AN ALGEBRAIC CLASSIFICATION OF SOME LINKS OF CODIMENSION TWO

CHAO-CHU LIANG ${ }^{1}$

Abstract

For $q>2$, J. Levine proved that two simple ($2 q-1$)-knots are isotopic if and only if their Seifert matrices are equivalent. In this paper, we will prove the analogue of Levine's result for simple boundary ($2 q-1$)links; we will show that: "For $q \geqslant 3$, two simple boundary ($2 q-1$)-links are isotopic if and only if their Seifert matrices are l-equivalent (defined by some algebraic moves)."

An n-link of multiplicity m, denoted by $L=K_{1} \cup \cdots \cup K_{m}$ is an embedding of m disjoint copies of the n-sphere (or homotopy spheres) K_{i} into the $(n+2)$-sphere S^{n+2}. L is called boundary if it extends to an embedding of m disjoint orientable compact $(n+1)$-manifolds M_{i}, called the Seifert manifolds, with $\partial M_{i}=K_{i}$. Let X denote the link complement. Gutiérrez [1] showed that an n-link of multiplicity m is boundary if and only if there is an epimorphism from $\pi_{1}(X)$ onto F_{m}, the free group in m generators, sending meridians to generators. An $(2 q-1)$-link L is called simple if $\pi_{i}(X)=$ $\pi_{i}\left(\bigvee_{m} S^{1}\right)$ for $i<q$; in case L is a boundary link, we require that the meridians be sent to generators.

For $q \geqslant 2$, Levine [5] proved that two simple $(2 q-1)$-knots are isotopic if and only if their Seifert matrices are "equivalent" (defined by certain algebraic "moves" in [5], also called S-equivalent in [7]). In this paper, we will prove the analogue of Levine's Theorems $1-3$ for simple boundary $(2 q-1)$ links, $q \geqslant 3$: two simple boundary $(2 q-1)$-links are isotopic if and only if their "Seifert matrices" are related by certain algebraic "moves".
Since our proofs are almost the same as those of [4] and [5], we will only give the outlines here.

1. For simplicity, we will consider only the $(2 q-1)$-link of multiplicity 2. Everything considered here is in the smooth category.

Let $L=K_{1} \cup K_{2}$ be a boundary $(2 q-1)$-link. According to [1], there exist two disjoint $2 q$-dimensional Seifert manifolds M_{1} and M_{2} for L, that is, $\partial M_{1}=K_{1}$ and $\partial M_{2}=K_{2}$. Let A_{1} be the corresponding Seifert matrix for the

Received by the editors January 13, 1977 and, in revised form, February 28, 1977.
AMS (MOS) subject classifications (1970). Primary 57C45, 57D40, 57D65.
Key words and phrases. Simple boundary link, Seifert manifolds, Seifert matrices, l-equivalence, equivalence (S-equivalence).
${ }^{1}$ Supported by the University of Kansas General Research Fund.
knot K_{1} (in $S^{2 q+1}$) with respect to the basis $\left\{a_{1}, \ldots, a_{n}\right\}$ of the torsion-free part of $H_{q}\left(M_{1}\right)$, and A_{2} the Seifert matrix for K_{2} with respect to the basis $\left\{b_{1}, \ldots, b_{m}\right\}$ of $H_{q}\left(M_{2}\right) /$ Torsion.
A linking from $\theta:\left(H_{q}\left(M_{1}\right) \oplus H_{q}\left(M_{2}\right)\right) \otimes\left(H_{q}\left(M_{1}\right) \oplus H_{q}\left(M_{2}\right)\right) \rightarrow Z$ is defined by letting $\theta(\alpha \otimes \beta)$ be the linking number $L\left(z_{1}, z_{2}\right)$ (in $\left.S^{2 q+1}\right)$, where z_{1}, a cycle in $M_{1}\left(\right.$ or $\left.M_{2}\right)$, represents α and z_{2} represents $i_{+} \beta$, the translate in the positive normal direction off M_{1} (or M_{2}) into $S^{2 q+1}-M_{1}-M_{2}$ of a cycle representing β. With respect to the basis $\left\{a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}\right\}$ of the torsion-free part of $H_{q}\left(M_{1}\right) \oplus H_{q}\left(M_{2}\right)$, the matrix θ has the following form:

$$
D=\left(\begin{array}{cc}
A_{1} & P \\
-\varepsilon P^{\prime} & A_{2}
\end{array}\right)
$$

also written as $D=\left[A_{1}, A_{2}, P\right]$, where $\varepsilon=(-1)^{q}$ and P^{\prime} denotes the transpose of P. We call D a Seifert matrix for the boundary link L. It is obvious that $D+\varepsilon D^{\prime}$ is unimodular. Algebraically, we will call $D=\left[A_{1}, A_{2}, P\right]$ a Seifert matrix of type 2 if $A_{1}+\varepsilon A_{1}^{\prime}, A_{2}+\varepsilon A_{2}^{\prime}$ and $D+\varepsilon D^{\prime}$ are unimodular. Here A^{\prime} denotes the transpose of A.

Actually, D is a Seifert matrix for the link L corresponding to the manifold $M_{1} \# M_{2}$ with $\partial\left(M_{1} \# M_{2}\right)=K_{1} \cup K_{2}$ in the sense of [6, Theorem 3.2]. The $(n \times m)$-matrix $P=\left(p_{i j}\right)$ in D can be obtained as follows: let $\left\{c_{1}, \ldots, c_{n}\right\}$ be a basis for $H_{q}\left(S^{2 q+1}-M_{1}\right) /$ Torsion, which is the Alexander dual of $\left\{a_{i}\right\}$, that is, $L\left(a_{i}, c_{j}\right)=\delta_{i j}$. In $S^{2 q+1}-M_{1}$, we have $b_{j}=\Sigma p_{k j} c_{k}$, hence

$$
L\left(a_{i}, i_{+} b_{j}\right)=L\left(a_{i}, b_{j}\right)=\sum_{j} L\left(a_{i}, c_{k}\right) p_{k j}=p_{i j}
$$

Following [5], we now define certain algebraic "moves" for Seifert matrices of type 2. Let $D=\left[A_{1}, A_{2}, P\right]$ be one. Then any matrix of the form (which is again a Seifert matrix of type 2):

$$
\begin{aligned}
& \left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & x \\
0 & \lambda & A_{1} & P \\
0 & -\varepsilon x^{\prime} & -\varepsilon P^{\prime} & A_{2}
\end{array}\right),
\end{aligned} \begin{aligned}
& \left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & y & x \\
0 & 0 & A_{1} & P \\
0 & -\varepsilon x^{\prime} & -\varepsilon P^{\prime} & A_{2}
\end{array}\right], \\
& \left(\begin{array}{cccc}
A_{1} & P & x^{\prime} & 0 \\
-\varepsilon P^{\prime} & A_{2} & \tau & 0 \\
-\varepsilon x & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right),
\end{aligned} \begin{aligned}
& {\left[\begin{array}{cccc}
A_{1} & P & x^{\prime} & 0 \\
-\varepsilon P^{\prime} & A_{2} & 0 & 0 \\
-\varepsilon x & y & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right],}
\end{aligned}
$$

where x, y are row vectors, and λ, τ are column vectors, will be called an elementary l-enlargement of $D ; D$ is an elementary l-reduction. Let C be a unimodular matrix having the same dimension as A_{1}, and E a unimodular matrix having the same dimension as A_{2}. Then each of the operations below will be called an l-congruence:

$$
D \rightarrow\left(\begin{array}{cc}
C & 0 \\
0 & I_{m}
\end{array}\right) D\left(\begin{array}{cc}
C^{\prime} & 0 \\
0 & I_{m}
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{cc}
I_{n} & 0 \\
0 & E
\end{array}\right) D\left(\begin{array}{cc}
I_{n} & 0 \\
0 & E^{\prime}
\end{array}\right) .
$$

Two Seifert matrices of type 2 are called l-equivalent if they can be connected by a chain of elementary l-enlargements, l-reductions, and l-congruences (with C or E having the appropriate dimension).
2. We first prove the analogue of [5, Theorem 1].

Theorem 1. Seifert matrices of isotopic boundary $(2 q-1)$-links are l equivalent.

Proof. Suppose $L_{1}=K_{1} \cup K_{2}$ and $L_{2}=J_{1} \cup J_{2}$ are isotopic boundary links with Seifert manifolds M_{1}, M_{2} and N_{1}, N_{2}, respectively. Then the argument in [5, p. 186] gives us two disjoint $(2 q+1)$-dimensional manifolds $V_{i}(i=1$ or 2$)$ in $S^{2 q+1} \times I$ meeting $S^{2 q+1} \times 0$ along M_{i} and $S^{2 q+1} \times 1$ along N_{i}, with $\partial V_{i}=M_{i} \cup X_{i} \cup N_{i}=Y_{i}$.

After rearranging the level of the critical points for the "height" functions $\Phi_{i}: V_{i} \rightarrow I$ as in [5, p. 187], we need only consider the case where Φ_{1} has only one critical point and Φ_{2} has none. Then we use the argument in [5, pp. 187-188] to conclude that the Seifert matrix D for $L_{2}=J_{1} \cup J_{2}$ with respect to an appropriate basis has the following form:

$$
\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
1 & u & v & x \\
0 & \lambda & A_{1} & P \\
0 & -\varepsilon x^{\prime} & -\varepsilon P^{\prime} & A_{2}
\end{array}\right) \text { or } \quad\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & u & v & x \\
0 & \lambda & A_{1} & P \\
0 & -\varepsilon x^{\prime} & -\varepsilon P^{\prime} & A_{2}
\end{array}\right)
$$

where $\left[A_{1}, A_{2}, P\right.$] is the Seifert matrix for $L_{1}=K_{1} \cup K_{2}$ associated with M_{1} and $M_{2} . D$ is l-congruent to an elementary l-enlargement of $\left[A_{1}, A_{2}, P\right]$ as in [5, Theorem 1]. Q.E.D.
3. Let q denote an integer and recall that $\varepsilon=(-1)^{q}$.

Theorem 2. Let $q \geqslant 3$, and $D=\left[A_{1}, A_{2}, P\right]$ a square integral matrix such that $A_{1}+\varepsilon A_{1}^{\prime}, A_{2}+\varepsilon A_{2}^{\prime}$, and $D+\varepsilon D^{\prime}$ are unimodular. Then there is a simple boundary $(2 q-1)$-link $L=K_{1} \cup K_{2}$ with D, A_{1}, A_{2} the Seifert matrices of L, K_{1}, K_{2}, respectively.

Proof. Let B_{1}, B_{2} denote two disjoint $(2 q+1)$-balls in $S^{2 q+1}$. We know from [2, pp. 255-257] that there exist two handlebodies $M_{1}=D^{2 q} \cup h_{1}$ $\cup \cdots \cup h_{n}, M_{2}=D^{2 q} \cup h_{1}^{\prime} \cup \cdots \cup h_{m}^{\prime}$, where each h_{i}, h_{i}^{\prime} is a handle of index q; and two embeddings $g_{i}: M_{i} \rightarrow B_{i} \subseteq S^{2 q+1}$ such that $g_{i}\left(\partial M_{i}\right)=J_{i}$ represents a simple knot with Seifert matrix A_{i}. Let $\left\{a_{1}, \ldots, a_{n}\right\}$ be a basis for $H_{q}\left(g_{1}\left(M_{1}\right)\right)$ and $\left\{b_{1}, \ldots, b_{m}\right\}$ a basis for $H_{q}\left(g_{2}\left(M_{2}\right)\right)$; each represents the core of a handle in M_{1} or M_{2}. As in [2, p. 257] we may choose $n q$-spheres S_{1}, \ldots, S_{n} in B_{2} such that $L\left(S_{i}, b_{j}\right)=\delta_{i j}$ and $L\left(S_{i}, S_{j}\right)=0$. Since $S_{i} \subseteq B_{2}$, $L\left(a_{i}, S_{j}\right)=0$. Then we define a new embedding f for M_{1} such that $f=g_{1}$ near $D^{2 q}, f\left(\gamma_{i}\right)=g_{1}\left(\gamma_{i}\right) \# \sum p_{i j} S_{j}$, where $P=\left(p_{i j}\right)$ and γ_{i} denotes the core of
the handle h_{i} ．Let $c_{i} \in H_{q}\left(f\left(M_{1}\right)\right)$ represent $f\left(\gamma_{i}\right)$ ．Since $f\left(M_{1}\right)$ and $g_{2}\left(M_{2}\right)$ are （ $q-1$ ）－connected，the link $L=K_{1} \cup K_{2}$ ，where $K_{1}=\partial f\left(M_{1}\right)$ and K_{2} $=\partial g_{2}\left(M_{2}\right)$ ，is a simple boundary link［1］．Furthermore，with respect to the basis $\left\{c_{1}, \ldots, c_{n}, b_{1}, \ldots, b_{m}\right\}$ ，the Seifert matrices of L, K_{1}, K_{2} are D, A_{1}, A_{2} ， respectively．Q．E．D．
4．A Seifert matrix of a simple boundary $(2 q-1)$－link L obtained from two disjoint $(q-1)$－connected Seifert manifolds will be called special．

Lemma 1．Let $L=K_{1} \cup K_{2}$ be a simple boundary $(2 q-1)$－link with a special Seifert matrix $D=\left[A_{1}, A_{2}, P\right]$ ．If E is an elementary l－enlargement of D ，then E is also a special Seifert matrix of L ．

Proof．The proof is essentially the same as［5，Lemma 2］．
Lemma 2．For $q \geqslant 3$ ，two simple boundary $(2 q-1)$－links admitting identical special Seifert matrices are isotopic．

Proof．Let $L_{1}=K_{1} \cup K_{2}$ and $L_{2}=J_{1} \cup J_{2}$ be two simple boundary （ $2 q-1$ ）－links bounding $(q-1)$－connected Seifert manifolds M_{1}, M_{2} and N_{1} ， N_{2} ，respectively，with $M_{1} \cap M_{2}=\varnothing=N_{1} \cap N_{2}$ ．Suppose also that there exists an isomorphism $\Phi: H_{q}\left(M_{1} \cup M_{2}\right) \rightarrow H_{q}\left(N_{1} \cup N_{2}\right)$ preserving the linking form with $\Phi \mid H_{q}\left(M_{i}\right) \rightarrow H_{q}\left(N_{i}\right)$ an isomorphism．

Lemma 3 of［5］showed that M_{1} and N_{1} are isotopic submanifolds of $S^{2 q+1}$ ． Hence we may assume that $M_{1}=N_{1}$ ．According to［8］，M_{1}, M_{2} and N_{2} have handle decompositions：

$$
\begin{gathered}
M_{1}=D_{0}^{2 q} \cup \alpha_{1} \cup \cdots \cup \alpha_{n}, \quad M_{2}=D^{2 q} \cup \beta_{1} \cup \cdots \cup \beta_{m} \\
N_{2}=D^{2 q} \cup \gamma_{1} \cup \cdots \cup \gamma_{m}
\end{gathered}
$$

where each $\alpha_{i}, \beta_{i}, \gamma_{i}$ is a handle of index q ．By a further isotopy keeping M_{1} fixed，we may assume that the base disks $D^{2 q}$ in the handle decompositions of M_{2} and N_{2} coincide as imbedded in $S^{2 q+1}$ ．

We connect the boundaries of $D_{0}^{2 q}$ and $D^{2 q}$ with a path τ and then thickening τ to $\tau \times I^{2 q-1}=Q$ avoiding all handles，and meeting D and D_{0} transversely in two $(2 q-1)$－disks．But $M_{1} \cup Q \cup M_{2}$ ，with appropriate orientation，is just M_{1} 母 M_{2} ，the boundary connected sum of M_{1} and M_{2}［3］． Moreover，M_{1} ४ M_{2} is a Seifert manifold for the $(2 q-1)$－knot $K_{1} \# K_{2}$ ． Similarly，M_{1} 母 N_{2} is a Seifert manifold for $K_{1} \# J_{2}$ ．The special Seifert matrix for L_{1} and L_{2} is just a special Seifert matrix for both $K_{1} \# K_{2}$ and $K_{1} \# J_{2}$ ．Let $D_{1}=D_{0}^{2 q}$ Ł $D^{2 q}=D_{0} \cup Q \cup D$ ．Then M_{1} 母 M_{2} and M_{1} ๆ N_{2} have the following handle decompositions：

$$
\begin{aligned}
M_{1} \text { Ł } M_{2} & =D_{1} \cup \alpha_{1} \cdots \cup \alpha_{n} \cup \beta_{1} \cdots \cup \beta_{m}, \\
M_{1} \text { 勺 } \quad N_{2} & =D_{1} \cup \alpha_{1} \cdots \cup \alpha_{n} \cup \gamma_{1} \cdots \cup \gamma_{m} .
\end{aligned}
$$

According to［5，p．192］，we can move one handle β_{i}（onto γ_{i} ）at a time by an isotopy in $S^{2 q+1}-\left(D_{1} \cup \alpha_{1} \cdots \cup \alpha_{n} \cup \beta_{1} \cup \cdots \cup \beta_{i-1}\right)$ ．Thus we can map M_{1} 母 M_{2} diffeomorphically onto M_{1} 母 N_{2} by an isotopy in $S^{2 q+1}-$
$\left(D_{1} \cup \alpha_{1} \cdots \cup \alpha_{n}\right)$. Since the thickened path $Q \subseteq D_{1}$, we see that $L_{1}=K_{1}$ $\cup K_{2}$ is isotopic to $L_{2}=J_{1} \cup J_{2}$. Q.E.D.
The next theorem follows from Lemmas 1 and 2 exactly as in [5, p. 189].
Theorem 3. Let $L_{1}=K_{1} \cup K_{2}$ and $L_{2}=J_{1} \cup J_{2}$ be two simple boundary $(2 q-1)$-links, $q \geqslant 3$, with l-equivalent Seifert matrices. Then L_{1} is isotopic to L_{2}.
5. A $(2 q-1)$-link $L=K_{1} \cup K_{2}$ in $S^{2 q+1}$ is splittable if there exist two disjoint $(2 q+1)$-balls B_{1} and B_{2} in $S^{2 q+1}$ such that $K_{1} \subseteq B_{1}$ and $K_{2} \subseteq B_{2}[6$, p. 110]. The next theorem follows immediately from Theorems 1-3.

Theorem 4. A simple boundary $(2 q-1)$-link $L=K_{1} \cup K_{2}, q \geqslant 3$, is splittable if and only if it has a Seifert matrix of the form $\left[A_{1}, A_{2}, 0\right]$.

References

1. M. A. Gutiérrez, Boundary links and unlinking theorem, Trans. Amer. Math. Soc. 171 (1972), 491-499.
2. M. Kervaire, Les noeuds de dimensions supérieures, Bull. Soc. Math. France 93 (1965), 225-271.
3. M. Kervaire and J. Milnor, Groups of homotopy spheres. I, Ann. of Math. (2) 77 (1963), 504-537.
4. J. Levine, Knot cobordism groups in codimension two, Comment. Math. Helv. 44 (1969), 229-244.
5. _, An algebraic classification of some knots of codimension two, Comment. Math. Helv. 45 (1970), 185-198.
6. Y. Shinohara and D. W. Sumners, Homology invariants of cyclic coverings with application to links, Trans. Amer. Math. Soc. 163 (1972), 101-121.
7. H. F. Trotter, On S-equivalence of Seifert matrices, Invent. Math. 20 (1973), 173-207.
8. C. T. C. Wall, Classification of $(n-1)$-connected $2 n$-manifolds, Ann. of Math. (2) 75 (1962), 163-189.

Department of Mathematics, University of Kansas, Lawrence, Kansas 66045

