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Abstract. Weput forward a newalgebraic framework to generalize and analyzeDiffie–
Hellman like decisional assumptions which allows us to argue about security and appli-
cations by considering only algebraic properties. Our D�,k -MDDH Assumption states
that it is hard to decide whether a vector in G� is linearly dependent of the columns of
some matrix inG�×k sampled according to distributionD�,k . It covers known assump-
tions such as DDH, 2-Lin (Linear Assumption) and k-Lin (the k-Linear Assumption).
Using our algebraic viewpoint, we can relate the generic hardness of our assumptions in
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m-linear groups to the irreducibility of certain polynomials which describe the output of
D�,k . We use the hardness results to find new distributions for which the D�,k -MDDH
Assumption holds generically in m-linear groups. In particular, our new assumptions
2-SCasc and 2-ILin are generically hard in bilinear groups and, compared to 2-Lin,
have shorter description size, which is a relevant parameter for efficiency in many appli-
cations. These results support using our new assumptions as natural replacements for the
2-Lin assumption which was already used in a large number of applications. To illustrate
the conceptual advantages of our algebraic framework,we construct several fundamental
primitives based on any MDDH Assumption. In particular, we can give many instan-
tiations of a primitive in a compact way, including public-key encryption, hash proof
systems, pseudo-random functions, and Groth–Sahai NIZK and NIWI proofs. As an
independent contribution, we give more efficient NIZK and NIWI proofs for member-
ship in a subgroup of G�. The results imply very significant efficiency improvements
for a large number of schemes.

Keywords. Diffie–Hellman assumption, Generic hardness, Groth–Sahai proofs, Hash
proof systems, Public-key encryption.

1. Introduction

Arguably, one of the most important cryptographic hardness assumptions is the deci-
sional Diffie–Hellman (DDH) assumption. For a fixed additive groupG of prime order
q and a generatorP ofG, we denote by [a] := aP ∈ G the implicit representation of an
element a ∈ Zq . The DDH Assumption states that ([a], [r ], [ar ]) ≈c ([a], [r ], [z]) ∈
G3, where a, r, z are uniform elements in Zq and ≈c denotes computationally indistin-
guishability of the two distributions. It has been used in numerous important applications
such as secure encryption [12], key exchange [20], hash proof systems [13], pseudo-
random functions [37] and many more.

Bilinear Groups and the Linear Assumption. Bilinear groups (i.e., groupsG,GT

of prime order q equipped with a bilinear map e : G × G → GT ) [4,24] revolution-
ized cryptography in recent years and are the basis for a large number of cryptographic
protocols. However, relative to a (symmetric) bilinear map, the DDH Assumption is no
longer true in the group G. (This is since e([a], [r ]) = e([1], [ar ]) and hence [ar ] is
not longer pseudo-random given [a] and [r ].) The need for an “alternative” decisional
assumption inG was quickly addressed with the Linear Assumption (2-Lin) introduced
by Boneh, Boyen and Shacham [3]. It states that ([a1], [a2], [a1r1], [a2r2], [r1+r2]) ≈c

([a1], [a2], [a1r1], [a2r2], [z]) ∈ G5, where a1, a2, r1, r2, z ← Zq . 2-Lin holds in
generic bilinear groups [3] and it has virtually become the standard decisional assump-
tion in the group G in the bilinear setting. It has found applications to encryption
[5,7,29,38], signatures [3], zero-knowledge proofs [21], pseudo-random functions [6]
and many more. More recently, the 2-Lin assumption was generalized to the (k-Lin)k∈N
Assumption family [23,45] (1-Lin = DDH), a family of increasingly (strictly) weaker
Assumptions which are generically hard in k-linear maps.

Subgroup Membership Problems. Since the work of Cramer and Shoup [13], it has
been recognized that it is useful to view the DDH Assumption as a hard subgroup
membership problem in G2. In this formulation, the DDH Assumption states that it
is hard to decide whether a given element ([r ], [t]) ∈ G2 is contained in the subgroup
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generated by ([1], [a]). Similarly, in this language the 2-Lin assumption says that it is hard
to decide whether a given vector ([r ], [s], [t]) ∈ G3 is in the subgroup generated by the
vectors ([a1], [0], [1]), ([0], [a2], [1]). The same holds for the (k-Lin)k∈N Assumption
family: For each k, the k-Lin assumption can be naturally written as a hard subgroup
membership problem in Gk+1. This alternative formulation has conceptual advantages
for some applications; for instance, it allowed to provide more instantiations of the
original DDH-based scheme of Cramer and Shoup and it is also the most natural point
of view for translating schemes originally constructed in composite order groups into
prime order groups [18,36,43,44].

Linear Algebra in Bilinear Groups. In its formulation as subgroup decision mem-
bership problem, the k-Lin assumption can be seen as the problem of deciding linear
dependence “in the exponent.” Recently, a number of works have illustrated the use-
fulness of a more algebraic point of view on decisional assumptions in bilinear groups,
like the Dual Pairing Vector Spaces of Okamoto and Takashima [40] or the Subspace
Assumption of Lewko [32]. Although these new decisional assumptions reduce to the
2-Lin assumption, their flexibility and their algebraic description have proven to be cru-
cial in many works to obtain complex primitives in strong security models previously
unrealized in the literature, like attribute-based encryption, unbounded inner product
encryption and many more (see [32,41,42], just to name a few).

This Work.Motivated by the success of this algebraic viewpoint of decisional assump-
tions, in this paper we explore new insights resulting from interpreting the k-Lin deci-
sional assumption as a special case ofwhatwe call aMatrixDiffie–HellmanAssumption.
The general problem states that it is hard to distinguish whether a given vector inG� is
contained in the space spanned by the columns of a certain matrix [A] ∈ G�×k , where
A is sampled according to some distribution D�,k . We remark that even though all our
results are stated in symmetric bilinear groups, they can be naturally extended to the
asymmetric setting.

1.1. The Matrix Diffie–Hellman Assumption

A New Framework for DDH-like Assumptions. For integers � > k let D�,k be an
(efficiently samplable) distribution over Z�×k

q . We define the D�,k-Matrix DH (D�,k-
MDDH) Assumption as the following subgroup decision assumption:

D�,k-MDDH : [A||A�r] ≈c [A||�u] ∈ G�×(k+1), (1)

where A ∈ Z�×k
q is chosen from distribution D�,k , �r ← Zk

q , and �u ← G�. The
(k-Lin)k∈N family corresponds to this problem when � = k + 1, andD�,k is the specific
distribution Lk (formally defined in Example 2).

Generic Hardness. Due to its linearity properties, the D�,k-MDDH Assumption does
not hold in (k + 1)-linear groups. In Sect. 3.3, we give two different theorems which
state sufficient conditions for the D�,k-MDDH Assumption to hold generically in m-
linear groups. Theorem 3 is very similar to the Uber-Assumption [2,9] that characterizes
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hardness in bilinear groups (i.e.,m = 2) in terms of linear independence of polynomials
in the inputs. We generalize this to arbitrary m using a more algebraic language. This
algebraic formulation has the advantage that one can use additional tools (e.g., Gröbner
bases or resultants) to show that a distribution D�,k meets the conditions of Theorem 3,
which is specially important for largem. It also allows to prove a completely new result,
namely Theorem 4, which states that a matrix assumption with � = k + 1 is generically
hard if a certain determinant polynomial is irreducible.

New Assumptions for Bilinear Groups. We propose other families of generically
hard decisional assumptions that did not previously appear in the literature, e.g., those
associated with Ck,SCk, ILk defined below. For the most important parameters k = 2
and � = k + 1 = 3, we consider the following examples of distributions:

C2 : A =
⎛
⎝
a1 0
1 a2
0 1

⎞
⎠ SC2 : A =

⎛
⎝
a 0
1 a
0 1

⎞
⎠ L2 : A =

⎛
⎝
a1 0
0 a2
1 1

⎞
⎠

IL2 : A =
⎛
⎝
a 0
0 a + 1
1 1

⎞
⎠ ,

for uniform a, a1, a2 ∈ Zq as well as U3,2, the uniform distribution in Z3×2
q (already

considered in [5,19,38,46]). All assumptions are hard in generic bilinear groups. It
is easy to verify that L2-MDDH = 2-Lin. We define 2-Casc := C2-MDDH (Cas-
cade Assumption), 2-SCasc := SC2-MDDH (Symmetric Cascade Assumption), and
2-ILin := IL2-MDDH (Incremental Linear Assumption). In Sect. 3.4, we show that
2-SCasc ⇒ 2-Casc, 2-ILin ⇒ 2-Lin and that U3,2-MDDH is the weakest of these
assumptions (which extends the results of [18,19,46] for 2-Lin). Although originally
[16] 2-ILin and 2-SCasc were thought to be incomparable assumptions, in Sect. 4
we show that 2-SCasc and 2-ILin are indeed equivalent assumptions. The equivalence
result, together with the fact that 2-ILin ⇒ 2-Lin, implies that 2-SCasc is a stronger
assumption than 2-Lin.

Efficiency Improvements. As a measure of efficiency, we define the representation
sizeREG(D�,k) of anD�,k-MDDH assumption as theminimal number of group elements
needed to represent [A] for any A ← D�,k . This parameter is important since it affects
the performance (typically the size of public/secret parameters) of schemes based on
a Matrix Diffie–Hellman Assumption. 2-Lin and 2-Casc have representation size 2
(elements ([a1], [a2])), while 2-SCasc only 1 (element [a]). Hence our new assumptions
directly translate into shorter parameters for a large number of applications (see the
Applications in Sect. 5). Further, our result points out a trade-off between efficiency and
hardness which questions the role of 2-Lin as the “standard decisional assumption" over
a bilinear group G.

New Families of Weaker Assumptions. By defining appropriate distributions
Ck, SCk , ILk over Z

(k+1)×k
q , for any k ∈ N, one can generalize all three new assump-

tions naturally to k-Casc, k-SCasc and k-ILin with representation size k, 1, and 1,
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DDH 2-ILin 3-EDDH 3-PDDH 3-ILin 4-EDDH 4-PDDH . . .

2-Lin 2-SCasc 2-Casc 3-Lin 3-SCasc 3-Casc . . .

BDDH 3-MLDDH . . .

hard in generic groups
easy in 2-linear groups

hard in 2-linear groups
easy in 3-linear groups

hard in 3-linear groups
easy in 4-linear groups

Fig. 1. Relation between various assumptions and their generic hardness in k-linear groups.

respectively. Using our results on generic hardness, it is easy to verify that all three
assumptions are generically hard in k-linear groups. Actually, in Sect. 4 we show that
k-SCasc and k-ILin are equivalent for every k. Since all these assumptions are false in
(k + 1)-linear groups, this gives us three new families of increasingly strictly weaker
assumptions.1 In particular, the k-SCasc (equivalently, k-ILin) assumption family is of
great interest due to its compact representation size of only 1 element.

Relations to Other Standard Assumptions. Surprisingly, the new assumption
families can also be related to standard assumptions. The k-Casc Assumption is
implied by the (k + 1)-party Diffie–Hellman Assumption ((k + 1)-PDDH) [7] which
states that ([a1], . . . , [ak+1], [a1 · · · ak+1]) ≈c ([a1], . . . , [ak+1], [z]) ∈ Gk+2. Sim-
ilarly, k-SCasc is implied by the (k + 1)-Exponent Diffie–Hellman Assumption
((k + 1)-EDDH) [28] which states that ([a], [ak+1]) ≈c ([a], [z]) ∈ G2. Figure 1
on page 10 gives an overview over the relations between the different assumptions.

Uniqueness of One-Parameter Family. The most natural and useful D�,k-MDDH
assumptions are those with � = k + 1, and the entries of the matrices generated byD�,k

are polynomials of degree one in some parameters. Among them, the most compact
correspond to the one-parameter distributions. As novel contribution with respect to
[16], in Sect. 4 we show that k-ILin and k-SCasc are tightly equivalent. Moreover, we
prove that everyDk-MDDH assumption defined by univariate polynomials of degree one
is tightly equivalent to k-SCasc, so we can see k-SCasc as a sort of canonical compact
Matrix DH assumption. From the equivalence proof between k-ILin and k-SCasc, one
can easily construct a reduction from k-SCasc to k-Lin.

1.2. Basic Applications

We believe that all schemes based on 2-Lin can be shown to work for any Matrix
Assumption. Consequently, a large class of known schemes can be instantiated more
efficiently with the new more compact decisional assumptions, while offering the same
generic security guarantees. To support this belief, in Sect. 5 we show how to construct

1We actually assume that k and � are considered as constants, i.e., they do not depend on the security
parameter. Otherwise, for a general D�,k , it is not so easy to solve the D�,k -MDDH problem with the only
help of a (k + 1)-linear map, because determinants of size k + 1 could not be computable in polynomial time.
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some fundamental primitives based on any Matrix Assumption. All constructions are
purely algebraic and therefore very easy to understand and prove.

• Public-key Encryption. We build a key encapsulation mechanism with security
against passive adversaries from any D�,k-MDDH Assumption. The public key is
[A], the ciphertext consists of the first k elements of [z] = [A�r ], and the symmetric
key consists of the last � − k elements of [z]. Passive security immediately follows
from D�,k-MDDH.

• Hash Proof Systems. We build a smooth projective hash proof system (HPS) from
anyD�,k-MDDHAssumption. It is well known that HPS implies chosen-ciphertext
secure encryption [13], password-authenticated key exchange [20], zero-knowledge
proofs [1] and many other things.

• Pseudo-Random Functions. Generalizing the Naor-Reingold PRF [6,37], we build
a pseudo-random function PRF from any D�,k-MDDH Assumption. The secret
key consists of transformation matrices T1, . . . ,Tn (derived from independent
instances Ai, j ← D�,k) plus a vector �h of group elements. For x ∈ {0, 1}n , we
define PRFK (x) =

[∏
i :xi=1 Ti · �h

]
. Using the random self-reducibility of the

D�,k-MDDH Assumption, we give a tight security proof.
• Groth–Sahai non-interactive zero-knowledge proofs. Groth and Sahai [21] pro-
posed very elegant and efficient non-interactive zero-knowledge (NIZK) and non-
interactive witness-indistinguishable (NIWI) proofs that work directly for a wide
class of languages that are relevant in practice. We show how to instantiate their
proof system based on any D�,k-MDDH Assumption. While the size of the proofs
depends only on � and k, the CRS and verification depend on the representation
size of the Matrix Assumptions. Therefore, our new instantiations offer improved
efficiency over the 2-Lin-based construction from [21]. This application in partic-
ular highlights the usefulness of the Matrix Assumption to describe in a compact
way many instantiations of a scheme: Instead of having to specify the constructions
for the DDH and the 2-Lin assumptions separately [21], we can recover them as a
special case of a general construction.

More Efficient Proofs for CRS-Dependent Languages. In Sect. 6, we provide
more efficient NIZK proofs for concrete natural languages which are dependent on the
common reference string. More specifically, the common reference string of the D�,k-
MDDH instantiation of Groth–Sahai proofs of Sect. 5.4 includes as part of the com-
mitment keys the matrix [A], where A ∈ Z�×k

q ← D�,k . We give more efficient proofs
for several languages related to A. Although at first glance the languages considered
may seem quite restricted, they naturally appear in many applications, where typically
A is the public key of some encryption scheme and one wants to prove statements about
ciphertexts. More specifically, we obtain improvements for several kinds of statements,
namely:

• Subgroup Membership Proofs. We give more efficient proofs in the language
LA,G,P := {[A�r], �r ∈ Zk

q} ⊂ G�. To quantify some concrete improvement, in
the 2-Lin case, our proofs of membership are half of the size of a standard Groth–
Sahai proof and they require only six group elements. We stress that this improve-
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ment is obtained without introducing any new computational assumption. As an
example of application, consider, for instance, the encryption scheme derived from
our KEM based on any D�,k-MDDH Assumption, where the public key is some
matrix [A], A ← D�,k . To see which kind of statements can be proved using our
result, note that a ciphertext is a re-randomization of another one only if their dif-
ference is in LA,G,P . The same holds for proving that two commitments with the
same key hide the same value or for showing in a publicly verifiable manner that
the ciphertext of our encryption scheme opens to some known message [m]. This
improvement has a significant impact on recent results, like [17,35], and we think
manymore examples can be found. Interestingly, in independent work, a number of
results ([25,26,31,34]) have constructed even more efficient proofs in linear sub-
spaces by also exploiting the dependency of the common reference string and the
matrix which generates the space. We note that although in all these work proofs
are shorter, this is at the cost of having only computationally sound proofs, while
our results retain the perfect soundness inherited from Groth–Sahai proofs.

• Ciphertext Validity and Plaintext Equality. Similar techniques apply to get more
efficient proofs of statements which naturally appear when one wants to prove
that a ciphertext is valid and that two ciphertexts encrypted with different pub-
lic keys open to the same plaintext, e.g., when using Naor–Yung techniques
to obtain chosen-ciphertext security [39], like in the encryption schemes of
[10,15,22,27].

2. Preliminaries

2.1. Notation

For n ∈ N, we write 1n for the string of n ones. Moreover, |x | denotes the length of
a bitstring x , while |S| denotes the size of a set S. Further, s ← S denotes the process
of sampling an element s from S uniformly at random. For an algorithm A, we write
z ← A(x, y, . . .) to indicate that A is a (probabilistic) algorithm that outputs z on input
(x, y, . . .). If A is a matrix, we denote by ai j the entries and �ai the column vectors.

2.2. Representing Elements in Groups

Let Gen be a probabilistic polynomial-time (ppt) algorithm that on input 1λ returns a
description G = (G, q,P) of a cyclic group G of order q for a λ-bit prime q and a
generator P of G. More generally, for any fixed k ≥ 1, let MGenk be a ppt algorithm
that on input 1λ returns a descriptionMGk = (G,GTk , q, ek,P), whereG andGTk are
cyclic additive groups of prime order q, P a generator of G, and ek : Gk → GTk is a
(non-degenerated, efficiently computable) k-linear map. For k = 2, we define PGen :=
MGen2 to be a generator of a bilinear group PG = (G,GT , q, e,P).

For an element a ∈ Zq , we define [a] = aP as the implicit representation of a
in G. More generally, for a matrix A = (ai j ) ∈ Zn×m

q we define [A] as the implicit
representation of A inG and [A]Tk as the implicit representation of A inGTk :
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[A] :=
⎛
⎝
a11P . . . a1mP

an1P . . . anmP

⎞
⎠ ∈ Gn×m,

[A]Tk :=
⎛
⎝
a11PTk . . . a1mPTk

an1PTk . . . anmPTk

⎞
⎠ ∈ Gn×m

Tk
,

where PTk = ek(P, . . . ,P) ∈ GTk .
When talking about elements inG andGTk , we will always use this implicit notation,

i.e., we let [a] ∈ G be an element in G or [b]Tk be an element in GTk . Note that from
[a] ∈ G, it is generally hard to compute the value a (discrete logarithm problem inG).
Further, from [b]Tk ∈ GTk it is hard to compute the value b ∈ Zq (discrete logarithm
problem in GTk ) or the value [b] ∈ G (pairing inversion problem). Obviously, given
[a] ∈ G, [b]Tk ∈ GTk , and a scalar x ∈ Zq , one can efficiently compute [ax] ∈ G and
[bx]Tk ∈ GTk .
Also, all functions and operations acting on G and GTk will be defined implicitly.

For example, when evaluating a bilinear pairing e : G × G → GT in [a], [b] ∈ G,
we will use again our implicit representation and write [z]T := e([a], [b]). Note that
e([a], [b]) = [ab]T , for all a, b ∈ Zq .

2.3. Standard Diffie–Hellman Assumptions

LetGen be a ppt algorithm that on input 1λ returns a descriptionG = (G, q,P) of cyclic
groupG of prime order q and a generatorP ofG. Similarly, letPGen be a ppt algorithm
that returns a description PG = (G,GT , q, e,P) of a pairing group. We informally
recall a number of previously considered decisional Diffie–Hellman assumptions.

• Diffie–Hellman (DDH)Assumption. It is hard to distinguish (G, [x], [y], [xy]) from
(G, [x], [y], [z]), for G = (G, q,P) ← Gen, x, y, z ← Zq .

• k-Linear (k-Lin) Assumption [3,23,45]. It is hard to distinguish (G, [x1], [x2],
. . . [xk], [r1x1], [r2x2], . . . [rk xk], [r1 + · · · + rk]) from (G, [x1], [x2], . . . [xk],
[r1x1], [r2x2], . . . [rk xk], [z]), for G ← Gen, x1, . . . , xk, r1, . . . , rk, z ← Zq .
Clearly, 1-Lin = DDH.

• Bilinear Diffie–Hellman (BDDH) Assumption [4]. It is hard to distinguish
(PG, [x], [y], [z], [xyz]T ) from (PG, [x], [y], [z], [w]T ), forPG ← PGen, x, y,
z, w ← Zq .

• k-Multilinear Diffie–Hellman (k-MLDDH) Assumption [8]. Given k-linear group
generatorMGenk , it is hard to distinguish (MGk, [x1], . . . [xk+1], [x1 · · · xk+1]Tk )
from (MGk, [x1], . . . [xk+1], [z]Tk ), forMGk ← MGenk, x1, . . . , xk+1, z ← Zq .
Clearly, 2-MLDDH = BDDH.

• k-party Diffie–Hellman (k-PDDH) Assumption. It is hard to distinguish (G, [x1],
[x2], . . . [xk], [x1 · · · xk]) from (G, [x1], [x2], . . . , [xk], [z]), forG ← Gen, x1, . . . ,
xk, z ← Zq . 2-PDDH = DDH and 3-PDDH was proposed in [7].

• k-Exponent Diffie–Hellman (k-EDDH)Assumption [28,47]. It is hard to distinguish
(G, [x], [xk]) from (G, [x], [z]), for G ← Gen, x, z ← Zq .
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2.4. Key Encapsulation Mechanisms

A key encapsulationmechanismKEM = (Gen,Enc,Dec)with key spaceK(λ) consists
of three polynomial-time algorithms (PTAs). Via (pk, sk) ← Gen(1λ), the randomized
key generation algorithm produces public/secret keys for security parameter λ ∈ N;
via (K , c) ← Enc(pk), the randomized encapsulation algorithm creates a uniformly
distributed symmetric key K ∈ K(λ) together with a ciphertext c; via K ← Dec(sk, c),
the possessor of secret key sk decrypts ciphertext c to get back a key K which is an
element in K or a special rejection symbol ⊥. For consistency, we require that for all
λ ∈ N, and all (K , c) ← Enc(pk) we have Pr[Dec(sk, c) = K ] = 1, where the
probability is taken over the choice of (pk, sk) ← Gen(1λ), and the coins of all the
algorithms in the expression above.
For IND-CPA security, we require that the distribution (pk, (c, K )) is computationally

indistinguishable from (pk, (c, K ′)), where (pk, sk) ← Gen(1λ), (K , c) ← Enc(pk)
and K ′ ← K(λ). An IND-CPA secure KEM implies an IND-CPA secure public-key
encryption (PKE) scheme by combining it with a one-time secure symmetric cipher
(DEM).

2.5. Hash Proof Systems

We recall the notion of hash proof systems as introduced by Cramer and Shoup [13].
Let C,K be sets and V ⊂ C a language. In the context of public-key encryption

(and viewing a hash proof system as a key encapsulation mechanism (KEM) [14] with
“special algebraic properties”), one may think of C as the set of all ciphertexts, V ⊂ C
as the set of all valid (consistent) ciphertexts, and K as the set of all symmetric keys.
Let �sk : C → K be a hash function indexed with sk ∈ SK, where SK is a set. A
hash function �sk is projective if there exists a projection μ : SK → PK such that
μ(sk) ∈ PK defines the action of �sk over the subset V . That is, for every c ∈ V ,
the value K = �sk(c) is uniquely determined by μ(sk) and c. In contrast, nothing is
guaranteed for c ∈ C \ V , and it may not be possible to compute �sk(c) from μ(sk) and
c. The projective hash function is (perfectly) universal1 if for all c ∈ C \ V ,

(pk,�sk(c)) ≡ (pk, K ) (2)

where in the above pk = μ(sk) for sk ← SK and K ← K, and the symbol ≡ stands for
equality of the two distributions.
A hash proof system HPS = (Param,Pub,Priv) consists of three algorithms

where the randomized algorithm Param(1λ) generates instances of params =
(S,K, C,V,PK,SK,�(·) : C → K, μ : SK → PK), where S may contain some
additional structural parameters such as the group description. The deterministic public
evaluation algorithm Pub inputs the projection key pk = μ(sk), c ∈ V and a witness
w of the fact that c ∈ V and returns K = �sk(c). The deterministic private evaluation
algorithm inputs sk ∈ SK and returns �sk(c), without knowing a witness. We further
assume there are efficient algorithms given for sampling sk ∈ SK and sampling c ∈ V
uniformly together with a witness w.
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As computational problem we require that the subset membership problem is hard in
HPSwhich means that the two elements c and c′ are computationally indistinguishable,
for uniform c ∈ V and uniform c′ ∈ C \ V .

2.6. Pseudo-Random Functions

A pseudo-random function PRF = (Gen,F) with respect to range R = R(λ) and
message spaceM = M(λ) consists of two algorithms, where the randomized algorithm
Gen(1λ) generates a symmetric key K and the deterministic evaluation algorithmFK (x)
outputs a value in R, for all x ∈ M. For security we require that an adversary making
polynomially many queries to an oracle O(·), the output of oracle O(x) = FK (x) for
a fixed key K ← Gen(1λ) is computationally indistinguishable from O(x) = f (x),
where f is chosen uniformly from all functions frommappingM toR (i.e., f (x) outputs
uniform elements inR).

3. Matrix DH Assumptions

3.1. Definition

Definition 1. Let �, k ∈ N with � > k. We call D�,k a matrix distribution if it outputs
(in poly time, with overwhelming probability) matrices inZ�×k

q of full rank k. We define
Dk := Dk+1,k .

For simplicity, we will also assume that, wlog, the first k rows of A ← D�,k form an
invertible matrix.
We define theD�,k-matrix problem as to distinguish the two distributions ([A], [A �w])

and ([A], [�u]), where A ← D�,k , �w ← Zk
q , and �u ← Z�

q .

Definition 2. (D�,k-Matrix Diffie–Hellman Assumption D�,k-MDDH) Let D�,k be a
matrix distribution.We say that theD�,k -MatrixDiffie–Hellman (D�,k-MDDH)Assump-
tion holds relative to Gen if for all ppt adversaries D,

AdvD�,k ,Gen(D) = Pr[D(G, [A], [A �w]) = 1] − Pr[D(G, [A], [�u]) = 1] = negl(λ),

where the probability is taken over G = (G, q,P) ← Gen(1λ), A ← D�,k, �w ←
Zk
q , �u ← Z�

q and the coin tosses of adversary D.

Definition 3. Let D�,k be a matrix distribution. Let A0 be the first k rows of A and A1

be the last � − k rows of A. The matrix T ∈ Z(�−k)×k
q defined as T = A1A

−1
0 is called

the transformation matrix of A.

We note that using the transformation matrix, one can alternatively define the advan-
tage from Definition 2 as
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AdvD�,k ,Gen(D) = Pr

[
D

(
G,

[
A0

TA0

]
,

[ �h
T�h

])
= 1

]

−Pr

[
D

(
G,

[
A0

TA0

]
,

[ �h
�u

])
= 1

]
,

where the probability is taken over G = (G, q,P) ← Gen(1λ), A ← D�,k, �h ←
Zk
q , �u ← Z�−k

q and the coin tosses of adversary D.

3.2. Basic Properties

We can generalize Definition 2 to them-foldD�,k-MDDHAssumption as follows. Given
W ← Zk×m

q for somem ≥ 1,we consider the problemof distinguishing the distributions

([A], [AW]) and ([A], [U]) where U ← Z�×m
q is equivalent to m independent instances

of the problem (with the same A but different �wi ). This can be proved through a hybrid
argument with a loss of m in the reduction, or, with a tight reduction (independent of m)
via random self-reducibility.

Lemma 1. (Random self-reducibility) For any matrix distributionD�,k, D�,k-MDDH
is random self-reducible. Concretely, for any m,

AdvmD�,k ,Gen(D
′) ≤

⎧⎨
⎩
m · AdvD�,k ,Gen(D) 1 ≤ m ≤ � − k

(� − k) · AdvD�,k ,Gen(D) + 1

q − 1
m > � − k

,

where

AdvmD�,k ,Gen(D
′) = Pr

[
D′ (G, [A], [AW]) = 1

]− Pr
[
D′ (G, [A], [U]) = 1

]
,

and the probability is taken over G = (G, q,P) ← Gen(1λ), A ← D�,k,W ←
Zk×m
q ,U ← Z�×m

q and the coin tosses of adversary D′.

Proof. The case 1 ≤ m ≤ � − k comes from a natural hybrid argument, while the case
m > � − k is obtained from the inequality

AdvmD�,k ,Gen(D
′) ≤ Adv�−k

D�,k ,Gen(D) + 1

q − 1
.

Toprove it,we show that there exists an efficient transformationof any instance ([A], [Z])
of the (� − k)-foldD�,k-MDDH problem into another instance ([A], [Z′]) of the m-fold
problem, with overwhelming probability.
In particular, we set Z′ = AR + ZC, for random matrices R ← Zk×m

q and C ←
Z

(�−k)×m
q . On the one hand, if Z = AW, then Z′ = AW′ for W′ = R + WC, which is

uniformly distributed in Zk×m
q . On the other hand, if Z = U is uniform, then A|U is full
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rank with probability at least 1 − 1/(q − 1). In that case, Z′ = AR + UC is uniformly
distributed in Z�×m

q , which proves the above inequality. �

We remark that, given [A], [�z] the above lemma can only be used to re-randomize the
value [�z]. In order to re-randomize the matrix [A], we need that one can sample matrices
L and R such that A′ = LAR looks like an independent instance A′ ← D�,k . In all of
our example distributions, we are able to do this.
Due to its linearity properties, the D�,k-MDDH assumption does not hold in (k +

1)-linear groups, assuming that k is constant, i.e., it does not depend on the security
parameter.2

Lemma 2. Let D�,k be any matrix distribution. Then the D�,k-Matrix Diffie–Hellman
Assumption is false in (k + 1)-linear groups.

Proof. In a (k + 1)-linear group, the implicit representation of any r × r determinant
for r ≤ k+1 can be efficiently computed by using the r -linear map given by the Leibnitz
formula:

det(M) =
∑
σ∈Sr

sgn(σ )

r∏
i=1

mi,σi

Using the (k + 1)-linear map, [det(M)]Tk can be computed in the target group. Then,
given [B] := [A||�z], consider the submatrix A0 formed by the first k rows of A and
the vector �z0 formed by the first k elements of �z. If det(A0) �= 0, then define C as the
first k + 1 rows of B. If �z is random, then det(C) �= 0 with overwhelming probability,
while if �z = A �w for some vector �w, then det(C) = 0. Therefore, the D�,k-Matrix
Diffie–Hellman Assumption is false in this case.
Otherwise det(A0) = 0. Then rank(A0||�z0) = rank(A0) when �z = A �w, while

rank(A0||�z0) = rank(A0)+1with overwhelming probability if �z is random. To compute
the rank of bothmatrices, the following efficient randomized algorithm can be used. Take
random invertible matrices L,R ∈ Zk×k

q . Then set [A′
0] = [LA0R] and [�z′0] = [L�z0],

which is just a randomized instance of the same problem. Now if rank(A′
0) = r , then

with overwhelming probability its principal r × r minor is nonzero. Therefore, we can
estimate r = rank(A′

0) as the size of the largest nonzero principal minor (with negligible
error probability). Finally, if the determinant of the submatrix of A′

0||�z′0 formed by the
first r + 1 rows and the first r and the last column is nonzero, we conclude that �z is
random. �

2If k grows linearly with the security parameter, computing determinants of size k + 1 in G could in
general take exponential time. However, for the particular matrices in the forthcoming examples (except for
the uniform distribution), the associated determinants are still efficiently computable, and the Matrix DH
Assumption is also false in (k + 1)-linear groups.
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3.3. Generic Hardness of Matrix DH

LetD�,k be amatrix distribution as inDefinition 1,which outputsmatricesA ∈ Z�×k
q .We

call D�,k polynomial-induced if the distribution is defined by picking �t ∈ Zd
q uniformly

at random and setting ai, j := pi, j (�t) for some polynomials pi, j ∈ Zq [ �T ] whose degree
does not depend on λ. For example, for 2-Lin from Sect. 1.1, we have a1,1 = t1, a2,2 =
t2, a2,1 = a3,2 = 1 and a1,2 = a3,1 = 0 with t1, t2 (called a1, a2 in Sect. 1.1) uniform.
We set fi, j = Ai, j − pi, j and gi = Zi − ∑

j pi, jW j in the ring R =
Zq [A1,1, . . . , A�,k, �Z , �T , �W ]. Consider the ideal I0 generated by all fi, j ’s and gi ’s and
the idealI1 generated only by the fi, j ’s inR. LetJb := Ib∩Zq [A1,1, . . . , A�,k, �Z ]. Note
that the equations fi, j = 0 just encode the definition of the matrix entry ai, j by pi, j (�t)
and the equation gi = 0 encodes the definition of zi in the case �z = A �ω. So, informally,
I0 encodes the relations between the ai, j ’s, zi ’s, ti ’s and wi ’s in ([A], [�z] = [A �ω]) and
I1 encodes the relations in ([A], [�z] = [�u]). For b = 0 (�z = A �ω) and b = 1 (�z uniform),
Jb encodes the relations visible by considering only the given data (i.e., the Ai, j ’s and
Z j ’s).

Theorem 3. Let D�,k be a polynomial-induced matrix distribution with notation as
above. Then the D�,k-MDDH assumption holds in generic m-linear groups if and only
if (J0)≤m = (J1)≤m, where the ≤m means restriction to total degree at most m.

Proof. Note that J≤m captures precisely what any adversary can generically compute
with polynomially many group andm-linear pairing operations. Formally, this is proven
by restating the Uber-Assumption Theorem of [2,9] and its proof more algebraically.
Cf. “Appendix 2” for details. �

For a given matrix distribution, the condition (J0)≤m = (J1)≤m can be verified
by direct linear algebra or by elimination theory (using, e.g., Gröbner bases).3 For the
special case � = k + 1, we can actually give a criterion that is simple to verify using
determinants:

Theorem 4. LetDk be a polynomial-induced matrix distribution, which outputs matri-
ces ai, j = pi, j (�t) for uniform �t ∈ Zd

q . Let d be the determinant of (pi, j ( �T )‖ �Z) as a

polynomial in �Z , �T .
1. If the matrices output by Dk always have full rank (not just with overwhelming

probability), even for ti from the algebraic closure Zq , then d is irreducible over
Zq .

2. If all pi, j have degree at most one and d is irreducible overZq and the total degree
of d is k + 1, then the Dk-MDDH assumption holds in generic k-linear groups.

This theorem and generalizations for nonlinear pi, j and non-irreducible d are proven
in “Appendix 2” using tools from algebraic geometry.

3see Lemma 20 in “Appendix 2”.
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3.4. Examples of D�,k-MDDH

Let D�,k be a matrix distribution and A ← D�,k . Looking ahead to our applications,
[A] will correspond to the public key (or common reference string) and [A �w] ∈ G�

will correspond to a ciphertext. We define the representation size REG(D�,k) of a given
polynomial-induced matrix distributionD�,k with linear pi, j ’s as the minimal number of
group elements it takes to represent [A] for anyA ∈ D�,k .Wewill be interested in families
of distributionsD�,k such that thatMatrix Diffie–HellmanAssumption is hard in k-linear
groups. By Lemma 2, we obtain a family of strictly weaker assumptions. Our goal is to
obtain such a family of assumptions with small (possibly minimal) representation.

Example 1. Let U�,k be the uniform distribution over Z�×k
q .

The next lemma says that U�,k-MDDH is the weakest possible assumption among all
D�,k-Matrix Diffie–Hellman Assumptions. However, U�,k has poor representation, i.e.,
REG(U�,k) = �k.

Lemma 5. Let D�,k be any matrix distribution. Then D�,k-MDDH ⇒ U�,k-MDDH.

Proof. Given an instance ([A], [A �w]) of D�,k , if L ∈ Z�×�
q and R ∈ Zk×k

q are two
random invertiblematrices, it is possible to get a properly distributed instance of theU�,k -
matrix DH problem as ([LAR], [LA �w]). Indeed, LAR has a distribution statistically
close to the uniform distribution4 in Zk×�

q , while LA �w = LAR�v for �v = R−1 �w.
Clearly, �v has the uniform distribution in Zk

q . �

Example 2. (k-Linear Assumption/k-Lin) We define the distribution Lk as follows

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 0 . . . 0 0
0 a2 . . . 0 0

0 0
. . . 0

...
. . .

...

0 0 . . . 0 ak
1 1 . . . 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ Z(k+1)×k
q ,

where ai ← Z∗
q . The transformation matrix T ∈ Z1×k

q is given as T = ( 1
a1

, . . . , 1
ak

).
Note that the distribution (A,A �w) can be compactly written as (a1, . . . , ak, a1w1,

. . . , akwk, w1 + · · · + wk) = (a1, . . . , ak, b1, . . . , bk,
b1
a1

+ · · · + bk
ak

) with ai ← Z∗
q ,

bi , wi ← Zq . Hence the Lk-Matrix Diffie–Hellman Assumption is an equivalent
description of the k-linear Assumption [3,23,45] with REG(Lk) = k.

It was shown in [45] that k-Lin holds in the generic k-linear group model, and hence
k-Lin forms a family of increasingly strictly weaker assumptions. Furthermore, in [7] it
was shown that 2-Lin ⇒ BDDH.

4If A has full rank (that happens with overwhelming probability), then LAR is uniformly distributed in
the set of full-rank matrices in Z�×k

q , which implies that it is close to uniform in Z�×k
q .
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Example 3. (k-Cascade Assumption/k-Casc) We define the distribution Ck as follows

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 0 . . . 0 0
1 a2 . . . 0 0

0 1
. . . 0

...
. . .

...

0 0 . . . 1 ak
0 0 . . . 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where ai ← Z∗
q . The transformation matrix T ∈ Z1×k

q is given as T =
(± 1

a1···ak ,∓ 1
a2···ak . . . , 1

ak
). Note that (A,A �w) can be compactly written as (a1, . . . , ak,

a1w1, w1 + a2w2 . . . , wk−1 + akwk, wk) = (a1, . . . , ak, b1, . . . , bk,
bk
ak

− bk−1
ak−1ak

+
bk−2

ak−2ak−1ak
− · · · ± b1

a1···ak ). We have REG(Ck) = k.

Matrix A bears resemblance to a cascade which explains the assumption’s name.
Indeed, in order to compute the right lower entry wk of matrix (A,A �w) from the
remaining entries, one has to “descend” the cascade to compute all the other entries
wi (1 ≤ i ≤ k − 1) one after the other.
A more compact version of Ck is obtained by setting all ai := a.

Example 4. (Symmetric k-Cascade Assumption) We define the distribution SCk as
Ck but now ai = a, where a ← Z∗

q . Then (A,A �w) can be compactly written as

(a, aw1, w1+aw2, . . . , wk−1+awk, wk) = (a, b1, . . . , bk,
bk
a − bk−1

a2
+ bk−2

a3
−. . .± b1

ak
).

We have REG(Ck) = 1.

Observe that the same trick cannot be applied to the k-Linear assumption k-Lin, as the
resulting Symmetric k-Linear assumption does not hold in k-linear groups. However, if
we set ai := a+i−1,we obtain anothermatrix distributionwith compact representation.

Example 5. (Incremental k-Linear Assumption) We define the distribution ILk as Lk

with ai = a + i − 1, for a ← Z∗
q . The transformation matrix T ∈ Z1×k

q is given as

T = ( 1a , . . . , 1
a+k−1 ). (A,A �w) can be compactlywritten as (a, aw1, (a+1)w2, . . . , (a+

k − 1)wk, w1 + . . . + wk) = (a, b1, . . . , bk,
b1
a + b2

a+1 + · · · + bk
a+k−1 ). We also have

REG(ILk) = 1.

The last three examples need some work to prove its generic hardness.

Theorem 6. k-Casc, k-SCasc and k-ILin are hard in generic k-linear groups.

Proof. We need to consider the (statistically close) variants with ai ∈ Zq rather than
Z∗
q . The determinant polynomial for Ck is d(a1, . . . , ak, z1, . . . , zk+1) = a1 · · · akzk+1−

a1 · · · ak−1zk+· · ·+(−1)k z1, which has total degree k+1.As allmatrices inCk have rank
k, because the determinant of the last k rows inA is always 1, by Theorem 4we conclude
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that k-Casc is hard in k-linear groups. As SCk is a particular case of Ck , the determinant
polynomial forSCk is d(a, z1, . . . , zk+1) = akzk+1−ak−1zk+· · ·+(−1)k z1. As before,
by Theorem 4, k-SCasc is hard in k-linear groups. Finally, in the case of k-ILin we will
show in the next section its equivalence to k-SCasc, and therefore, it is generically hard
in k-linear groups. �

The previous examples can be related to some known assumptions from Sect. 2.3.
Figure 1 depicts the relations that are also stated in next theorem, except the equiva-
lence of k-ILin and k-SCasc which is addressed in the next section. We stress that this
equivalence together with Theorem 7 implies that k-SCasc is a stronger assumption
than k-Lin, previously unknown [16].

Theorem 7. For any k ≥ 2, the following holds:

(k + 1)-PDDH ⇒ k-Casc ;
(k + 1)-EDDH ⇒ k-SCasc ⇒ k-Casc ; k-ILin ⇒ k-Lin ;
k-Casc ⇒ (k + 1)-Casc ; k-SCasc ⇒ (k + 1)-SCasc

Further, in k-linear groups, k-Casc ⇒ k-MLDDH.

Proof. The proof of all implications can be found in “Appendix 1”. �

4. Uniqueness of One-Parameter Matrix DH Problems

Some differently lookingMDDH assumptions can be tightly equivalent, or isomorphic,
meaning that there is a very tight generic reduction between the corresponding problems.
These reductions are mainly based on the algebraic nature of the MDDH problems.
The simplest and most compact polynomial-induced matrix distributions Dk are the

one-parameter linear ones, whereDk outputs matricesA(t) = A0 +A1t for a uniformly
distributed t ∈ Zq , and fixed A0,A1 ∈ Z(k+1)×k

q . The two examples of them given in
[16] are SCk and ILk .
A natural question is whether such a tight algebraic reduction exists between SCk and

ILk . In this section, we prove amuch stronger result, which states there exists essentially
a single one-parameter linearMDDH problem. Indeed, we show that all one-parameter
linear Dk-MDDH problems are isomorphic to SCk . This result is heavily related to the
one-parameter nature of the problems considered, and it seems to be not generalizable
to broader families ofMDDH problems (e.g., trying to relate Ck and Lk , or dealing with
the case � > k + 1).

4.1. Hardness

Theorem 4 gives an easy-to-check sufficient condition ensuring theDk-MDDH assump-
tion holds in generic k-linear groups for certain matrix distributions Dk , including the
one-parameter linear ones. For this particular family, the sufficient condition is that all
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matrices A(t) = A0 + A1t have full rank for all t ∈ Zq , the algebraic closure of the
finite field Zq , and the determinant d of (A(T )‖ �Z) as a polynomial in �Z , T has total
degree k + 1. We first show that indeed it is also a necessary condition for the hardness
of the Dk-MDDH problem.

Theorem 8. LetDk be a one-parameter linear matrix distribution, producing matrices
A(t) = A0 + A1t , such that Dk-MDDH assumption is hard generically in k-linear
groups. Then, the determinant d of (A(T )‖ �Z) is an irreducible polynomial in Zq [ �Z , T ]
with total degree k + 1, and the rank of A0 + A1t is always k, for all t ∈ Zq .

Proof. The proof just consists in finding a nonzero polynomial h ∈ Zq [ �Z , T ] of degree
at most k such that h(A(t) �w, t) = 0 for all t ∈ Zq and �w ∈ Zk

q , and then using it to
solve the Dk-MDDH problem. If the total degree of d is at most k, then we can simply
let h = d.5 Otherwise, assume that the degree of d is k + 1. If d is reducible, from
Lemma 21 it follows that d can be split as d = cd0, where c ∈ Zq [T ] and d0 ∈ Zq [ �Z , T ]
are nonconstant. Clearly, if c(t) �= 0, then d0(A(t) �w, t) = 0 for all �w ∈ Zk

q , which

means that as a polynomial in Zq [ �W , T ], d0(T,A(T ) �W ) has too many roots, so it is
the zero polynomial. Therefore, we are done by taking h = d0.
Finally, observe that d(�z, t) = ∑k+1

i=0 ci (t)zi , where �z = (z1, . . . , zk+1) and the ci (t)
are the (signed) k-minors of A(t). Therefore, if A(t0) has rank less than k for some
t0 ∈ Zq , then d(�z, t0) = 0 for all �z ∈ Zk+1

q , which means that ci (t0) = 0 for all i . As a
consequence, T − t0 divides all ci , and hence it divides d, that is, d is reducible.

Once we have found the polynomial h of degree at most k, an efficient distinguisher
can use the k-linear map to evaluate [h(�z, t)]Tk from an instance ([A(t)], [�z]) of the
Dk-MDDH problem, where [t] can be computed easily from [A(t)] because A0 and A1
are known. If �z = A(t) �w, then h(�z, t) = 0, while for a randomly chosen �z, h(�z, t) �= 0
with overwhelming probability.6 Then the distinguisher succeeds with an overwhelming
probability. �

4.2. Isomorphic Problems

From now on, we consider in this section a one-parameter linear matrix distribution Dk

such that Dk-MDDH assumption holds in generic k-linear groups. This in particular
means that using Theorem 8, the polynomial d is irreducible in Zq [ �Z , T ] with total
degree k + 1 and that the rank of A0 +A1t is always k, for all t ∈ Zq . Clearly, the rank
of A0 is k, but also A1 has rank k. Indeed, it is easy to see that the coefficients of the
monomials of degree k + 1 in d are exactly the (signed) k-minors of A1, so they cannot
be all zero.
There are some natural families of maps that generically transformMDDH problems

into MDDH problems. As mentioned in previous sections, some examples of them are

5Actually, it is assumed that d �= 0, i.e., some matrices output by Dk have full rank. Otherwise, it is not
hard finding the polynomial h based on a nonzero maximal minor of A(t), by adding to it an extra row and
the column �Z .

6As a polynomial of total degree at most k, it vanishes with probability at most k/q at a uniformly
distributed point.
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left and right multiplication by an invertible constant matrix. More precisely, let L ∈
GLk+1(Zq), the set of all invertible matrices inZ(k+1)×(k+1)

q , andR ∈ GLk(Zq). Given
some matrix distribution Dk , we write D′

k = LDkR to denote the matrix distribution
resulting from sampling a matrix from Dk and multiplying on the left and on the right
by L and R.
This mapping between matrix distrutions can be used to transform any distin-

guisher for D′
k-MDDH into a distinguisher for Dk-MDDH with the same advantage

and essentially the same running time. Indeed, a ‘real’ instance ([A], [A �w]) of a
MDDH problem can be transformed into a ‘real’ instance of the other MDDH problem
([A′], [A′ �w′]) = (L[A]R,L[A �w]) with the right distribution, because LA �w = A′ �w′,
where �w′ = R−1 �w is uniformly distributed. Similarly, a ‘random’ instance ([A], [�z])
is transformed into another one ([A′], [�z′]) = (L[A]R,L[�z]). From an algebraic point
of view, we can see the above transformation as changing the bases used to represent
certain linear maps as matrices.
In the particular case of one-parameter linear matrix distributions, one can write

A′(t) = LA(t)R = LA0R + LA1Rt , which simply means defining A′
0 = LA0R and

A′
1 = LA1R. Consider the injective linear maps f0, f1 : Zk

q → Zk+1
q defined by

f0( �w) = A0 �w and f1( �w) = A1 �w. We need the following technical lemma.

Lemma 9. IfDk is generically hard in k-linear groups, no nontrivial subspaceU ⊂ Zk
q

exists such that f0(U ) = f1(U ).

Proof. Assume for contradiction a nontrivial subspace U exists such that f0(U ) =
f1(U )s and consider the natural automorphism φ : U → U defined as φ = f −1

1 ◦ f0.
It is well defined due to the injectivity of f0 and f1. Then, there exists an eigenvector
�v �= �0 of φ for some eigenvalue λ ∈ Zq . The equation φ(�v) = f −1

1 ◦ f0(�v) = λ�v implies
( f0 − λ f1)(�v) = �0. Therefore, f0 − λ f1 is no longer injective and A(−λ) = A0 − λA1
has rank strictly less than k, which contradicts Theorem 8. �

Applying the lemma iteratively, one can build special bases for the spaces Zk
q and

Zk+1
q and obtain canonical forms simultaneously for A0 and A1, as described in the

proof of the following theorem, which has some resemblance to the construction of
Jordan normal forms of endomorphisms. The proof is rather technical, and it can be
found in “Appendix 3”.

Theorem 10. Let f0, f1 : Zk
q → Zk+1

q two injective linear maps such that f0(U ) �=
f1(U ) for any nontrivial subspace U ⊂ Zk

q . There exist bases of Z
k
q and Z

k+1
q such that

f0 and f1 are represented in those bases respectively by the matrices

J0 =

⎛
⎜⎜⎜⎜⎝

0 · · · 0
1

. . .
...

...
. . . 0

0 · · · 1

⎞
⎟⎟⎟⎟⎠

J1 =

⎛
⎜⎜⎜⎜⎝

1 · · · 0
0

. . .
...

...
. . . 1

0 · · · 0

⎞
⎟⎟⎟⎟⎠
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Corollary 1. All one-parameter linear hard Dk-MDDH problems are isomorphic to
the SCk-MDDH problem, i.e., there exist invertible matrices L ∈ GLk+1(Zq) and
R ∈ GLk(Zq) such that Dk = LSCkR.

Proof. Combining the previous results, the maps f0, f1 defined from the hard Dk-
MDDH problem are injective and they can be represented in the bases given in The-
orem 10. In terms of matrices, this means that there exist L ∈ GLk+1(Zq) and
R ∈ GLk(Zq) such that A0 = LJ0R and A1 = LJ1R, that is,

A(t) = L

⎛
⎜⎜⎜⎜⎝

t · · · 0
1

. . .
...

...
. . . t

0 · · · 1

⎞
⎟⎟⎟⎟⎠
R

which concludes the proof. �

As an example, we show an explicit isomorphism between SC2-MDDH and IL2-
MDDH problems.

⎛
⎝
t 0
0 t + 1
1 1

⎞
⎠ =

⎛
⎝

−1 0 0
1 1 1
0 0 1

⎞
⎠
⎛
⎝
t 0
1 t
0 1

⎞
⎠
(−1 0
1 1

)

We stress that ‘isomorphic’ does not mean ‘identical,’ and it is still useful having at hand
different representations of essentially the same computational problem, as it would help
in finding applications.

5. Basic Applications

5.1. Public-Key Encryption

LetGen be a group generating algorithm andD�,k be a matrix distribution that outputs a
matrix overZ�×k

q such that the first k-rows form an invertible matrix with overwhelming
probability. We define the following key encapsulation mechanism KEMGen,D�,k =
(Gen,Enc,Dec) with key space K = G�−k .

• Gen(1λ) runs G ← Gen(1λ) and A ← D�,k . Let A0 be the first k rows of A and
A1 be the last � − k rows of A. Define T ∈ Z(�−k)×k

q as the transformation matrix
T = A1A

−1
0 . The public/secret key is

pk =
(
G, [A] ∈ G�×k

)
, sk = (pk,T ∈ Z(�−k)×k

q )

• Encpk picks �w ← Zk
q . The ciphertext/key pair is
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[�c] = [A0 �w] ∈ Gk, [K ] = [A1 �w] ∈ G�−k

• Decsk([�c] ∈ Gk) recomputes the key as [K ] = [T�c] ∈ G�−k .

Correctness follows by the equation T · �c = T · A0 �w = A1 �w. The public key contains
REG(D�,k) and the ciphertext k group elements. An example scheme from the k-SCasc
Assumption is given in “Appendix 5.1”.

Theorem 11. Under the D�,k-MDDH Assumption, KEMGen,D�,k is IND-CPA secure.

Proof. By the D�,k Matrix Diffie–Hellman Assumption, the distribution of (pk, [�c],
[K ]) = ((G, [A]), [A �w]) is computationally indistinguishable from ((G, [A]), [�u]),
where �u ← Z�

q . �

5.2. Hash Proof Systems

Let D�,k be a matrix distribution. We build a universal1 hash proof system HPS =
(Param,Pub,Priv), whose hard subset membership problem is based on the D�,k

Matrix Diffie–Hellman Assumption.

• Param(1λ) runs G ← Gen(1λ) and picks A ← D�,k . Define the language

V = VA = {[�c] = [A �w] ∈ G� : �w ∈ Zk
q} ⊆ C = G�.

The value �w ∈ Zk
q is a witness of [�c] ∈ V . Let SK = Z�

q , PK = Gk , and K = G.

For sk = �x ∈ Z�
q , define the projection μ(sk) = [�x�A] ∈ Gk . For [�c] ∈ C and

sk ∈ SK, we define
�sk([�c]) := [�x� · �c] . (3)

Theoutput ofParam isparams = (S = (G, [A]),K, C,V,PK,SK,�(·)(·), μ(·)).
• Priv(sk, [�c]) computes [K ] = �sk([�c]).
• Pub(pk, [�c], �w). Given pk = μ(sk) = [�x�A], [�c] ∈ V and a witness �w ∈ Zk

q
such that [�c] = [A · �w] the public evaluation algorithm Pub(pk, [�c], �w) computes
[K ] = �sk([�c]) as

[K ] =
[
(�x� · A) · �w

]
.

Correctness follows by (3) and the definition ofμ. Clearly, under theD�,k-Matrix Diffie–
Hellman Assumption, the subset membership problem is hard in HPS.
We now show that � is a universal1 projective hash function. Let [�c] ∈ C \ V be

an element outside of the language. Then the matrix (A||�c) ∈ Z�×(k+1)
q is of full rank

k + 1 and consequently (�x� ·A||�x� · �c) ≡ (�x�A||u) for �x ← Zk
q and u ← Zq . Hence,

(pk,�sk([�c]) = ([�x�A], [�x��c]) ≡ ([�x�A], [u]) = ([�x�A], [K ]).
We remark that � can be transformed into a universal2 projective hash function by

applying a four-wise independent hash function [30]. Alternatively, one can construct
a computational version of a universal2 projective hash function as follows. Let SK =
(Z�

q)
2, PK = (Gk)2, and K = G. For sk = (�x1, �x2) ∈ (Z�

q)
2, define the projection
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μ(sk) = [�x�
1 A, �x�

2 A] ∈ (Gk)2. For [�c] ∈ C and sk ∈ SK, define �sk([�c]) := [(t �x�
1 +

�x�
2 ) · �c], where t = H(�c) and H : C → Zq is a collision-resistant hash function. The
corresponding Priv and Pub algorithms are adapted accordingly. It is easy to verify that
for all values [�c1], [�c2] ∈ C\V with H(�c1) �= H(�c2), we have (pk,�sk([�c1],�sk([�c2]) ≡
(pk, [K1], [K2]), for K1, K2 ← Zq .

5.3. Pseudo-Random Functions

LetGen be a group generating algorithm andD�,k be a matrix distribution that outputs a
matrix overZ�×k

q such that the first k-rows form an invertible matrix with overwhelming
probability. We define the following pseudo-random function PRFGen,D�,k = (Gen,F)

with message space M = {0, 1}n and range R = Gk . For simplicity, we assume that
� − k divides k.

• Gen(1λ) runs G ← Gen(1λ), �h ∈ Zk
q , and Ai, j ← D�,k for i = 1, . . . , n and

j = 1, . . . , t := k/(� − k) and computes the transformation matrices Ti, j ∈
Z

(�−k)×k
q ofAi, j ∈ Z�×k

q (cf. Definition 3). For i = 1, . . . , n, define the aggregated
transformation matrices

Ti =
⎛
⎜⎝
Ti,1
...

Ti,t

⎞
⎟⎠ ∈ Zk×k

q

The key is defined as

K =
(
G, �h,T1, . . . ,Tn

)
.

• FK (x) computes

FK (x) =
⎡
⎣ ∏
i :xi=1

Ti · �h
⎤
⎦ ∈ Gk .

PRFGen,Lk (i.e., setting D�,k = Lk) is the PRF from Lewko and Waters [33]. A more
efficient PRF from the k-SCasc Assumption is given in “Appendix 5.2”.

Note that the elementsT1, . . . ,Tt of the secret key consist of the transformationmatri-
ces of independently sampled matrices Ai, j . Interestingly, for a number of distributions
D�,k the distribution of the transformationmatrixT is the same. For example, the transfor-
mation matrix forLk consists of a uniform row vector, so does the transformation matrix
for Ck and for Uk+1,k . Consequently, PRFGen,Ck = PRFGen,Lk = PRFGen,Uk+1,k and
in light of the theorem below, PRFGen,Lk proposed by Lewko and Waters can also be
proved on the Uk+1,k-MDDH assumption, the weakest among all MDDH assumptions
of matching dimensions.

Theorem 12. Under the D�,k-MDDH Assumption PRFGen,D�,k is a secure pseudo-
random function.
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The proof is based on the augmented cascade construction of Boneh et al. [6]. Here
we give a direct self-contained proof. We first state and prove the following lemma.

Lemma 13. Let Q be a polynomial. Under the D�,k-MDDH Assumption,

[( �h1
T̂�h1

)
, . . . ,

( �hQ

T̂�hQ

)]
∈ G2k×Q

is computationally indistinguishable from a uniform [H] ∈ G2k×Q, where �hi ← Zk
q ,

T̂ =
⎛
⎜⎝
T̂1
...

T̂t

⎞
⎟⎠ ∈ Zk×k

q ,

and T̂ j (1 ≤ j ≤ t) are the transformation matrices of A j ← D�,k .

Proof. By a hybrid argument over j = 1, . . . , t , it is sufficient to show that

[( �h1
T̂1

�h1
)

, . . . ,

( �hQ

T̂1�hQ

)]
∈ G�×Q

is computationally indistinguishable from a uniform [H1] ← G�×Q , i.e., for one single
transformation matrix T̂1 of A1 ← D�,k . This in turn follows directly by Lemma 1
(random self-reducibility of D�,k-MDDH). Note that the overall loss in the security
reduction is k = t · (� − k), where the factor t stems from the hybrid argument and the
factor � − k stems from Lemma 1. �

Proof of Theorem 12. For x ∈ {0, 1}n and 0 ≤ μ ≤ n, define suffixμ(x) as the
μ-th suffix of x , i.e., suffixμ(x) := (xn−μ+1, . . . , xn). We make the convention that
suffix0(x) = ε, the empty string.
We will use a hybrid argument over n, the bitlength of x . In Hybrid μ (0 ≤ μ ≤ n),

let RFμ : {0, 1}μ → Zk
q be a truly random function and define the oracle

Oμ(x) =
⎡
⎢⎣

∏
1≤i≤n−μ
i :xi=1

Ti · RFμ(suffixμ(x))

⎤
⎥⎦ ∈ Gk,

where theTi are defined as in the real scheme.With this definition, we have thatO0(x) =
FK (x) (by definingRF(ε) := �h) andOn(x) is a truly random function. It leaves to show
that the output of oracle Oμ(·) is computationally indistinguishable from Oμ+1(·). For
the reduction, we use Lemma 13, where Q is the maximal number of queries to oracle
O made by the PRF adversary. It inputs
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[( �h10
�h11

)
, . . . ,

( �hQ
0

�hQ
1

)]
,

where �h j
1 = T̂ �

h j
0 or uniformly random. Next, it picks Ti (1 ≤ i ≤ n−μ) and implicitly

defines Tn−μ = T̂. On the j-th query x j = (x j
1 , . . . , x j

n ) (1 ≤ j ≤ Q and wlog all
queries are distinct) to oracle O, it returns

O(x j ) =

⎡
⎢⎢⎢⎣

∏
1≤i≤n−μ−1

i :x ji =1

Ti · �h j

x j
n−μ

⎤
⎥⎥⎥⎦ .

If �h j
1 = T̂ �

h j
0, then

RFμ(suffixμ(x j )) = �h j
0

is a random function on μ bits and

O(x j ) =

⎡
⎢⎢⎢⎣

∏
1≤i≤n−μ

i :x ji =1

Ti · �h j
0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

∏
1≤i≤n−μ

i :x ji =1

Ti · RFμ(suffixμ(x j ))

⎤
⎥⎥⎥⎦

perfectly simulates oracle Oμ from Hybrid μ.
If �h j

1 is uniform and independent from �h j
0, then

RFμ+1
(
suffixμ+1(x j )

)
= �h j

x j
n−μ

is a random function on μ + 1 bits and

O(x j ) =

⎡
⎢⎢⎢⎣

∏
1≤i≤n−μ−1

i :x ji =1

Ti · RFμ+1
(
suffixμ+1(x j )

)
⎤
⎥⎥⎥⎦

perfectly simulates oracle Oμ+1 from Hybrid μ + 1.
We remark that the loss in the reduction is independent of the number of queries Q

to oracle O, i.e., the reduction loses a factor of nk, where the factor n stems from the
above hybrid argument, and the factor k from Lemma 13. �
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5.4. Groth–Sahai Non-interactive Zero-Knowledge Proofs

Groth and Sahai gave a method to construct non-interactive witness-indistinguishable
(NIWI) and non-interactive zero-knowledge (NIZK) proofs for satisfiability of a set of
equations in a bilinear group PG. (For formal definitions of NIWI and NIZK proofs, we
refer to [21].) The equations in the set can be of different types, but they can be written
in a unified way as

n∑
j=1

f (a j , y j ) +
m∑
i=1

f (xi , bi ) +
m∑
i=1

n∑
j=1

f (xi , γi jy j ) = t, (4)

where A1, A2, AT are Zq -modules, �x ∈ Am
1 , �y ∈ An

2 are the variables, �a ∈ An
1,

�b ∈
Am
2 , � = (γi j ) ∈ Zm×n

q , t ∈ AT are the constants and f : A1 × A2 → AT is a bilinear
map. More specifically, considering only symmetric bilinear groups, equations are of
one of these types:

i) Pairing product equations, with A1 = A2 = G, AT = GT , f ([x], [y]) = [xy]T ∈
GT .

ii) Multi-scalar multiplication equations, with A1 = Zq , A2 = AT = G, f (x, [y]) =
[xy] ∈ G.

iii) Quadratic equations in Zq , with A1 = A2 = AT = Zq , f (x, y) = xy ∈ Zq .

Overview. The GS proof system allows to construct NIWI and NIZK proofs for sat-
isfiability of a set of equations of the type (4), i.e., proofs that there is a choice of
variables—the witness—satisfying all equations simultaneously. The prover gives to
the verifier a commitment to each element of the witness and some additional informa-
tion, the proof. Commitments and proof satisfy some related set of equations computable
by the verifier because of their algebraic properties. We stress that to compute the proof,
the prover needs the randomness which it used to create the commitments. To give new
instantiations of GS proofs, we need to specify the distribution of the common reference
string, which includes the commitment keys and some maps whose purpose is roughly
to give some algebraic structure to the commitment space.

Commitments. We will now construct commitments to elements in Zq and G. The
commitment key [U] = ([�u1], . . . , [�uk+1]) ∈ G�×(k+1) is of the form

[U] =
{[

A||A �w] binding key (soundness setting)[
A||A �w − �z] hiding key (WI setting)

,

where A ← D�,k, �w ← Zk
q , and �z ∈ Z�

q , �z /∈ Im(A) is a fixed, public vector. The
two types of commitment keys are computationally indistinguishable based on the
D�,k-MDDH Assumption.
To commit to [y] ∈ G using randomness �r ← Zk+1

q , we define maps ι : G → Z�
q

and p : G� → Zq as

ι([y]) = y · �z, p([�c]) = �ξ� · �c, defining com[U],�z ([y]; �r) := [
ι([y]) + U�r] ∈ G�,
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where �ξ ∈ Z�
q is an arbitrary vector such that �ξ�A = �0 and �ξ� · �z = 1. Note that, given

[y], ι([y]) is not efficiently computable, but [ι([y])] is, and this suffices to compute the
commitment. On a binding key (soundness setting), we have that p([ι([y])]) = y for
all [y] ∈ G and that p([�ui ]) = 0 for all i = 1 . . . k + 1. So p(com[U],�z([y]; �r)) =
�ξ�(�zy+U�r) = �ξ��zy+ �ξ�(A||A �w)�r = y and the commitment is perfectly binding. On
a hiding key (WI setting), ι([y]) ∈ Span(�u1, . . . , �uk+1) for all [y] ∈ G which implies
that the commitments are perfectly hiding.
To commit to a scalar x ∈ Zq using randomness �s ← Zk

q , we define the maps

ι′ : Zq → Z�
q and p′ : G� → Zq as

ι′(x)=x · (�uk+1 + �z), p′([�c])=�ξ��c, defining com′
[U],�z(x; �s) := [ι′(x) + A�s] ∈ G�.

where �ξ is defined as above. Note that, given x, ι(x) is not efficiently computable, but
[ι(x)] is, and this suffices to compute the commitment. On a binding key (soundness
setting), we have that p′([ι′(x)]) = x for all x ∈ Zq and p′([�ui ]) = 0 for all i =
1 . . . k so the commitment is perfectly binding. On a hiding key (WI setting), ι′(x) ∈
Span(�u1, . . . , �uk) for all x ∈ Zq , which implies that the commitment is perfectly hiding.
It will also be convenient to define a vector of commitments as com[U],�z([�y];R) =

[ι([�y�]) + UR] and com′
[U],�z(�x;S) = [ι′(�x�

) + AS], where [�y] ∈ Gm, �x ∈ Zn
q , R ←

Z
(k+1)×m
q , S ← Zk×n

q and the inclusion maps are defined component-wise.

Inclusion and ProjectionMaps.As we have seen, commitments are elements ofG�.
The main idea of GS NIWI and NIZK proofs is to give some algebraic structure to the
commitment space (in this case,G�) so that the commitments to a solution in A1, A2 of a
certain set of equations satisfy a related set of equations in some larger modules. For this
purpose, if [�x] ∈ G� and [�y] ∈ G�, we define the bilinear map F̃ : G� × G� → Z�×�

q
defined implicitly as:

F̃
([�x], [�y]) = �x · �y�

,

as well as its symmetric variant F([�x], [�y]) = 1
2 F̃([�x], [�y])+ 1

2 F̃([�y], [�x]). Additionally,
for any two row vectors of elements of G� of equal length r [X] = [�x1, . . . , �xr ] and
[Y] = [�y1, . . . , �yr ], we define the maps •̃ , • associated with F̃ and F as [X] •̃ [Y] =
[∑r

i=1 F̃([�xi ], [�yi ])]T and [X] • [Y] = [∑r
i=1 F([�xi ], [�yi ])]T . To complete the details

of the new instantiation, we must specify for each type of equation, for both F ′ = F
and F ′ = F̃ :

a) some maps ιT and pT such that for all x ∈ A1, y ∈ A2, [�x] ∈ G�, [�y] ∈ G�,

F ′([ι1(x)], [ι2(y)]) = ιT ( f (x, y)) and pT ([F ′([�x], [�y])]T )

= f (p1([�x]), p2([�y])),

where ι1, ι2 are either ι or ι′ and p1, p2 either [p] or p′, according to the appropriate
A1, A2 for each equation,
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b) matricesH1, . . . ,Hη ∈ Zk1×k2
q , where k1, k2 are the number of columns ofU1,U2,

respectively, and which, in the witness indistinguishability setting, are a basis of all
the matrices which are a solution of the equation [U1H] • [U2] = [0]T if F ′ = F
or [U1H] •̃ [U2] = [0]T if F ′ = F̃ , where U1,U2 are either U or A, depending
on the modules A1, A2. These matrices are necessary to randomize the NIWI and
NIZK proofs.

To present the instantiations in concise form, in the following Hr,s,m,n = (hi j ) ∈ Zm×n
q

denotes the matrix such that hrs = −1, hsr = 1 and hi j = 0 for (i, j) /∈ {(r, s), (s, r)}.
In summary, the elements which must be defined are as follows:

• Pairing product equations. In this case, A1 = A2 = G, AT = GT , ι1 = ι2 = ι,
p1 = p2 = [p], U1 = U2 = U and for both F ′ = F and F ′ = F̃ ,

ιT ([z]T ) = z · �z · �z� ∈ Z�×�
q pT ([Z]T ) = [�ξ�Z�ξ ]T ,

where Z = (Zi j )1≤i, j≤� ∈ Z�×�
q . The equation [UH] •̃ [U] = [0]T admits

no solution, while all the solutions to [UH] • [U] = [0]T are generated by{
Hr,s,k+1,k+1

}
1≤r<s≤k+1.

• Multi-scalar multiplication equations. In this case, A1 = Zq , A2 = AT = G,
ι1 = ι′, ι2 = ι, p1 = p′, p2 = [p], U1 = A, U2 = U and for both F ′ = F̃ and
F ′ = F ,

ιT ([z]) = F ′([ι′(1)], [ι([z])]) pT ([Z]T ) = [�ξ�Z�ξ ].

The equation [AH] •̃ [U] = [0]T admits no solution, while all the solutions to
[AH] • [U] = [0]T are generated by

{
Hr,s,k,k+1

}
1≤r<s≤k .

• Quadratic equations. In this case, A1 = A2 = AT = Zq , ι1 = ι2 = ι′, p1 = p2 =
p′ and U1 = U2 = A, for both F ′ = F̃ and F ′ = F , we define

ιT (z) = F ′([ι′(1)], [ι′(z)]) pT ([Z]T ) = �ξ�Z�ξ .

The equation [AH] •̃ [A] = [0]T admits no solution, while all the solutions to
[AH] • [A] = [0]T are generated by

{
Hr,s,k,k

}
1≤r<s≤k .

To argue that the equation [U1H] •̃ [U2] = [0]T admits no solution, for each of the cases
above, it is sufficient to argue that the vectors F̃([�ui ], [�u j ]) are linearly independent.
This holds regardless of the matrix distribution D�,k from basic linear algebra, since
F̃([�ui ], [�u j ]) was defined as the implicit representation of the outer product of �ui and
�u j and �u1, . . . , �uk+1 are linearly independent.

Proof and Verification. For completeness, we now describe how do the prover and
the verifier proceed. Define k1, k2 as the number of columns of U1,U2 respectively. On
input PG, [U], �z, a set of equations and a set of witnesses �x ∈ Am

1 , �y ∈ An
2 the prover

proceeds as follows:
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Table 1. Size of the proofs based on the D�,k -MDDH assumption .

D�,k -MDDH instantiation Elements ofG Elements of Zq

Commitment to a Variable � 0
Pairing product equation �(k + 1) 0
Linear equation: k + 1 0

Multi-scalar multiplication equation �(k + 1) 0
Linear equation with variables in G 0 k + 1
Linear equation with variables in Zq k 0

Quadratic equation �k 0
Linear equation 0 k

1. Commit to �x and �y as

[C] = [ι1(�x�
) + U1R], [D] = [ι2(�y�

) + U2S]

where R ← Zk1×m
q , S ← Zk2×n

q .

2. For each equation of the type (4), pick T ← Zk1×k2
q , ri ← Zq and output

([�], [�]), defined as:

[�] :=
⎡
⎣ι2(�b�)R� + ι2(�y�

)��R� + U2S��R� − U2T� +
∑

1≤i≤η

riU2H�
i

⎤
⎦

[�] :=
[
ι1(�a�)S� + ι1(�x�

)�S� + U1T
]

The proof described above is for a general equation the same optimizations for special
types of equation as in the full version of [21] apply. In particular, when the map used
is the symmetric map F , the size of the proof can be reduced. In addition, the size of
the proof can also be reduced when all the elements in either A1 or A2 are constants.
Taking these optimizations into account, we give the size of the commitments and the
proof for the different types of equations in Table 1.
To verify a proof, on input the commitments [C], [D] and a proof ([�], [�]), the

verifier checks whether

[ι1(�a�)] •′ [D] + [C] •′ [ι2(�b�)] + [C] •′ [D��]
= [ιT (t)]T + [U1] •′ [�] + [�] •′ [U2],

where •′ is either • or •̃, depending on whether F ′ is F or F̃ . If the equation is satisfied,
the verifier accepts the proof for this equation and rejects otherwise. In general, the
verification cost depends on � and k, though a bitmight be gained in pairing computations
when using batch verification techniques and if some components of the commitment
keys are trivial or are repeated, i.e., if the D�,k admits short representation.

Efficiency.We emphasize that forD�,k = L2 and �z = (0, 0, 1)� and forD�,k = DDH
and �z = (0, 1)� (in the natural extension to asymmetric bilinear groups), we recover
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the 2-Lin and the SXDH instantiations of [21]. While the size of the proofs depends
only on � and k, both the size of the CRS and the cost of verification increase with
REG(D�,k). In particular, in terms of efficiency, the SC2 Assumption is preferable to
the 2-Lin assumption, but the main reason to consider more instantiations of GS proofs
is to obtain more efficient proofs for a large class of languages in Sect. 6.

6. More Efficient Proofs for Some CRS-Dependent Languages

Let [U] be the commitment key defined in last section as part of a D�,k-MDDH instan-
tiation, for some A ← D�,k . In this section, we show how to obtain shorter proofs of
some languages related toA. The common idea of all the improvements is to exploit the
special structure of the homomorphic commitments used in Groth–Sahai proofs.

6.1. More Efficient Subgroup Membership Proofs

We first show how to obtain shorter proofs of membership in the language LA,PG :=
{[A�r ], �r ∈ Zk

q} ⊂ G�.

Intuition. Our proofs implicitly use the GS framework, although we have preferred to
give the proofs without using the GS notation. Indeed, the idea behind our improvement
is to exploit the special algebraic structure of commitments in GS proofs, namely the
observation that if [ �] = [A�r ] ∈ LA,PG then [ �] = com′

[U],�z(0; �r). Therefore, to prove
that [ �] ∈ LA,PG , we proceed as if we were giving a GS proof of satisfability of the
equation x = 0 where the randomness used for the commitment to x is �r . In particular,
no commitments have to be given in the proof, which results in shorter proofs. To prove
zero-knowledge, we rewrite the equation x = 0 as x · δ = 0. The real proof is just a
standard GS proof with the commitment to δ = 1 being ι′(1) = com[U](1; �0), while in
the simulated proof the trapdoor allows to open ι′(1) as a commitment to 0, so we can
proceed as if the equation was the trivial one x · 0 = 0, for which it is easy to give a
proof of satisfiability.

Related Work. It is interesting to compare in detail with a recent line of work aiming
at obtaining very efficient arguments of membership in linear subspaces ([25,26,31,
34]) which also exploits the dependency of the common reference string and the space
where one wants to prove membership in. More specifically, these works construct
NIZK arguments of membership in the space generated by [A] ∈ G�×k , with perfect
zero-knowledge and computational soundness. We compare our results with [31], who
give two different constructions which generalize and simplify previous results. In their
work, computational soundness is based on any Dm-MDDH Assumption.7 In the first
construction, the proof size is m + 1 and the common reference string must include
m� + (m + 1)k + REG(Dm) group elements and a description of [A]. In the second
construction, which assumes that [A] is drawn from awitness samplable distribution, the
proof size ism and the common reference stringmust includem�+mk+REG(Dm)group

7Actually, to be precise, soundness is based on a computational variant of the Dm -MDDH Assumption.
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elements, whereDm denotes the distribution of the first m rows of the matrices sampled
according to Dm , and a description of [A]. Our proof, on the other hand, has perfect
soundness, composable zero-knowledge under the D�,k-MDDH Assumption, proof of
size �k and apart from a description of [A], the common reference string consists of only
� elements of G.

6.1.1. Construction

Define H := {H ∈ Zk×k
q : H + H� = 0}. Following the intuition given above, the

actual construction looks as follows:
Setup. At the setup stage, some group PG = (G,GT , q, e,P) ← PGen(1λ) is speci-
fied.
Common reference string. We define [U] = ([�u1], . . . , [�uk+1]) as [A||A �w + �z] in

the soundness setting and [A||A �w] in the witness indistinguishability setting, where
A ← D�,k , �w ← Zk

q , and �z ∈ Z�
q , �z /∈ Im(A). The common reference string is

σ := (PG, [U], �z).
Simulation trapdoor. The simulation trapdoor τ is the vector �w ∈ Zk

q .

Prover. On input σ , a vector [ �] = [A�r ] ∈ LA,PG and the witness �r ∈ Zk
q , the prover

chooses a matrix H ← H and computes

[�] =
[
�uk+1�r� + AH

]
.

Verifier. On input σ, [ �], [�], the verifier checks whether [ ��u�
k+1 + �uk+1 ��]T =

[�A� + A��]T .
Simulator. On input σ, [ �], τ the simulator picks a matrix H′ ← H and computes

[�sim] =
[ � �w� + AH′] .

Theorem 14. Let A ← D�,k , where D�,k is a matrix distribution. There exists a non-
interactive zero-knowledge proof for the language LA,PG , with perfect completeness,
perfect soundness and composable zero-knowledge of k� group elements based on the
D�,k-MDDH Assumption.

The proof follows directly by implicitly reconstructing the same arguments which
prove the same properties for the GS proof system.

Proof. First, it is clear that under the D�,k-MDDH Assumption, the soundness and the
WI setting are computationally indistinguishable.
Completeness. To see completeness, we see that a real proof satisfies the verification

equation. Indeed, in the soundness setting, the left term of the verification equation is:

[ ��u�
k+1 + �uk+1 ��]

T
=
[
A�r(A �w + �z)� + (A �w + �z)(A�r)�

]
T

=
[
A(�r �w� + �w�r�)A� + A�r�z� + �z�r�A�]

T
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while the right term in the real proof is:

[
�A� + A��]

T
=
[
A( �w�r� + �w�r�)A� + A(H + H�)A� + A�r�z� + �z�r�A�]

T

(5)

=
[
A(�r �w� + �w�r�)A� + A�r�z� + �z�r�A�]

T
. (6)

This proves perfect completeness.
Soundness. Let �ξ ∈ Z�

q be any vector such that �ξ�A = �0, �ξ��z = 1. This implies that

in the soundness setting, �ξ��uk+1 = 1. Therefore, if [�] is any proof that satisfies the
verification equation, multiplying on the left by �ξ� and the right by �ξ ,

�ξ� [ ��u�
k+1 + �uk+1 ��]

T
�ξ = �ξ� [�A� + A��]

T
�ξ,

we obtain
[�ξ� � + ���ξ

]
T

= [0]T . (7)

Since [�ξ� �+ ���ξ ]T = 2[�ξ� �]T , from this last equation it follows that [�ξ� �]T = [0]T .
This holds for any vector �ξ such that �ξ�A = �0 and �ξ��z = 1, which implies that
[] ∈ LA,PG , which proves perfect soundness.
Composable Zero-Knowledge.Wewill now see that, in thewitness indistinguishability

setting, both a real proof and a simulated proof have the same distribution when [] ∈
LA,PG . We first note that they both satisfy the verification equation. Indeed, the left term
of the verification equation in the WI setting is

[ ��u�
k+1 + �uk+1 ��]

T
=
[
A
(
�r �w� + �w�r�)A�]

T
,

which is obviously equal to the right term of the verification equation for the real proof
(rewrite Eq. (5) in the WI setting). On the other hand, if [] ∈ LA,PG , the right term of
the verification equation for a simulated proof is:

[
�simA� + A��

sim

]
T

=
[
A
(
�r �w� + �w�r�)A� + A

(
H′ + (H′)�

)
A�]

T

=
[
A
(
�r �w� + �w�r�)A�]

T
,

for some H′ ∈ H.
We now argue that an honestly generated proof [�] and a simulated proof [�sim]

have the same distribution. By construction, there exist some matrices � and �′ such
that [�] = [A�] and [�sim] = [A�′]. Now, if [�1] = [A�1] and [�2] = [A�2] are
two proofs, real or simulated, which satisfy the verification equation, then necessarily
[(�1 − �2)A� + A(�1 − �2)]T = [A((�1 − �2) + (�1 − �2)

�)A�]T = 0.
Since with overwhelming probability, A has rank k, it must hold that (�1 − �2) +

(�1 − �2)
� = 0, that is, it must hold that (�1 − �2) ∈ H. By construction, for both
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honestly generated proofs [�] and simulated proofs these differences are uniformly
distributed inH. �

6.1.2. Efficiency Comparison and Applications

For the 2-Lin assumption, (� = 3, k = 2), our proof consists of only six group elements,
whereas without using our technique the proof consists of 12 elements.8 More generally,
to prove that [ �] ∈ LA,PG , for some A ← D�,k with a GS instantiation based on a
(possibly unrelated) D�′,k′ -matrix DH problem using standard GS proofs, one would
prove that the following equation is satisfiable for all i = 1 . . . �:

r1[u1,i ] + · · · + rk[uk,i ] = [i ], (8)

that is, one needs to prove that � linear equations with k variables are satisfied. Therefore,
according to Table 1, the verifier must be given k�′ elements ofG for the commitments
and �k′ elements of G for the proof. On the other hand, proving [ �] ∈ LA,PG using
our approach requires �k elements of G, corresponding to the size of the proof of one
quadratic equation.

Applications. For a typical application scenario of Theorem 14, think of [A] as part of
the public parameters of the hash proof system of Sect. 5.2. Proving that a ciphertext is
well formed is proving membership in LA,PG . Another application is to show that two
ciphertexts encrypt the same message under the same public key, a common problem
in electronic voting or anonymous credentials. There are many other settings in which
subgroup membership problems naturally appear, for instance the problem of certifying
public keys or given some plaintext m, the problem of proving that a certain ciphertext
is an encryption of [m]. We stress that in our construction the setup of the CRS can be
built on top of the encryption key so that proofs can be simulated without the decryption
key, which is essential for many of these applications. More concretely, below we give
two application examples.
Application Example 1. The standard proof of membership in LA,PG , when A ←

2-Lin based on the same assumption (with � = �′ = 3, k = k′ = 2), requires 12 group
elements, while with our approach only six elements are required.9 This reduces the
ciphertext size of one of the instantiations of [35] from 15 to 9 group elements.
Application Example 2. With our results, we can also give a more efficient proof

of correct opening of the Cramer–Shoup ciphertext. We briefly recall the CS encryp-
tion scheme based on the 2-Lin-assumption ([23,45]). The public key consists of the
description of some group G and a tuple [a1, a2, X1, X2, X3, X4, X5, X6] ∈ G8. Given
a message [m] ∈ G, a ciphertext is constructed by picking random r, s ∈ Zq and setting

C := [r(a1, 0, 1, X5, X1 + αX3) + s(0, a2, 1, X6, X2 + αX4) + (0, 0,m, 0, 0)],

8For completeness, a detailed comparison for the 2-Lin case can be found in “Appendix 4”.
9A detailed comparison for 2-Lin case is given in “Appendix 4”. The same results hold for the Symmetric

2-cascade assumption.
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where α is the hash of some components of the ciphertext and possibly some label. To
prove that a ciphertext opens to a (known) message [m], substract [m] from the third
component of the ciphertext and prove membership in LAα,PG , whereAα is defined as:

Aα :=

⎛
⎜⎜⎜⎜⎝

a1 0
0 a2
1 1
X5 X6

X1 + αX3 X2 + αX4

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 α

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

a1 0
0 a2
1 1
X5 X6
X1 X2
X3 X4

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Denote Mα,C, the two matrices of the right term of the previous equation such that
Aα = MαC. The matrix Aα depends on α and is different for each ciphertext, so it
cannot be included in the CRS. Instead, we include the matrix [UC ] := [C||C �w + �zC ]
in the soundness setting and [UC ] := [C||C �w] in the WI setting, for �zC /∈ Im(C), for
instance �z�C := (0, 0, 0, 0, 1, 0). To prove membership in LAα,PG as we explained, we
would make the proof with respect to the CRS [Uα] := [MαUC ]. Clearly, if �z� :=
(0, 0, 0, 0, 1), [Uα] = [Aα||Aα �w + �z] in the soundness setting and [Uα] = [Aα||Aα �w]
in the WI, as required. The resulting proof consists of 10 group elements, as opposed to
16 using standard GS proofs. This applies to the result of [17], Sect. 3.

6.2. Other CRS-Dependent Languages

The techniques of the previous section can be extended to other languages, namely:

• A proof of validity of a ciphertext, that is, given [A], A ← D�,k , and some vector
�z ∈ Z�

q , �z /∈ Im(A), one can use the same techniques to give a more efficient proof
of membership in the space:

LA,�z,PG = {[�c] : �c = A�r + m�z} ⊂ G�,

where (�r , [m]) ∈ Zk
q ×G is the witness. This is also a proof of membership in the

subspace of G� spanned by the columns of [A] and the vector �z, but part of the
witness, [m], is in the groupG and not inZq , while part of the matrix generating the
subspace is inZq . However, it is not hard tomodify the subgroupmembership proofs
as described inSect. 6.1 to account for this. In particular, since theGSproof system is
non-interactive zero-knowledge proofs of knowledge when the witnesses are group
elements, the proof guarantees both that [�c] is well formed and that the prover
knows [m]. In a typical application, [�c] will be the ciphertext of some encryption
scheme, in which case �r will be the ciphertext randomness and [m] the message.

• A proof of plaintext equality. The encryption scheme derived from the KEM given
in Sect. 5.1 corresponds to a commitment in GS proofs — except that the commit-
ment is always binding. That is, if pkA = (G, [A] ∈ G�×k), for some A ← D�,k ,
given �r ∈ Zk

q ,

EncpkA([m]; �r) = [�c] = [A�r + (0, . . . , 0,m)�] = [A�r + m · �z]
= com[A||A �w]([m]; �s),
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where �s� := (�r�, 0) and �z := (0, . . . , 0, 1)�. Therefore, given two (potentially
distinct) matrix distributions D�1,k1 , D′

�2,k2
and A ← D�1,k1 ,B ← D′

�2,k2
, prov-

ing equality of plaintexts of two ciphertexts encrypted under pkA, pkB , corre-
sponds to proving that two commitments under different keys open to the same
value. One can gain in efficiency with respect to the standard use of GS proofs
because one does not need to give any commitments as part of the proof, since the
ciphertexts themselves play this role. More specifically, given [�cA] = EncpkA([m])
and [�cB] = EncpkB ([m]), one can treat [�cA] as a commitment to the variable
[x] ∈ A1 = G and [�cB] as a commitment to the variable [y] ∈ A2 = G and
prove that the quadratic equation e([x], [1]) · e([−1], [y]) = [0]T is satisfied.
The problem is only how to construct the simulator of the NIZK proof system,
since commitments are always binding. For this, one uses a similar trick as in
the membership proofs, namely to let the zero-knowledge simulator open ι1([1]),
ι2([−1]) as commitments to the [0] variable and simulate a proof for the equation
e([x], [0]) ·e([0], [y]) = [0]T , which is trivially satisfiable and can be simulated. In
[27], we reduce the size of the proof by four group elements from 18 to 22, while in
[22] we save nine elements although their proof is quite inefficient altogether. We
note that even if both papers give a proof that two ciphertexts under two different
2-Lin public keys correspond to the same value, the proof in [22] is more inefficient
because it must use GS proofs for pairing product equations instead of multi-scalar
multiplication equations. Other examples include [10,15].
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Appendix 1: Proof of Theorem 7

We split the theorem in several lemmas.

Lemma 15. (k + 1)-PDDH ⇒ k-Casc.

Proof. The idea of the proof is that an instance of the (k + 1)-PDDH problem can be
viewed as an instance of the C-MDDH problem with a non-uniform distribution of �w.
A suitable re-randomization of �w yields the result. Let (G, [x1], . . . , [xk+1], [z]) be a
(k+1)-PDDH instancewith either z ∈ Zq uniform or z = x1 · · · xk+1.Wewill construct
a k-Casc instance from that, setting [A] as follows:

[A] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

[x1] [0] . . . [0] [0]
[1] [x2] . . . [0] [0]
[0] [1] . . . [0]
...

. . .
...

[0] [0] . . . [1] [xk]
[0] [0] . . . 0 [1]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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Let [�b�] := (
(−1)k+1[z], [0], [0], . . . , [0], [xk+1]

)T
. Since A has full rank, �b is in the

span of the columns of A if and only if det(A‖�b) = 0. Since det(A‖�b) = x1 · · · xk − z,
this depends on the distribution of z as desired. To obtain a properly distributed k-Casc
instance (G, [A], [�b′]), we set [�b′] = [�b] +∑

i wi [ �ai ] for uniform wi ∈ Zq . Clearly, if
�b is in the span of the columns of A, �b′ will be a uniform element in the span of the
columns of A, whereas if it is not, �b′ will be uniform in all of Zk+1

q . �

Lemma 16. (k + 1)-EDDH ⇒ k-SCasc.

Proof. The proof is analogous to the proof of the preceding Lemma 15. Let (G, [x], [z])
be a (k+1)-EDDH instance with either z ∈ Zq uniform or z = xk+1. We will construct
a k-SCasc instance from that, defining [A] as the following k × (k + 1)-matrix:

[A] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

[x] [0] . . . [0] [0]
[1] [x] . . . [0] [0]
[0] [1] . . . [0]
...

. . .
...

[0] [0] . . . [1] [x]
[0] [0] . . . [0] [1]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Set [�b�] := (
(−1)k+1[z], [0], [0], . . . , [0], [x]). As above, �b is in the span of the columns

of A if and only if z = xk+1. To obtain a properly distributed k-SCasc instance
(G, [A], [�b′]), we set [�b′] = [�b] +∑

i wi [ �ai ] for uniform wi ∈ Zq . �

Lemma 17. In k-linear groups, k-Casc ⇒ k-MLDDH.

Proof. Assume for the purpose of contradiction that k-MLDDH does not hold. To break
the k-Casc problem, we are given an instance [A], [�z], where A ← Ck and we have to
distinguish between �z = A �w for uniform �w and uniform �z. Or, equivalently, we have to
test if the determinant of matrix B = A||�z ∈ Z

(k+1)×(k+1)
q is zero. But detB is just the

determinant polynomial of k-Casc defined in Sect. 3.3 and explicitly computed in the
proof of Theorem 6. Namely,

detB = d(a1, . . . , ak, z1, . . . , zk+1) = a1 · · · akzk+1 − a1 · · · ak−1zk + · · · + (−1)k z1
= a1 · · · akzk+1 + Rk(a1, . . . , ak, z1, . . . , zk+1),

where Rk is a polynomial of degree k.
Hence, to test whether det(B) = 0, we compute [b]Tk = [−Rk(a1, . . . , ak, z1, . . . ,

zk+1)]Tk using the k-linear map, and then we use the oracle k-MLDDH([a1], . . . , [ak],
[zk+1], [b]Tk ) to check if a1 · · · akzk+1 = −b. �

Lemma 18. k-SCasc ⇒ k-Casc, k-ILin ⇒ k-Lin
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Proof. Both implications follow by simple re-randomization arguments. A k-SCasc
instance ([a1], . . . , [ak], [a1w1], [w1 + a2w2], . . . , [wk−1 + akwk], [wk]) can be trans-
formed into a k-Casc instance by picking α1, α2, . . . , αk ← Z∗

q and comput-

ing ([aα1], [aα2], . . . , [aαk], [aw1], [w1+aw2
α1

], . . . , [wk−1+akwk
α1···αk−1

], [ wk
α1···αk ]). Similarly, a

k-ILin instance ([a], [aw1], [(a + 1)w2], . . . , [(a + k − 1)wk], [w1 + · · · + wk]) can be
transformed into a k-Lin instance by picking random α1, α2, . . . , αk ← Z∗

q and com-
puting ([aα1], [(a+1)α2], . . . , [(a+k−1)αk], [aw1α1], [(a+1)w2α2], . . . , [(a+k−
1)wkαk], [w1 + · · · + wk]). �

Lemma 19. k-Casc ⇒ (k + 1)-Casc, k-SCasc ⇒ (k + 1)-SCasc

Proof. To show the first implication, we transform a given instance of the k-Casc
problemD1 = ([a1], . . . , [ak], [a1w1], [w1 +a2w2], . . . , [wk−1 +akwk], [wk]) into an
instance of the (k+1)-Casc problem by picking uniformwk+1 ← Zq and [ak+1] ← G
and computingD2 = ([a1], . . . , [ak+1], [a1w1], [w1+a2w2], . . . , [wk−1+akwk], [wk+
ak+1wk+1], [wk+1]). Note thatD2 is pseudo-random if and only ifD1 is pseudo-random.
The same reduction also works in the symmetric case. �

Appendix 2: Proofs for the Generic Hardness results

In this section, we give the remaining proofs for the results on theD�,k-MDDH assump-
tion in generic m-linear groups from Sect. 3.3. We refer to reader to, e.g., [11] for nec-
essary background on the algebraic material such as polynomial rings, ideals, Gröbner
bases, varieties and irreducibility used in this section.Note that in this paper irreducibility
is not implicit in the definition of a variety.
Recall that our setup is that D�,k is a matrix distribution which outputs ai, j = pi, j (�t)

for uniform �t ∈ Zd
q and possibly multivariate polynomials pi, j , whose degree does not

depend on λ and hence not on q. The distributions ([A], [�z] = [A �ω]) respectively
([A], [�z] = [�u]) for A ← D�,k, �ω ← Zk

q , �u ← Z�
q are denoted by D0 respec-

tively D1. In order to describe all of these data, we consider the polynomial ring
R = Zq [ �A, �Z , �T , �W ], introducing formal variables �A = A1,1, . . . , A�,k to describe
the matrix A, �Z = Z1, . . . , Z� to describe the vector �z, �T = T1, . . . Td for some d
to describe the underlying t’s used to sample the ai, j ’s via ai, j = pi, j (�t), and formal
variables �W = W1, . . . ,Wk to describe �ω (which only appears in D0). Note that we
shorthand write �A for the collection of all Ai, j ’s if the structure as a matrix is not crucial.
Furthermore, we write A = p(�t) or �a = �p(�t), meaning that ai, j = pi, j (�t). We further
consider the polynomial subring S = Zq [ �A, �Z ] ⊂ R to describe the publicly known
expressions. We can now encode our distributions D0 and D1 by polynomials in the
following way: let fi, j = Ai, j − pi, j ( �T ) and gi = Zi −∑

j pi, j (
�T )Wj . Let G0 be the

set of all f’s and g’s, whereas G1 only consists of the f’s, but not the g’s. The generators
Gb span the ideals Ib over R, which encode all the relations in Db for b ∈ {0, 1}. Of
course, I1 ⊂ I0.
We consider Jb = Ib ∩ S, which are ideals in S encoding the relations between the

known data. We will show that (Jb)≤m , where ≤m denotes restriction to total degree at
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mostm, captures exactly what can be generically computed by an adversary performing
only polynomially many group and m-linear pairing operations:

Appendix 2.1: Proof of Theorem 3

Let D�,k be a matrix distribution with polynomial defining equations and I0, I1 be as
above. Then the D�,k-MDDH assumption holds in generic m-linear groups if and only
if J0 and J1 are equal up to total degree m, i.e., (J0)≤m = (J1)≤m .

Proof. The proof is analogous to the one from [2,9], apart from being stated more
algebraically. Let D be a ppt distinguisher with input fromDb for either b = 0 or b = 1.
Let κ = poly(λ) be an upper bound on the number of D’s oracle queries and initial input
group elements. We will replace the oracles D has access to, show that this replacement
can only be detected with negligible probability and show that D’s advantage with the
replaced oracles is zero.
Our replacement of D’s oracles is as follows: We replace (the random representation

of) G and its associated oracles by (a random representation10 of) the quotient Q =
R/Ib. Similarly GT is replaced by an isomorphic copy Q′ of R/Ib (with another
random representation independent from the one forG). The oracle for e is replaced by
anoracle computing the product inQ andoutputting the (representationof the) associated
element in Q′. The initial elements [ai, j ] respectively [zi ] are replaced by π(Ai, j ) ∈ Q
respectively π(Zi ) ∈ Q, where π respectively π ′ denotes the projection π : R → Q
respectively π ′ : R → Q′. The generators g and gT are replaced by π(1) ∈ Q and
π ′(1) ∈ Q′. The representations of Q and Q′ are as usual defined on demandbykeeping a
list of all elements queried so far and choosing random representations for new elements;
queries with representations as input that have not been previously defined produce
an invalid answer ⊥, as do queries using the wrong isomorphic copy and/or mixing
them. Note that we assume here that in the random group model the representations are
sufficiently long, say a generous ≥ 5 log q, such that representations are hard to guess
and the sets of representations forG andGT are disjoint with overwhelming probability.
By Buchberger’s First Criterion [11], the given generating setGb is actually a Gröbner

basis with respect to any lexicographic ordering, where any Zi ’s are larger than any
Ai, j ’s and both are larger than any Ti ’s or Wi ’s. We identify elements from R/Ib by
their remainders modulo Gb. Note that computing this remainder just means replacing
any occurrence of Ai, j by pi, j and, if b = 0, additionally replacing Zi by

∑
j pi, jW j .

After D has run, we sample �t ← Zd
q , �ω ← Zk

q , �u ← Z�
q . For any remainder h ∈ Q,

define ev(h) as ev(h) = [h(0, �u, �t, �ω)] ∈ G, where we plug in �u for �Z , �t for �T and �ω
for �W . Note that there are no Ai, j ’s in h and in the case b = 0 no Zi ’s occur either. For
h′ ∈ Q′, we define ev(h′) ∈ GT analogously.
Since D can only apply e in Q, but not in Q′, any element seen in Q by D can bewritten

as a sum of elements initially presented to D. Elements seen in Q′ can be written as sums
of m-fold products of such elements. So let k1, . . . , kr ∈ S≤1 and k′1, . . . , k′r ′ ∈ S≤m

with r + r ′ ≤ κ be the elements constructed by D. Let hi := ki mod Ib ∈ Q and

10Strictly speaking, only those polynomially many elements ever appearing even have a well-defined
representation. Note that Q is infinite.
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h′
i := k′i mod Ib ∈ Q′. The distinct elements among the hi and h′

i are exactly the
distinct elements from Q respectively Q′ seen by D, whereas the ki and k′i keep track of
how D constructed those. Note that the mod Ib map need not be injective on S≤m .

Since computing mod Ib is just a replacement of each Ai, j and possibly Zi by a
polynomial of degree at most deg + 1, the total degree of all remainders hi and h′

i
is bounded by the constant (deg + 1)m , where deg is the upper bound on the total
degree of the pi, j , which is independent of the security parameter λ by assumption.
Let Good denote the event that for all hi �= h j we have ev(hi ) �= ev(h j ) and for all
h′
i �= h′

j we have ev(h′
i ) �= ev(h′

j ). By construction, if Good occurs, the view of D
with the replaced oracles is identical to the view if D would have had access to the
original oracles. Since each such equality ev(hi ) = ev(h j ) or ev(h′

i ) = ev(h′
j ) is a

nonzero polynomial equation of total degree at most (deg + 1)m in uniformly chosen
unknowns from Zq , each one holds only with probability at most (deg+1)m

q = negl(λ).
Since there are only polynomially many pairs i �= j , Good occurs with overwhelming
probability of at least 1 − κ(κ−1)(deg+1)m

2q . Furthermore, D’s view can only depend on
b if we have ki − k j ≡ 0 mod I0 but ki − k j �≡ 0 mod I1 (or the analogous in Q′) for
some elements ki , k j constructed by D. We know that any ki or k′i is in S≤m . So, since
I0 ∩S≤m = (J0)≤m = (J1)≤m = I1 ∩S≤m , D’s view (with the replaced oracles) does
not depend on b.
For the other direction of the theorem, note that if there exists k ∈ (J0)≤m \ (J1)≤m

then it is easy to construct a ppt distinguisher D that computes h = [k(ai, j , zi )]T ∈ GT .
If b = 0, we always have h = [0]T whereas if b = 1, we have h = [0]T only with
probability at most (deg+1)m

q = negl(λ). �

The ideals J0 and J1 can be computed from I0 and I1 using elimination theory. If
we use Gröbner bases for that, the condition (J0)≤m = (J1)≤m can be rephrased as
follows:

Lemma 20. Let notation be as before and m > 0. Let < be an elimination order on
the monomials ofR such that any monomial containing any Ti or Wi is larger than any
monomial from S. Further assume that, restricted to the monomials of S, < sorts by
total degree first. Let H0 respectively H1 be reduced Gröbner bases for I0 respectively
I1 w.r.t. <. Then the following are equivalent:

1. (J0)≤m = (J1)≤m

2. H0 ∩ S≤m = H1 ∩ S≤m

3. H0 ∩ S≤m does not involve any Zi ’s.
4. There exists a not necessarily reduced Gröbner basis H ′

0 for I0 such that H ′
0∩S≤m

does not involve any Zi ’s.

Proof. First, note that by the elimination theorem of Gröbner bases [11], Jb is an ideal
over S with reduced Gröbner basis Hb ∩ S.

• (1) ⇒ (2) : Assume (J0)≤m = (J1)≤m . Let h ∈ H0 ∩ S≤m , but assume toward
a contradiction h /∈ H1 ∩ S≤m . Since h ∈ I1 ∩ S≤m , there must be some k ∈
H1 ∩ S, k �= h such that the leading term of k divides the leading term of h. By
assumption,< sorts by total degree first, so the total degree of k is at mostm. Hence
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k ∈ I0 ∩ S≤m with leading term diving that of h, contradicting the reducedness of
H0 ∩ S. The other inclusion H1 ∩ S≤m ⊂ H0 ∩ S≤m is analogous.

• (2) ⇒ (3) : H1 does not involve any Zi ’s, since the generating set G1 does not.
• (3) ⇒ (4) : Obvious.
• (4) ⇒ (1) : Assume H ′

0 ∩ S≤m does not involve any Zi . We first show that for
any h ∈ H ′

0 ∩ S≤m we have h ∈ I1. To see this, write h = ∑
i, j ci, j fi, j +∑

i digi
as a linear combination in our original generators G0 with polynomial coefficients
ci, j , di ∈ R. Plugging in 0 for all Wi ’s and Zi ’s into this equation does not affect
h by assumption and eliminates all gi , so we obtain h = ∑

i, j c
′
i, j fi, j for some c′i, j

showing h ∈ I1.
Now let k ∈ I0 ∩ S≤m = (J0)≤m be arbitrary. Since H ′

0 ∩ S is a Gröbner basis
w.r.t to <, which sorts by total degree first, we have k = ∑

i eihi for some ei ∈ S and
hi ∈ H ′

0 ∩ S≤deg k. Since we have shown that all the hi that appear here are in I1, we
have k ∈ I1, showing (J0)≤m ⊂ (J1)≤m . The other inclusion is trivial. �

Appendix 2.2: Proof of Theorem 4 and Generalizations

Theorem 4will follow as a corollary from the following lemma,which is a generalization
to nonlinear pi, j and non-irreducible d:

Lemma 21. Let notation be as before. We assume that � = k + 1 and A can be full
rank for some values of �t . Let d be the determinant of (p( �T )‖ �Z) as a polynomial in �Z , �T
and consider the ideal J := I0 ∩ Zq [ �A, �Z , �T ] over Zq [ �A, �Z , �T ]. Then there exists a
unique (up to scalar) decomposition d = c · d0 over Zq , where c only involves the �T and
d0 is irreducible over the algebraic closureZq . Furthermore, J is generated by G1 and
d0.

Proof. Since A can be full rank, there exists some �z, �t with d(�z, �t) �= 0, so d is not
the zero polynomial. For the existence and uniqueness of c and d0, consider the (up to
scalar) unique decomposition d = c

e1
1 c

e2
2 · · · cess of d into distinct irreducible polynomials

ci in Zq [ �Z , �T ]. Since d is linear in the Zi ’s, only one factor, w.l.o.g. cs with es = 1, can
contain any of the Zi ’s. Note that this implies that cs is linear in the Zi ’s as well. So we
have the up to scalar unique decomposition d( �Z , �T ) = c( �T )d0( �Z , �T ) with d0 = cs and
c = c

e1
1 · · · ces−1

s−1 , which has the desired properties, provided that d0 and c actually have

coefficients in the base field Zq rather than Zq .
To show the latter, write d = ∑

i ai Zi with ai ∈ Zq [ �T ]. By construction, c divides d
and c involves no �Z . Plugging in Zi = 1 for i = i0 and Zi = 0 for i �= i0 into d = c · d0
shows that c, and consequently c

e j
j , divides ai0 . So, for all 1 ≤ i ≤ �, 1 ≤ j ≤ s − 1

we have ai = c
e j
j · bi, j for some bi, j ∈ Zq [ �T ] and indeed c is nothing but the gcd

of the ai . Since ai ∈ Zq [ �T ], it follows that σ(ai ) = ai = σ(c j )
e j · σ(bi, j ), where σ

is the (coefficient-wise) Frobenius. So σ(c j )
e j divides each ai , hence every Frobenius-

conjugate must appear (up to scalar) in the decomposition c = c
e1
1 · · · ces−1

s−1 with the same

multiplicity. This shows that we can choose c ∈ Zq [ �T ] after adjusting scalars. It follows
that d0 = d

c is also in the base field.
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For the second part of the lemma,wefirst observe that both idealsI0 andI1 are radical:
Since they can be generated by polynomials of the form Ai, j − pi, j ( �T ), Zi − qi ( �T , �W )

expressing one set of variables as functions of another disjoint set of variables, the quo-
tient R/I0 respectively R/I1 is isomorphic to Zq [ �T , �W ] respectively Zq [ �Z , �T , �W ].
Since these quotients have no nilpotent elements, the ideals I0, I1 are radical. It fol-
lows that J is radical, since intersection with a polynomial subring preserves being
radical. Since d0 is irreducible, the quotientZq [ �A, �Z , �T ]/(G1, d0), which is isomorphic
to Zq [ �Z , �T ]/(d0), contains no nilpotent elements, hence the ideal generated by I1 and
d0 in Zq [ �A, �Z , �T ] is radical. It thus suffices to consider the corresponding varieties (all
varieties are over the algebraic closure Zq ) V (G1, d0) and V (J ) by the Nullstellen-
satz. Let V (I1) be the variety associated with I1. By the Closure Theorem [11], the
variety V (J ) associated with J is given by the Zariski closure of {(�a, �z, �t) ∈ V (I1) |
∃ �ω, s.t. zi = ∑

j ω j ai, j }. Let us start by showing V (G1, d0) ⊂ V (J ):
If for some value of �t , c(�t) = 0, then det(p(�t)‖�z) = 0 for all values of �z, hence p(�t)

has rank < k. Consider the variety Vbad of all (�a, �z, �t) ∈ V (I1) such that A = (ai, j )
has rank < k, which is indeed an algebraic set (consider det(A‖�ei ) = 0 for canonical
basis vectors �ei ) and Vbad ⊃ V (c, I1). Outside of this bad set, A = p(�t) has full
rank k and hence there exists �ω such that �z = A · �ω if and only if det(A‖�z) = 0, or
equivalently, since c(�t) �= 0, d0(�z, �t) = 0. It follows that V (G1, d0) \ Vbad ⊂ V (J ).
By the same argument as in the previous paragraph, since d0 is irreducible over Zq , the
quotientZq [ �A, �Z , �T ]/(G1, d0) ∼= Zq [ �Z , �T ]/(d0) has no zero divisors and so V (G1, d0)

is irreducible. Since (�a, �0, �t) ∈ V (G1, d0) for any �t with p(�t) full rank, we have Vbad �
V (G1, d0). From this and the irreducibility of V (G1, d0), we can then deduce that the
Zariski closure of V (G1, d0)\Vbad ⊂ V (J ) is all of V (G1, d0), sowe have V (G1, d0) ⊂
V (J ).
For the other direction, consider (�a, �z, �t) such that �a = �p(�t) and there exists

�ω with zi = ∑
j ω j ai, j . We need to show d0(�z, �t) = 0. For this, note that

det(p( �T )‖∑ j W jpi, j ( �T )) is the zero polynomial. So d(
∑

j W jpi, j ( �T ), �T ) = c( �T ) ·
d0(
∑

j W jpi, j ( �T )) is the zero polynomial. Since c( �T ) is not the zero polynomial, as

otherwise d( �Z , �T ) would be the zero polynomial, we have that d0(
∑

j W jpi, j ( �T ), �T )

is the zero polynomial. It follows that d0(�z, �t) = d0(
∑

j ω jpi, j (�t), �t) = 0, finishing the
proof of V (G1, d0) ⊃ V (J ). �

This lemma allows us to easily prove Theorem 4, which states:
Let � = k + 1 and Dk+1,k be a matrix distribution, which outputs matrices A = p(�t)

for uniform �t . Let d be the determinant of (p( �T )‖ �Z) as a polynomial in �Z , �T .
1. If the matrices output byDk+1,k always have full rank (not just with overwhelming

probability), even for ti from the algebraic closure Zq , then d is irreducible over
Zq .

2. If all pi, j have degree at most 1, d is irreducible over Zq and the total degree of d
is k + 1, then the Dk+1,k-MDDH assumption holds in generic k-linear groups.

Proof. Let notation be as in the lemmas above.
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(1): If c is non-constant, it would have some roots (�z, �t) inZq . At these roots p(�t) can’t
have full rank, since det(p(�t)‖�z) = 0 for all �z. Hence d = d0, which is irreducible
over Zq .

(2): W.l.o.g. we may assume that �p is injective (otherwise we drop some T -variables),
sowe can express the Ti ’s as linear polynomials in the Ai, j ’s. Computing aGröbner
basis (for an appropriate elimination ordering) for J0 = J ∩S from J just means
expressing all Ti ’s by Ai, j ’s. Since J is generated by d = d0 and G1 by the
above Lemma 21, a Gröbner basis for J0 is just given by G1 and d, expressed by
the Ai, j ’s. Since this invertible linear variable substitution does not change total
degree, the theorem follows.

�

Appendix 3: Proof of Theorem 10

The proof is rather technical because we need an explicit construction of a sequence of
subspaces with special properties. The key idea is using a consequence of Lemma 9:
for any nontrivial subspace U ⊂ Zk

q , dim( f0(U ) + f1(U )) > dimU , and for any

nontrivial subspace V ⊂ f0(Zk
q) ∩ f1(Zk

q), dim( f −1
0 (V ) + f −1

1 (V )) > dim V . This
allows us to build a sequence of subspaces with strictly increasing dimensions having
some interesting properties. We will then use these subspaces to build the bases claimed
in the theorem.
Consider the following sequences of subspaces, for a suitable value of m ∈ Z

U1 ⊂ U2 ⊂ · · · ⊂ Um = Zk
q ; V1 ⊂ V2 ⊂ · · · ⊂ Vm ⊂ Zk+1

q

such that Vi = f0(Ui ) ∩ f1(Ui ) and Ui−1 = f −1
0 (Vi ) ∩ f −1

1 (Vi ). The sequences
are well defined because we know that Vi ⊂ f0(Ui ) and Ui−1 ⊂ f −1

0 (Vi ), and then
Ui−1 ⊂ f −1

0 (Vi ) ⊂ f −1
0 ( f0(Ui )) = Ui , since f0 is injective, and similarly Vi−1 ⊂

f0(Ui−1) ⊂ f0( f
−1
0 (Vi )) ⊂ Vi . On the other hand, from the injectivity of the maps

dimUi = dim f0(Ui ) = dim f1(Ui ) and dim Vi = dim f −1
0 (Vi ) = dim f −1

1 (Vi ).
Now, by Lemma 9 we know that f0(Ui ) �= f1(Ui ), if Ui is nontrivial, and similarly
f −1
0 (Vi ) �= f −1

1 (Vi ), if Vi is nontrivial. Therefore, if dim Vi > 0 then

dimUi−1 = dim
(
f −1
0 (Vi ) ∩ f −1

1 (Vi )
)

< dim Vi

and if dimUi > 0 then

dim Vi = dim ( f0(Ui ) ∩ f1(Ui )) < dimUi

On the other hand, since f −1
0 (Vi ) ⊂ Ui and f −1

1 (Vi ) ⊂ Ui then f −1
0 (Vi ) + f −1

1 (Vi ) ⊂
Ui , and analogously f0(Ui ) + f1(Ui ) ⊂ Vi+1. Putting all equations together, if Ui is
nontrivial,



282 A. Escala et al.

1 ≤ dimUi − dim Vi = dimUi − dim( f0(Ui ) ∩ f1(Ui ))

= dim( f0(Ui ) + f1(Ui )) − dimUi ≤ dim Vi+1 − dimUi

and similarly, if Vi is nontrivial, 1 ≤ dim Vi − dimUi−1 ≤ dimUi − dim Vi . But

dimUm − dim Vm = dim( f0(Um) + f1(Um)) − dimUm = dimZk+1
q − dimZk

q = 1

and then all the equalities hold. As a consequence, if k is even, taking k = 2m we have
shown that dim Vi = 2i − 1 and dimUi = 2i . Otherwise, we take k = 2m − 1 and
dim Vi = 2i − 2 and dimUi = 2i − 1 (hence, V1 is trivial here).
In addition, the previous equalities of dimensions imply the corresponding equalities

of subspacesUi = f −1
0 (Vi )+ f −1

1 (Vi ) and Vi+1 = f0(Ui )+ f1(Ui ), which in particular
mean that a generating set of Ui can be constructed by computing the preimages of
a generating set in Vi for both f0 and f1 (these preimages always exist for vectors
in any Vi ⊂ Vm = f0(Um) ∩ f1(Um)). Similarly, we can build a generating set of
Vi+1 by applying f0 and f1 to a generating set of Ui . We will also use the fact that
Zm+1
q = f0(Um) + f1(Um) to complete a basis of Zk+1

q .
At this point, we have constructed two sequences of subspaces which dimensions

grow regularly, and we can build bases of the spaces by cleverly picking vectors from
them. We consider separately the cases k even and k odd.
For k = 2m, we know that dim V1 = 1. Let �y ∈ Zk+1

q be a nonzero vector in V1.

Then, �x0 = f −1
0 (�y) and �x1 = f −1

1 (�y) form a basis ofU1, since it is a generating set and
dimU1 = 2. Similarly, we build a generating set { f1(�x0), f0(�x0), f1(�x1), f0(�x1)} of V2,
but actually f0(�x0) = f1(�x1) = �y. Since dim V2 = 3 we know that the three different
vectors form a basis. Observe that we can write it as {( f1 ◦ f −1

0 )(�y), �y, ( f0 ◦ f −1
1 )(�y)},

where f −1
0 (and similarly f −1

1 ) denotes here the inverse map of f0 restricted to its image
f0(Zk

q), so it is well defined on any subspace Vi . Now, computing the preimages for f0
and f1 and removing the repeated vectors we can build a basis of U2. Following the
same procedure iteratively, we can build the bases

B1 =
{
( f −1

0 ◦ f1)
m−1(�x0), . . . , ( f −1

0 ◦ f1)(�x0), �x0, �x1, ( f −1
1 ◦ f0)(�x1),

. . . , ( f −1
1 ◦ f0)

m−1(�x1)
}

and

B2 = {( f1 ◦ f −1
0 )m(�y), . . . , ( f1 ◦ f −1

0 )(�y), �y, ( f0 ◦ f −1
1 )(�y), . . . , ( f0 ◦ f −1

1 )m(�y)}

of Zk
q and Zk+1

q , respectively, with the property that the images of the vectors in B1 by
f0 are exactly the last k vectors in B2, and the images of the vectors in B1 by f1 are
exactly the first k vectors in B2. This is the same as saying that f0 and f1 are represented
in those bases by the matrices J0 and J1, respectively.
The proof for the odd case k = 2m−1 proceeds similarly, but starting from a nonzero

vector �x ∈ U1, computing the two images �y0 = f0(�x) and �y1 = f1(�x), and then applying
the same iterative procedure as before to obtain the bases
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B1 =
{
( f −1

0 ◦ f1)
m−1(�x), . . . , ( f −1

0 ◦ f1)(�x), �x, ( f −1
1 ◦ f0)(�x),

. . . , ( f −1
1 ◦ f0)

m−1(�x)
}

and

B2 =
{
( f1 ◦ f −1

0 )m(�y1), . . . , ( f1 ◦ f −1
0 )(�y1), �y1, �y0, ( f0 ◦ f −1

1 )(�y0),
. . . , ( f0 ◦ f −1

1 )m(�y0)
}

of Zk
q and Zk+1

q , respectively, with exactly the same property as before.

Appendix 4: Subgroup Membership Proofs for 2-Lin

In this section we exemplify our approach from Sect. 6.1 for the 2-Lin case. Let

A =
⎛
⎝
a1 0
0 a2
1 1

⎞
⎠ = (�u1, �u2), A ← L2,

and

[u3] =
{ [w1�u1 + w2�u2] binding key (soundness setting)

[w1�u1 + w2�u2 − (0, 0, 1)�] hiding key (WI setting)
,

for w1, w2 ← Zq . We exemplify our new approach to prove [] ∈ LA,PG ⊂ G3. To
simplify the notation, we define �v := �u3+(0, 0, 1)�. With this notation, [ι′(x)] := [x �v].
Standard Groth–Sahai proof. In the standard approach, used for instance in [35], the
prover will show that there are two values r1, r2 ∈ Zq such that the following equations
hold:

[r1a1] = [1] (9)

[r2a2] = [2] (10)

[r1 + r2] = [3]. (11)

Therefore, we are in the setting ofmultiscalarmultiplicationwith A1 = Zq and A2 = G.
The proof consists of the commitments to r1, r2, which are two vectors [�cr1 ], [�cr2 ] ∈ G3

such that

(�cr1 , �cr2) = (ι′(r1), ι′(r2)) + A
(
s11 s12
s21 s22

)
= (r1�v, r2�v) + A

(
s11 s12
s21 s22

)

and the vector
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[ �π(r1,r2)] =
[(

(a1, 0)S�, (0, a2)S�, (1, 1)S�)]

= ([s11a1], [s21a1], [s12a2], [s22a2], [s11 + s12], [s21 + s22]).

Therefore, in total, the proof requires 12 group elements.
To simulate the proof, we proceed as if we were proving that the equations

[r1a1] = [δ1]
[r2a2] = [δ2]

[r1 + r2] = [δ3],

are satisfied by the all zero witness, with the commitment to δ = 0 being
com′

[U],�z(0; (w1, w2)
�), which, in the witness indistinguishability setting, is equal to

[ι′(1)] = [�v] = [A �w].
New approach. To construct the proof, the prover needs to sample uniformly at random
from the space H := {H ∈ Z2×2

q : H + H� = 0}. To sample H ← H, pick a random

value h ← Zq and define H =
(

0 h
−h 0

)
. The proof is then defined as:

[�] = [�u3(r1, r2) + AH] =
⎛
⎝

[r1v1] [r2v1 + ha1]
[r1v2 − a2h] [r2v2]
[r1v3 − h] [r2v3 + h]

⎞
⎠

The proof consists of six group elements, as claimed.
For simulation, we sample some H′ ← H as before and we define:

[�sim] = [ �(w1, w2) + AH′].

Appendix 5: Concrete Examples from the k-SCasc Assumption

As we promote the k-SCasc Assumption as a replacement of the k-Lin assumption, we
give two concrete instantiations of a KEM and a PRF based on it.

Appendix 5.1: Key Encapsulation

We build a KEMGen,SCk from k-SCasc (Example 4).

• Gen(1λ) runs G ← Gen(1λ) and picks a ← Zq . The public/secret key is

pk = (G, ([a]) ∈ G), sk = a ∈ Zq .

• Encpk picks �w ← Zk
q . The ciphertext/key pair is

[�c] = ([aw1], [w1 + aw2] . . . , [wk−1 + awk])T ∈ Gk, [K ] = [wk] ∈ G.
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• Decsk([�c] ∈ Gk) recomputes the key as

[K ] =
[
�x��c

]
∈ G,

where the transformation vector �x ∈ Zk
q is computed from a as xi = (−1)k−i

ak−i (such

that �x�A0 = (0, . . . , 0, 1)T where A0 consists of the top k rows of matrix A from
Example 4).

Security ofKEMGen,SCk follows fromTheorem11.Note that the size of the public/secret
key is constant, compared to linear (in k) for the k-Lin-based KEM [23,45]. The cipher-
text size remains the same, however.

Appendix 5.2: Pseudo-Random Function

We build PRFGen,SCk = (Gen,F) from k-SCasc.

• Gen(1λ) runs G ← Gen(1λ) and picks ai, j ← Zq for 1 ≤ i ≤ n, 1 ≤ j ≤ k and
�h ← Zk

q . The secret key is K = ((ai, j ), �h).
• FK (x) computes

FK (x) =
⎡
⎣ ∏
i :xi=1

Ti · �h
⎤
⎦ ∈ Gk,

where

Ti =

⎛
⎜⎜⎜⎝

(−1)k−1

aki,1
. . . −1

a2i,1

1
ai,1

...
...

...
(−1)k−1

aki,k
. . . −1

a2i,k

1
ai,k

⎞
⎟⎟⎟⎠ ∈ Zk×k

q ,

where the transformationmatricesTi, j ofAi, j ← SCk are the rowvectors ofTi . Security
of PRFGen,SCk follows from Theorem 12. Note that the size of the secret key K is nk,
compared to nk2 for the k-Lin-based PRF [6].

Observe that if we add the restriction ai, j �= 0, we can rewrite Ti as

Ti = −
⎛
⎜⎝
bki,1 . . . b2i,1 bi,1
...

...
...

bki,k . . . b2i,k bi,k

⎞
⎟⎠ ,

where now bi, j = − 1
ai, j

are random nonzero elements. If we associate �h =
(h1, h2, . . . , hk) to the polynomial h = h1Xk + · · · + hk−1X2 + hk X ∈ Zq [X ], then
Ti �h = −(h(bi,1), . . . , h(bi,k)), and the PRF can be interpreted as a sequence of trans-
formations applied to a random polynomial. More specifically, for every bit xi = 1, the



286 A. Escala et al.

i-th step replaces the coefficients of a polynomial by its evaluations (up to the sign) at
some random points bi,1, . . . , bi,k .
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