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An Algebraic Approach to
Subframe Logics. Modal Case
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and Mamuka Jibladze

Abstract We prove that if a modal formula is refuted on a wK4-algebra (B, �),
then it is refuted on a finite wK4-algebra which is isomorphic to a subalgebra of
a relativization of (B, �). As an immediate consequence, we obtain that each
subframe and cofinal subframe logic over wK4 has the finite model property. On
the one hand, this provides a purely algebraic proof of the results of Fine and
Zakharyaschev for K4. On the other hand, it extends the Fine-Zakharyaschev
results to wK4.

1 Introduction

It is a well-known result of Fine [11] that each subframe logic over K4 has the finite
model property (FMP for short). This result was generalized by Zakharyaschev [21]
to all cofinal subframe logics over K4. The results of Fine and Zakharyaschev imply
that subframe and cofinal subframe superintuitionistic logics also have the FMP. In
fact, subframe superintuitionistic logics are exactly the logics axiomatized by adding
(¬, ∨)-free formulas to the intuitionistic propositional calculus IPC, and cofinal sub-
frame superintuitionistic logics are exactly the logics axiomatized by adding ∨-free
formulas to IPC [22]. On the other hand, as was shown by Wolter [17], there are
subframe logics over K which do not have the FMP.

The proofs of Fine and Zakharyaschev are model-theoretic. It is the goal of this
paper to give a purely algebraic proof of their results. We will also be able to gener-
alize their results to cover all subframe and cofinal subframe logics over weak K4,

wK4 = K + ♦♦p → (p ∨ ♦p).

It is well known that K4 is the modal logic of transitive frames. The modal logic
wK4 is a subsystem of K4. As was shown by Esakia [9], wK4 is the modal logic of
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weakly transitive frames, where a frame F = (W, R) is weakly transitive if wRv and
vRu imply w = u or wRu. Therefore, the main difference between K4-frames and
wK4-frames is in the behavior of clusters [w] = {w} ∪ {v ∈ W : wRv and vRw}.
In a K4-frame, each point in a proper cluster (that is, a cluster consisting of more
than one point) must be reflexive, while in a wK4-frame, points in clusters may or
may not be reflexive. In fact, each wK4-frame can be obtained from a K4-frame by
deleting reflexive arrows in proper clusters, and so weakly transitive frames appear
to be a modest generalization of transitive frames. But as we will see, the existence
of irreflexive points in proper clusters causes additional technical difficulties.

The main interest in wK4 stems from the topological semantics of modal logic.
McKinsey and Tarski [13] introduced two topological semantics for modal logic: one
is interpreting ♦ as topological closure, and another is interpreting ♦ as topological
derivative. They showed that if we interpret ♦ as topological closure, then the modal
logic of all topological spaces is S4. On the other hand, Esakia [9] showed that if we
interpret ♦ as topological derivative, then the modal logic of all topological spaces
is wK4 and that K4 is the modal logic of all Td -spaces. We recall that a topological
space X is a Td -space if it satisfies the Td -separation axiom: each point is locally
closed; that is, each point is open in its closure. The Td -separation axiom is a mild
separation axiom, situated strictly in between T0 and T1 (see, e.g., [1]). In a recent
paper [2], it was shown that the modal logic of all T0-spaces is

wK4T0 = wK4 + p ∧ ♦(q ∧ ♦p) → ♦p ∨ ♦(q ∧ ♦q),

thus providing a useful modal logic strictly in between wK4 and K4. In fact, there
are continuum many logics between wK4 and K4.

It is relatively easy to prove the FMP for K4 by using the standard (transitive)
filtration argument. It was shown in [2] that both wK4 and wK4T0 also have the
FMP, but the proofs are much more involved than that for K4 (the reason being the
technical difficulty mentioned above that proper clusters of wK4-frames may contain
irreflexive points). Note that both wK4 and WK4T0 are subframe logics, which are
outside of the realm of subframe logics over K4, and so Fine’s theorem does not
apply to them. In this paper we show that all subframe and cofinal subframe logics
over wK4 also have the FMP.

In [3] we showed that for a Heyting algebra A and its dual space X , subframes of
X give a dual characterization of nuclei on A, and we gave a relatively easy algebraic
proof that each subframe and cofinal subframe superintuitionistic logic has the FMP.
Diego’s Theorem that implicative meet-semilattices are locally finite played a promi-
nent role in our proof. Since each superintuitionistic logic is a fragment of a logic
over wK4, we view this paper as a sequel to [3]. Here too we will use Diego’s Theo-
rem as well as the well-known fact that Boolean algebras are locally finite. However,
unlike the case of superintuitionistic logics, our proof that each subframe and cofinal
subframe logic over wK4 has the FMP is much more involved.

The paper is organized as follows. In Section 2 we briefly recall the well-known
duality between modal algebras and modal spaces. In Section 3 we prove some ba-
sic facts about wK4-algebras and their dual weakly transitive spaces. In Section 4
we discuss subframe and cofinal subframe logics over wK4. In Section 5 we prove
the Main Lemma of the paper, which implies that each subframe and cofinal sub-
frame logic over wK4 has the FMP. Finally, in Section 6 we compare the proofs and
techniques developed in this paper to those of [3].
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2 Modal Algebras and Modal Spaces

We assume the reader’s familiarity with the algebraic and general frame semantics
of modal logic [4; 5; 12], and with the basics of topology [6].

We recall that a modal algebra is a pair (B, �) such that B is a Boolean algebra
and � : B → B is a unary function on B satisfying

1. �(a ∧ b) = �a ∧ �b,
2. �1 = 1.

As usual, we define ♦ : B → B by ♦a = ¬�¬a. Then ♦(a ∨ b) = ♦a ∨ ♦b
and ♦0 = 0. Let MA denote the category of modal algebras and modal algebra
homomorphisms.

Let X be a topological space. We recall that a subset S of X is clopen if S is
closed and open, that X is zero-dimensional if clopen subsets of X form a basis, and
that X is a Stone space if X is compact, Hausdorff, and zero-dimensional.

Let R be a binary relation on X . For x ∈ X and S ⊆ X , let

R(x) = {y ∈ X : x Ry} and R−1(S) = {x ∈ X : ∃y ∈ S : x Ry}.

Then (X, R) is a modal space (also known as a descriptive frame) if X is a Stone
space, R(x) is closed for each x ∈ X , and R−1(S) is clopen for each clopen subset
S of X .

Given two modal spaces (X, R) and (Y, Q), a map f : X → Y is a modal
space morphism (also known as a p-morphism) if f is continuous, x Rz implies
f (x)Q f (z), and f (x)Qy implies there exists z ∈ X such that x Rz and f (z) = y.
Let MS denote the category of modal spaces and modal space morphisms.

The next theorem is well known and forms the core of duality between modal
algebras and modal spaces. We only give a sketch of the proof. The missing details
can be found in any of [4; 5; 12; 15; 16]. We recall that two categories C and D are
dually equivalent if C is equivalent to the dual Dd of D (where the arrows of D are
reversed).

Theorem 2.1 MA is dually equivalent to MS.

Proof First define the contravariant functor (−)∗ : MA → MS as follows. If (B, �)
is a modal algebra, then (B, �)∗ = (X, R), where X is the set of ultrafilters of B,

ϕ(a) = {x ∈ X : a ∈ x},

{ϕ(a) : a ∈ B} is a basis for the topology on X , and

x Ry iff (∀a ∈ B)(�a ∈ x implies a ∈ y)

(equivalently a ∈ y implies ♦a ∈ x for all a ∈ B). Also, if f : A → B is a modal
algebra homomorphism, then f∗ = f −1.

Next define the contravariant functor (−)∗ : MS → MA as follows. For a modal
space (X, R), let Cp(X) denote the Boolean algebra of clopen subsets of X . Also,
for S ⊆ X , let

�R S = X − R−1(X − S) = {x ∈ X : R(x) ⊆ S} and ♦R S = R−1(S).

Then (X, R)∗ = (Cp(X), �R), and if f : X → Y is a modal space morphism, then
f ∗

= f −1.
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Consequently, (−)∗ and (−)∗ are well-defined contravariant functors. Moreover,
ϕ sets a natural isomorphism between (B, �) and (B, �)∗

∗
= (Cp(X), �R), and so

ϕ(�b) = �Rϕ(b) and ϕ(♦b) = ♦Rϕ(b). Furthermore, ε : X → X∗
∗, given by

ε(x) = {S ∈ Cp(X) : x ∈ S},

sets a natural isomorphism between (X, R) and (X, R)∗∗ = (Cp(X), �R)∗. This
yields the desired dual equivalence of MA and MS. �

3 wK4-Algebras and Weakly Transitive Spaces

Definition 3.1 Let (B, �) be a modal algebra.
1. We call (B, �) a wK4-algebra if a ∧ �a ≤ ��a.
2. We call (B, �) a K4-algebra if �a ≤ ��a.
3. We call (B, �) an S4-algebra if �a ≤ a and �a ≤ ��a.

Clearly, (B, �) is a wK4-algebra if and only if ♦♦a ≤ a∨♦a, (B, �) is a K4-algebra
if and only if ♦♦a ≤ ♦a, and (B, �) is an S4-algebra if and only if a ≤ ♦a and
♦♦a ≤ ♦a. Let wK4 denote the category of wK4-algebras, K4 denote the category of
K4-algebras, and S4 denote the category of S4-algebras. Clearly, S4 ⊂ K4 ⊂ wK4.

Definition 3.2 Let (X, R) be a modal space.
1. We call (X, R) a weakly transitive space if R is weakly transitive; that is,

x Ry and y Rz imply x = z or x Rz.
2. We call (X, R) a transitive space if R is transitive.
3. We call (X, R) a reflexive and transitive space if R is reflexive and transitive.

The next lemma is well known. For (1) see [9, Proposition 7], and for (2)–(3) see,
for example, [5, Section 5.2].

Lemma 3.3 Let (B, �) be a modal algebra and let (X, R) = (B, �)∗ be the dual
of (B, �).

1. (B, �) is a wK4-algebra iff (X, R) is a weakly transitive space.
2. (B, �) is a K4-algebra iff (X, R) is a transitive space.
3. (B, �) is an S4-algebra iff (X, R) is a reflexive and transitive space.

Let wTS denote the category of weakly transitive spaces, TS denote the category
of transitive spaces, and RTS denote the category of reflexive and transitive spaces.
Clearly, RTS ⊂ TS ⊂ wTS. As an immediate consequence of Theorem 2.1 and
Lemma 3.3 we obtain the following theorem.

Theorem 3.4
1. wK4 is dually equivalent to wTS.
2. K4 is dually equivalent to TS.
3. S4 is dually equivalent to RTS.

Definition 3.5 Let (B, �) be a wK4-algebra. For each b ∈ B, set

�+b = b ∧ �b.

It follows that
♦+b = ¬�+

¬b = b ∨ ♦b.

For a weakly transitive space (X, R), let R+ denote the reflexive closure of R; that
is,

R+
= R ∪ {(x, x) : x ∈ X}.
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Lemma 3.6 Let (B, �) be a wK4-algebra with the dual weakly transitive space
(X, R). Then (B, �+) is an S4-algebra and (X, R+) is a reflexive and transitive
space, which is the dual space of (B, �+).

Proof That (B, �+) is an S4-algebra follows from [9, Proposition 11]. Clearly, R+

is reflexive and transitive. Since R+(x) = R(x) ∪ {x} and both R(x) and {x} are
closed, it follows that so is R+(x). Let S ∈ Cp(X). As (R+)−1(S) = S ∪ R−1(S)
and R−1(S) ∈ Cp(X), we obtain (R+)−1(S) ∈ Cp(X). Therefore, (X, R+) is a
reflexive and transitive space. Lastly, as

ϕ(♦+a) = ϕ(a ∨ ♦a) = ϕ(a) ∪ ♦Rϕ(a) = ♦R+ϕ(a),

it follows that (X, R+) is the dual space of (B, �+). �

Definition 3.7 For a wK4-algebra (B, �), let

H := �+(B) = {�+b : b ∈ B}.

Since (B, �+) is an S4-algebra, it is well known (see, e.g., [14, Section IV.1]) that
H = {h ∈ B : �+h = h}, that H is a sublattice of B, and that H is a Heyting
algebra with the implication given by

h −→
H

h′
:= �+(h → h′).

Let (B, �) be a wK4-algebra with the dual weakly transitive space (X, R). We
recall that U ⊆ X is an upset of (X, R) if x ∈ U and x Ry imply y ∈ U . As follows
from [7], elements of H dually correspond to clopen upsets of (X, R+). It is easy to
see that upsets of (X, R) are the same as upsets of (X, R+). Consequently, elements
of H dually correspond to clopen upsets of (X, R).

Let (X, R) be a weakly transitive space. Following Fine [10], for S ⊆ X , we call
x ∈ S a maximal point of S if x Ry and y ∈ S imply y Rx . Let max(S) denote the set
of maximal points of S. Also, let

µ(S) := {x ∈ S : R(x) ∩ S = ∅}.

Evidently µ(S) ⊆ max(S). We note that max(S) coincides with the set maxR+(S)
of maximal points of S with respect to the relation R+. The only difference between
max(S) and maxR+(S) is that all maximal points of S are reflexive with respect to
R+.

Next lemma generalizes a similar result of Fine [10, Section 5] for the transitive
case to the weakly transitive case. We note that if x ∈ max(S), x Ry, and y ∈ S, then
y ∈ max(S).

Lemma 3.8 Let (X, R) be a weakly transitive space. If S ∈ Cp(X), then for each
x ∈ S, either x ∈ µ(S) or there exists y ∈ max(S) such that x Ry.

Proof Let S ∈ Cp(X) and x ∈ S. If x ∈ µ(S), then there is nothing to prove.
Otherwise, as (X, R+) is a reflexive transitive space, by [8, Section III.2], there exists
y ∈ max(S) such that x R+y. If x Ry, then we are done. Otherwise, x = y, and so
y /∈ µ(S). Therefore, there exists z ∈ S such that x = y Rz. Since y ∈ max(S), we
have z ∈ max(S). Thus, x Rz ∈ max(S), which completes the proof. �

Lemma 3.9 Let (X, R) be a weakly transitive space and let S ∈ Cp(X). Then
1. ♦R S = ♦R max(S),
2. µ(S) = S − ♦R S,
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3. ♦R S = ♦R+ S − µ(S).

Proof (1) Since max(S) ⊆ S, we have ♦R max(S) ⊆ ♦R S. Conversely, let
x ∈ ♦R S. Then there exists y ∈ S such that x Ry. By Lemma 3.8, either
y ∈ µ(S) ⊆ max(S) or there exists z ∈ max(S) such that y Rz. In the former case,
x ∈ ♦R max(S). In the latter case, since R is weakly transitive, either x Rz, and
so again x ∈ ♦R max(S), or x = z, which implies that both x, y ∈ max(S), and
so yet again x ∈ ♦R max(S). Therefore, in all possible cases, x ∈ ♦R max(S), so
♦R S ⊆ ♦R max(S), and so ♦R S = ♦R max(S).

(2) We have x ∈ µ(S) if and only if x ∈ S and R(x) ∩ S = ∅ if and only if x ∈ S
and x /∈ ♦R S if and only if x ∈ S − ♦R S.

(3) We have ♦R+ S−µ(S) = (S∪♦R S)−(S−♦R S) = (S∪♦R S)∩((X−S)∪♦R S) =

♦R S. �

We conclude this section by the following lemma, which will be useful in Section 5.

Lemma 3.10 Let (B, �) be a wK4-algebra, H = �+(B), b ∈ B, and h ∈ H.
Then

1. h −→
H

�+b = �+(h → b),

2. b ∧ �¬b = b ∧ �+
¬(b ∧ ♦b).

Proof (1) We have

h ∧ �+(h → b) = �+h ∧ �+(h → b)

= �+(h ∧ (h → b))

= �+(h ∧ b)

6 �+b,

and so
�+(h → b) 6 h → �+b.

Applying �+ gives

�+(h → b) = �+�+(h → b) 6 �+(h → �+b).

The reverse inequality is trivial, so

�+(h → b) = �+(h → �+b) = h −→
H

�+b.

(2) We have

b ∧ �¬b = b ∧ �¬b ∧ �(¬b ∨ �¬b)

= (b ∧ �¬b ∧ �(¬b ∨ �¬b)) ∨ 0
= (b ∧ �¬b ∧ �(¬b ∨ �¬b)) ∨ (b ∧ ¬b ∧ �(¬b ∨ �¬b))

= b ∧ (�¬b ∨ ¬b) ∧ �(¬b ∨ �¬b)

= b ∧ �+(¬b ∨ �¬b)

= b ∧ �+
¬(b ∧ ♦b).

�
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4 Subframe Logics over wK4

Let (X, R) be a modal space. For S ⊆ X , let RS denote the restriction of R to S. It
is easy to see that if S is a clopen subset of X , then (S, RS) is again a modal space.

Definition 4.1 Let (X, R) be a modal space.
1. We say that S ⊆ X is a subframe of X if S ∈ Cp(X).
2. We say that a subframe S of X is a cofinal subframe of X if R(S)

⊆ (R+)−1(S).

Let L be a modal logic over K and let (X, R) be a modal space. We say that (X, R)
is an L-space if each theorem of L is true in (X, R) under any valuation assigning
clopen subsets of X to propositional letters.

Definition 4.2 Let L be a modal logic over K.
1. We say that L is a subframe logic if for each L-space (X, R) and each sub-

frame S of X , we have (S, RS) is an L-space.
2. We say that L is a cofinal subframe logic if for each L-space (X, R) and each

cofinal subframe S of X , we have (S, RS) is an L-space.

It is obvious that each subframe logic is a cofinal subframe logic. The converse is
not true in general. In fact, there are continuum many cofinal subframe logics which
are not subframe logics (see, e.g, [5, Corollary 11.23]).

Let (B, �) be a modal algebra and (X, R) be the dual modal space of (B, �). It
is well known (see, e.g., [17; 20]) that subframes of X correspond to relativizations
of B. For s ∈ B, let Bs := [0, s] = {a ∈ B : a 6 s}, and for each a, b ∈ Bs , let

a ∨s b = a ∨ b,

¬sa = s ∧ ¬a,

0s = 0,

1s = s,

�sa = s ∧ �(s → a).

Then, as a 6 s, it is easy to see that

♦sa = ¬s�s¬sa = s ∧ ♦a.

Lemma 4.3 If (B, �) is a modal algebra and s ∈ B, then (Bs, �s) is a modal
algebra.

Proof It is clear (see, e.g., [14, Section II.6]) that Bs is a Boolean algebra. More-
over, for a, b ∈ Bs , we have

�s(a ∧ b) = s ∧ �(s → (a ∧ b))

= s ∧ �((s → a) ∧ (s → b))

= s ∧ �(s → a) ∧ �(s → b)

= �sa ∧ �sb.

Furthermore,

�s(1s) = �s(s) = s ∧ �(s → s) = s ∧ �1 = s ∧ 1 = s = 1s .

Thus, (Bs, �s) is a modal algebra. �
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Definition 4.4 For a modal algebra (B, �) and s ∈ B, we call the modal algebra
(Bs, �s) the relativization of (B, �) to s.

Proposition 4.5 Let (B, �) be a modal algebra and (X, R) be its dual modal space.
Then

1. subframes of (X, R) correspond to relativizations of (B, �),
2. cofinal subframes of (X, R) correspond to those relativizations (Bs, �s) of

(B, �) for which
s ≤ �♦+s.

Proof (1) Let S ⊆ X . Then S is a subframe of X if and only if S ∈ Cp(X) if and
only if there exists s ∈ B such that S = ϕ(s). Clearly, S with the subspace topology
is the Stone space of Bs . Moreover, for each a ∈ Bs , we have

ϕ(♦sa) = ϕ(s ∧ ♦a) = ϕ(s) ∩ ♦Rϕ(a) = S ∩ ♦Rϕ(a) = ♦RS ϕ(a).

Thus, (S, RS) is the dual space of (Bs, �s).

(2) Let S be a subframe of X . Then S = ϕ(s) for some s ∈ B. Therefore,

S is a cofinal subframe iff R(S) ⊆ (R+)−1(S)

iff R(S) ⊆ ♦R+ϕ(s)

iff S ⊆ �R♦R+ϕ(s)

iff ϕ(s) ⊆ ϕ(�♦+s)

iff s ≤ �♦+s.

Consequently, cofinal subframes of (X, R) correspond to those relativizations
(Bs, �s) of (B, �) for which s ≤ �♦+s. �

Definition 4.6 Let (B, �) be a wK4-algebra. We call s ∈ B dense if ♦+s = 1.

Lemma 4.7 Let (B, �) be a wK4-algebra with the dual weakly transitive space
(X, R), and let s ∈ B.

1. If s is dense, then s ≤ �♦+s. Consequently, ϕ(s) is a cofinal subframe of X.
2. If max(X) ⊆ ϕ(s), then s is dense.

Proof (1) If s is dense, then �♦+s = �1 = 1, and so s ≤ �♦+s. Thus, by
Proposition 4.5, ϕ(s) is a cofinal subframe of X .

(2) If max(X) ⊆ ϕ(s), then ♦+

Rϕ(s) = X , so ♦+s = 1, and so s is dense. �

Lemma 4.8 Let (B, �) be a modal algebra, s ∈ B, and (Bs, �s) be the relativiza-
tion of (B, �) to s.

1. If (B, �) is a wK4-algebra, then so is (Bs, �s).
2. If (B, �) is a K4-algebra, then so is (Bs, �s).
3. If (B, �) is an S4-algebra, then so is (Bs, �s).

Proof (1) For a ∈ Bs , we have

♦s♦sa = ♦s(s ∧ ♦a) = s ∧ ♦(s ∧ ♦a) ≤ s ∧ ♦♦a ≤ s ∧ (a ∨ ♦a) =

(s ∧ a) ∨ (s ∧ ♦a) = a ∨ ♦sa.

Thus, (Bs, �s) is a wK4-algebra.
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(2) For a ∈ Bs , we have

♦s♦sa = s ∧ ♦(s ∧ ♦a) ≤ s ∧ ♦♦a ≤ s ∧ ♦a = ♦sa.

Thus, (Bs, �s) is a K4-algebra.

(3) For a ∈ Bs , we have

♦sa = s ∧ ♦a ≥ s ∧ a = a.

By (2) we also have that ♦s♦sa ≤ ♦sa. Thus, (Bs, �s) is an S4-algebra. �

Consequently, each of wK4, K4, and S4 is a subframe logic. Well-known examples
of subframe logics over K4 include the provability logic GL = K + �(�p → p)
→ �p and the Grzegorczyk logic S4.Grz = S4 + �(�(p → �p) → p) → p,
as well as each logic over S4.3 = S4 + �(�p → q) ∨ �(�q → p) (including all
logics over S5 = S4 + p → �♦p). An example of a cofinal subframe logic which
is not a subframe logic is the well-known system S4.2 = S4 + ♦�p → �♦p. More
examples of subframe logics over K4 can be found in [20]. We only recall from
the introduction that wK4 and wK4T0 are examples of interesting subframe logics
outside of the realm of subframe logics over K4.

5 FMP for Subframe and Cofinal Subframe Logics over wK4

In this section we prove that each subframe and cofinal subframe logic over wK4
has the FMP, thus extending the results of Fine [11] and Zakharyaschev [21] for K4
to wK4. In fact, we prove the following general result, which is much stronger and
implies the FMP of subframe and cofinal subframe logics over wK4.

Lemma 5.1 (Main Lemma) Let (B, �) be a wK4-algebra and let α(p1, . . . , pn)
be a modal formula built from the propositional letters p1, . . . , pn . If (B, �) 6|H

α(p1, . . . , pn), then there exist a dense s ∈ B and a finite subalgebra (As, �s) of
the relativization (Bs, �s) of (B, �) such that (As, �s) 6|H α(p1, . . . , pn).

Idea of Proof Before proving the Main Lemma, which will be done in several
steps, we give a general outline of the idea behind the proof. If α(p1, . . . , pn)
is refuted on a wK4-algebra (B, �), then there exist b1, . . . , bn ∈ B such that
α(b1, . . . , bn) 6= 1. Clearly, the subterms of α(b1, . . . , bn) form a finite subset of
B, and as B is locally finite, they generate a finite Boolean subalgebra Bα of B. Ob-
serve that to refute α(p1, . . . , pn) in B, we only need elements of Bα . Next we form
�+(Bα) := {�+b : b ∈ Bα}, which is a subset of H . Clearly, �+(Bα) is finite and
as H is locally finite as an implicative meet-semilattice, by Diego’s Theorem, the
(∧, −→

H
)-subalgebra Hα of H generated by �+(Bα) is also finite. As our next step,

we generate the Boolean subalgebra A of B by Bα ∪ Hα . Once again using that B
is locally finite, we obtain that A is finite. Now the idea is to pick a dense s ∈ B in
such a way that (As, �s) is a subalgebra of (Bs, �s), where As = {a ∧ s : a ∈ A},
and show that α(p1, . . . , pn) is refuted on (As, �s).

This indeed works if we start with a K4-algebra. However, for a wK4-algebra,
the step which is problematic is to show that (As, �s) is a subalgebra of (Bs, �s).
Therefore, we need to make Hα slightly bigger, which can be done by adding to
�+(Bα) some special elements of H and then generating Hα .
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Now that we described the idea behind the proof (and discussed an additional diffi-
culty we face when working with wK4-algebras instead of K4-algebras, which stems
exactly from the existence of irreflexive points in proper clusters of the dual space of
a wK4-algebra), we can go ahead and give a proof of the Main Lemma. As we said,
it will be done in several steps and will require some additional lemmas.

Proof Let (B, �) be a wK4-algebra and let (B, �) 6|H α(p1, . . . , pn). Then there
exist b1, . . . , bn ∈ B such that

α(b1, . . . , bn) 6= 1.

We let Bα denote the Boolean subalgebra of B generated by all subterms of
α(b1, . . . , bn). Since B is locally finite, Bα is finite. We also let Aα denote the
set of all atoms of Bα .

Let Hα be the (∧, −→
H

)-subalgebra of H generated by the set{
�+b : b ∈ Bα

}
∪

{
�+

¬(a ∧ ♦a) : a ∈ Aα

}
.

As this set is a finite subset of H , Diego’s Theorem implies that Hα is finite.
Finally, let A be the Boolean subalgebra of B generated by Aα ∪ Hα . Again, as

B is locally finite, A is finite. For a, b ∈ B, let ba = b ∧ a denote the relativization
of b to a, and let

s =

∨
a∈Aα

∧
h∈Hα

ha ∨ �+
a ¬aha .

Since elements of Aα are pairwise orthogonal (that is, a, b ∈ Aα and a 6= b imply
a ∧ b = 0) and

∧
h∈Hα

ha ∨ �+
a ¬aha ∈ Ba = [0, a] for each a ∈ Aα , we have

sa = s ∧ a =

∧
h∈Hα

ha ∨ �+
a ¬aha

for each a ∈ Aα . Moreover, the sa are pairwise orthogonal and

s =

∨
a∈Aα

sa .

A slightly more explicit description of these elements is provided by the following
lemma.

Lemma 5.2 For each a, h ∈ B, we have

�+
a ¬aha = a ∧ �+(h → ¬a).

Proof We have

�+
a ¬aha = a ∧ �+ (a → ¬aha)

= a ∧ �+ (a → (a ∧ ¬(a ∧ h)))

= a ∧ �+ (¬a ∨ (a ∧ (¬a ∨ ¬h)))

= a ∧ �+ (¬a ∨ (a ∧ ¬h))

= a ∧ �+ (¬a ∨ ¬h)

= a ∧ �+ (h → ¬a) . �

We show that s is dense in B. In fact, we show a stronger result that sa is dense in
Ba for each a ∈ Aα , which implies that s is dense in B.
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Lemma 5.3 Let (X, R) be a weakly transitive space and let U be a clopen upset of
X. Then

max(X) ⊆ U ∪ �R+(X − U ).

Proof Let x ∈ max(X) and x /∈ U . Since x ∈ max(X), we have R+(x) ⊆ max(X).
Therefore, as U is an upset, R+(x) ∩ U 6= ∅ implies R+(x) ⊆ U . Thus,
R+(x) ∩ U = ∅, so R+(x) ⊆ X − U , and so x ∈ �R+(X − U ). Consequently,
max(X) ⊆ U ∪ �R+(X − U ). �

Lemma 5.4 For each a ∈ Aα , we have sa is dense in (Ba, �a). In particular, s is
dense in (B, �).

Proof Since sa =
∧

h∈Hα
ha ∨�+

a ¬aha , by Lemma 4.7, it is sufficient to show that
max ϕ(a) ⊆ ϕ(ha)∪�R+(ϕ(a)−ϕ(ha)). But this follows from Lemma 5.3 because
each ϕ(ha) is a clopen upset of ϕ(a). Thus, sa is dense in (Ba, �a), and so s is dense
in (B, �). �

Lemma 5.5 For each a ∈ Aα and h ∈ H, we have

♦(a ∧ h) = ♦(s ∧ a ∧ h).

Proof Since s ∧ a ∧ h 6 a ∧ h, we have ♦(s ∧ a ∧ h) 6 ♦(a ∧ h). Conversely, it is
sufficient to show that ♦R(ϕ(a) ∩ ϕ(h)) ⊆ ♦R(ϕ(s) ∩ ϕ(a) ∩ ϕ(h)). As ϕ(h) is an
upset,

max(ϕ(a) ∩ ϕ(h)) ⊆ max ϕ(a).

Moreover, by the proof of Lemma 5.4, max ϕ(a) ⊆ ϕ(s). Therefore, by Lemma 3.9,

♦R(ϕ(a) ∩ ϕ(h)) = ♦R max(ϕ(a) ∩ ϕ(h))

= ♦R(ϕ(s) ∩ max(ϕ(a) ∩ ϕ(h)))

⊆ ♦R(ϕ(s) ∩ ϕ(a) ∩ ϕ(h)).

Thus, ♦(a ∧ h) 6 ♦(s ∧ a ∧ h), hence the equality. �

Lemma 5.6 The Boolean subalgebra As := {bs : b ∈ A} of Bs = [0, s] is closed
under ♦s .

Proof Since each element of A is a join of meets of elements of Bα ∪ Hα or their
complements, Bα is closed under meets and complements, each element of Bα is a
join of elements of Aα , and Hα is closed under meets, we obtain that each element
of A is a join of elements of the form

a ∧ h ∧ ¬h1 ∧ · · · ∧ ¬hn

for some a ∈ Aα and h, h1, . . . , hn ∈ Hα . By construction of s, for any a ∈ Aα and
h ∈ Hα we have

s ∧ a 6 ha ∨ �+
a ¬aha .

Therefore, by Lemma 5.2,

s∧a 6 (a∧h)∨(a∧�+(h → ¬a)) = a∧(h∨�+(h → ¬a)) 6 h∨�+(h → ¬a).

Thus,
s ∧ a ∧ ¬h 6 �+(h → ¬a),

and so
s ∧ a ∧ ¬h 6 s ∧ a ∧ �+(h → ¬a).
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On the other hand,

s ∧ a ∧ �+(h → ¬a) 6 s ∧ a ∧ (h → ¬a) = s ∧ a ∧ (¬h ∨ ¬a) = s ∧ a ∧ ¬h.

Consequently,
s ∧ a ∧ ¬h = s ∧ a ∧ �+(h → ¬a).

By Lemma 3.10, we have

�+(h → ¬a) = h −→
H

�+
¬a.

By construction, �+
¬a ∈ Hα . Therefore, �+(h → ¬a) ∈ Hα . Thus, each element

of As is actually a join of elements of the form

s ∧ a ∧ h

for a ∈ Aα and h ∈ Hα . Now, by Lemma 5.5,

♦s(s ∧ a ∧ h) = s ∧ ♦(s ∧ a ∧ h) = s ∧ ♦(a ∧ h).

Since ♦s is additive, it thus suffices to show that ♦(a ∧ h) is in A.
By Lemma 3.9,

♦R(ϕ(a) ∩ ϕ(h)) = ♦R+(ϕ(a) ∩ ϕ(h)) − µ(ϕ(a) ∩ ϕ(h)),

and using the fact that ϕ(h) is an upset, it is easy to see that

µ(ϕ(a) ∩ ϕ(h)) = µϕ(a) ∩ ϕ(h).

Therefore, using Lemma 3.9 again, we obtain

♦R(ϕ(a) ∩ ϕ(h)) = ♦R+(ϕ(a) ∩ ϕ(h)) − (µϕ(a) ∩ ϕ(h))

= ♦R+(ϕ(a) ∩ ϕ(h)) − ((ϕ(a) − ♦Rϕ(a)) ∩ ϕ(h))

= ♦R+(ϕ(a) ∩ ϕ(h)) − (ϕ(a) ∩ �R(X − ϕ(a)) ∩ ϕ(h)).

Thus,
♦(a ∧ h) = ♦+(a ∧ h) − (a ∧ �¬a ∧ h).

By Lemma 3.10,
a ∧ �¬a = a ∧ �+

¬(a ∧ ♦a),

By construction, �+
¬(a ∧ ♦a) ∈ Hα . Thus, a ∧ �¬a ∧ h ∈ A. Moreover, as

♦+(a ∧ h) = ¬�+(h → ¬a)

and �+(h → ¬a) ∈ Hα , we have ♦+(a ∧ h) ∈ A. Consequently, ♦(a ∧ h) ∈ A,
and so As is closed under ♦s . �

It remains to show that α((b1)s, . . . , (bn)s) 6= 1s in As .

Lemma 5.7 α((b1)s, . . . , (bn)s) = s ∧ α(b1, . . . , bn).

Proof It clearly suffices to prove that for each a ∈ Bα , we have

♦sas = s ∧ ♦a.

As ♦ and ♦s are both additive, it actually suffices to prove the latter equality for
a ∈ Aα . But a particular case of Lemma 5.5 (with h = 1) gives

♦sas = s ∧ ♦(s ∧ a) = s ∧ ♦a. �
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Now, by Lemma 5.4, sa is dense in (Ba, �a) for each a ∈ Aα . Therefore, s ∧ a 6= 0
for each a ∈ Aα . Moreover, 1 6= α(b1, . . . , bn) ∈ Bα , so there is an atom a ∈ Aα

with a ∧ α(b1, . . . , bn) = 0. As a ∧ s 6= 0, we cannot have s 6 α(b1, . . . , bn), so
s ∧ α(b1, . . . , bn) 6= s, which by Lemma 5.7 means

α((b1)s, . . . , (bn)s) 6= 1s .

Thus, we found a dense s ∈ B and a finite subalgebra (As, �s) of (Bs, �s) such that
(As, �s) 6|H α(p1, . . . , pn). Consequently, the Main Lemma is proved. �

Remark 5.8 We show how our construction of (As, �s) simplifies when (B, �)
is a K4-algebra. Note that �a 6 ��a is equivalent to �+�a = �a. Therefore,
if (B, �) is a K4-algebra, then �(B) := {�b : b ∈ B} ⊆ H . Thus, in the proof
of the Main Lemma, instead of working with �+(Bα), we can work with �(Bα).
Moreover, we do not need to add additional elements {�+

¬(a ∧ ♦a) : a ∈ Aα}

to �+(Bα) to generate Hα . Instead we set Hα to be the (∧, −→
H

)-subalgebra of

H generated by �(Bα). The only reason we needed {�+
¬(a ∧ ♦a) : a ∈ Aα}

was at the end of Lemma 5.6, in justifying that ♦(a ∧ h) is in A for a ∈ Aα and
h ∈ Hα . But if (B, �) is a K4-algebra, this is already clear from the equality
♦(a ∧ h) = ♦+(a ∧ h) − (a ∧ �¬a ∧ h) because now �¬a ∈ Hα by definition.

If, in addition, (B, �) is an S4-algebra, then �a = �+a, and so �(B) =

�+(B) = H . Therefore, in addition to being able to take the simplified version
of Hα as in the case of K4-algebras, we can also omit the last part of the proof of
Lemma 5.6 altogether because in this case we have ♦(a ∧ h) = ♦+(a ∧ h) ∈ A.

It is an easy consequence of the Main Lemma that each subframe and cofinal sub-
frame logic over wK4 has the FMP.

Theorem 5.9 All subframe and cofinal subframe logics over wK4 have the FMP.

Proof Since subframe logics are contained in cofinal subframe logics, it is sufficient
to prove the result for cofinal subframe logics. Let L be a cofinal subframe logic over
wK4 and let L 6|H α. Then there exists a wK4-algebra (B, �) such that (B, �) |H L
and (B, �) 6|H α. By the Main Lemma, there exists a dense s ∈ B and a finite
subalgebra (As, �s) of the relativization (Bs, �s) of (B, �) such that (As, �s) 6|H α.
Let (X, R) be the dual weakly transitive space of (B, �). By Lemma 4.7, ϕ(s) is a
cofinal subframe of X . Therefore, by Proposition 4.5, (Bs, �s) |H L . Since (As, �s)
is a subalgebra of (Bs, �s), we obtain (As, �s) |H L . Thus, there exists a finite L-
algebra (As, �s) refuting α, and so L has the FMP. �

We conclude this section by mentioning two possible applications of our method,
which we leave as open problems. The first one is to study the size of (As, �s) and
investigate whether our method sheds some new light on the computational complex-
ity of satisfiability for subframe and cofinal subframe logics over wK4. The second
one is to try to generalize our method to handle subframe and cofinal subframe logics
in modal languages with several modalities. The first step in this direction would be
to examine tense logics closely related to logics over K4. In [18; 19] Wolter gave
a model-theoretic analysis of extensions of the Fine-Zakharyaschev results to tense
logics. A natural next step would be to provide such an analysis for the algebraic
technique developed in this paper.
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6 Comparison of Subframe Logics in Modal and Intuitionistic Cases

We conclude the paper by comparing the proofs and techniques developed here with
the proofs and techniques developed in [3] for subframe and cofinal subframe super-
intuitionistic logics. Let H be a Heyting algebra and let X be its dual space. Then
X is a reflexive and transitive modal space, which in addition is antisymmetric. We
recall (see [5, p. 289] and [3, Lemma 2]) that S ⊆ X is a subframe of X if S is
closed and C ∈ Cp(S) implies R−1(C) ∈ Cp(X). It follows that each clopen subset
of X is a subframe of X , but there exist subframes of X which may not be clopen
(see [3, Remark 3]). Therefore, we have an evident difference between subframes in
the intuitionistic and modal settings. Below we give an explanation of why this is so.

It was shown in [3] that subframes of X give a dual characterization of nuclei
on H . Therefore, the notion of subframe in the intuitionistic setting naturally arises
when studying nuclei on Heyting algebras. For a Heyting algebra H , let N (H)
denote the set of all nuclei on H . If X is the dual of H , then those subframes of X
that are clopen subsets of X exactly correspond to those elements of N (H) that are
complemented in N (H) [3, Theorem 32]. Now if it happens that H is a Boolean
algebra, then N (H) is isomorphic to H , and so each subframe of X is clopen. Thus,
the intuitionistic notion of subframe, which is more general, coincides with the modal
notion of subframe whenever the Heyting algebra under consideration happens to be
a Boolean algebra.

On the other hand, proving that all subframe logics have the FMP is simpler in the
intuitionistic setting. This is mostly because, instead of worrying about the whole
(B, �) ∈ wK4, we only need to worry about the Heyting algebra H = �+(B).
Therefore, we only need to apply Diego’s Theorem to the set of subterms of
α(h1, . . . , hn) to generate a finite (∧, −→

H
)-subalgebra Hα of H , which will refute

α(p1, . . . , pn). Then, using Hα , we define a nucleus j on H and show that Hα is a
Heyting subalgebra of H j . Since the superintuitionistic logic L under consideration
is a subframe logic, H |H L implies H j |H L . As Hα is a Heyting subalgebra of H j ,
we also have Hα |H L . Thus, Hα is a finite L-algebra refuting α(p1, . . . , pn), and
the FMP of L follows (see [3, Section 7] for details).
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