
Quadrini et al. BMC Bioinformatics 2019, 20(Suppl 4):161

https://doi.org/10.1186/s12859-019-2689-5

METHODOLOGY Open Access

An algebraic language for RNA
pseudoknots comparison
Michela Quadrini, Luca Tesei and Emanuela Merelli*

From The 2017 Network Tools and Applications in Biology (NETTAB) Workshop

Palermo, Italy. 16–18 October 2017

Abstract

Background: RNA secondary structure comparison is a fundamental task for several studies, among which are RNA

structure prediction and evolution. The comparison can currently be done efficiently only for pseudoknot-free

structures due to their inherent tree representation.

Results: In this work, we introduce an algebraic language to represent RNA secondary structures with arbitrary

pseudoknots. Each structure is associated with a unique algebraic RNA tree that is derived from a tree grammar

having concatenation, nesting and crossing as operators. From an algebraic RNA tree, an abstraction is defined in

which the primary structure is neglected. The resulting structural RNA tree allows us to define a new measure of

similarity calculated exploiting classical tree alignment.

Conclusions: The tree grammar with its operators permit to uniquely represent any RNA secondary structure as a

tree. Structural RNA trees allow us to perform comparison of RNA secondary structures with arbitrary pseudoknots

without taking into account the primary structure.

Keywords: Tree grammar, Tree alignment, Algebraic RNA tree, Structural RNA tree, ASPRA distance

Background

RNA is a single stranded polymer, called primary struc-

ture, that consists of four different nucleotides - Adenine

(A), Guanine (G), Cytosine (C) and Uracil (U) - linked

together by phosphodiester bonds, referred to as strong

bonds. RNA folds back on itself determining complex

tree-dimensional shapes known as secondary and tertiary

structures. During the folding process each nucleotide

can interact with another one by establishing a hydrogen

bond, referred to as weak bond, mainly forming Watson-

Crick (G-C and A-U) and wobble (G-U) base pairs.

According to Waterman [1, 2] RNA secondary struc-

tures can be decomposed into five basic structural ele-

ments, namely hairpins, internal loops, bulges, helices

and multi-loops, as illustrated in Fig. 1. Each struc-

tural element is generated when at least one base pair

is established and is characterised by strong and weak

*Correspondence: emanuela.merelli@unicam.it

School of Science and Technology, University of Camerino, Via Madonna della

Carceri 9, 62032 Camerino, Italy

interactions determining a loop. A hairpin (Fig. 1a) is a

loop characterised by one weak bond enclosing a sequence

of nucleotides linked by strong bonds. An internal loop

(Fig. 1b) is defined by two weak bonds alternating with

two non-empty sequences of nucleotides linked by strong

bonds. A bulge (Fig. 1c) is a special case of internal loop in

which one of the two sequences of nucleotides is empty.

A helix (Fig. 1d) is also a special case of internal loop

in which both sequences are empty. Finally, a multi-loop

(Fig. 1e) consists of more than two weak bonds separated

by non-empty sequences of nucleotides linked by strong

bonds.

Disregarding the spatial configuration of the molecule

and reducing nucleotides to dots, an RNA secondary

structure can be schematically represented by a planar

diagram like the one in Fig. 2, where solid and zigzagged

lines represent strong and weak bonds, respectively. Each

planar diagram can be transformed into another one (see

Fig. 3) where the nucleotides are represented by vertices

on a straight line (backbone) and the base pairs are drawn

as arcs in the upper half-plane. Note that Fig. 3 shows
© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-019-2689-5&domain=pdf
mailto: emanuela.merelli@unicam.it
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Quadrini et al. BMC Bioinformatics 2019, 20(Suppl 4):161 Page 2 of 18

a b ec d

Fig. 1 Basic structural elements of RNA secondary structures: a, hairpin; b, internal loop; c, bulge; d, helix and e, multi-loop. A strong interaction is

depicted with a line, a weak interaction is drawn with a zigzagged line and several consecutive strong interactions are represented by a dashed line

the same molecule of Fig. 2. A secondary structure is

said to be pseudoknot-free if the diagram does not present

crossing among base pairs (Fig. 3a), otherwise it is called

pseudoknotted (Fig. 3b).

Pseudoknots are very significant for the functional

aspects of the RNA structures where they are present [3]

and they are actually frequently found in real RNAs [4]. It

is recognised that they play a variety of roles in biology, for

example in the formation of the catalytic core of various

ribozymes [5, 6] and in the alteration of gene expression

inducing ribosomal frameshifting in many viruses [7, 8].

The ability to compare RNA structures is useful for the

prediction of the RNA folding process taking as initial

data a set of already known secondary structures [9]. It is

also useful for the RNA classification of various species

[10, 11], for determining the RNA consensus structure

of aligned sequences and for the identification of highly

conserved structures during evolution [12, 13]. Functional

RNA families such as tRNA, rRNA, and RNAse P exhibit

a highly conserved shape of secondary structure but little

sequence similarity [14]. Therefore, it is of great inter-

est the possibility of comparing RNA secondary struc-

tures directly, i.e., without relying on sequence similarity

[15–17].

Many approaches for pseudoknot-free RNA secondary

structure comparison are based on their natural context-

free tree representation. Thus, the comparison of

pseudoknot-free structures can be reduced to tree com-

parison. Tree comparison was firstly introduced by

Selkow in 1977. He gave an algorithm that transforms a

given tree into another one by performing a sequence of

edit operations (namely, deletion, insertion and replace-

ment of nodes) with minimal score [18]. Selkow’s

approach had the limitation that the edit operations could

be applied only to the leaf nodes of the trees. Later, Tai’s

work used the same edit operations but permitted their

a b

Fig. 2 An RNA secondary structure. Each nucleotide is represented by a ball, a strong interaction is depicted by a line and a weak interaction by a

zigzagged line. a, pseudoknot-free; b, a pseudoknot, which makes the whole structure pseudoknotted



Quadrini et al. BMC Bioinformatics 2019, 20(Suppl 4):161 Page 3 of 18

a b

Fig. 3 The secondary structure of Fig. 2. In a, the zigzagged arcs do not cross while, in b, pseudoknots are clearly visible as crossings of arcs

application to all nodes [19]. Another comparison tech-

nique is based on tree alignment, defined by Jiang et al.

[20]. Given two trees, it constructs an alignment tree in

which they can be embedded homomorphically. Tree edit-

ing and tree alignment are both based on edit operations

and minimise a score function associated with them. This

minimal score is usually referred to as distance and is

used as a measure of similarity among structures. Höchs-

mann et al. extended the tree alignment algorithm to

compute the local alignment of forests and, based on

the forest alignment model, developed a multiple align-

ment algorithm. RNAforester is the software package that

implements these algorithms for pseudoknot-free RNA

secondary structure comparison [14, 21]. RNAforester is

distributed within the ViennaRNA package [22]. Chauve

et al. defined the first unambiguous and complete dynamic

programming for tree alignment [23]. Many other authors

contributed in this field although the computational com-

plexity has not been improved [24]. For a complete treat-

ment of tree editing and tree alignment we refer to Bille’s

survey [25]. In the RNA setting, the tree editing approach

is useful to identify the conserved structures during the

folding process, while the tree alignment is suitable for

clustering RNA molecules purely at the structural level.

Although motifs with pseudoknots are considered

important, most of the comparison approaches in the

literature exclude pseudoknotted structures. One of the

main reasons for this lack is the fact that the classi-

cal tree representation of structures fails when pseudo-

knots are present [26]. However, in the literature there

are some works in which pseudoknotted structures are

represented with other kinds of mathematical struc-

tures. Möhl et al. proposed a sequence-structure align-

ment for RNA pseudoknots which involves a pipeline for

combining alignment and prediction of pseudoknots

[27]. Han et al. decomposed embedded pseudoknots

into simple pseudoknots and aligned them recursively

[28]. Yoon used a profile hidden Markov model to

establish sequence alignment constraints and incorpo-

rated these constraints into an algorithm for aligning

RNAs with pseudoknots [29]. Wong et al. identi-

fied the pseudoknot type of a given structure and

developed dynamic programming algorithms for struc-

tural alignments of different pseudoknot types [30].

Huang et al. applied a tree decomposition algorithm to

search for non-coding RNA pseudoknotted structures in

genomes [31].

Parallel to structure comparison, structure prediction is

one of the most extensively studied problems about RNA

secondary structures. For the state of the art about folding

algorithms we refer to a recent survey [32]. Regarding the

folding of pseudoknotted structures, efficient algorithms

exist only for particular classes of pseudoknots because

finding the best structure including arbitrary pseudo-

knots is an NP-complete problem [33]. An overview of

the various classes of pseudoknots is given by Nebel and

Weinberg [34]. In particular, Reeder and Giegerich intro-

duced the class of canonical simple recursive pseudoknots

and developed an algorithm for folding structures pos-

sibly containing these motifs [35]. Notably, they used

the general framework of Algebraic Dynamic Program-

ming (ADP) [36, 37], which has been recently extended

by Berkemer et al. to tree grammars and applied to tree

alignment and tree editing [38]. Riechert et al. expanded

ADP to be used with multiple context-free grammars

and applied the method to the classes of RNA pseudo-

knotted secondary structures that can be expressed by

multiple context-free grammars [39]. Ponty and Saule uni-

fied in the same framework the dynamic programming

algorithms for the folding of several classes of RNA sec-

ondary structures with pseudoknots based on hypergraph

representation [40].

In this paper we tackle the problem of structural

comparison of RNA secondary structures with arbitrary

pseudoknots based on an algebraic language for their rep-

resentation as trees. We reuse the existing familiar notion

of tree alignment with the relative optimised algorithms.

A distance is defined among structures that neglects the

primary structure and focuses on weak interactions.

We introduce first a set of appropriate operators, namely

concatenation, nesting and crossing, which are defined to

express each RNA secondary structure as an algebraic

composition of hairpin loops. Briefly, concatenation is

used to represent a motif in which a structure is fol-

lowed by another one, as illustrated in Fig. 4a for two

simple hairpins. Nesting corresponds to the insertion of a

structure into a hairpin (Fig. 4b, where the internal struc-

ture is a simple hairpin) and crossing models interaction

among structures (Fig. 4c, where both structures are sim-

ple hairpins). According to the nature of RNA molecules,



Quadrini et al. BMC Bioinformatics 2019, 20(Suppl 4):161 Page 4 of 18

a b c

Fig. 4 a, concatenation b, nesting and c, crossing of two hairpins

nesting and crossing are well defined if each nucleotide of

the resulting structure forms at most one base pair. Such

constraints do not apply to concatenation because two

concatenated structures do not share nucleotides.

Using the defined operators, we introduce a regular

tree grammar with conditional productions to obtain a

unique tree representation of each RNA secondary struc-

ture, both pseudoknot-free and pseudoknotted. The use of

tree grammars is inspired by the ADP framework, which

is mainly used in the context of folding. In this work

we use only the tree language part of the ADP frame-

work because we focus on the representation of struc-

tures. As future work, we plan to use the full framework

for exploiting our algebraic operators in the context of

folding.

The derived trees of the defined regular tree grammar

are called algebraic RNA trees and they are shown to be in

a one-to-one correspondence with RNA secondary struc-

tures. This representation emphasises the algebraic nature

of our approach, but contains too much information for

the purpose of structural comparison by tree alignment.

Therefore, we abstract them andwe derive structural RNA

trees by forgetting the primary structure. The algebraic

aspect will be investigated in a future work to obtain a

formalisation of a real algebra similar to Allen’s Inter-

val Algebra [41]. Our distance is calculated by aligning

structural RNA trees using a scoring function that takes

into account deletion, insertion and replacement of oper-

ators and hairpins, together with the number of crossings

among hairpins.

We implemented the construction of algebraic and

structural RNA trees together with the alignment and

the calculation of the distance in the ASPRAlign open

source Java application [42] that is distributed under the

GNU General Public Licence, version 3.

Methods

Regular tree grammars

The theory of tree automata and tree languages was intro-

duced in the middle of the 1960s by Thatcher [43] and

extended in the following years [44]. Let us give a brief

presentation of regular tree grammars in the style used

within the ADP framework [36, 37].

Definition 1 (Signature) LetA beanalphabet of symbols.

A signature � overA consists of:

– a name for a base set, say D, intended as a placeholder
for a yet unspecified data domain;

– a family of function names (operators), together with
their argument and result types, where

– argument types are either D orA, and
– the result type is always D.

A signature contains the building blocks for construct-

ing terms, which are all the well-typed formulas that can

be formed using the symbols inA and the function names

of the signature �. Each term can be naturally viewed as a

rooted, ordered, labeled tree; actually, in this context, they

can be identified, thus we will speak equivalently of terms

or trees. The set containing all terms is denoted by T�

and is the analogous of the universe set A∗ for string lan-
guages. As it happens for strings, usually it is convenient

to consider only a subset of all possible trees, which leads

to the definition of tree languages.

Definition 2 (Tree Language) LetA be an alphabet and

let � be a signature. A tree language defined by � over A
is any subset of T� .

Along the analogy with string languages, a tree language

can be defined by a tree grammar. Among different types

of tree grammars, having different expressive powers, we

will use regular tree grammars. For convenience we per-

mit variables, used as non-terminal symbols, in terms. If

V is a set of variables then T�(V) denotes the set of all

the terms in which a variable in V can occur as a term or

in place of a sub-term.

Definition 3 (Regular Tree Grammar) A regular tree

grammar G over � is a tuple (V ,�, S,P) where:
– V is a set of non-terminal symbols;
– � is a signature;
– S ∈ V is a designed non-terminal symbol called

axiom;
– P is a set of productions of the form v→ t, where

v ∈ V and t ∈ T�(V).



Quadrini et al. BMC Bioinformatics 2019, 20(Suppl 4):161 Page 5 of 18

A derivation relation for regular tree grammars
∗�→ is

defined analogously to the one of context-free grammars.

Starting from the axiom, each non-terminal symbol v can

be rewritten with a tree t whenever v→ t belongs to P .

Definition 4 (Language of a Regular Tree Grammar)

Let G = (V ,�, S,P) be a regular tree grammar. The tree

language generated by G is

L(G) = {t ∈ T� ∣ S ∗�→ t}
As an example, let A = {a,b, c,d, e} be an alphabet and

let � = {p, q}, with p∶A×D×A → D and q∶D×A → D, be

a signature over A. Let G1 = ({S,T},�, S,P) be a regular
tree grammar where P consists of the rules:

S → p(a,T ,a)
T → q(p(c,T ,d),b) ∣ e

Then, for instance, G1 generates the term

p(a, q(p(c, e,d),b),a) as follows:
S → p(a,T ,a) → p(a, q(p(c,T ,d), b),a) → p(a, q(p(c, e,d), b),a)

or, pictorially, as trees:

In the literature, each tree obtained with the tree gram-

mar is known as derived tree. For each derived tree, its

yield is normally defined as the sequence of leaf symbols

read in left to right order. Formally, the yield function y on

a tree t ∈ T� is defined as

y(t) = { a if t = a is a leaf

y(t1) ⋅ y(t2) ⋅ ⋯ ⋅ y(tn) if t = f (t1, t2, . . . , tn)
thus, for each tree t, y(t) ∈ A∗. In the example above, the

yield of the derived tree p(a, q(p(c, e,d),b),a) is the string
acedba.

For brevity, as proposed for instance in [45], we add a

lexical level to the grammar, i.e., we allow strings fromA∗
to label the leaf of trees, instead of constraining to a single

symbol. Moreover, for the purposes of this paper, we will

also use conditional productions, i.e. syntactic conditions

associated with productions, as defined in the following.

Definition 5 (Conditional Production) In a regular tree

grammar, a conditional production has the form v
c�→ t

where c is a predicate defined on A∗. A derivation using a

conditional production v
c�→ t is well formed if and only if

the tree t′ ∈ T� obtained from t at the end of the derivation,

i.e. t
∗�→ t′, is such that c(y(t′)) holds.

The language of a regular tree grammar with conditions

is the set of trees that can be derived from the axiom only

by well-formed derivations.

Note that the use of a conditional production v
c�→ t at

some point in a derivation affects the complete derivation

that continues fromthesubtree t inserted by this production.

Only after the derivation is complete the condition can be

checked.

Tree alignment

Tree alignment is a generalisation of sequence alignment.

Let us introduce the notion of tree alignment by anal-

ogy with that of sequence alignment. An alignment of two

sequences of characters can be seen as a sequence of char-

acter pairs, where pairs of type (a,b) are replacements,(a,−) are deletions and (−,a) are insertions. Note that

a,b are alphabet characters of the sequence, whereas “-

”, referred to as the gap symbol, is not an element of the

alphabet. Let s1 and s2 be two sequences over an alphabet

and let s1[i] (s2[i]) denote the i-th element of the sequence

s1 (s2). An alignment of s1 and s2 is denoted s′ = (s′1, s′2)
and is such that each element of a pair (s′1[i], s′2[i]) may

be the gap symbol, but the pair (−,−) is not allowed. The
score of an alignment of two sequences is given by

σ(s′) = l∑
i=1

σ (s′1[i], s′2[i])

where σ is a scoring function such that σ(x, y) = 0 if

x = y ≠ − and σ(x, y) = 1 otherwise. With an abuse of

notation, here and in the following definition σ is used

both for the scoring function and the score. An optimal

alignment is an alignment with the minimum score.

The alignment of trees can be defined by analogy. An

alignment of two ordered labelled trees is a tree whose

nodes carry pairs that represent deletions, insertions, and

replacements as defined for the alignment of sequences.

Given two trees t1 and t2, to obtain an alignment tree they

must first be modified by inserting nodes labelled with the

gap symbol in such a way that they become isomorphic.

Then, the two isomorphic trees are overlaid forming only

one tree L in which each node contains the pair of the

labels coming from the two isomorphic trees.

Definition 6 (Tree Alignment Distance) Let t1 and t2
be two trees. The tree alignment distance between t1 and

t2, denoted by dT(t1, t2), is the minimum score over all

possible alignments of the two trees:

dT(t1, t2) =min{σ(L) ∣ L is an alignment of t1 and t2}
where σ(L) = ∑(a,b)∈L σ(a,b) and σ is a scoring function.



Quadrini et al. BMC Bioinformatics 2019, 20(Suppl 4):161 Page 6 of 18

The tree alignment distance is not a metric, as it does

not satisfy the triangle inequality. The tree alignment

problem, i.e. finding the alignment with the optimal score,

can be solved by considering all possible candidate align-

ments in a dynamic programming algorithm. A classical

tree alignment algorithm was proposed by Jiang et al. in

[20]. For a complete treatment of tree alignment we refer

to the tutorial of Schirmer et al. [46].

Results

Algebraic operators for RNA secondary structures

As introduced in the “Background” section, Waterman

showed that each pseudoknot-free RNA secondary struc-

ture can be uniquely decomposed into five basic structural

elements, or loops [1, 2]. Among these loops, hairpin is

the basic one, consisting of only one weak interaction clos-

ing a sequence of unpaired nucleotides. Inspired by the

Waterman’s result, our first objective is to define a set of

algebraic operators able to represent any kind of RNA sec-

ondary structure, including the pseudoknotted ones, as

a combination of simple hairpin loops. In other words,

our aim is to express any RNA secondary structure as an

algebraic expression that, using only the defined opera-

tors, combines simple hairpins in a proper way to obtain a

unique representation of the structure.

Let us first introduce informally all the needed ingre-

dients by using some examples. First, we observe that,

starting from a primary structure, the introduction of a

weak interaction creates a secondary structure, which is

composed of a head sequence, followed by a hairpin loop,

followed by another sequence of unpaired nucleotides,

which is a tail. Figure 5a shows an example of this case,

where the head is formed only by the nucleotide A and

the tail is the sequence AGUU. Secondly, we observe that

the introduction of a new weak interaction between two

unpaired nucleotides inside an hairpin generates another

loop that is nested into the other, as illustrated in Fig. 5b.

Nesting is the first of our operators, used to represent

these situations. Thirdly, we observe that adding simulta-

neously two or more new weak interactions that involve

nucleotides of an existing loop, in such a way that they

do not cross, the result is the appearing of two or more

new hairpins. They are concatenated and linked by a pos-

sibly empty sequence of unpaired nucleotides. Figure 6a

shows this case by introducing into the structure of Fig. 5b

two new weak interactions. The two new hairpins are

linked by the nucleotide G. Concatenation is then another

operator, introduced to model these situations. Finally,

we observe that adding a new weak interaction involving

two unpaired nucleotides of two different loops or one

nucleotide of a loop and a nucleotide of the tail (or of the

head), a pseudoknot is created. Figure 6b shows an exam-

ple of the second case. The first nucleotide that belongs to

the loop is connected with another one that composes the

tail of the structure. Such weak interaction crosses with

other weak interactions, calling for a crossing operator,

which is the third of our set.

To define the three operators more formally we need

to introduce the concept of pseudoloop, a structure char-

acterised by zero or more crossings of weak interactions.

Two examples of pseudoloops are illustrated in Fig. 7: a

structure with one crossing and another one with three

crossings. Graphically, we identify a pseudoloop with a

dashed line and call it pseudoweak interaction, a fictitious

weak interaction that links the first and the last nucleotide

of the structure. Note that pseudoloops are just secondary

structures without heads and tails. Note also that a sim-

ple hairpin loop or a concatenation of hairpin loops is

a pseudoloop, in this case having no crossings. Figure 8

illustrates these cases by showing two pseudoloops that

are elements of the structure of Fig. 6b.
Formally, each pseudoloop will be denoted by an expres-

sion of the form (a●1 ,a●N) ⟨α⟩, where α is the sequence

of nucleotides (backbone) enclosed by the pseudoweak

interaction between the first nucleotide, a●1 , and the last

one, a●N . The ● notation indicates that the nucleotide is

already paired with another one in a weak interaction.

Conversely, the notation ○ indicates that the nucleotide is
unpaired. The sequence α may contain both paired and

unpaired nucleotides. We will use the following conven-

tion throughout the paper: whenever we write an expres-

sion of the form as or asi , where a,ai ∈ {A,U ,G,C} and

s ∈ {○, ●}, we mean that a or ai is the kind of nucleotide

and s is the boolean information about its state of being

paired or unpaired. Thus, if we write ai = bj we mean that

ai and bj are the same nucleotide, but we do not care about

the pairing information. Instead, if we write an expression

of the form asii = b
tj
j , we impose that nucleotides ai and bj

a b

Fig. 5 a, an hairpin and b, the nesting of two hairpins



Quadrini et al. BMC Bioinformatics 2019, 20(Suppl 4):161 Page 7 of 18

a b

Fig. 6 a, concatenation of two hairpins nested into two nested hairpins. b, pseudoknot created by adding a new weak interaction between an

unpaired nucleotide of the structure a and one belonging to the tail

are the same and their states about pairing is the same as

well. Finally, the pairing state notation may be omitted in

contexts in which it can be neglected.
Our three operators are defined over pseudoloops: they

take two pseudoloops and map them into another one.

Note that a pseudoloop “forgets” the information about

the actual weak interactions that exist inside it, retain-

ing only the information about the pairing of nucleotides.

This will not be a problem for our purposes because later

we are going to use this concept just to check that the

result of the application of the operators is well defined,

which will not depend on the actual weak interactions that

are inside the involved pseudoloops. Let us start defining

the concatenation operator that takes two pseudoloops

and attach them by a sequence of unpaired nucleotides.

Definition 7 (Concatenation) Let P1 = (a●1 ,a●N) ⟨a2 . . .

aN−1⟩ and P2 = (b●1 ,b●M) ⟨b2 . . .bM−1⟩ be two pseudoloops
such that ai,bj are paired or unpaired nucleotides for all

i = 2, . . . ,N − 1 and j = 2, . . . ,M − 1. Let η = c○1 . . . c○T
be a possibly empty sequence of unpaired nucleotides.

The concatenation of P1 and P2, denoted by P1 ⊙η P2, is

defined as

P1 ⊙η P2 = (a●1 ,b●M) ⟨ a2. . .aN−1a●N η b
●
1 . . .bM−1⟩

As an example, consider the structure in Fig. 8b.

This pseudoloop can be obtained as the concatenation

of two pseudoloops P1 = (A●,U●)⟨C○C○⟩ and P2 =(C●,G●)⟨A○C○⟩ linked by a sequence composed of only

one unpaired nucleotide, G. Thus,

P1 ⊙G○ P2 = (A●,G●)⟨C○C○U●G○C●A○C○⟩
Differently from concatenation, the definition of the

crossing of two pseudoloops is subject to constraints. In

particular, it is necessary that a proper postfix of the pri-

mary sequence of the left pseudoloop is in common with

a proper prefix of the primary sequence of the right one.

Moreover, when the two pseudoloops are overlapped, the

shared nucleotides must still retain the biological prop-

erty that they are involved in at most one weak interaction.

Thus, the definition that we are going to give necessarily

introduces a notion of being well-defined, i.e., there may

be crossings between pseudoloops that can not be con-

sidered valid in our setting. The definition also introduces

a further parameter, a number k that holds the infor-

mation about the position inside the left pseudoloop at

which the right pseudoloop is attached (actually partially

overlapped).

Definition 8 (Crossing) Let P1 = (a●1 ,a●N) ⟨as22 . . .a
sN−1
N−1⟩

and P2 = (b●1 ,b●M) ⟨bt22 . . .b
tM−1
M−1⟩ be two pseudoloops such

that si, tj ∈ {●, ○} for all i = 2, . . . ,N−1 and j = 2, . . . ,M−1.
Let k ∈ {2, . . . ,N−1} be an internal position of a nucleotide
in P1. The crossing between P1 and P2, denoted by P1⋈k P2,
is defined as

P1 ⋈k P2 = (a●1 ,b●M) ⟨ aw2
2 . . .a

wk−1

k−1 b
wk
1 . . . b

wM+k−1
M−1 ⟩

where

a b

Fig. 7 Two examples of pseudoloops. a, characterised by the crossing of two hairpins; b, characterised by the crossing of three hairpins



Quadrini et al. BMC Bioinformatics 2019, 20(Suppl 4):161 Page 8 of 18

a b

Fig. 8 Two examples of pseudoloops without crossings. a, a hairpin; b, a concatenation of two hairpins

1 M + k − 1 > N , i.e., if P2 is attached starting from
position k of P1, then the sequence of nucleotides of
P2 ends after P1;

2 b1 = ak ,b2 = ak+1, . . . ,bM−k = aN , i.e., P2 shares with
P1 the nucleotides from the k-th of P1 to the last one
of P1; and

3 for all z = 2, . . . ,M + k − 1

wz =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sz if z < k

tz if z > N

○ if k ≤ z ≤ N ∧ (sz = ○ ∧ tz−k+1 = ○)

● if k ≤ z ≤ N ∧ ((sz = ● ∧ tz−k+1 = ○) ∨ (sz = ○ ∧ tz−k+1 = ●))

⊥ if k ≤ z ≤ N ∧ (sz = ● ∧ tz−k+1 = ●)

that is to say, each nucleotide in position z that is in
common between P1 and P2 is involved in at most
one weak interaction whenever wz ≠⊥.

We say that the crossing P1 ⋈k P2 is well defined if and

only if conditions (1) and (2) above are met and for all z =
2, . . . ,M + k − 1 it holds that wz ≠⊥.
As an example, consider the structure in the Fig. 6b. The

pseudoloop involving the nucleotides between the second

(A●) and the next to last (U●) can be obtained as the cross-

ing of P1 = (A●,U●)⟨G●A●C○C○U●G○C●A○C○G●C●⟩ and
P2 = (G●,U●)⟨C○A○C○G○C○U○A○G○⟩, where k is equal

to 7. Note that P1 corresponds to the structure of Fig. 6a.

The result is

P1⋈7P2=(A●,U●)⟨G●A●C○C○U●G●C●A○C○G●C●U●A○G○⟩
The nesting operator shares with the crossing one the

fact that it is necessary to introduce a notion of being

well-defined. However, for the nesting the constraints

are slightly different. In particular, the nucleotides of the

pseudoloop that is going to be nested inside the other one

must all be shared, that is to say, the primary sequence

of the nested pseudoloop must be a proper substring

of the outer pseudoloop. The biological constraint about

the weak interactions is the same. For convenience we

impose that the outer pseudoloop of the nesting is the

right operand of the operator while the nested pseudoloop

is the left one. This decision influences also the position

information held by the parameter k: in this case k is the

relative position inside the outer (right) pseudoloop at

which the nested (left) pseudoloop is overlapped.

Definition 9 (Nesting) Let P1 = (a●1 ,a●N) ⟨as22 . . .a
sN−1
N−1⟩

and P2 = (b●1 ,b●M) ⟨bt22 . . .b
tM−1
M−1⟩ be two pseudoloops such

that si, tj ∈ {●, ○} for all i = 2, . . . ,N − 1 and j = 2, . . . ,M −
1. Let k ∈ {2, . . . ,M − 2} be an internal position of a

nucleotide in P2. The nesting of P1 and P2, denoted by

P1 ⋒k P2, is defined as

P1 ⋒k P2 = (b●1 , b●M) ⟨ b
w2
2 . . . b

wk−1
k−1

a
wk
1 . . .a

wN+k−1
N b

wN+k
N+k

. . . b
wM−1
M−1 ⟩

where:

1 k +N − 1 <M, i.e., P1 can be fully embedded inside
P2 starting from position k of P2;

2 a1 = bk ,a2 = bk+1, . . . ,aN = bk+N−1, i.e., all
nucleotides of P1 are shared with P2; and

3 for all z = 2, . . . ,M − 1

wz =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tz if z < k ∨ z > k +N − 1
○ if k ≤ z ≤ k +N − 1 ∧ (tz = ○ ∧ sz−k+1 = ○)
● if k ≤ z ≤ k +N − 1 ∧

((tz = ● ∧ sz−k+1 = ○) ∨ (tz = ○ ∧ sz−k+1 = ●))
⊥ if k ≤ z ≤ k +N − 1 ∧ (tz = ● ∧ sz−k+1 = ●)

that is to say, each nucleotide in position z that is in
common between P1 and P2 is involved in at most
one weak interaction whenever wz ≠⊥.

We say that the nesting P1 ⋒k P2 is well defined if and

only if conditions (1) and (2) above are met and for all z = 2,

. . . ,M − 1 it holds that wz ≠⊥.
Asanexampleof awell-definednesting, consider the struc-

ture in Fig. 5b. The pseudoloop between the second and

the fourteenth nucleotide can be obtained as the nesting

of pseudoloops P1 = (G●,C●)⟨A○C○C○U○G○C○A○C○G○⟩
and P2 = (A●,U●)⟨G○A○C○C○U○G○C○A○C○G○C○⟩, with
k equal to 2. The resulting pseudoloop is

P1 ⋒2 P2 = (A●,U●)⟨G●A○C○C○U○G○C○A○C○G○C●⟩
As mentioned above, according to the nature of RNA

molecules, nesting and crossing are well defined if each

nucleotide of the resulting structure forms at most one



Quadrini et al. BMC Bioinformatics 2019, 20(Suppl 4):161 Page 9 of 18

weak interaction. An example of a not well-defined pseu-

doloop is depicted in Fig. 9, where the third nucleotide

of the primary sequence has two weak interactions. The

concatenation operator is not subject to such conditions

since the two structures that are attached do not share

nucleotides.

It is worth noting that in all the three definitions above

it is implicit that the starting pseudoloops P1 and P2
are well defined. For the sake of simplicity we did not

give a recursive definition to induce the property of

being well-defined structurally. The reason is that we will

always apply the three operators to hairpin loops (that

are indeed well defined) and well-defined combinations

of hairpin loops, which yield well-defined pseudoloops by

construction.

A tree grammar for the algebraic RNA expressions

Taking advantage of the three operators defined above,

each RNA secondary structure can be defined as a

term of a regular tree grammar. Our objective is

to generate only trees - or, equivalently, terms -

that correspond to valid RNA secondary structures,

both pseudoknot-free and pseudoknotted. Moreover,

for each secondary structure, the tree (term) must be

unique.

Let B○ = {A○,U○,G○,C○} and let B● = {A●,U●,G●,C●}
be alphabets of RNA base nucleotides bearing the infor-

mation of being paired or unpaired in a weak interaction.

We let A = B○ ∪ B● ∪ {(, ),⊙,⋒,⋈} ∪ {2, . . . ,K} be the

alphabet of our tree grammar, where K ∈ N is a con-

stant representing the maximum length of hairpins that

we want to consider. For brevity, as introduced in the

“Methods” section, we add a lexical level to the grammar

allowing strings fromA∗ in place of single characters. Let

� be the signature defined as follows:

⇆ ∶ A∗ ×D ×A∗ → D⊙ ∶ D ×A∗ ×D→ D⋈ ∶ D ×A∗ ×D→ D⋒ ∶ D ×A∗ ×D→ D

H ∶ A∗ → D

Let x1, x2, x
′
1, x
′
2 ∈ B●, η,η1,η2 ∈ B∗○ and ω,ω1,ω2 ∈ B+○ .

The regular tree grammar we define for RNA is GRNA =

Fig. 9 Not admitted RNA structure

(V ,�, S,P), where V = {S,T ,C,N , I} and the set of

rewriting rules P is the following.

S → ⇆ (η1,T , η2) head, main pseudoloop and tail

T → ⊙(T , (⊙, η),C) concatenation between two pseudoloops

∣ C no concatenation in current pseudoloop

C
c�→ ⋈(C, (⋈, k), I) crossing between a pseudoloop and anhairpin

∣ N no crossing in current pseudoloop

N
c�→ ⋒(T , (⋒, k), I) nesting of a pseudoloop in a hairpin

∣ I current pseudoloop is an hairpin

I → H(x1 ω x2) hairpin loop

The rewriting rule for the start symbol S formalises

that each RNA secondary structure is composed by a

head η1 of unpaired nucleotides, followed by a pseu-

doloop, followed by a tail η2 of unpaired nucleotides.

Each pseudoloop T may be a left-associative concatena-

tion of pseudoloops or just a crossing/nesting/hairpin, by

downgrading T to C, N or I. Each crossing pseudoloop

C can be a left-associative sequence of crossings or just a

nesting/hairpin, by downgrading C to N or I. Each nest-

ing pseudoloop N is composed by a hairpin enclosing a

generic embedded pseudoloop T or just by a hairpin, by

downgrading N to I.

In the given tree grammar all the nodes corresponding

to the concatenation, crossing and nesting operators have

a middle child, which is a leaf of the tree, labelled with

the operator itself and the additional parameters intro-

duced in Definitions 7, 8 and 9. The presence of these

leaf nodes is important because in regular tree grammars

the predicate of conditional productions is defined on the

yield of the corresponding node. This means that, in order

to syntactically check the property of being well-defined,

according to the definition of the operators, the predicate

c in the conditional productions of crossing and nesting

must operate on strings. Therefore, these strings, which

are the yield of the nodes, must contain the necessary

information to recognise the applied operators and their

parameters. The definition of c is as follows.

Let u,u′,u′′ ∈ A+. The yield of a crossing node or of

a nesting node in a derived tree of GRNA is a string of

the form u (o, k) x1 ω x2, where k ∈ N and o ∈ {⋈,⋒},
or x1 ω1 x2 (o, k) x′1 ω2 x

′
2 if the left pseudoloop reduces to

just an hairpin. Let us first define a function p ∶ A+ → P to

transform these yield strings into pseudoloops in the form

used in Definitions 7, 8 and 9.

p(u) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(x1, x2)⟨ω⟩ if u = x1 ω x2

p(u′) ok (x1, x2)⟨ω⟩ if u = u′ (o, k) x1 ω x2 and o ∈ {⋈,⋒}
p(u′) ⊙η p(u′′) if u = u′ (⊙, η)u′′

The predicate c is defined inductively in accordance

with the notion of being well-defined for pseudoloops:

(i) c(x1 ω x2) = true(ii) c(u′ (⊙,η)u′′) = c(u′) ∧ c(u′′)



Quadrini et al. BMC Bioinformatics 2019, 20(Suppl 4):161 Page 10 of 18

(iii) c(u′ (o, k) x1 ω x2) =
c(u′) ∧welldef (p(u′) ok (x1, x2)⟨ω⟩)

where o ∈ {⋈,⋒} and welldef is a predicate checking

whether or not the given application of the operators is

well defined according to Definitions 8 and 9.

The particular formulation of the grammar is given with

the intention of defining a unique derived tree for each

possible secondary structure, pseudoknot-free or pseu-

doknotted. Let us illustrate this property firstly with an

example. We describe, step by step, the unique way to rep-

resent the structure in Fig. 6b using the rewriting rules of

the grammar. In other words, we introduce a procedure

to build a derived tree of grammar GRNA starting from a

given RNA secondary structure encoded, for instance, as

an arc-annotated sequence [47].

The first step is to recognise the enclosing pseudoloop

between the second nucleotide A● and the next to last

one U●, as illustrated in Fig. 10a. The head A○ and the

tail U○ of the secondary structure are then immediately

identified, resolving uniquely the rewriting rule for the

start symbol S. Now we have to decompose the just iden-

tified pseudoloop rewriting the non-terminal symbol T.

The first possible decomposition to consider is the sim-

plest one, i.e., concatenation. In this case the pseudoloop

cannot be decomposed into sequences of concatenated

pseudoloops. Thus, the rewriting rule T → C is applied

and the pseudoloop must be decomposed into a cross-

ing or into a nesting. The way to deterministically decide

this, according to the structure of the grammar, is to

select the hairpin inside the pseudoloop that has the

rightmost paired nucleotide. In our case such hairpin is

α1 = G●C○A○C○G○C○U○A○G○U●. Then, it is checked

if it crosses with some other arc inside the pseudoloop.

This is so in our case, thus the grammar rewriting rule to

be selected is the one for crossing, C → ⋈(C, (⋈, k), I),
where I is rewritten with I → H(α1). It follows thatCmust

be the pseudoloop that results by eliminating the hair-

pin α1 from the originally identified pseudoloop, which

yields the one starting at the second nucleotide of the

sequence and ending at the fourteenth, depicted with a

dashed line in Fig. 10b. The value of k follows as well:

it is the position at which the left paired nucleotide of

α1, G
●, is in the new identified pseudoloop, i.e., 7. At this

point we identified the rewriting rule to be used and all

its components apart from C, which must be recursively

analysed.

Let us then consider the pseudoloop in Fig. 10b.

Again, this pseudoloop cannot be decomposed as a

sequence of concatenations, so we re-apply the same

technique and consider the hairpin that has the right-

most paired nucleotide in the pseudoloop. This is

α2 = A●G○A○C○C○U○G○C○A○C○G○C○U●, which does

not cross with any arc in the pseudoloop. Therefore the

rewriting rule to be used first is C → N and then the

one to decompose the pseudoloop as a nesting, N →⋒(T , (⋒, k), I), where I is rewritten with I → H(α2). By
eliminating α2 from the pseudoloop we are left with the

pseudoloop in the interior part of the nesting, i.e., the one

from the third nucleotide, G●, and the thirteenth one, C●,

depicted as a dashed line in Fig. 11a. In this case it follows

that k = 2.

The next step is to recursively decompose the last

identified pseudoloop. It is easy to see that it is again

a nesting with k equal to 2. The resulting pseudoloop

to be further decomposed is the one depicted with a

dashed line in Fig. 11b. This particular pseudoloop can

indeed be decomposed as a concatenation of two pseu-

doloops, which are actually two hairpins: A●C○C○U● and

C●A○C○G●. The value of η for the concatenation is G○.

Since there are no more non-hairpin pseudoloops to

decompose, the procedure ends. The unique derived tree

of the grammar associated to the structure of Fig. 6b,

built using the procedure illustrated above, is shown in

Fig. 12.

Theorem 1 Let S be an RNA secondary structure. Then,

there is only one derived tree of the tree grammar GRNA

associated to S .
Proof Given any S , it is possible to follow a procedure

analogous to the one illustrated for the structure depicted

in Fig. 6b. Firstly, by hypothesis, S respects the con-

straint on weak interactions of RNA, i.e., there are not

nucleotides that have more than one weak interaction.

This means that the application of the operators at each

a b

Fig. 10 a, first and b, second step of the procedure for building the derived tree of the structure in Fig. 6b



Quadrini et al. BMC Bioinformatics 2019, 20(Suppl 4):161 Page 11 of 18

a b

Fig. 11 a, third and b, fourth step of the procedure for building the derived tree of the structure in Fig. 6b

step is well-defined. Secondly, the choice of the oper-

ator to use at each step of the procedure is uniquely

determined by the structure of S . Finally, in case of cross-

ing and nesting, the choice of the hairpin to identify as

the one to remove from the pseudoloop is unique as

well. Thus, the way to construct the derived tree for S is

unique.

Corollary 1 Any secondary structure can be uniquely

decomposed in terms of hairpins together with a head and

a tail.

Proof Given any structure S , the derived tree of the

grammarGRNA associated toS , as determined in the proof

of Theorem 1, expresses the structure as a unique combi-

nation of hairpins using the operators for concatenation,

crossing and nesting. The head and the tail are attached at

the beginning and at the end.

As an example, consider the derived tree in Fig. 12,

associated to the structure of Fig. 6b. Let α3 =
G●A○C○C○U○G○C○A○C○G○C●, α4 = C●A○C○G● and α5 =

A●C○C○U● be sequences of nucleotides representing hair-

pins and let α1 and α2 be as above. The decomposition in

hairpins expressed by the derived tree is the yield of the

tree itself:

A
○ [[[[α5 (⊙,G○)α4](⋒, 2)α3](⋒, 2)α2](⋈, 7)α1]U○

where square brackets are used to emphasise the structure

of the string induced by the tree, but are not part of the

string.

Theorem 2 Let t be a derived tree of the regular tree

grammar GRNA. Then, the structure of t corresponds to an

RNA secondary structure.

Proof By definition of derived tree for a regular tree

grammar, the predicate c of conditional productions for

crossing and nesting nodes are all satisfied. This means

that the constraints on the weak interactions are satisfied

and that the pseudoloops that are identified in t are all

well defined. To see that then t represents indeed a sec-

ondary structure it is sufficient to observe that each time

in t a conditional production is applied, one hairpin is

Fig. 12 Algebraic RNA tree of the structure in Fig. 6b according to the regular tree grammar GRNA



Quadrini et al. BMC Bioinformatics 2019, 20(Suppl 4):161 Page 12 of 18

added to the structure in a well-defined way. Moreover,

each time in t the rewriting rule T → ⊙(T , (⊙,η),C) is

applied, several well-defined substructures are just con-

catenated, forming well-defined structures by definition

because concatenation is alway well defined.

Finally, we can characterise the property of a structure

of being pseudoknot-free or pseudoknotted by looking at

the operators that are needed to represent it.

Theorem 3 Let S be a secondary structure. S is pseu-

doknotted if and only if the derived tree associated

to S by the regular tree grammar GRNA contains at

least an internal node labelled with ⋈. Otherwise, S is

pseudoknot-free.

Proof It is sufficient to observe that in the process of

constructing the derivation tree associated to S , as in the

proof of Theorem 1, the internal node ⋈, corresponding to
a crossing, is selected only if the current rightmost hairpin

is actually crossing with some other hairpin of the pseu-

doloop on the left. Thus, if the rule is not used in the whole

tree then there is no hairpin crossing with another in the

structure, i.e., the structure is pseudoknot-free.

In other words, we can characterise all pseudoknot-free

structures using only the concatenation and the nest-

ing operator. Crossing is needed only for pseudoknotted

structures. In order to emphasise the algebraic nature of

the tree we introduce the following name.

Definition 10 (Algebraic RNA Tree) Let S be a sec-

ondary structure. The Algebraic RNA Tree of S is defined

as the unique derived tree of the grammar GRNA associated

to S .

Algebraic structural pseudoknot RNA alignment

Our first application of algebraic RNA trees introduced

so far is in the field of structure comparison. In par-

ticular, we are interested in comparing RNA secondary

structures structurally, i.e., looking at the (possibly pseu-

doknotted) structures by neglecting the kind of base pairs

that created the weak interactions, i.e., without depend-

ing on the primary structure. For this purpose, alge-

braic RNA trees contain unnecessary information that

can be abstracted, i.e., the identity of the nucleotides

forming the hairpins. Moreover, in algebraic RNA trees

the positions at which the pseudoloops are connected

are expressed by the parameters k of the crossing and

the nesting operators. According to the nature of the

algebraic operators, such positions are relative to the

involved operands. This is not convenient for a struc-

tural comparison of the whole structure, for which it

is necessary to reconstruct the corresponding absolute

positions inside the primary sequence. Therefore, we

make a further step by introducing structural RNA trees as

an abstraction of algebraic RNA trees in which the infor-

mation about the identity of the nucleotides is forgotten

and the absolute positions of the involved hairpins are

reported.

Definition 11 (Structural RNA Tree) A structural RNA

tree is an ordered labelled tree such that:

• each interior node has two children and is labelled
with ⊙, ⋒ or with an element of {(⋈,h) ∣ h ∈ N};

• each leaf is labelled with H(start, stop), where
start, stop ∈ N.

Figure 13 shows a structural RNA tree that is the

abstraction of the algebraic RNA tree of Fig. 12, which in

turn corresponds to the structure of Fig. 6b. First, note

that the original root of the algebraic RNA tree, labelled

with ⇆, is eliminated, together with the head and the tail

sequences. The other internal nodes labelled with oper-

ators in the algebraic RNA tree remain the same in the

structural RNA tree, apart from the crossing operator,

which is paired with a number h. This h is the number

of crossing interactions of the current hairpin and will be

explained later in more detail. The middle child of each

Fig. 13 The structural RNA tree corresponding to the algebraic RNA

tree in Fig. 12



Quadrini et al. BMC Bioinformatics 2019, 20(Suppl 4):161 Page 13 of 18

internal node labelled with an operator of the algebraic

RNA tree disappears in the structural RNA tree and the

right child becomes a leaf node H(start, stop) represent-
ing the same hairpin loop of the algebraic RNA tree, but

showing the absolute positions at which the hairpin starts

and stops in the original structure.

A structural RNA tree can be obtained from an algebraic

RNA tree through a depth-first visit of the latter in which,

for each internal node ν labelled with an operator, the

list of hairpins (with absolute starting and stopping posi-

tions) constituting the pseudoloop associated to the left

child is returned from the recursive function. Using this

list, it is possible to calculate, whenever the current oper-

ator of ν is a crossing, the number of hairpins in the

pseudoloop of the left child that actually cross with the

hairpin on the right child. Given two hairpins H(i, j) and
H(i′, j′) such that j′ < j, we say that H(i, j) crosses with

H(i′, j′) if and only if i′ < i < j′. Consider the structure

depicted in Fig. 14a and the relative structural RNA tree

shown in the left part of Fig. 15. The root is labelled with(⋈, 1) because the hairpinH(11, 18) crosses only with the

hairpin H(4, 13) and not with H(2, 9), which are the two

hairpins constituting the pseudoloop associated to the left

child of the root. Differently, if we consider the structure

depicted in Fig. 14b and the relative structural RNA tree

shown in the right part of Fig. 15, the root is labelled with(⋈, 2). Indeed, in this case the hairpinH(7, 16) of the right
child of the root crosses with both the hairpins H(2, 9)
and H(4, 13) of the pseudoloop associated with the left

child.

Figure 16 shows an alignment tree of the two structural

RNA trees of Fig. 15. Let us suppose, as we will explain

better later, that the score of aligning two hairpins H(i, j)
and H(i′, j′) such that i ≠ i′ or j ≠ j′ is zero. If the

nodes containing the crossing operator were without the

number of crossing interactions h, the alignment tree of

Fig. 16 would have been indeed an optimal one, with tree

alignment distance 0. Thus, the two structures of Fig. 14

would have been considered equal. This is not correct for

the measure of comparison we want to define because

indeed the two structures are different from a structural

point of view. This issue is the reason why the number h

has been introduced in the crossing nodes of structural

RNA trees. In this way a positive score cm can be fixed

and, when aligning two nodes (⋈,h) and (⋈,h′), a score

cm ⋅ ∣h−h′∣ can be assigned to the pair. Using this score, the

distance between the two structures of Fig. 14 becomes

cm ⋅ ∣1−2∣+cm ⋅ ∣1−1∣ = cm ⋅1+0 = cm > 0, i.e. the structures

are considered different.

Suppose we are given two RNA secondary structures

and their algebraic RNA trees obtained by the grammarGRNA. To compare the two structures, we align the cor-

responding structural RNA trees. We define the scoring

function σs as follows:

σs((⋈,h), (⋈,h′)) = cm ⋅ ∣h − h′∣ crossing mismatch

σs(op1, op2) = or replace operator

σs(op,−) = σs(−, op) = odi delete or insert operator

σs(H(i, j),H(i′, j′)) = 0 replace hairpin with hairpin

σs(H(i, j), op) = σs(op,H(i, j)) = +∞ replace hairpin with operator

σs(H(i, j),−) = σs(−,H(i, j)) = hdi delete or insert hairpin

where h,h′, i, i′, j, j′ ∈ N, op, op1, op2 ∈ {(⋈,n),⋒,⊙} and

cm, or , odi,hdi ∈ R are score constants.

The scoring function σs is quite standard regarding the

pairs containing an insertion or a deletion of an operator

or of an hairpin. Concerning the pairs with a replacement,

we already discussed the case of two crossing operators

with a possibly different number h. The case in which an

hairpin is replaced with an hairpin with possibly differ-

ent absolute position is assigned score zero. The reason

for this is again the fact that we want the measure of

comparison independent from the primary sequence. The

structural interplay among the hairpins is structurally

expressed by the operators and the structural differences

between crossing hairpins is already considered by the

case of two crossing operators. Therefore, assigning a pos-

itive score to differences in the absolute positions of two

aligned hairpins would introduce a dependence from the

primary sequence and would be useless for our purposes.

Finally, the replacement of an operator with an hairpin

should always be avoided because the resulting alignment

tree would not conserve the shape reflecting the applica-

tion of the operators to hairpins and sub-terms. This is

the reason why the score assigned to such a replacement

is infinite. We can now define the Algebraic Structural

Pseudoknot RNA Alignment (ASPRA) distance.

a b

Fig. 14 Two different RNA secondary structures having the same pattern of application of the crossing operator. In a, the rightmost weak

interaction crosses only with one of the other two. In b, the rightmost weak interaction crosses with both the other two



Quadrini et al. BMC Bioinformatics 2019, 20(Suppl 4):161 Page 14 of 18

Fig. 15 On the left, the structural RNA tree of the structure shown in Fig. 14a. On the right, the structural RNA tree of the structure shown in Fig. 14b

Definition 12 (ASPRA Distance) Let S1 and S2 be

two RNA secondary structures with or without pseudo-

knots and let t1 and t2 be the structural RNA trees cor-

responding to their algebraic RNA trees. The Algebraic

Structural Pseudoknot RNA Alignment (ASPRA) distance

between S1 and S2, denoted by daspra(S1,S2), is defined as
follows:

daspra(S1,S2) =min{σs(L) ∣ L is an alignment of t1 and t2}
Let us give an example by calculating the distance

between the RNA secondary structure introduced in

Fig. 6b, say S1, and the RNA secondary structure illus-

trated in Fig. 17, say S2. The structural RNA tree of the

structure S2 is shown in Fig. 18. Figure 19 shows an opti-

mal alignment tree of the structural RNA trees of S1 andS2. The distance is
daspra(S1 ,S2)=σs((⋈, 2), (⋈, 3))+σs(⊙,−)+σs(H(3, 13),−)=cm + odi + hdi

having all the other pairs score 0.

To conclude this section, it is worth noting that the

unit score cm to be assigned to a mismatch in the num-

ber of crossing interactions of two aligned crossing nodes(⋈,h), (⋈,h′) should have a different scale with respect

to the other scores. This would reflect the fact that the

two nodes actually have the same operator and the dif-

ference that we measure is local to these operators. The

replacement of an operator with another one, instead, is

a proper replacement in the classical sense of edit oper-

ations. Therefore, the score constants should be chosen

such that cm ≪ or , oid,hid. Possible choices are or = oid =
oid = 1, cm = 1/100 or, to avoid rounding errors, or = oid =
oid = 100, cm = 1.

Discussion

We have introduced a new algebraic representation for

RNA secondary structures with arbitrary pseudoknots.

We have called it algebraic RNA tree, which is derived

from a regular tree grammar using three main opera-

tors: concatenation, nesting and crossing. The language of

terms generated by the given tree grammar is shown to

be in one-to-one correspondence with the set of RNA

Fig. 16 Alignment of the structural RNA trees of Fig. 15



Quadrini et al. BMC Bioinformatics 2019, 20(Suppl 4):161 Page 15 of 18

Fig. 17 An RNA secondary structure to be compared with the one in Fig. 6b

secondary structures with arbitrary pseudoknots. As a

first application of algebraic RNA trees we have defined

a measure of comparison, called ASPRA distance, that

is able to compare RNA secondary structures with arbi-

trary pseudoknots structurally, i.e., without depending

on the primary structure. The distance is obtained by

using the classical tree alignment algorithm on struc-

tural RNA trees, abstractions of algebraic RNA trees.

In this section we give the necessary information to

practically use the notions introduced so far on real RNA

molecules.

The procedures to construct algebraic and struc-

tural RNA trees and to calculate the ASPRA dis-

tance have been implemented in the ASPRAlign Java

application [42]. The source code of ASPRAlign,

together with documentation and examples, is pub-

licly available under the GNU General Public Licence,

version 3.

Fig. 18 The structural RNA tree of the structure in Fig. 17

ASPRAlign accepts as input RNA secondary struc-

tures in the Extended Dot-Bracket Notation format [48],

typically supported by public database of structures, or in

the Arc Annotated Sequence format. The latter format is

derived from the former by substituting the dot-bracket

string with a list of weak interactions expressed as pairs(i1, j1); (i2, j2); . . . ; (im, jm) where each index ik , jk belongs

to the interval [1,n] (n being the length of the primary

sequence) and ik < jk + 1 for all k. The weak interac-

tions can be given in any order and the indices ik , jk are

the starting and the stopping positions of the k-th weak

interaction. The default output format of ASPRAlign

for trees is a string resulting form a depth-first visit of

the given tree following the format ("node-label",

[list-of-children]). An alternative output format

for a tree is LATEX code to obtain a graphical tree represen-

tation like the ones in Figs. 12, 13 and 16.

Starting from a secondary structure given in arc anno-

tated sequence format, as specified above, ASPRAlign

builds the algebraic RNA tree in time

O⎛
⎝n +

m∑
k=1

(jk − ik)⎞⎠
where (jk − ik) is the length of the k-th weak interaction.

The construction of an arc annotated sequence starting

from an extended dot-bracket notation format can be

done in O(n). The building of the structural RNA tree

is currently implemented from scratch, i.e. starting from

the secondary structure specification, with the same time

complexity of building the algebraic RNA tree. Alterna-

tively, the structural RNA tree can be derived from a visit

of the algebraic RNA tree as discussed in the previous

subsection.

ASPRAlign uses the implementation of the Jiang et al.

algorithm [20] for tree alignment provided by the Java

packagefr.orsay.lri.varna.models.treealign

of the StatAling software package [49, 50]. The

time complexity of the Jiang et al. algorithm isO(∣t1∣ ⋅ ∣t2∣ ⋅ (deg(t1) + deg(t2))2) where ∣t∣ is the number

of nodes of the tree t and deg(t) is the degree of the tree
t, i.e. the maximum number or children of any node in



Quadrini et al. BMC Bioinformatics 2019, 20(Suppl 4):161 Page 16 of 18

Fig. 19 One of the optimal alignments of the structural RNA trees in Figs. 13 and 18

the tree. In the case of ASPRAlign the trees t1 and t2
are the structural RNA trees of the given structures. A

structural RNA tree has always degree 2 and the number

of nodes is linear in the number of weak interactions.

Thus, the tree alignment and the computation of the

ASPRA distance of two secondary structures withm1 and

m2 weak interactions is performed in timeO(m1 ⋅m2).
Conclusions

In this paper we have introduced algebraic RNA trees

and structural RNA trees to represent uniquely RNA sec-

ondary structures with arbitrary pseudoknots. This has

been achieved by representing the structures as expres-

sions of an algebraic language with three operators and

simple hairpin loops as operands. While in classical rep-

resentations pseudoknotted structures can not be repre-

sented by a tree, this is quite natural using our operators.

Based on structural RNA trees, we have also defined the

ASPRA distance to compare RNA secondary structures

without taking into account the primary sequences and

focusing mainly on the motifs of the structures. Such a

measure of comparison is useful because the secondary

structure is more preserved than the primary one dur-

ing evolution. Our distance has the advantage to consider

all the weak interactions including the pseudoknots, while

in other measures of comparison present in the litera-

ture only subclasses of pseudoknots are considered. We

have implemented the procedures to build the trees and to

compute the distance in an open source Java application

called ASPRAlign [42].

As an immediate continuation of the present work, the

ASPRA distance will be tested on real RNA secondary

structure with pseudoknots that are available in public

repositories such as the Worldwide Protein Data Bank

Database [51] and the Pseudobase++ Database [52]. This

work will be carried out in collaboration with experts of

the biological domain in order to test both the usability

of the software and the impact of our new measure of

comparison on the creation of new biological knowledge.

On the theoretical side, the natural extension of our

algebraic approach is the formalisation of the three oper-

ators in an algebraic structure with a proper axiomatisa-

tion. This would allow us to study the properties of the

RNA secondary structures with arbitrary pseudoknots in

a compositional way.

Beyond the structural comparison based on the ASPRA

distance we aim at applying our approach to the folding

problem of RNA secondary structures with pseudoknots.

To this end, the Algebraic Dynamic Programming frame-

work, together with the tree language already intro-

duced in this paper, is a good starting point. The

objective is to derive an algorithm that works for arbi-

trary pseudoknots, instead of classes of pseudoknots,

as it is in the current state of the art. Moreover,

an improvement of the efficiency of the existing algo-

rithms for the various classes of pseudoknots might

be reached by exploiting suitable properties of our

operators. The same problem can be faced using the

algebraic representation together with learning algo-

rithms and adaptability checking typical of complex

systems [53–55].

Finally, based on our preliminary results [56, 57] and

using our algebraic approach, we plan also to deal with the

problem of RNA classification.



Quadrini et al. BMC Bioinformatics 2019, 20(Suppl 4):161 Page 17 of 18

Abbreviations

A: Adenine; ADP: Algebraic Dynamic Programming; ASPRA distance: Algebraic

Structural Pseudoknot RNA Alignment distance; C: Cytosine; G: Guanine; U:

Uracil

Acknowledgements

The authors thank the anonymous referees for their fundamental suggestions

that permitted to properly place the present work in its scientific framework.

Funding

Publication of this article was sponsored by the Future and Emerging

Technologies (FET) program within the Seventh Framework Programme (FP7)

for Research of the European Commission, under the FET-Proactive grant

agreement TOPDRIM, number FP7-ICT-318121.

Availability of data andmaterials

Not applicable.

About this supplement

This article has been published as part of BMC Bioinformatics Volume 20

Supplement 4, 2019: Methods, tools and platforms for Personalized Medicine in the

Big Data Era (NETTAB 2017). The full contents of the supplement are available

online at https://bmcbioinformatics.biomedcentral.com/articles/

supplements/volume-20-supplement-4.

Authors’ contributions

All the authors conceived the algebraic operators and the application to RNA

secondary structure comparison. MQ and LT developed and wrote the

technical part. LT implemented the code of ASPRAlign. EM and LT revised

all the text and the references. All the authors have read and approved the

final manuscript.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Published: 18 April 2019

References
1. Waterman MS. Secondary Structure of Single-Stranded Nucleic Acids.

In: Studies on Foundations and Combinatorics, Advances in Mathematics

Supplementary Studies, vol. 1. New York: Academic Press, Inc.; 1978.

p. 167–212.
2. Waterman MS, Smith TF. RNA secondary structure: a complete

mathematical analysis. Math Biosci. 1978;42(3-4):257–66.
3. Dam ET, Pleij K, Draper D. Structural and functional aspects of RNA

pseudoknots. Biochemistry. 1992;31(47):11665–76.
4. Staple DW, Butcher SE. Pseudoknots: RNA Structures with Diverse

Functions. PLoS Biol. 2005;3(6):213.
5. Rastogi T, Beattie TL, Olive JE, Collins RA. A long-range pseudoknot is

required for activity of the Neurospora VS ribozyme. EMBO J. 1996;15(11):

2820–5.
6. Ke A, Zhou K, Ding F, Cate JH, Doudna JA. A conformational switch

controls hepatitis delta virus ribozyme catalysis. Nature. 2004;429(6988):

201–5.
7. Shen LX, Tinoco Jr I. The structure of an RNA pseudoknot that causes

efficient frameshifting in mouse mammary tumor virus. J Mol Biol.

1995;247(5):963–78.
8. Egli M, Minasov G, Su L, Rich A. Metal ions and flexibility in a viral RNA

pseudoknot at atomic resolution. Proc Natl Acad Sci. 2002;99(7):4302–7.
9. Hofacker IL, Fekete M, Flamm C, Huynen MA, Rauscher S, Stolorz PE,

Stadler PF. Automatic detection of conserved RNA structure elements in

complete RNA virus genomes. Nucleic Acids Res. 1998;26(16):3825–36.

10. Caetano-Anollés G. Tracing the evolution of RNA structure in ribosomes.

Nucleic Acids Res. 2002;30(11):2575–87.
11. Wang H-Y, Lee S-C. Secondary Structure of Mitochondrial 12S rRNA

Among Fish and Its Phylogenetic Applications. Mol Biol Evol. 2002;19(2):

138–48.
12. Wuyts J, De Rijk P, Van de Peer Y, Pison G, Rousseeuw P, De Wachter R.

Comparative analysis of more than 3000 sequences reveals the existence

of two pseudoknots in area V4 of eukaryotic small subunit ribosomal RNA.

Nucleic Acids Res. 2000;28(23):4698–708.
13. Chai W, Stewart V. RNA sequence requirements for NasR-mediated,

nitrate-responsive transcription antitermination of the Klebsiella oxytoca

M5al nasF operon leader. J Mol Biol. 1999;292(2):203–16.

14. Höchsmann M, Voss B, Giegerich R. Pure Multiple RNA Secondary

Structure Alignments: A Progressive Profile Approach. IEEE/ACM Trans

Comput Biol Bioinforma. 2004;1(1):53–62.

15. Shapiro BA, Zhang K. Comparing multiple RNA secondary structures

using tree comparisons. Bioinformatics. 1990;6(4):309–18.
16. Corpet F, Michot B. RNAlign program: alignment of RNA sequences using

both primary and secondary structures. Bioinformatics. 1994;10(4):389–99.

17. Jiang T, Lin G, Ma B, Zhang K. A General Edit Distance between RNA

Structures. J Comput Biol. 2002;9(2):371–88.

18. Selkow SM. The tree-to-tree editing problem. Inf Process Lett. 1977;6(6):

184–6.

19. Tai K-C. The Tree-to-Tree Correction Problem. J ACM. 1979;26(3):422–33.

20. Jiang T, Wang L, Zhang K. Alignment of trees - an alternative to tree edit.

Theor Comput Sci. 1995;10(2):137–48.

21. Höchsmann M, Töller T, Giegerich R, Kurtz S. Local similarity in RNA

secondary structures. In: Computational Systems Bioinformatics. CSB2003.

Proceedings of the 2003 IEEE Bioinformatics Conference. New York: IEEE;

2003. p. 159–68.

22. Lorenz R, Bernhart SH, Höner zu Siederdissen C, Tafer H, Flamm C,

Stadler PF, Hofacker IL. ViennaRNA Package 2.0. Algoritm Mol Biol.

2011;6(26). https://almob.biomedcentral.com/articles/10.1186/1748-

7188-6-26.
23. Chauve C, Courtiel J, Ponty Y. An Unambiguous And Complete Dynamic

Programming Algorithm For Tree Alignment. Submitted. Version 1. 2015.

https://hal.inria.fr/hal-01154030. Accessed 28 Sep 2018.
24. Schirmer S, Giegerich R. Forest Alignment with Affine Gaps and Anchors.

In: Giancarlo R, Manzini G, editors. Combinatorial Pattern Matching. CPM

2011. Lecture Notes in Computer Science, vol. 6661. Berlin, Heidelberg:

Springer; 2011. p. 104–17.
25. Bille P. A survey on tree edit distance and related problems. Theor

Comput Sci. 2005;337(1-3):217–39.
26. Harrison MA. Introduction to Formal Language Theory. Boston:

Addison-Wesley Longman Publishing Co., Inc.; 1978.
27. Möhl M, Will S, Backofen R. Lifting Prediction to Alignment of RNA

Pseudoknots. J Comput Biol. 2010;17(3):429–42.
28. Han B, Dost B, Bafna V, Zhang S. Structural Alignment of Pseudoknotted

RNA. J Comput Biol. 2008;15(5):489–504.
29. Yoon B-J. Efficient alignment of RNAs with pseudoknots using sequence

alignment constraints. EURASIP J Bioinforma Syst Biol. 2009;2009(6):1–13.
30. Wong TKF, Wan K-L, Hsu B-Y, Cheung BWY, Hon W-K, Lam T-W, Yiu S-M.

RNASAlign: RNA Structural Alignment System. Bioinformatics. 2011;27(15):

2151–2.
31. Huang Z, Wu Y, Robertson J, Feng L, Malmberg RL, Cai L. Fast and

accurate search for non-coding RNA pseudoknot structures in genomes.

Bioinformatics. 2008;24(20,15):2281–7.
32. Fallmann J, Will SS, Engelhardt J, Grüning B, Backofen R, Stadler PF.

Recent advances in RNA folding. J Biotechnol. 2017;261(10):97–104.
33. Akutsu T. Dynamic programming algorithms for RNA secondary structure

prediction with pseudoknots. Discret Appl Math. 2000;104(1-3):45–62.
34. Nebel MEME, Weinberg F. Algebraic and Combinatorial Properties of

Common RNA Pseudoknot Classes with Applications. J Comput Biol.

2012;19(10):1134–50.
35. Reeder J, Giegerich R. Design, implementation and evaluation of a

practical pseudoknot folding algorithm based on thermodynamics. BMC

Bioinformatics. 2004;5:104.
36. Giegerich R, Meyer C. Algebraic Dynamic Programming. In: Kirchner H,

Ringeissen C, editors. Algebraic Methodology and Software Technology.

AMAST 2002. Lecture Notes in Computer Science, vol. 2422. Berlin:

Springer; 2002. p. 349–64.
37. Giegerich R, Meyer C, Steffen P. A discipline of dynamic programming

over sequence data. Sci Comput Program. 2004;51(3):215–63.

https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-20-supplement-4
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-20-supplement-4
https://almob.biomedcentral.com/articles/10.1186/1748-7188-6-26
https://almob.biomedcentral.com/articles/10.1186/1748-7188-6-26
https://hal.inria.fr/hal-01154030


Quadrini et al. BMC Bioinformatics 2019, 20(Suppl 4):161 Page 18 of 18

38. Berkemer SJ, Höner zu Siederdissen C, Stadler PF. Algebraic Dynamic

Programming on Trees. Algorithms. 2017;10(4):135.
39. Riechert M, Höner zu Siederdissen C, Stadler PF. Algebraic dynamic

programming for multiple context-free grammars. Theor Comput Sci.

2016;639:91–109.
40. Ponty Y, Saule C. A Combinatorial Framework for Designing

(Pseudoknotted) RNA Algorithms. In: Przytycka TM, Sagot MF, editors.

Algorithms in Bioinformatics. WABI 2011. Lecture Notes in Computer

Science, vol. 6833. Berlin: Springer; 2011. p. 250–69.
41. Allen JF. Maintaining knowledge about temporal intervals. Commun

ACM. 1983;26(11):832–43.
42. Quadrini M, Tesei L, Merelli E. ASPRAlign - Algebraic Structural

Pseudoknot RNA Alignment. 2018. https://github.com/bdslab/aspralign.

Accessed 28 Sep 2018.

43. Thatcher JW. Characterizing derivation trees of context-free grammars

through a generalization of finite automata theory. J Comput Syst Sci.

1976;1(4):317–22.

44. Gécseg F, Steinby M. Tree Languages. In: Handbook of Formal

Languages. Berlin: Springer; 1997. p. 1–68.

45. Giegerich R, Steffen P. Implementing Algebraic Dynamic Programming in

the Functional and the Imperative Programming Paradigm. In: Boiten EA,

Möller B, editors. Mathematics of Program Construction. MPC 2002.

Lecture Notes in Computer Science, vol. 2386. Berlin: Springer; 2002. p.

1–20.

46. Schirmer S, Ponty Y, Giegerich R. Introduction to RNA Secondary

Structure Comparison. In: Gorodkin J, Ruzzo W, editors. RNA Sequence,

Structure, and Function: Computational and Bioinformatic Methods.

Methods in Molecular Biology (Methods and Protocols), vol. 1097.

Totowa: Humana Press; 2014. p. 247–73.

47. Blin G, Touzet H. How to Compare Arc-Annotated Sequences: The

Alignment Hierarchy. In: Crestani F, Ferragina P, Sanderson M, editors.

String Processing and Information Retrieval. SPIRE 2006. Lecture Notes in

Computer Science. Berlin, Heidelberg: Springer; 2006. p. 291–303.

48. ViennaRNA Package 2.0. RNAlib-2.4.9 Documentation. 2018. https://www.

tbi.univie.ac.at/RNA/ViennaRNA/doc/html/rna_structure_notations.html.

Accessed 28 Sep 2018.

49. StatAlign v3.2. An Extendable Software Package for Joint Bayesian

Estimation of Alignments and Evolutionary Trees. 2018. https://statalign.

github.io. Accessed 28 Sep 2018.

50. Arunapuram P, Edvardsson I, Golden M, Anderson JWJ, Novàk A,

Sükösd Z, Hein J. StatAlign 2.0: combining statistical alignment with RNA

secondary structure prediction. Bioinformatics. 2013;2(5):654–5.

51. Berman H, Henrick K, Nakamura H. Announcing the worldwide Protein

Data Bank. Nat Struct Biol. 2003;10:980EP. https://www.nature.com/

articles/nsb1203-980.

52. Taufer M, Licon A, Araiza R, Mireles D, van Batenburg FHD, Gultyaev AP,

Leung M-Y. PseudoBase++: an extension of PseudoBase for easy

searching, formatting and visualization of pseudoknots. Nucleic Acids

Res. 2009;37(1):127–35.

53. Merelli E, Pettini M, Rasetti M. Topology driven modeling: the IS

metaphor. Nat Comput. 2015;14(3):421–30.

54. Merelli E, Paoletti N, Tesei L. Adaptability checking in complex systems.

Sci Comput Program. 2016;115–116:23–46.

55. Mamuye AL, Merelli E, Tesei L. A Graph Grammar for Modelling RNA

Folding. Electron Proc Theor Comput Sci EPTCS. 2016;231:31–41.

56. Quadrini M, Culmone R, Merelli E. Topological Classification of RNA

Structures via Intersection Graph. In: Martín-Vide C, Neruda R,

Vega-Rodríguez M, editors. Theory and Practice of Natural Computing.

TPNC 2017. Lecture Notes in Computer Science, vol. 10687. Cham:

Springer; 2017. p. 203–15.

57. Quadrini M, Merelli E. Loop-loop Interaction Metrics on RNA Secondary

Structures with Pseudoknots. In: Proceedings of the 11th International

Joint Conference on Biomedical Engineering Systems and Technologies -

Volume 4: BIOINFORMATICS. Setúbal: SciTePress; 2018. p. 29–37.

https://github.com/bdslab/aspralign
https://www.tbi.univie.ac.at/RNA/ViennaRNA/doc/html/rna_structure_notations.html
https://www.tbi.univie.ac.at/RNA/ViennaRNA/doc/html/rna_structure_notations.html
https://statalign.github.io
https://statalign.github.io
https://www.nature.com/articles/nsb1203-980
https://www.nature.com/articles/nsb1203-980

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Regular tree grammars
	Tree alignment

	Results
	Algebraic operators for RNA secondary structures
	A tree grammar for the algebraic RNA expressions
	Algebraic structural pseudoknot RNA alignment

	Discussion
	Conclusions
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	About this supplement
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	References

