5-10% range. In
the second model (LLRD2), the loss rate ranges for
good and bad links are 0-1% and 1-100% respectively.
Given space limitations, most results are under model
LLRD1 except for Sec. 7.4.

• Loss model: After assigning each link a loss rate, we
use either a Bernoulli or a Gilbert model to simulate
the loss processes at each link. For a Bernoulli model,
each packet traversing a link is dropped at indepen-
dently fixed probability as the loss rate of the link.
For a Gilbert model, the link fluctuates between a good
state (no packet dropped) and a bad state (all packets
dropped). According to Paxon’s observed measure-
ment of Internet [31], the probability of remaining in
bad state is set to be 35% as in [10]. Thus, the Gilbert
model is more likely to generate bursty losses than the
Bernoulli model. The other state transition probabili-
ties are selected so that the average loss rates matches
the loss rate assigned to the link.

We repeat our experiments five times for each simulation
configuration unless denoted otherwise, where each repe-
tition has a new topology and new loss rate assignments.
The path loss rate is simulated based on the transmission
of 10000 packets. Using the loss rates of selected paths as
input, we compute xG, then the loss rates of all other paths.

220000 is the largest topology we can simulate on a 1.5GHz
Pentium 4 machine with 512M memory.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045

C
um

ul
at

iv
e

pe
rc

en
ta

ge
 (

%
)

Absolute error

1000 nodes, 50 end hosts
1000 nodes, 100 end hosts
5000 nodes, 100 end hosts
5000 nodes, 300 end hosts

20000 nodes, 100 end hosts
20000 nodes, 500 end hosts

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18

C
um

ul
at

iv
e

pe
rc

en
ta

ge
 (

%
)

Relative error factor

1000 nodes, 50 end hosts
1000 nodes, 100 end hosts
5000 nodes, 100 end hosts
5000 nodes, 300 end hosts

20000 nodes, 100 end hosts
20000 nodes, 500 end hosts

BRITE Barabasi-Albert topology

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

C
um

ul
at

iv
e

pe
rc

en
ta

ge
 (

%
)

Absolute error

1000 nodes, 50 end hosts
1000 nodes, 100 end hosts
5000 nodes, 100 end hosts
5000 nodes, 300 end hosts

20000 nodes, 100 end hosts
20000 nodes, 500 end hosts

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09

C
um

ul
at

iv
e

pe
rc

en
ta

ge
 (

%
)

Relative error factor

1000 nodes, 50 end hosts
1000 nodes, 100 end hosts
5000 nodes, 100 end hosts
5000 nodes, 300 end hosts

20000 nodes, 100 end hosts
20000 nodes, 500 end hosts

BRITE Hierarchical topology

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.001 0.002 0.003 0.004 0.005 0.006

C
um

ul
at

iv
e

pe
rc

en
ta

ge
 (

%
)

Absolute error

50 end hosts
100 end hosts
200 end hosts

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 1.02 1.04 1.06 1.08 1.1 1.12

C
um

ul
at

iv
e

pe
rc

en
ta

ge
 (

%
)

Relative error factor

50 end hosts
100 end hosts
200 end hosts

Real topology of 284K routers
Figure 5: Cumulative distribution of absolute errors (top) and error factors (bottom) under Gilbert loss
model for various topologies.

of # of end hosts # of # of links rank MPR lossy paths (Bernoulli) lossy paths (Gilbert)
nodes total OL(n) paths(r) original AP (k) (k/r) real coverage FP real coverage FP

1000 506
50 1225

1997
443 275 22% 437 99.6% 1.3% 437 100.0% 0.2%

100 4950 791 543 11% 2073 99.0% 2.0% 1688 99.9% 0.2%

5000 2489
100 4950

9997
1615 929 19% 2271 99.1% 2.0% 2277 99.7% 0.1%

300 44850 3797 2541 6% 19952 98.6% 4.1% 20009 99.6% 0.3%

20000 10003
100 4950

39997
2613 1318 27% 2738 98.4% 3.4% 2446 99.5% 0.6%

500 124750 11245 6755 5% 67810 97.8% 5.5% 64733 99.5% 0.4%

of # of end hosts # of # of links rank MPR lossy paths (Bernoulli) lossy paths (Gilbert)
nodes total OL(n) paths(r) original AP (k) (k/r) real coverage FP real coverage FP

1000 335
50 1225

2000
787 486 40% 704 99.0% 1.1% 579 99.6% 0.4%

100 4950 1238 909 18% 2544 98.5% 4.6% 2539 99.7% 0.5%

5000 1680
100 4950

10000
2996 1771 36% 3067 97.5% 3.9% 3024 99.5% 0.4%

300 44850 6263 4563 10% 29135 96.8% 7.1% 28782 99.1% 1.1%

20000 6750
100 4950

40000
5438 2606 53% 3735 98.4% 2.3% 3607 99.6% 0.4%

500 124750 20621 13769 11% 93049 96.1% 5.7% 92821 99.1% 1.5%

of # of end hosts # of # of links rank MPR lossy paths (Bernoulli) lossy paths (Gilbert)
nodes total OL(n) paths(r) original AP (k) (k/r) real coverage FP real coverage FP

1000 312
50 1225

2017
441 216 18% 1034 98.8% 2.0% 960 99.6% 0.5%

100 4950 796 481 10% 4207 98.4% 1.6% 3979 99.6% 0.3%

5000 1608
100 4950

10047
1300 526 11% 4688 99.1% 0.6% 4633 99.8% 0.2%

300 44850 3076 1787 4% 42331 99.2% 0.8% 42281 99.8% 0.1%

20000 6624
100 4950

40077
2034 613 12% 4847 99.8% 0.2% 4830 100.0% 0.1%

500 124750 7460 3595 3% 122108 99.5% 0.3% 121935 99.9% 0.1%

of end hosts # of # of links rank MPR lossy paths (Bernoulli) lossy paths (Gilbert)
on overlay (n) paths(r) after pruning (k) (k/r) real coverage FP real coverage FP

50 1225 2098 1017 83% 891 99.7% 0.9% 912 100.0% 0.2%
100 4950 5413 3193 65% 3570 98.7% 1.9% 3651 99.6% 0.3%
200 19900 12218 8306 42% 14152 97.9% 3.1% 14493 99.6% 0.4%

Table 2: Simulation results for three types of BRITE router topologies: Barabasi-Albert (top), Waxman
(upper middle) and hierarchical model (lower middle), and a real router topology of 284,805 nodes (bottom).
OL gives the number of end hosts on the overlay network. AP shows the number of links after pruning (i.e.,
remove the nodes and links that are not on the overlay paths). MPR (monitored path ratio) is the fraction
of the total end-to-end paths which we monitor. FP is the false positive rate.

of OL Barabasi-Albert model hierarchical model
nodes size CV MMR CV MMR

(n) sender receiver sender receiver sender receiver sender receiver
LB NLB LB NLB LB NLB LB NLB LB NLB LB NLB LB NLB LB NLB

1000
50 0.62 1.10 0.56 0.94 2.41 5.91 3.07 4.09 0.52 0.96 0.53 0.87 2.28 4.80 2.51 4.29
100 0.61 1.42 0.64 1.34 3.21 11.33 3.61 10.67 0.51 1.38 0.47 1.39 2.74 10.06 2.32 10.27

5000
100 0.44 0.89 0.47 0.97 2.25 6.11 2.36 6.50 0.49 1.18 0.53 1.39 2.60 9.18 2.97 10.16
300 0.52 1.59 0.51 1.51 2.97 18.70 2.74 17.25 0.47 1.72 0.48 1.76 3.47 23.93 4.13 25.76

20000
100 0.36 0.55 0.40 0.59 1.93 3.20 2.29 3.69 0.48 1.17 0.43 1.09 3.04 8.86 2.56 7.09
500 0.52 1.36 0.53 1.35 2.64 19.21 3.01 16.82 0.46 1.85 0.46 1.89 5.01 25.85 5.56 27.67

Table 3: Measurement load (as sender or receiver) distribution for various BRITE topologies. OL Size is the
number of end hosts on overlay. “LB” means with load balancing, and “NLB” means without load balancing.

7.3 Results for Different Topologies
For all topologies in Sec. 7.2, we achieve high loss rate es-

timation accuracy. Results for the Bernoulli and the Gilbert
models are similar. Since the Gilbert loss model is more re-
alistic, we plot the cumulative distribution functions (CDFs)
of absolute errors and error factors with the Gilbert model
in Fig. 5. For all the configurations, the absolute errors
are less than 0.008 and the error factors are less than 1.18.
Waxman topologies have similar results, and we omit them
in the interest of space.

The lossy path inference results are shown in Table 2. No-
tice that k is much smaller than the number of IP links that
the overlay network spans, which means that there are many
IP links whose loss rates are unidentifiable. Although differ-
ent topologies have similar asymptotic regression trend for k
as O(n log n), they have different constants. For an overlay
network with given number of end hosts, the more IP links
it spans on, the bigger k is. We found that Waxman topolo-
gies have the largest k among all synthetic topologies. For
all configurations, the lossy path coverage is more than 96%
and the false positive ratio is less than 8%. Many of the false
positives and false negatives are caused by small estimation
errors for paths with loss rates near the 5% threshold.

We also test our algorithms in the 284,805-node real router-
level topology from [25]. There are 65,801 end host routers
and 860,683 links. We get the same trend of results as il-
lustrated in Fig. 5 and Table 2. The CDFs include all the
path estimates, including the monitored paths for which we
know the real loss rates. Given the same number of end
hosts, the ranks in the real topology are higher than those
of the synthetic ones. But as we find in Sec. 4, the growth
of k is still bounded by O(n).

7.4 Results for Different Link Loss Rate
Distribution and Running Time

We have also run all the simulations above with model
LLRD2. The loss rate estimation is a bit less accurate than
it is under LLRD1, but we still find over 95% of the lossy
paths with a false positive rate under 10%. Given space
limitations, we only show the lossy path inference with the
Barabasi-Albert topology model and the Gilbert loss model
in Table 4.

The running time for LLRD1 and LLRD2 are similar,
as in Table 4. All speed results in this paper are based on
a 1.5 GHz Pentium 4 machine with 512M memory. Note
that it takes about 20 minutes to setup (select the mea-
surement paths) for an overlay of 500 end hosts, but only
several seconds for an overlay of size 100. The update (loss
rate calculation) time is small for all cases, only 4.3 seconds
for 124,750 paths. Thus it is feasible to update online.

of end hosts lossy paths (Gilbert) speed (second)
nodes total OL real coverage FP setup update

1000 506
50 495 99.8% 1.1% 0.13 0.08
100 1989 99.8% 3.0% 0.91 0.17

5000 2489
100 2367 99.6% 3.5% 1.98 0.22
300 21696 99.2% 1.4% 79.0 1.89

20000 10003
100 2686 98.8% 1.1% 3.00 0.25
500 67817 99.0% 4.6% 1250 4.33

Table 4: Simulation results with model LLRD2. Use
the same Barabasi-Albert topologies as in Table 2.
Refer to Table 2 for statistics like rank. FP is the
false positive rate. OL means overlay network.

7.5 Results for Measurement Load Balancing
We examine the measurement load distribution for both

synthetic and real topologies, and the results are shown in
Table 3. Given the space constraints, we only show the
results for Barabasi-Albert and hierarchical model. Our load
balancing scheme reduces CV and MMR substantially for
all cases, and especially for MMR. For instance, a 500-node
overlay on a 20000-node network of Barabasi-Albert model
has its MMR reduced by 7.3 times.

We further plot the histogram of measurement load dis-
tribution by putting the load values of each node into 10
equally spaced bins, and counting the number of nodes in
each bin as y-axis. The x-axis denotes the center of each
bin, as illustrated in Fig. 6. With load balancing, the his-
togram roughly follow the normal distribution. In contrast,
the histogram without load balancing is close to an expo-
nential distribution. Note that the y-axis in this plot is
logarithmic: an empty bar means that the bin contains one
member, and 0.1 means the bin is empty.

0

10

20

30

40

50

60

70

80

1.
3

3.
9

6.
5

9.
1

11
.7

14
.3

16
.9

19
.5

22
.1

24
.7

Amount of measurements
(average for each bin)

N
u

m
b

er
 o

f
en

d
 h

o
st

s
in

 e
ac

h
 b

in

(a) with load balancing

0.1

1

10

100

1000

7.
7

23
.1

38
.5

53
.9

69
.3

84
.7

10
0

11
6

13
1

14
6

Amount of measurements
(average for each bin)

N
u

m
b

er
 o

f
en

d
 h

o
st

s
in

 e
ac

h
 b

in

(b) without load balancing

Figure 6: Histogram of the measurement load dis-
tribution (as sender) for an overlay of 300 end hosts
on a 5000-node Barabasi-Albert topology.

7.6 Results for Topology Changes
We study two common scenarios in P2P and overlay net-

works: end hosts joining and leaving as well as routing
changes. Again, the Bernoulli and the Gilbert models have
similar results, thus we only show those of the Gilbert model.

7.6.1 End hosts join/leave

of end # of rank lossy paths
hosts paths real coverage FP
40 780 616 470 99.9% 0.2%
+5 +210 +221 +153 100.0% 0.1%
(45) (990) (837) (623)
+5 +235 +160 +172 99.8% 0.2%
(50) (1225) (997) (795)

Table 5: Simulation results for adding end hosts on
a real router topology. FP is the false positive rate.
Denoted as “+added value (total value)”.

of end # of rank lossy paths
hosts paths real coverage FP
60 1770 1397.0 1180.3 99.9% 0.2%
-5 -285 -245.3 -210.0 99.8% 0.2%

(55) (1485) (1151.7) (970.3)
-10 -260 -156.7 -150.6 99.9% 0.1%
(50) (1225) (995.0) (819.7)

Table 6: Simulation results for deleting end hosts on
a real router topology. FP is the false positive rate.
Denoted as “-reduced value (total value)”.

For the real router topology, we start with an overlay net-
work of 40 random end hosts. Then we randomly add an end
host to join the overlay, and repeat the process until the size
of the overlay reaches 45 and 50. Averaged over three runs,
the results in Table 5 show that there is no obvious accuracy
degradation caused by accumulated numerical errors. The
average running time for adding a path is 125 msec, and for
adding a node, 1.18 second. Notice that we add a block of
paths together to speedup adding node (Sec. 3.2).

Similarly, for removing end hosts, we start with an overlay
network of 60 random end hosts, then randomly select an
end host to delete from the overlay, and repeat the process
until the size of the overlay is reduced to 55 and 50. Again,
the accumulated numerical error is negligible as shown in Ta-
ble 6. As shown in Sec. 5, deleting a path in Ḡ is much more
complicated than adding a path. With the same machine,
the average time for deleting a path is 445 msec, and for
deleting a node, 16.9 seconds. We note that the current im-
plementation is not optimized: we can speed up node dele-
tion by processing several paths simultaneously, and we can
speed up path addition and deletion with iterative methods
such as CGNE or GMRES [32]. Since the time to add/delete
a path is O(k2), and to add/delete a node is O(nk2), we ex-
pect our updating scheme to be substantially faster than the
O(n2k2) cost of re-initialization for larger n.

7.6.2 Routing changes

of paths affected 40.7
of monitored paths affected 36.3

of unique nodes affected 41.7
of real lossy paths (before/after) 761.0/784.0

coverage (before/after) 99.8%/99.8%
false positive rate (before/after) 0.2%/0.1%

average running time 17.3 seconds

Table 7: Simulation results for removing a link from
a real router topology.

We form an overlay network with 50 random end hosts
on the real router topology. Then we simulate topology

changes by randomly choosing a link that is on some path
of the overlay and removing of such a link will not cause
disconnection for any pair of overlay end hosts. Then we
assume that the link is broken, and re-route the affected
path(s). Algorithms in Sec. 5 incrementally incorporate each
path change. Averaged over three runs, results in Table 7
show that we adapt quickly, and still have accurate path loss
rate estimation.

We also simulate the topology changes by adding a ran-
dom link on some path(s) of the overlay. The results are
similar as above, so we omit them here for brevity.

8. INTERNET EXPERIMENTS

8.1 Methodology
We implemented our system on the PlanetLab [33] testbed,

and deployed it on 51 PlanetLab hosts, each from a differ-
ent organization as shown in Table 8. All the international
PlanetLab hosts are universities.

Areas and Domains # of hosts

US (40)

.edu 33
.org 3
.net 2
.gov 1
.us 1

Inter-
national
(11)

Europe
(6)

France 1
Sweden 1

Denmark 1
Germany 1

UK 2
Asia
(2)

Taiwan 1
Hong Kong 1

Canada 2
Australia 1

Table 8: Distribution of selected PlanetLab hosts.

First, we measure the topology among these sites by si-
multaneously running “traceroute” to find the paths from
each host to all others. Each host saves its destination IP
addresses for sending measurement packets later. Then we
measure the loss rates between every pair of hosts. Our mea-
surement consists of 300 trials, each of which lasts 300 msec.
During a trial, each host sends a 40-byte UDP packet 3 to
every other host. Usually the hosts will finish sending before
the 300 msec trial is finished. For each path, the receiver
counts the number of packets received out of 300 to calculate
the loss rate.

To prevent any host from receiving too many packets si-
multaneously, each host sends packets to other hosts in a
different random order. Furthermore, any single host uses a
different permutation in each trial so that each destination
has equal opportunity to be sent later in each trial. This is
because when sending packets in a batch, the packets sent
later are more likely to be dropped. Such random permu-
tations are pre-generated by each host. To ensure that all
hosts in the network take measurements at the same time,
we set up sender and receiver daemons, then use a well-
connected server to broadcast a “START” command.

Will the probing traffic itself cause losses? We performed
sensitivity analysis on sending frequency as shown in Fig. 7.

320-byte IP header + 8-byte UDP header + 12-byte data
on sequence number and sending time.

All experiments were executed between 1am-3am PDT June
24, 2003, when most networks are free. The traffic rate from
or to each host is (51 − 1) × sending freq × 40 bytes/sec.
The number of lossy paths does not change much when the
sending rate varies, except when the sending rate is over
12.8Mbps, since many servers can not sustain that sending
rate. We choose a 300 msec sending interval to balance
quick loss rate statistics collection with moderate bandwidth
consumption.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1 10 100 1000

N
um

be
r

of
 lo

ss
y

pa
th

s

Sending frequency (number of trials per second)

Bandwidth consumption (Kbps)
16 160 1600 16000

Figure 7: Sensitivity test of sending frequency

Note that the experiments above use O(n2) measurements
so that we can compare the real loss rates with our inferred
loss rates. In fact, our technique only requires O(n log n)
measurements. Thus, given good load balancing, each host
only needs to send to O(log n) hosts. In fact, we achieve
similar CV and MMR for measurement load distribution
as in the simulation. Even for an overlay network of 400
end hosts on the 284K-node real topology used before, k
= 18668. If we reduce the measurement frequency to one
trial per second, the traffic consumption for each host is
18668/400× 40 bytes/sec = 14.9Kbps, which is typically less
than 5% of the bandwidth of today’s “broadband” Internet
links. We can use adaptive measurement techniques in [3]
to further reduce the overheads.

loss [0,
0.05)

lossy path [0.05, 1.0] (4.1%)
rate [0.05, 0.1) [0.1, 0.3) [0.3, 0.5) [0.5, 1.0) 1.0
% 95.9% 15.2% 31.0% 23.9% 4.3% 25.6%

Table 9: Loss rate distribution: lossy vs. non-lossy
and the sub-percentage of lossy paths.

8.2 Results
From June 24 to June 27, 2003, we ran the experiments

100 times, mostly during peak hours 9am - 6pm PDT. Each
experiment generates 51 × 50× 300 = 765K UDP packets,
totaling 76.5M packets for all experiments. We run the loss
rate measurements three to four times every hour, and run
the pair-wise traceroute every two hours. Across the 100
runs, the average number of selected monitoring paths (Ḡ) is
871.9, about one third of total number of end-to-end paths,
2550. Table 9 shows the loss rate distribution on all the
paths of the 100 runs. About 96% of the paths are non-
lossy. Among the lossy paths, most of the loss rates are
less than 0.5. Though we try to choose stable nodes for
experiments, about 25% of the lossy paths have 100% losses
and are likely caused by node failures or other reachability
problems as discussed in Sec. 8.2.2.

8.2.1 Accuracy and speed
When identifying the lossy paths (loss rates > 0.05), the

average coverage is 95.6% and the average false positive rate
is 2.75%. Fig. 8 shows the CDFs for the coverage and the

false positive rate. Notice that 40 runs have 100% coverage
and 90 runs have coverage over 85%. 58 runs have no false
positives and 90 runs have false positive rates less than 10%.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 75 80 85 90 95 100

 0 2 4 6 8 10 12 14 16 18

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

(%
)

Coverage of lossy paths (%)

False positive rate (%)

Coverage of lossy paths
False positive rate

Figure 8: Cumulative percentage of the coverage
and the false positive rates for lossy path inference
in the 100 experiments.

As in the simulations, many of the false positives and false
negatives are caused by the 5% threshold boundary effect.
The average absolute error across the 100 runs is only 0.0027
for all paths, and 0.0058 for lossy paths. We pick the run
with the worst accuracy in coverage (69.2%), and plot the
CDFs of absolute errors and error factors in Fig. 9. Since
we only use 300 packets to measure the loss rate, the loss
rate precision granularity is 0.0033, so we use ε = 0.005 for
error factor calculation. The average error factor is only 1.1
for all paths.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.005 0.01 0.015 0.02

 1 1.5 2 2.5 3 3.5 4

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

(%
)

Absolute errors of loss rate estimation

Error factors of loss rate estimation

Absolute error
Error factor

Figure 9: Cumulative percentage of the absolute er-
rors and error factors for the experiment with the
worst accuracy in coverage.

Even for the worst case, 95% of absolute errors in loss
rate estimation are less than 0.014, and 95% of error factors
are less than 2.1. To further view the overall statistics, we
pick 95 percentile of absolute errors and error factors in each
run, and plot the CDFs on those metrics. The results are
shown in Fig. 10. Notice that 90 runs have the 95 percentile
of absolute errors less than 0.0133, and 90 runs have the 95
percentile of error factors less than 2.0.

The average running time for selecting monitoring paths
based on topology measurement is 0.75 second, and for loss
rate calculation of all 2550 paths is 0.16 second.

8.2.2 Topology error handling
The limitation of traceroute, which we use to measure the

topology among the end hosts, led to many topology mea-
surement inaccuracies. As found in [34], many of the routers
on the paths among PlanetLab nodes have aliases. We did
not use sophisticated techniques to resolve these aliases.
Thus, the topology we have is far from accurate. Further-
more, in the PlanetLab experiments, some nodes were down,

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.005 0.01 0.015 0.02 0.025 0.03

 1 1.2 1.4 1.6 1.8 2 2.2

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

(%
)

95 percentile of absolute errors

95 percentile of error factors

95 percentile of absolute errors
95 percentile of error factors

Figure 10: Cumulative percentage of the 95 per-
centile of absolute errors and error factors for the
100 experiments.

or were unreachable from certain nodes. Meanwhile, some
routers are hidden and we only get partial routing paths.
Averaging over 14 sets of traceroutes, 245 out of 51 × 50 =
2550 paths have no or incomplete routing information. The
accurate loss rate estimation results show that our topology
error handling is successful.

9. CONCLUSIONS
In this paper, we improve, implement and evaluate an al-

gebraic approach [1] for adaptive scalable overlay network
monitoring. For an overlay of n end hosts, we selectively
monitor a basis set of O(n log n) paths which can fully de-
scribe all the O(n2) paths. Then the measurements of the
basis set are used to infer the loss rates of all other paths.
Our approach works in real time, offers fast adaptation to
topology changes, distributes balanced load to end hosts,
and handles topology measurement errors. Both simulation
and real Internet implementation yield promising results.

For even more efficient monitored path selection, we plan
to investigate the use of iterative methods [32], [35] both
to select rows and to compute loss rate vectors. In our
preliminary experiments, the path matrix G has been well-
conditioned, which suggests that iterative methods may con-
verge quickly.

10. ACKNOWLEDGEMENT
We thank Brian Chavez for helping with dynamic sim-

ulations. We also thank James Demmel, the anonymous
reviewers and our shepherd for their valuable suggestions.

11. REFERENCES
[1] Y. Chen, D. Bindel, and R. H. Katz, “Tomography-based

overlay network monitoring,” in ACM SIGCOMM Internet
Measurement Conference (IMC), 2003.

[2] Y. Chen, Towards a Scalable, Adaptive and Network-aware
Content Distribution Network, Ph.D. thesis, University of
California at Berkeley, Nov. 2003.

[3] D. G. Andersen et al., “Resilient overlay networks,” in
Proc. of ACM SOSP, 2001.

[4] T. S. E. Ng and H. Zhang, “Predicting Internet network
distance with coordinates-based approaches,” in Proc.of
IEEE INFOCOM, 2002.

[5] S. Ratnasamy et al., “Topologically-aware overlay
construction and server selection,” in Proc. of IEEE
INFOCOM, 2002.

[6] P. Francis et al., “IDMaps: A global Internet host distance
estimation service,” IEEE/ACM Trans. on Networking,
Oct. 2001.

[7] Y. Chen et al., “On the stability of network distance
estimation,” in ACM SIGMETRICS Performance
Evaluation Review (PER), Sep. 2002.

[8] Mark Coates, Alfred Hero, Robert Nowak, and Bin Yu,
“Internet Tomography,” IEEE Signal Processing Magazine,
vol. 19, no. 3, pp. 47–65, 2002.

[9] T. Bu, N. Duffield, F. Presti, and D. Towsley, “Network
tomography on general topologies,” in ACM
SIGMETRICS, 2002.

[10] V. Padmanabhan, L. Qiu, and H. Wang, “Server-based
inference of Internet link lossiness,” in IEEE INFOCOM,
2003.

[11] D. Rubenstein, J. F. Kurose, and D. F. Towsley, “Detecting
shared congestion of flows via end-to-end measurement,”
ACM Transactions on Networking, vol. 10, no. 3, 2002.

[12] Y. Shavitt, X. Sun, A. Wool, and B. Yener, “Computing
the unmeasured: An algebraic approach to Internet
mapping,” in IEEE INFOCOM, 2001.

[13] H. C. Ozmutlu et al., “Managing end-to-end network
performance via optimized monitoring strategies,” Journal
of Network and System Management, vol. 10, no. 1, 2002.

[14] C. Tang and P. McKinley, “On the cost-quality tradeoff in
topology-aware overlay path probing,” in IEEE ICNP,
2003.

[15] R. Caceres, N. Duffield, J. Horowitz, and D. Towsley,
“Multicast-based inference of network-internal loss
characteristics,” IEEE Transactions in Information
Theory, vol. 45, 1999.

[16] S. Floyd and V. Jacobson, “Random early detection
gateways for congestion avoidance,” IEEE/ACM
Transactions on Networking, vol. 1, no. 4, 1993.

[17] N. Duffield et al., “Multicast-based loss inference with
missing data,” IEEE Journal of Selected Areas of
Communications, vol. 20, no. 4, 2002.

[18] G.H. Golub and C.F. Van Loan, Matrix Computations, The
Johns Hopkins University Press, 1989.

[19] E. Anderson et al., LAPACK Users’ Guide, Society for
Industrial and Applied Mathematics, Philadelphia, PA,
third edition, 1999.

[20] Y. Zhang et al., “On the constancy of Internet path
properties,” in Proc. of SIGCOMM IMW, 2001.

[21] J.W. Demmel, Applied Numerical Linear Algebra, SIAM,
1997.

[22] H. Tangmunarunkit et al., “Network topology generators:
Degree-based vs structural,” in ACM SIGCOMM, 2002.

[23] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On
power-law relationship of the Internet topology,” in ACM
SIGCOMM, 1999.

[24] A. Medina, I. Matta, and J. Byers, “On the origin of power
laws in Internet topologies,” in ACM Computer
Communication Review, Apr. 2000.

[25] R. Govindan and H. Tangmunarunkit, “Heuristics for
Internet map discovery,” in IEEE INFOCOM, 2000.

[26] N. Spring, R. Mahajan, and D. Wetherall, “Measuring isp
topologies with rocketfuel,” in ACM SIGCOMM, 2002.

[27] L. Subrmanian, S. Agarwal, J. Rexford, and R. H.Katz,
“Characterizing the Internet hierarchy from multiple
vantage points,” in IEEE INFOCOM, 2002.

[28] G. W. Stewart, Matrix Algorithms: Basic Decompositions,
Society for Industrial and Applied Mathematics, 1998.

[29] V. Paxon, “End-to-end routing behavior in the Internet,”
IEEE/ACM Transactions on Networking, vol. 5, no. 5,
1997.

[30] Y. Zhang, V. Paxson, and S. Shenker, “The stationarity of
Internet path properties: Routing, loss, and throughput,”
ACIRI Technical Report, May, 2000.

[31] V. Paxon, “End-to-end Internet packet dynamics,” in ACM
SIGCOMM, 1997.

[32] R. Barrett et al., Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, 2nd
Edition, SIAM, Philadelphia, PA, 1994.

[33] PlanetLab, “http://www.planet-lab.org/,” .
[34] N. Spring, D. Wetherall, and T. Anderson, “Scriptroute: A

facility for distributed internet measurement,” in USITS,
2003.

[35] C. Meyer and D. Pierce, “Steps toward an iterative
rank-revealing method,” Tech. Rep. ISSTECH-95-013,
Boeing Information and Support Services, 1995.

