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AN ALGEBRAIC DECOMPOSITION OF
THE RECURSIVELY ENUMERABLE DEGREES

AND THE COINCIDENCE OF SEVERAL DEGREE CLASSES
WITH THE PROMPTLY SIMPLE DEGREES1

BY

KLAUS AMBOS - SPIES, CARL G. JOCKUSCH, JR., RICHARD A. SHORE AND
ROBERT I. SOARE

Abstract. We specify a definable decomposition of the upper semilattice of
recursively enumerable (r.e.) degrees R as the disjoint union of an ideal M and a
strong filter NC. The ideal M consists of 0 together with all degrees which are parts
of r.e. minimal pairs, and thus the degrees in NC are called noncappable degrees.
Furthermore, NC coincides with five other apparently unrelated subclasses of R:
ENC, the effectively noncappable degrees; PS, the degrees of promptly simple sets;
LC, the r.e. degrees cuppable to 0' by a low r.e. degree; SPH, the degrees of
non-Wi-simple r.e. sets with the splitting property; and G, the degrees in the orbit of
an r.e. generic set under automorphisms of the lattice of r.e. sets.

0. Introduction. Let (R, < , U, n) denote the upper semilattice of recursively
enumerable (r.e.) degrees with partial ordering induced by Turing reducibility and U
and n the join and meet operations when the latter is defined. (Unless otherwise
specified all sets and degrees will be assumed to be r.e.)

Sacks [1966, p. 170] asked whether there exists a minimal pair namely incompara-
ble r.e. degrees a and b such that a n b = 0. Shoenfield [1965] formulated a general
conjecture about R which implies among other things that minimal pairs do not
exist. Lachlan [1966] and independently Yates [1966] refuted Shoenfield's conjecture
by constructing a minimal pair. Both minimal pairs and the method for constructing
them have played an important role in the study of r.e. degrees. An r.e. degree a is
cappable (caps) if there is an r.e. degree b > 0 such that a n b = 0 (i.e. if a is 0 or is
part of a minimal pair), and a is noncappable otherwise. Furthermore, a is effectively
noncappable if the witness to its noncapping can be found effectively (as defined
more precisely in §1). Yates [1966] also showed that there exist r.e. degrees a < 0'
which are noncappable, indeed effectively noncappable. Let M, NC and ENC denote
the classes of cappable, noncappable and effectively noncappable r.e. degrees,
respectively.

We prove that M is an ideal in R (closed downward and under join) while its
complement NC is a strong filter (closed upwards and for all a, b e NC there exists
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c e NC, c < a and c < b). This gives the first algebraic decomposition of R into the
disjoint union of a (definable) ideal and a (definable) filter, and like the density
theorem of Sacks [1964] it emphasizes the regularity of the structure of R rather than
its pathology. In the process we also show that NC = ENC which we found
surprising because in recursion theory a notion rarely coincides with its effective
counterpart. (For example, an r.e. set A is nonrecursive iff A is noncomplemented in
&, the lattice of r.e. sets under inclusion, but A is effectively noncomplemented iff .4
is creative and hence of degree 0', the maximum r.e. degree.)

In a dual fashion we say that an r.e. degree a is cuppable (cups) if there is an r.e.
degree b < 0' such that a U b = 0', and a is low cuppable if there is such a b which is
low (i.e. b' = 0'). Let LC denote the class of low cuppable degrees. The cuppable and
noncuppable degrees have also been extensively studied. For example Cooper, Yates
and Harrington have constructed various r.e. degrees which are not cuppable (see D.
Miller [1980]). Furthermore, Harrington has shown (see Fejer and Soare [1980]) that
every r.e. degree a either cups or caps and some degrees do both. We sharpen
Harrington's results by proving that NC = LC, namely that every r.e. degree a either
caps or low cups, but no degree can do both, thereby eliminating the overlap in
Harrington's second result.

These equivalences were discovered by studying the degrees of promptly simple
sets, a computational complexity analogue of Post's simple set introduced by Maass
[1982] for studying orbits of r.e. sets under automorphisms of S, the lattice of r.e.
sets. The notion of a promptly simple set is a dynamic one which takes into account
how fast elements appear in A relative to their appearance in other r.e. sets under
some standard simultaneous enumeration of all r.e. sets. Maass discovered that this
is the correct notion needed to satisfy the Extension Theorem of Soare [1974] for
generating automorphisms of &, and using this and Soare [1982a] Maass showed that
any two promptly simple sets A, B which are low (indeed such that A and 77 are
merely semilow, namely (x: Wx n A * 0} <r 0') are automorphic. Furthermore,
Maass introduced the notion of an r.e. generic set, based on effectivizing the
construction of a Cohen generic set, and he showed that any r.e. generic set is both
promptly simple and low. Hence, the " typical" or generic set constructed by a finite
injury priority construction tends to be both promptly simple and low. Let PS
denote the class of degrees of promptly simple sets and G the degrees of sets
automorphic to some promptly simple low set (i.e. automorphic to Maass's r.e.
generic set). We prove that NC = PS = G. The latter equality uses results by Maass
and the authors.

Maass, Shore and Stob [1981] showed that prompt simplicity, while not itself
S-definable, implies a certain splitting property which is S-definable, and they
introduced the class SPH of degrees of r.e. sets with this splitting property but which
are not ««-simple. They showed that SPH non trivially splits all the classes Hn, Ln,
n e u, in the usual high-low hierarchy within R defined in terms of the jump
operator. We prove that NC = PS = SPH. As a corollary we have an S-definable
class of r.e. sets whose degrees SPH are also definable in R (as NC). Also we have an
R-definable class (NC) which nontrivially splits all the classes H„, L„, « e u>, in the
high-low hierarchy.
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AN ALGEBRAIC DECOMPOSITION 111

In §1 we prove the equivalences ENC = NC = PS = LC = SPH = G. Most of
these are easy to prove. The most difficult and the main theorem of §1 is the proof
that NC ç PS. This uses a gap-cogap argument like that introduced by Lachlan and
used to prove the Harrington cup or cap theorem. In §2 we see that NC is a strong
filter by observing that ENC trivially is a strong filter. We prove that M is an ideal
by using a variation of Lachlan's nondiamond theorem [1966, Theorem 5] to show
that PS is an ideal. For other properties of promptly simple sets and degrees see
Maass [1982] or Maass, Shore and Stob [1981], and for their relation to other
computational complexity properties see Soare [1982b].

We assume familiarity with the basic definitions and results in recursive function
theory as found in Rogers [1967] and Soare [1978], and we use mostly the notation
of the latter with the following additions. Fix a 1 : 1 recursive function F from w
onto ((x, e): x g We). Let Wes = (x: (3/ < s)[F(t) = (x, <?)]}. Hence, at each stage
s, F(s) = (x, e) causes exactly one element x to be enumerated in one r.e. set We.
Let x g We%ats denote that x g We s — Wes_x i.e. F(s) = (x, e). More generally if
(Ve s: e, s e w} is any (recursive) enumeration of a sequence {Ve: e g w) of r.e. sets,
Ve = Us Ves, then x g Veat s denotes x g Ves - Ves_x. We identify a set A ç w
with its characteristic function and let A [ « denote A n (0,1,..., n — 1}. If (e)^(x)
= y we define the use function u(A; e, x, s) to be 1 + the greatest element z used in
this computation, and u(A; e, x, s) = 0 otherwise. We assume that the definitions
are arranged so that if (e)A(x) = y then e, x, y,u < s where u = u(A; e, x, s). If we
build an r.e. set F or a partial recursive function ip by a recursive construction, we let
Vs (respectively \¡/s ) denote those elements enumerated in F (graph \p ) by the end of
stage s of the construction. We let {e)A(x)i = v denote that (e)A(x) converges and
yields output v. A strong r.e. (s.r.e.) array {Fn: « g u) of finite sets is one for which
there exists a recursive function / such that Fn = Dj(n) where y = 2X< + 2*1 + ■ ■ • +
2X" is the canonical index of the set 77(1 = {x, < x2 < - - •  < x„).

1. Equivalences of certain properties of r.e. degrees. Post defined a coinfinite r.e.
set A to be simple if We n A * 0 for every infinite r.e. set We. For A to be promptly
simple, some element x entering We at stage s must enter A "promptly", namely by
the end of stage p(s) in the enumeration of A.

Definition 1.1. A coinfinite r.e. set A is promptly simple if there is a recursive
function p and a recursive enumeration (As: s & u¡) oí A such that for every e

(1.1) ^infinite =*(3i)(3x)[x G Weatî n Ap(s)\.

(Note that we may assume that p is nondecreasing by replacing p(s) if necessary
by max(p(/): / < s}.)

The definition of prompt simplicity is independent of the particular enumeration
in the following sense.

Proposition 1.2. If A is promptly simple and [As: s g u) and {Ve s: e, s g w) are
s.r.e. arrays of finite sets such that A = Uj^!, We= Us Ve s, As ç As+X, Ve ç
Ves+X, and max({e: Ve s *= 0)) is recursively bounded, then there is a recursive

function q such that for all e,

^infinite - (3*)(3x)[x g Veats n Âq(s)}.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



112 KLAUS AMBOS-SPIES, C. G. JOCKUSCH. JR.. R. A  SHORE AND R. I   SOARE

Proof. Let A be promptly simple via p with respect to {As: s g u). Given s,
compute for each x g Ves - Ve s_, the least t such that x g We t and let q(s) be the
least number u such that Au D A (t) for all such t.   ■

Most simple sets in the literature, such as Post's simple set, are automatically
promptly simple, and often with p the identity function. The following characteriza-
tion which does not mention enumerations shows that prompt simplicity is recur-
sively invariant (i.e. invariant under recursive permutations of w). This characteriza-
tion is similar to the analogous recursion theoretic characterization of nonspeedable
sets (see Soare [1977, Theorem 2.4]) which are related to promptly simple sets by
Maass's theorem [1982, Theorem 17] that any two sets with both properties are
automorphic. The following theorem is proved in Maass [1982, Lemma 11] and
Maass, Shore and Stob [1981, Theorem 1.3].

Theorem 1.3 (Maass). The following are equivalent for an r.e. set A :
(i) A is promptly simple;

(ii) A is coinfinite and there is a recursive function f such that, for all ee«,

(1.2) rVf(e)QWe,

(1.3) ¡vfle)nÀ~=WenÀ~

and

(1.4) ^infinite => We - Wf(e) * 0 .

(iii) The same as (ii) but with ( 1.4) replaced by

(1.5) ^infinite => We- Wf(e) infinite.

Proposition 1.4 (Maass, Shore and Stob [1981]). If A Q B are r.e. sets, B is
coinfinite and A is promptly simple then B is promptly simple.

Proof. Choose enumerations {^5}seu, {Bs)s^u such that As ç Bs. If p satisfies
(1.1) for As, then a fortiori p satisfies (1.1) for 7?..   ■

Indeed it is easy to show (Maass, Shore and Stob [1981, Theorem 1.4]) that the
promptly simple sets are also closed under intersection, and hence together with the
cofinite sets from a filter in S. By a more difficult argument, Maass, Shore and Stob
[1981, Corollary 1.6] also show that the class PS of promptly simple degrees forms a
strong filter in R, namely: (i) PS is upward closed; and (ii) whenever a, b g PS there
exists c g PS, c < a, b. We shall obtain (i) as Corollary 1.7 to Theorem 1.6 and (ii)
as an immediate corollary of ENC = PS (Corollary 1.14) since ENC is easily seen to
satisfy both (i) and (ii) (by Lemma 1.12).

The following lemma will be essential in several theorems below.

Lemma 1.5 (Slowdown lemma). Let {Ue s: e, s g u) be an s.r.e. array of finite
sets such that Ue s ç. Ue J+, and Ue = Us Ue s. Then there is a recursive function g such
that for all e, Wg{e) = Ue, and rVg{e)s n Uea[s = 0 (namely any element enumerated
in Ue appears strictly later in Wg(e)).

Proof. By the recursion theorem define

Wg(e)={X:i3s)[XeUe,-Wg(e) J).   ■
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AN ALGEBRAIC DECOMPOSITION 113

Note that by the recursion theorem we may use Wg{e) in a construction during
which we define the array (Ues).

Theorem 1.6 (Promptly simple degree theorem). Let A be an r.e. set and {As:
s G «} a recursive enumeration of A. Then A has promptly simple degree iff there is a
recursive function p such that for all s,p(s) > s, and for alle,

(1.6) ^infinite -* (3x)(3s)[x g We<als&A,t x * ApU)l x],

namely A "promptly permits" on some element x G We.

Proof. (=>) Let 77 = [e)A where B is promptly simple via q(s) satisfying (1.1),
and let {Bs)seo be a recursive enumeration of B. We define p satisfying (1.6) and
simultaneously construct an s.r.e. array {Uey. e, s G «} to which we apply Lemma
1.5. Setp(0) = 0.

Stage s > 0. (Definep(í).) Choose the unique e and x such that x g We atJ. If We
does not yet satisfy (1.6) and there exists y g BsC\ Ues_x such that [e)A'(y)[ = 0
and u(As; e, y, s) < x, then enumerate the least such>> in Ues. Find the least t such
that y g W ,e),, where Wg{e) is obtained from {Ues: e, s g u) by Lemma 1.5. Let
p(s) be the least v > q(t) such that Bv(y) = (e)A"(y). (This ends the construction.)

Now if We is infinite but fails to satisfy (1.6), then Ue is infinite (because 77 is
infinite). Hence, by the prompt simplicity of B, there exists>> g Wg(e) aU n B U). But
y e Ue, at í for some s < t such that (e)A*(y)l = Bs(y) = 0. Now y g Bq(l) - Bs
implies As\ u * Ap(s)\ u, where u = u(As; e, y, s). But y entered Ue only for the
sake of some x g We atJ, x > w, so (1.6) is satisfied for We.

(<=) Given p(s) satisfying (1.6) we use the usual permitting and coding methods
to construct B =TA such that B is promptly simple via the identity function. We
must meet, for all e, the requirement

Pe: ^infinite => (3x)(3î)[x g WeMl n 77j.

Define B0 = 0.
Stage s > 0. Let Bs_, = {bs0~ ' < b\~ ' < • • • ).
Step 1 (for prompt simplicity). Choose the unique x and e such that x g W^ at s. If

x > bse] and Fe is not yet satisfied, compute Ap(s) and if As\ x * A {s)\ x enumerate
x in B.

Step 2 (to code A into 77). For each x ^. As - As_x, enumerate bsx~ ' in 77.
This completes the enumeration of 77. Now 77 ̂ TA since if x g Bs - Bs_x then

A[ x *= As_x\ x. But 77 is promptly simple since if We is infinite then the conclusion
of Pe is satisfied by the construction, (1.6), and (ii) => (iii) of Theorem 1.8 below.
Also A <r77 since if bx = Mmsbsx and 77sr (bx + 1) = B\ (bx + 1) then x g A iff
XG^(s.     ■

Corollary 1.7 (Maass, Shore and Stob). If b g PS and b < a g R then
a g PS.

Proof. Suppose 770 and A are r.e. sets, 7i0 is promptly simple, and 770 <r/L Then
by the proof of (=>) of Theorem 1.6 there exists p satisfying (1.6) for A. Hence by
( <= ) of Theorem 1.6 there is a promptly simple set 77 = TA.   ■
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A less direct proof of Corollary 1.7 using a theorem of Lachlan [1968, Theorem 1]
was given by Maass, Shore and Stob [1981, Corollary 1.6]). Still a third proof can be
given by combining the proof of ( =* ) of Theorem 1.6 and the proof of Theorem
1.10.

Although not used as often as Theorem 1.6, the following theorem gives some
additional characterizations of an r.e. set A having promptly simple degree.

Theorem 1.8. Let A be an r.e. set and [As: s g w) a recursive enumeration of A.
Then the following are equivalent:

(i) A has promptly simple degree.
(ii) There is a recursive function p satisfying (1.6).

(iii) The same as (ii) but with "(3°°x)" in place of "(3x)" in (1.6), where 3°°x
denotes "there exist infinitely many x ".

(iv) Whenever {Ues: e, s g w} is an s.r.e. array of finite sets such that We = Us Ue s
and i/tsç Ue s+ x there is a recursive function p(s) satisfying (1.6) with "Ue " in place
of"WJ\

(v) The same as (ii) but with "We = w" in place of "We infinite".

Proof, (i) <=» (ii) was established in Theorem 1.6, and (iii) =» (ii) is obvious,
(ii) => (iii). Given q(s) satisfying (ii), we define p(s) satisfying (iii). Using the

recursion theorem define

^o,,) ={x:x> n&(3s)[x g We, - Wg(e^s]).

For each s, find x and e such that x g Weat s. For each « < s, if x > n find the least
t such that x g Wg(e n)r Definep(s) to be the maximum of q(t) over all such t.

Fix «. Now if We is infinite then Wg(e n) is infinite so

(3x)(3t)[x g Wg(et„)Mt&A,i x * Aq(l)[ x].

But then x g We ats for some 5 < t and x > «. However, q(t) < p(s) so

*G WeMs   and   As\ x*ApU)\ x.

Since « was arbitrary, there are infinitely many such x, so p satisfies (iii).
(iv) => (ii). Define Ves = Wes.
(iii) => (iv). Let q(s) satisfy (iii). We define p(s) to satisfy (iv). Apply Lemma 1.5

to {Uey. e, s g to) to obtain g(e). Given s, for all x and e < 5 such that x g Ue s find
the least t such that x g Wg(e)l and letp(s) be the maximum of q(t) over such t.

(ii) =» (v). Immediate.
(v) => (ii). Let q(s) satisfy (v). We define p(s) satisfying (ii), by first defining an

s.r.e. array (Ues) and applying Lemma 1.5. If x g We at s and x £ Ues_x then
enumerate in Ues all y < x, y £ Ues_ x. If there is no such x let Ues = i7eiS_,. Apply
Lemma 1.5 to (Ues) to obtain g. Given s, find x g IFe at s and then í such that
* G ^g(e),atr (since ^g(e) 2 »;) and definep(i) = q(t).

Now if W^ is infinite then Wg{e) = w, so

(3^)(3r)[ v g Wg(e)<M,&.A,\y* Aq(t)ty].

Choose s such that y g í/e_at f. Then í < í by hypothesis on g. Choose the unique
x g JFe-atí. Now>- < xandí < t < ^f(F) <p(í), soAj x * Ap{s)\ x.   M
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AN ALGEBRAIC DECOMPOSITION 115

Definition 1.9. Let A be an infinite r.e. set and / a 1 : 1 recursive function with
range A. The deficiency set of A with respect to / is the r.e. set

B = {s: (3t >s)[fit) <fis)]}.
It is well known that A =TB and that if A is nonrecursive then B is hypersimple

(see Rogers [1967, p. 140]). It is often the case that if there is some r.e. set
C g deg(^l) with a certain property (such as being simple, hypersimple, or atomless)
then the deficiency set 77 itself has this property, thus providing a very convenient
example of such a C. For example, Shoenfield [1976] showed that if deg(A) contains
an atomless set (i.e. if deg(^4) is not low2) then 77 is atomless. A coinfinite r.e. set A is
atomless if A is not contained in any maximal set. Next we extend this principle to
prompt simplicity by showing that if A has promptly simple degree then 77 must be
promptly simple. (It then follows from a result of Maass [1982] that if Ax and A2 are
any two low r.e. sets of promptly simple degree then their deficiency sets 77, and 772
are automorphic.)

Theorem 1.10. Let A be an r.e. set of promptly simple degree. Then the deficiency
set B of A is a promptly simple set.

Proof. Let 77 be the deficiency set of A with respect to a 1 : 1 recursive function /
having range A. LetAs = (/(0), /(l),...,/(s)) and

Bs = {t:t^s&(3v)[t < v^s&f(v) <f(t)]}.

Let A be of promptly simple degree via q(s) satisfying (1.6). We shall define a
prompt simplicity function p(s) for (77J}jeu satisfying (1.1) with 77 in place of A. As
usual let g(e) be the result of applying Lemma 1.5 to the s.r.e. array (Uey. e, s g w}
which will be defined during the construction.

Set p(0) = 0. Given s > 0, find x g WeMs. lî x e Bs, set p(s) = s. Otherwise,
enumerate f(x) in Ues, find the least t such that f(x) g W{e)t, and define
p(s) = max(x, q(t)). If We is infinite but fails to promptly intersect 77 then W (e) is
infinite so

(3x)[/(x) g Wg(ehaU&A,tf(x) * Aq(t)tf(x)].

But if x g WeMs then s < t < q(t) < p(s), soAjf(x) =* Ap(s)[ f(x), which implies
thatxeBp(s).   m

Promptly simple degrees may now be connected to noncappable and effectively
noncappable degrees after a few definitions and elementary properties.

Definition 1.11. (i) An r.e. degree a is cappable if there is an r.e. degree b > 0
such that a n b = 0, and a is noncappable otherwise.

(ii) An r.e. degree a is effectively noncappable (e.n.c.) if there is an r.e. set A g a
and a recursive function / such that for all e,

(a) W,(e) <r A uniformly in e,
(b) Wj(e) <r We uniformly in e, and
(c) Wt nonrecursive => Wf(e) nonrecursive.

(Namely, Wf{e) is an effective witness to the fact that the degrees of A and We do not
cap to 0.)
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Note that in (b) we may replace A if necessary by 0 {Wf{e): e g u) =dfn {(x, e):
x g Wf(e)) so we may assume Wj{e) = Aie] where

¿M=dfn(<*. y):(x,y)eA&y = e).

(To insure that A <r 0 {Wf(e)) we require that 0 g Wf{e) iffeei) Recall that
NC and ENC denote the degrees of noncappable and effectively noncappable r.e.
sets, respectively.

Lemma 1.12. ENC is a strong filter in R, namely
(i) a < b g R anda G ENC => b G ENC, and

(ii) a,b g ENC => (3c g ENC)[c < a,b].

Proof, (i) is immediate from the definition. For (ii) choose r.e. sets A G a and
77 g b which are e.n.c. via / and g, respectively. Then C = 0 {Wgifie)): e g w} is
e.n.c. via h = gf.   ■

The next theorem is the most difficult in this paper and yields the main equiva-
lences ENC = NC = PS as well as the fact that these all form strong filters.

Theorem 1.13. NC ç PS.

Corollary 1.14. ENC = NC = PS.

Proof. Clearly ENC ç NC. Maass, Shore and Stob [1981, Theorem 1.11] have
shown that PS ç NC, although their proof clearly demonstrates that PS ç ENC.
Equalities thus follow from Theorem 1.13.

Corollary 1.15. NC and PS each form strong filters in R.

Proof. By Corollary 1.14 and Lemma 1.12. (A different proof for the case of PS
was given by Maass, Shore and Stob [1981, Corollary 1.6].)   ■

Proof of Theorem 1.13. Fix an r.e. set 77 and a recursive enumeration {77^^ of
77. We shall construct an r.e. set A by a recursive enumeration {As)s(Eu such that
either A is nonrecursive and deg(A) n deg(77) = 0, or else B has promptly simple
degree.

To attempt to meet the first alternative we use the usual minimal pair method as
presented in Soare [1980, Theorem 4.2]. Namely we must construct A to satisfy for
every e e w the requirements Pe: We infinite => We n A =*= 0 and Ne: {e)A = {e)B =
fe => fe is recursive. From {At; t < s) and {77,: t < s) define the recursive functions

lie, s) = max{x: (Vy < x)[{e)^(y)i = {etfiy)]}

and

m(e, s) = max{7(e\ t): t < s).

Call j an e-expansion stage if l(e, s) > m(e, s). (Thus, if {e)A = {e)B and {e)A is
total then there are infinitely many e-expansion stages.)

Simultaneously with the construction of A we define for each e a recursive
function pe such that either requirement Ne is met or else pe witnesses that 77 has
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an algebraic decomposition 117

promptly simple degree, namely (using Theorem 1.6) that pe satisfies for all / g to the
requirement

Rey. W, infinite - (3x)(3*)[x g WiAis&Bs\ x * Bp(s)[ x

Before giving the full construction we sketch the basic module for a single
requirement. Fix e. We must satisfy the requirement

Re:Ne   or    (V/)*,.,.

For each / we define a partial recursive function \pe, such that if {e)A = [e)B is total
and i is minimal such thatpe fails to satisfy ReJ then \pei = [e)B so that Ne is met. To
accomplish this we define a recursive "restraint" function r(e, i, s) which is the
restraint imposed by Re ¡, and which tends to restrain elements from entering A. We
define r(e, s) = max{r(e, i, s): i < s), which is the restraint imposed by 7^, and it
prevails against the positive requirements of lower priority; namely P¡,j > e.

At stage s + 1 we open an Re ,-gap by choosing the least i (if one exists) such that
Re, is not yet satisfied and such that there exist x g W¡m s and y g dom{e}fs -
dom^ is) with y < l(e, s) and uv < x where

uy = û(Bs;e,y,s) =dfn max{«(77s; e, y', s):y' ^y).

We define i<e ((z) = (e)f'(z) for all z < _v, z ê dom(t//f, s) and r(e, j,s + 1) = 0
for all/ ^ i.

This gap is later closed at stage t + 1 where / > s is the next e-expansion stage
after s. At stage (+ 1 we define pe(s) = t and set r(e, i, t) = t as /1-restraint (since
by convention u(As; e, z, t) < t). Notice that if Bs\ uy * 77,\ uv then Bs[ x =* B,[ x,
so pe satisfies requirement Re ¡ via x. Thus, if Re, is never satisfied then any value
"/'c ,■(y) = w once defined is protected by the 77-side, {e)B"(y) = w at all later stages v
in this gap, i.e. s + 1 < v < r.

Hence, if {e}'4 = {e}fi and 77 is not of p.s. degree, choose the least / such that W¡ is
infinite, but Re, is never satisfied. Then \¡Jej = {e)B because once ^ei(y) = w is
defined at some stage, the 77-side holds the computation at all later stages which lie
in some Re ,-gap and the A -side holds the computation (because of the A -restraint
r(e, i, s)) during all the corresponding cogaps (intervals between gaps). Further-
more, liminfj r(e, s) < oo since at each stage s when an 7?^ ,-gap is opened,

r(e,s) = ma\{r(e, j,s):j < i)

(since all restraint imposed by Re ,, j > i, is dropped when Re, opens a gap). Of
course if there is no i such that infinitely many Re ,-gaps are opened then we may
have Umy r(e, i, s) > 0 for all i so that liming r(e, s) = oo, but in this case B is of
promptly simple degree and we need not meet the requirements Re,, e' > e. This
ends the basic module for a single requirement Re.

The strategy adjust given for meeting a single requirement Re, say RQ, produces
an A -restraint function r(0, s) such that liminfs r(0, s) < oo. As in the minimal pair
construction (Soare [1980, Theorem 4.2] or Fejer and Soare [1980]) we modify the
strategy oe for Re, when e > 0, so that the various restraint functions r(i, s), i < e,
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drop back simultaneously, namely \iminisr(e, s) < oo where r(e, s) = max{r(j, s):
j < e). To do this Re must guess the value of k = liminfs r(e — 1, s) (the maximum
restraint imposed at stage s by any 7?^., e' < e) and must simultaneously play
infinitely many strategies ok, k g «, one for each possible value of k. Each strategy
ok is played like a0 but with Sk = {s: f(e — 1, s) = k) in place of u as the set of
stages on which it is active. Strategy ok still succeeds if any restraint it imposes is
maintained during the intermediate stages s S Sk namely those stages when ok is
dormant. Thus, at stage í if k = f\e - \,s), we play ok, maintain the restraints
previously imposed by the (dormant) o'e, i < k, and discard restraints imposed by o¿,
j > k. Therefore, if k = liminf5r(e - 1, s), then: (1) the strategy ok succeeds in
meeting Re; (2) the strategies o'e, i < k, impose finitely much restraint over the
course of the whole construction; and (3) the strategies o'e, i > k, drop all restraint at
each stage s g Sk. Thus, the entire restraint r(e, s) imposed by all the Ä -, / < e,
together has liminf5 r(e, s) < oc.

In addition, as in Fejer and Soare [1980, §3] we arrange that ok is allowed to open
an Rk ,-gap (and drop its /1-restraint) only at a stage í g Sk. However, ok is allowed
to close that gap (thereby reimposing A -restraint and defining pk(s)) at any stage /
(providing t is an e-expansion stage). Thus, we have a sufficiently small amount of
restraint so that liminfs r(e, s) < oo, and yet we close the gaps often enough so that
if (e)A = {e)B then every Rk ,-gap is closed (at the next e-expansion stage) so that pk
is total. In the following proof we use the notation r(e, s) in place of r(e, s) to
denote the maximum restraint imposed by all Rf for/ < e.

Construction of A,pk and\pk ¡.
Stage s = 0. Do nothing.
Stage s + 1. For each e < s perform in increasing order of e the following steps.
Step 1. Let k = r(e - 1,5+ 1). (We define r(- 1, t) = 0 for all t.) For each/ > k

cancel any gap or restraint previously imposed by RJe,, for any i.
Step 2 (closing gaps). If í is not an e-expansion stage go to Step 3. Otherwise, if

there is an 7?^ ,-gap which was opened at some stage v < s and has not been closed
or cancelled, then declare the gap to be closed, define p/(t) = s for all / < v not in
domain pJe, and let RJei assign s as A -restraint (since s > u(As; e, x, s) for all x <
l(e,s)).

Step 3 (opening gaps). Let s' = max(/ < s: r(e - 1, t) = k) if such t exists and
= 0 otherwise. Choose the least i < s such that Rk , is not yet satisfied and

(3x)(3y)[x g Wls - Wis.&y g dom({e}f') - dom(^,,s)

&l(e,s)> y&ü(Bs;e, y,s) < x],

where

«(77^; e, y, s) = max{u(Bs; e, z, s): z < y).

Choose the least such x and y and open an Rk ,-gap by defining ^k ¡(y) = {e)f°(y),
and cancelling for all/ > i any /1-restraint associated with Rk ,. If i fails to exist do
nothing. (Note that some Rk ,-gap may have been closed at step 2 and a new one
opened at step 3 in which case any ^-restraint put on by Rk ¡ at step 2 is cancelled at
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step 3.) Let r(e, s + 1) be the maximum of the A -restraint still imposed by Rke, ¡, for
some e' < e, k' < s, Ï < s.

Step 4 (Making^ simple). If Wes n As = 0 and

(3v)[vg Wes&y>2e&y> r(e,s+ 1)],

choose the least such v and enumerate y in A.
This completes the construction.
Assume that 77 is not of p.s. degree. Hence, for all e, there exists i such that Wl is

infinite but ReJ is not satisfied. We must show that for all e requirement Ne is
satisfied and liminf5. r(e, s) < oo, since then it is automatic by step 4 of the
construction that A is simple.

Fix e and assume by induction that for all e' < e, Ne, is met and that

\iminir(e', s) < oo.
s

Letk = liminfó r(e - \,s). Let Sk = {s: r(e - 1, s) = k). Assume that {e)A = [e)B,
a total function. Choose the least i such that W¡ is infinite but Rk, is not satisfied.
Since there are infinitely many Rk ,-gaps, \pk, andp* are total and recursive. Choose
s0 such that for all s > s0: (1) no Rk'r-gap is opened or closed at stage s if k' < k or
V < i; and (2) Pe, does not contribute an element to A at stage s if e' < e.

Now suppose that ^¿(y) = z is defined at some stage s + 1 > j0. We claim by
induction on v > s that either

(l){e)*»(>0 = z,or
(2){e)Ay(y) = z,

and hence that fe(y) = z. (Thus, /,(y) = i>k_,(y) for almost all y so Ne is satisfied.)
To prove the claim note that at stage s + 1 we open an Rk ,-gap via y and some

x g Wis - Wis.. Choose v, s' < v < s, such that x g PF, at v. Necessarily pks(t) is
undefined for all t, s' < t (since pk(t) is defined only when a gap begun at a stage
> / is closed, Rk ,-gaps are only begun at stages g Sk, and s' is the most recent such
stage < s). By choice of s0, no Rk ,-gap is ever cancelled after s0, so the above gap
must be closed at stage t + 1, where í is the next e-expansion stage > s. Now
pk(v) = t, and u < í < t, so Bs\ x = B,\ x because Re ¡ is never satisfied. But
m(77.; e, y, s) < x, so (1) holds for all v, s + 1 < v < t, namely those stages v in the
#l¿-gap.

Now at stage t + 1, this 7?* ,-gap for^ is closed, and RkeJ sets t > ¿¡M,; e, y, t) as
^-restraint. But by choice of s0, no such /4-restraint is ever injured after s0. Hence,
this A -restraint remains in force until the next stage sx + 1 3s t + 1 at which the next
7?* ,-gap is opened via j>, = y + 1. But since ü(X; e, yx, v) ^ ü(X; e, y, v) for all v,
the above argument shows that (1) holds for all stages v in the 7?* ,-gap opened byyx.
Thus,

(1) holds for all v in the 7?^ ,-gaps and
(2) holds for all v in the Rk ,-cogaps.
Finally, let r(e) be the maximum of k and the restraint imposed by Rk r for

k' < k or i' < i. Now r(e, s) = r(e) at every stage s when an Rk ,-gap is opened.
Hence, r(e) = liminîsr(e, s) < oo.    ■
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Corollary 1.16. There is a recursive function f such that if deg(We) is part of a
minimal pair then deg(We) and de%(WfU)) form a minimal pair.

Proof. Apply Theorem 1.13 with 77 = We to obtain uniformly WfU) = A.   ■
Harrington proved the cup or cap theorem (see Fejer and Soare [1980, Corollary

2.4]) which asserts that every r.e. degree caps (to 0) or cups (to 0') and also proved
that some degrees do both. We now prove that NC = LC, namely that every r.e.
degree either caps or low cups but none does both, thereby eliminating the overlap
in Harrington's Theorem.

Theorem 1.17. NC ç LC, namely if an r.e. degree a is noncappable then a low cups
to 0' in that a U b = 0' for some low r.e. degree b.

Corollary 1.18. NC = LC.

Proof. Ambos-Spies [1980, Theorem 4.1] proved an extension of Lachlan's
nondiamond theorem [1966] by showing that there are no r.e. degrees a0, a,, b0, b,,
c0, c, such that b0 U b, is low, a0 U a, = 0', b, < c, and a, n c, = b, for i = 0,1. It
follows (taking b0 = 0, b, = a, low, and c, = 0') that no cappable r.e. degree a0 can
be cupped to 0' by any low r.e. degree a,. Therefore, LC ç NC.   ■

Proof of Theorem 1.17. By Theorem 1.13 it suffices to show that PS ç LC.
Choose 77 contained in the odd numbers, 2« + 1, and p according to Theorem
1.8(iii) (i.e. p satisfies (1.6) for infinitely many x). We wish to build a low r.e. set
A ç 2to such that K ^TA © 77, where K = {e: e g We). Note that A ® B =TA U 77.
Choose an index j for K and let Ks = WJS. We have a list of "coding markers"
{r„}„eu, and we let Ysn denote the position of Tn at the end of stage s. We arrange
that for all « and s, T* is even and

(i)«e/i--7cJ-(^Ju77J)r(r;+ i)*(A u5)r(r;+ i),
(2)r;<rr1andr„í<r„í+),
(3) r„j < r;+■ - (a, u b,)\ (r; + i) * (A u 77)r (r; + i), and
(4) (V «)[/(«) =dfnlimírní< oo].
These conditions clearly guarantee that K ^TA U B since f^TA U 77 by (3) and

(4), and for each « if j is such that (A U 77)r (/(«) + 1) = (As U 77Jr (/(«) + 1)
then« g AT iff« g Tí^byO).

To make A low we meet for all e the lowness requirement

Ne: (3xs)[{e)A'(e) converges] => [e)A(e) converges.

We accomplish this by attempting to clear from the yl-use A \ u(As; e, e, s) of the
computation (e)A'(e) all markers Tn, n > e, by using the prompt simplicity of 77 to
force 77 \ V* to change. During the construction we define r.e. sets Ue, e g u. Let g be
the corresponding recursive function obtained by Lemma 1.5.

Construction of A.
Stage s = 0. Set r„° = 2« for all « G to.
Stages + 1.
Step 1. Find the least e such that (e)As(e) converges and T¡ < u(As; e, e, s). (If

no such e exists go to step 2.) Enumerate F/ in Ue. Find the least stage / such that
r;^ lVg(e)t. (By Lemma 1.5, s < t.)
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Case 1 (Free clear). 77.r r/ =* B w\ F*. Move all markers T,, / > e, maintaining
their order to new even positions in As and greater than u(As; e, e, s).

Case 2 (Capricious destruction). By T/ = Bp(l)[ r/. Enumerate F/ in /I (thereby
capriciously destroying the computation (e)f'(e)), and move all markers r„ /' > e,
maintaining their order, to new even positions in As greater than their old positions.

Step 2. If « g Ks+, - Ks enumerate the current position of Tn into A and move all
markers Tm, m > «, to new even positions not yet in A.

This ends the construction.

Lemma 1. (V «)[/(«) = lim, FnJ < oo].

Proof. If not find the least « such that r„ moves infinitely often, and choose s0
such that Kj (n + 1) = Ksj (n + 1), and T^> = limv r¿ for all m < « and s > s0.
Now since Tn moves infinitely often after s0, Wg(n) is infinite but case 1 never applies
after stage s0 (else the computation would remain cleared forever). At each stage
s + 1 > s0 when the construction applies to V*, x = T* is enumerated in Urís+ x and
hence in Wg{n)t for some t > s but 77, r x = BpW\ x, so Wg(n) violates p being a
prompt simplicity function for 77 satisfying Theorem 1.8(iii).

Lemma 2. (Ve)[Ae is satisfied] and hence A is low.

Proof. Choose a stage s such that (e}A>(e) converges and for all i < e, F/ =
lim, T/. Now r* > u = u(As; e, e, s) else some T¡, i < e, moves at stage s + 1
(whether case 1 or 2 applies) contrary to the choice of s. Hence As \ u = A [ u so
(e)A(e) converges.    ■

Another class of r.e. degrees was introduced by Maass, Shore and Stob [1981] in
applying prompt simplicity to study the lattice S of r.e. sets. Although prompt
simplicity is neither definable in S nor invariant under automorphisms of S it
implies a certain splitting property which is definable in S.

Definition 1.19. An r.e. set A has the splitting property if for every r.e. set 77 there
are r.e. sets 770 and 77, such that

(i) 770 U 77, = 77,
(ii)770n5, = 0,

(iii)770ç^,
(iv) if W is r.e. but IF - 77 is not r.e., then W — B0 and W — 77, are not r.e.
Maass, Shore and Stob proved [1981, Theorem 2.2] that if A is promptly simple

then A has the splitting property. Let SPH denote the class of r.e. sets which have
the splitting property but are not hyperhypersimple. They proved [1981, Corollary
3.6] that SPH nontrivially splits each class H„, L„, « > 1, of the usual high-low
hierarchy, thereby giving the first example of a high degree which omits some
nontrivial automorphism type. This class of degrees (which is lattice definable in S )
is now shown to coincide with NC which is, of course, definable in R.

Theorem 1.20. NC = SPH.

Proof. Maass, Shore and Stob prove [1981, Theorem 3.1] that SPH ç NC. For
the reverse inclusion let A be promptly simple and 77 be the deficiency set of A. Thus,
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77 =TA, 77 is promptly simple by Theorem 1.10 (and thus has the splitting property)
but B is not hyperhypersimple because 77 is retraceable and therefore not hyperhy-
perimmune (see Rogers [1967, pp. 158, 251]).   ■

Corollary 1.21. There is a nontrivial ^-definable class of r.e. sets whose degrees
SPH are also R-definable (as NC).    ■

Proposition 1.22. There is an R-definable class of r.e. degrees NC which nontriv-
ially splits all the classes Hn+, — H„, L„+, — L„, « ^ 0, of the high-low hierarchy.

Proof. Choose a g NC n L,. Now for any b ^ 0', b r.e. in 0', there exists r.e.
c > a (and hence c g NC) such that c' = b by the Robinson jump interpolation
theorem (see Robinson [1971] or Soare [1976, p. 528]). The result for NC now
follows from the fact that H„+, - H„ * 0, and Ln+, - L„ =* 0 for all «.

For M = R - NC, choose a g H, Pi M. Choose b > 0' which relative to a is r.e.,
high (b' = a"), and incomplete (b < a'). By the jump interpolation theorem b = c'
for some r.e. c < a. Clearly c g H2 - H, and c e M. By iterating this procedure we
can find for each « a degree d g (Hn+, — H„) n M. To produce c g (L2 - L,) n M
we choose b low relative to a (b' = a') instead of high and apply the same method.
■

Finally, let G denote the degrees of r.e. sets which are in the orbit of Maass's r.e.
generic set G [1981], i.e. which are the image under an automorphism of S of some
promptly simple set A whose complement is semilow, i.e. {«: Wn n A =*= 0} <r 0'.
Maass and the authors proved that this sixth and final class coincides with PS.

Lemma 1.23. 7/77 is promptly simple then there exists a promptly simple set A =TB
such that A is semilow.

Corollary 1.24. G = PS.

Proof. First G £ SPH because promptly simple sets have the splitting property
and the latter is invariant under Aut(S), and if A is semilow then &*(A) = & by
Soare [1982 a] so A is not hyperhypersimple. To see that PS c G, apply Lemma 1.23
to an arbitrary promptly simple set 77 to obtain A promptly simple with A semilow
and A =r77. Now by Maass [1982] A is automorphic to any other such set and in
particular to G.   ■

Proof of Lemma 1.23. Fix a recursive enumeration [Bs)s^u of 77 and a recursive
function q satisfying ( 1.6). We construct {As}s(Eu andp to meet the requirements

Pe: We infinite =* (3x)(3S)[x g WeMs n Ap(s)].

Ne : lim cse exists, where

j _ I px [x g Wes n As],    if such x exists,
I - 1, otherwise.

Stage i = 0. Enumerate 0 in A0.
Stage s + 1. Let A~s = (asQ < a\ < a\ < ■ ■ ■ }.
Step 1. Choose the least e such that Pe is not yet satisfied and there exists x g

We at s, x * a], cs¡, all i «s e. Enumerate x g Ues and choose t > s such that x g
rVg(e) at ,, where  JFg(e) is obtained from (Ues: i g to} by Lemma 1.5. Define
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p(s) = q(t). If 77,c x * Bq(!)[ x enumerate x in A. Otherwise (or if no such e exists),
simply setp(s) = 0.

Step 2. Let k = py[y G Bs+, - 77J. Choose the least a*, k < i < 2k, which is not
equal to d, for any/ < A:, and enumerate a* in A.

Now 7? <^TA since if A g 77j+, - 77, then As+X \ a2k + 1 * Ast a2k + 1, and
A <r 77 by permitting as usual. Now lim, c,s and lim, a* exist because a* or c, can be
enumerated in As+, only for the sake of Pk or k g 77,+ , - 7?, for some k < /', and
each contributes at most one element. Let ce = lim,c*. Now Xe[ce] is a function
recursive in 0 ' so A is semilow because WeC\ A =>= 0 iff ce > -1. Finally A is
promptly simple because if We is infinite but fails to satisfy Pe then W (e) violates
(1.6) for 77 via q(s).   ■

The above theorems raise the question of whether there are any other well-known
classes of r.e. degrees equivalent to this ubiquitous class PS. It follows by Corollary
1.18 that any degree a g NC cups (to 0')- It is natural to ask whether such an a cups
to every b > a (i.e. for every b > a does there exist c < b such that a U c = b?).
Ambos-Spies [to appear] has shown this to be false for some degrees a g NC.

Variations of these properties may be investigated for other reducibilities. We say
that A is weak truth table reducible to 77 (A <wtt 77) if there is an e g u and a
recursive function / such that A = {e)B and y < f(x) for all numbers y used in the
computation (e)B(x). The Harrington cup and cap theorem asserts that there exist
r.e. degrees which both cup and cap. The next theorem asserts that this is false for
"wtt-cup" in place of "cup". Namely, if a set A can be nontrivially wtt-cupped (to
0') then A cannot be nontrivially capped (to 0) or even wtt-capped (to 0). This
theorem, which was discovered before Harrington's Theorem, made the latter appear
even more surprising, and the method has been used by Fejer [1980].

Theorem 1.24. If A and 77 are r.e. sets such that K <wtt A © 77 but K s¿ w« 77, then
deg(A) is noncappable.

Proof. Suppose that C is a nonrecursive r.e. set. We shall build a simple set E
such that E ^TA and E <rC, so that deg(A) and deg(C) do not form a minimal
pair. Fix A and 77 as in the theorem so that A c (2x: x g to) and 77 ç (2x + 1:
x g to) so that A u 77 swtt A © 77. Let {As}ieo, {77,},ew and <Qseu be recursive
enumerations of A, 77 and C. It suffices for each e to meet the positive requirement

Pe: We infinite => We n E * 0 .

To satisfy Pe we define a certain r.e. set Se in order to "force" numbers into A or 77.
The sets (Se)eetú will be uniformly r.e. and hence uniformly reducible to A U 77, say
by wtt-reductions {%)eeu- Let \pe(x) be the use function for ^ as a wtt-reduction.
By the recursion theorem <íre and \pe maY De used in the construction.

We say that Pe requires attention at stage s + 1 via « if We s n Es = 0, and for
some x > 2e,

(i)xe Wes,
(ii)CJ+,r x * cs\ x,

(iii)^e(n)< x,
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(iv)« g Ks - S;,, and
(v)%JAsVBs;n) = 0.

Stage 5 = 0. Let E0 = Se0 = 0 for all e.
Stage s + 1. Enumerate into Se all « (if any) via which Pe requires attention. For

each such «, find the least t > s such that

iAsU Bs)[ypein)* iAtU B,)^ein).

If the change is on the Aside (namely As\ ^e(n) * At\ ^e(n)) and Pe is not yet
satisfied at s, then put the least x > 2e satisfying (i)-(iii) into E. This completes the
construction of E.

Now E ^TA by permitting since for all x if A f x = As [ x then E \ x = Es \ x and
similarly E <rC. (Note that E <wtt A and E <wtt C, so A is not wtt-cappable.)
Clearly E is infinite since each Pe contributes at most one number x to E and
x > 2e. Finally, since 7C ̂  wtt 77 there exist « and 5 such that n e Ks — Ks_x and
B\ ^ei") = ^!sf W")- If H^ is infinite and Pe is not satisfied by stage s then Pe will
be attacked via « (using the nonrecursiveness of C to achieve (ii)). The attack
succeeds since some y < i>e(n) must later enter A U 77 but it cannot enter 77.   ■

The same proof shows that if K ^ T77, and K ^TA © 77 say K = ^(A © 77), and
the use function t// is 77-recursive (for example if Tí is coded into A © B using coding
markers which move only when 77 permits) then deg(^4) is noncappable.

It can be shown that not every noncappable degree has a wtt-cuppable representa-
tive. This follows because wtt-cuppable degrees cannot be contiguous, but there are
contiguous noncappable degrees. (A r.e. Turing degree is contiguous if it contains
only one r.e. wtt-degree. Ladner and Sasso [1975] have shown the existence of
nonzero contiguous r.e. degrees, and their construction may easily be combined with
Yates construction [1966] of a noncappable r.e. degree.)

2. Ideals and filters in R. We showed in Lemma 1.12 that ENC, and thus by
Corollary 1.14 also each of PS and NC, form a strong filter in R. Next we show that
their complement M forms an ideal and we explore some density type results
involving M and NC. The first result in the direction of showing M an ideal is
Lachlan's nondiamond theorem (Lachlan [1966, Theorem 5]). Next Jockusch used
Lachlan's method to show that 0' cannot be expressed as a sup of degrees in M, so
that the ideal generated by M is proper.

Theorem 2.1. The cappable r.e. degrees M form an ideal in R (namely are closed
downward and under join).

Corollary 2.2. The r.e. degrees R can be decomposed into the disjoint union of a
definable strong filter NC and a definable ideal M.   ■

Proof of Theorem 2.1. The proof is similar to that of Lachlan's nondiamond
theorem Lachlan [1966] (see the proof in Soare [1980, §6]).

Clearly M is closed downwards. Thus by Corollary 1.14 it suffices to show that PS
is closed under join, namely that if a, b g R and a U b g PS then either a g PS or
b g PS. Choose r.e. sets A, B, C such that C = A U 77 is of promptly simple degree
via (C,},G<1) and q(s) meeting (1.6), A ç 2to, and 77 ç 2to + 1.
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Let {As)s<Ba and {Bs}seol be recursive enumerations of A and 77 such that
C, = As U 77,. We shall define a recursive function p(s) and partial recursive
functions p'(t), all i g u, such that either A is of promptly simple degree via p
satisfying ( 1.6) or else any witness Wi to the failure of p guarantees that p' is total
and that 77 is of promptly simple degree via p' satisfying ( 1.6). Applying Theorem 1.6
we attempt to satisfy, for all /' and/, the requirement

P,y. (3x)(3í)[x g WiMs&As\ x * Apis)[ x]

or

(3y)i3t)[xeWMtl&Btty*Bßi(t)iy].

During the construction we define r.e. sets U¡¡ and assume that g(i, j) is the
corresponding function satisfying Lemma 1.5. The sets Ut, are used to "force"
numbers to enter C (and hence A or 77) promptly.

Construction of p andp'.
Stages = 0. Setp(0) = 0.
Stage 5+1. Find the unique x and i such that x g IF, at,. For each/ < s find the

least t < s and y < s such that

(2.1) ye W,at,&/£dom#&z,v<.y,

where z,, = (nz)[z é 7/,,,,]- If t and y exist, enumerate z, , in (/,,,+,, and let t>, be
the least v such that z,, g Wg(iJ)v, and otherwise let vt, = s + 1. (Necessarily
s < t>,, by Lemma 1.5.) Define p(s) = max{t7(u, ,): j < s). Define p'(t) = p(s) for
all/ < s, t e dom(pis).

This ends the construction.
We claim that if A is not of promptly simple degree then B is. Choose i such that

W¡ is infinite but for all x

(2.2) xeWials^As\x = Ap(s)[x.

Since Wt is infinite it follows that p' is total. If W} is infinite then U¡¡ is infinite, so
Wg(t;,) is infinite. Hence, there exist x, s and y such that x g Wiats,y satisfies (2.1),
and C,\ zLj * Cq(v)\ zu where v = v(J. But p(s) > q(v) and As\ x = Ap(s)[ x so
77,r y * B~,(l)i y since z,, < y and t < s < v < q(v) < p(s) = p'(t). Hence, B is of
promptly simple degree via p'.    ■

Note that Theorem 2.1 can also be proved from NC = LC (Corollary 1.18) and
Corollary 4.1 of Ambos-Spies [1980] or Corollary 1 of Ambos-Spies [1983].

Corollary 2.3. If a,, a2,..., a„ g M then there exists an r.e. degree b > 0 such
that a, Fi b = Ofor all i < w, and furthermore an index of a representative ofb may be
found effectively from indices of representatives of a,, a2,..., a„.

Proof. This is proved by Theorem 2.1 and Corollary 1.16.   ■
Theorem 2.1 shows that the join of two cappable degrees is cappable. Also any

a g M is equal to b U c for strictly smaller degrees b, c g M by the Sacks splitting
theorem and the downward closure of M. However, we cannot necessarily choose b
and c to form a minimal pair because Lachlan [1979] has constructed an r.e. degree a
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which bounds no minimal pair. It is easy to see that any r.e. degree d > 0 either
bounds a minimal pair or is part of one, so Lachlan's degree a is in M. L. Welch has
shown [1981] that there is no r.e. degree a < 0' such that a > b for every b G M.
Thus, M is not contained in any proper principal ideal of R. Dually, a straightfor-
ward cone-avoidance argument shows that NC is not contained in any proper
principal filter of R. Also note that M is not a maximal ideal since by Corollary 1.18
the ideal generated by M U (a) is proper for every low r.e. degree a. (There are low
r.e. degrees a G M since there are low r.e. degrees with join 0' so low r.e. degrees can
be low cuppable and hence noncappable.) However, M is a prime ideal (i.e.
a O b g M implies a g M or b g M) because its complement NC is a filter.

Since M forms an ideal in R it is natural to study the quotient structure R/M as
first suggested by Jockusch. S. Schwarz [1982] has shown that the Friedberg-Much-
nik theorem and even the Sacks splitting theorem hold for R/M but the existence of
minimal pairs fails. It is unknown whether density or, more generally, the Shoenfield
conjecture holds in R/M. S. Schwarz [1982] has also classified the index sets [e: We
is promptly simple) and {e: We is of promptly simple degree) as each 24-complete. It
is unknown whether the previous results can be strengthened to show that M(NC)
forms an effective 2-ideal (effective S-filter) namely whether for any r.e. sequence
(a„)„Gu) of degrees in M(NC) there exists a degree b g M(NC) such that b > a„ (b <
a„) for all « G to.

We turn now to some density type results. Since M forms an ideal we have
immediately

(2.3) a g M => (3b > a)[b g M]

and

(2.4) aGNC=>(3b<a)[beNC].

For (2.4) apply the Sacks splitting theorem to get a = a0 U a,, a, < a, and note that
we cannot have both a0, a, g M. The following local version sharpens these results.

Theorem 2.4. 7/a < b, a g M and b g NC then
(i)(3c)[a < c < b&c g M],

(ii)(3d)[a<d <b&dGNC],
and indeed (ii) can be strengthened to

(iii) (3d0,d,)[a < d0,d, < b&d0,d, g NC&b = d0 U d,]
so that every noncappable degree splits over every lesser cappable degree.

Proof, (i) Since a g M choose e > 0 such that a n e = 0. Since b g NC we may
assume without loss of generality that e < b. Now take c = a U e.

(ii) This follows by (iii).
(iii) By Corollary 1.18, NC = LC, so there exists a low r.e. degree f such that

b U f = 0'. Using the technique of the Robinson splitting theorem (Robinson,
[1971]) split b into degrees b0 and b, such that b0Uf and b, U f are both low. Let
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d0 = a U b0 and d, = a U b,. Both are low cuppable (0' = b U f = b, U (b,_,■ U f)
< d, U (b,„, U f)) and thus noncappable. Hence, it suffices to show that d, < b. If
not then d, = b, and hence

a U (b, U f) = (a U b,) U f = d, U f = b U f = 0',

i.e. a is low cuppable (by b, U f) and hence noncappable.   ■
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