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Abstract

This paper revisits the classical problem of detecting in-
terest points, popularly known as “corners,” in 2D images
by proposing a technique based on fitting algebraic shape
models to contours in the edge image. Our method for cor-
ner detection is targeted for use on structural images, i.e.,
images that contain man-made structures for which corner
detection algorithms are known to perform well. Further,
our detector seeks to find image regions that contain two
distinct linear contours that intersect. We define the inter-
section point as the corner, and, in contrast to previous ap-
proaches such as the Harris detector, we consider the spa-
tial coherence of the edge points, i.e., the fact that the edge
points must lie close to one of the two intersecting lines, an
important aspect to stable corner detection. Comparisons
between results for the proposed method and that for several
popular feature detectors are provided using input images
exhibiting a number of standard image variations, including
blurring, affine transformation, scaling, rotation, and illu-
mination variation. A modified version of the repeatability
rate is proposed for evaluating the stability of the detec-
tor under these variations which requires a 1-to-1 mapping
between matched features. Using this performance metric,
our method is found to perform well in contrast to several
current methods for corner detection. Discussion is pro-
vided that motivates our method of evaluation and provides
an explanation for the observed performance of our algo-
rithm in contrast to other algorithms. Our approach is dis-
tinct from other contour-based methods since we need only
compute the edge image, from which we explicitly solve for
the unknown linear contours and their intersections that
provide image corner location estimates. The key benefits
to this approach are: (1) performance (in space and time);
since no image pyramid (space) and no edge-linking (time)
is required and (2) compactness; the estimated model in-
cludes the corner location, and direction of the incoming
contours in space, i.e., a complete model of the local corner
geometry.

∗This work was supported in part by the National Science Foundation
under IIS-0808718. Any opinions, findings and conclusions or recommen-
dations expressed in this material are those of the authors and do not nec-
essarily reflect those of the National Science Foundation.

1. Introduction

Detection of corners, also known as interest points, in
images has been a long-standing problem in computer vi-
sion having applications in a wide variety of pattern recog-
nition and computer vision tasks such as feature detection,
3D reconstruction from a collection of affine views, object
recognition, and tracking. Many approaches have been pro-
posed to this problem with early work on the subject dating
back more than 20 years [1]. This paper proposes a new
approach to this important problem and compares the per-
formance of our approach against a wide variety of generic
feature point detectors. The approach is simple to under-
stand and implement and provides a new method for stable
edge detection which has linear computational complexity
and requires spatial coherence between edge points. Ex-
isting approaches such as edge linking have inherent bias
(the order of that edges are linked) and can be complicated,
especially at edge-junctions. Our model handles the edge
image data elegantly and simply via a solution to a simple
linear fitting problem.

1.1. Previous work

The most popular approach for corner detection is the
Harris corner detector originally proposed in [2] for which
there now exist many variants. The Harris corner detector
computes the eigenvalues of the matrixA (see equation (1))
which can be viewed as the scatter matrix of the image gra-
dient computed over a small region of the image.

A =

[ ∑
I2
x

∑
IxIy∑

IxIy
∑
I2
y

]
(1)

Corners are detected by thresholding some function of the
two positive eigenvalues (see [3] for one possible variant)
where positive corner detection results lie at (x, y) locations
where both eigenvalues of A are large. There is also a col-
lection of works that compute contours from the edge image
and then estimate the curvature of the contour [4, 5, 6] that
detects corners from the estimated curvature of edge con-
tours. Horaud [7] groups edge contour into lines and then
looks for local intersections of these fit lines.

A second class of feature detection algorithms, which we
refer to as region-based methods, look for “blobs,” i.e., sim-
ple closed regions in the image that have some distinctive

2296 
 
2009 IEEE 12th International Conference on Computer Vision (ICCV) 
978-1-4244-4419-9/09/$25.00 ©2009 IEEE



characteristic and are often referred to as “blob detectors”.
Early work on these methods include [8] which proposed
a scale-space approach to detecting blobs by computing a
scale-space generated by convolving the image with a Gaus-
sian kernel with increasing variance and subsequently de-
tecting scale-space maxima of the Laplacian of Gaussian
(LoG) operator. A number of researchers have adopted
this approach or the closely related Difference of Gaus-
sian (DoG) proposed in [9] that provides similar results at
a reduced computational cost. Scale invariant versions of
corner detectors include [8, 10] and [11] which provide in-
creasingly sophisticated models for corner detection that are
affine-invariant and robust to illumination changes. Further,
in two separate papers Schaffalitzky [12] and Mikolajczyk
[11] discuss scale-space extensions to the (LoG) based on
the Hessian matrix H (see equation (2)) for which perfor-
mance functionals may be defined for scale-space blob de-
tection.

H =

[ ∑
Ixx

∑
Ixy∑

Ixy

∑
Iyy

]
(2)

The second order derivatives gives strong responses on
blobs and ridges.

Other important feature detectors include the very pop-
ular Scale Invariant Feature Transform (SIFT) proposed by
Lowe [13] which includes many of the concepts above in a
novel framework and has been shown to perform well un-
der a wide variety of conditions it also includes methods
designed for real-time applications that have low compu-
tation cost such as Features from Accelerated Segment Test
(FAST) [14], Smallest Uni-value Segment Assimilating Nu-
cleus (SUSAN) [15], and a detector similar to SUSAN pro-
posed in [16].

Currently, the literature does not provide any explicit
methods for computing edge chains within images which
can be especially challenging at edge junctions. Methods
such as edge-linking [17] have several shortcomings which
include: (1) an inherent bias due to the sequence in which
edges are “chained” together, (2) no allowance for cross-
shaped, i.e., “+”, junctions, and (3) iterative searches are
needed to trace out and fills gaps in image edge curves.
In addition, determining an appropriate value for filling-in
edge gaps automatically is not clear and can significantly
change detection results. In contrast, our polynomial fit re-
spects the global organization of edge pixels within the win-
dow and has linear computational complexity with respect
to the number of pixels within the window.

Our method works on points extracted from the image
and locally fits a shape model to these contours that con-
sists of a pair of intersecting lines. Our approach is dis-
tinct from other contour-based methods since we need only
compute the edge image which is used to explicitly solve
for the unknown linear contours that intersect to form cor-
ners in the image. The key benefits to this approach are:

(a)

(b)

(c)

(d)

Figure 1: (a) shows a structural image of a boat, (b,c,d) each
show three 13x13pixel windows taken from (a). Shown
from left to right are (i) the window image data, (ii) the
edge magnitude image, and (iii) the lines of the hyperbolic
asymptotes that jointly model the local corner structure and
whose intersection is taken as the estimated corner location.

(1) performance (in space and time); since no image pyra-
mid (space) and no edge-linking (time) is required and (2)
compactness; the estimated model includes the corner loca-
tion, and direction of the incoming contours in space, i.e.,
a complete model of the local corner geometry. In contrast,
methods based on the image gradient such as [2] or image
surface curvature do not enforce that the gradient or cur-
vature within the image region be spatially coherent, i.e.,
that locations having large first and second order derivatives
lie along a continuous curve. Our model enforces this con-
straint which we consider to contain significant information.

2. Methodology

Our approach consists of five steps:

1. Compute the edge image (see §2.1).

2. For each (x, y) point in the edge image, compute the
shape model, i.e., the coefficients of the hyperbolic
curve fit a local region about (x, y) that approximates
the local shape of the image contours (see §2.2).

3. Extract estimates of the corner location and the lines
that best approximate the image contours (see §2.3).

4. Compute a vector of features which are functions of
the edge image data and extracted curve coefficients
(see §2.4).

5. Apply a threshold on the feature vectors to identify the
set of salient features in the image (see §2.5).

2.1. Computing the edge image

Let I(x, y) denote the recorded image. Compute
the edge image, E(x, y, σ), by computing L(x, y, σ) =
∇ (I(x, y) � G(x, y, σ)) where G(x, y, σ) is a Gaussian fil-
ter having (x, y) dimensionsW ×W , zero mean and stan-
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dard deviation σ and ∇ denotes the gradient operator im-
plemented by convolving the image with a central differ-
ence filters: hx(x, y) =

[
1 0 −1

]
and hy(x, y) =[

1 0 −1
]t
. Edge points within the edge image image,

E(x, y, σ) = ‖L(x, y, σ)‖2, are thinned as in the Canny
edge detector [18], i.e., by locally applying non-maximum
suppression in the direction of the computed image gradi-
ent. Finally, a set of candidate corner positions, Ê(x, y), is
generated by discarding all edge points having magnitude
less than the average edge magnitude value over the en-

tire image, i.e., Ê(x, y) =
{
E(x, y)|E(x, y) > E(x, y)

}
where E(x, y) = 1

N

∑
x

∑
y E(x, y) and N is the total

number of image pixels (omitting pixels at the image edge).
Results generated in this paper useW = 13 and σ = 1.4.

2.2. Fitting hyperbolic curves to the edge image

Using anotherW ×W window we then visit each non-
zero edge pixel to apply our local corner detector. Using our
knowledge of the arc-length of potential edge patterns, we
quickly discard short and noisy image contours by discard-
ing those corner candidates that include less than W + 1
edge points within their window. A large computational
benefit is gained by also discarding all W × W windows
that do not include an edge point at their center.

For the remaining edge points, we fit a hyper-
bola to the set of (x, y) locations within the win-
dow having non-zero gradient magnitudes. Let
D =

˘
(x1, y1), (x2, y2), . . . (xNw

, yNw
)

¯
de-

note the (x, y) locations of Nw edge points lying within
each candidate corner’s window. Our fitting method is a
variant of that originally proposed by Bookstein [19] which
now has many variants, some of which are discussed in
[20] and [21]. This approach estimates the coefficients of
a quadratic polynomial defined implicitly as shown in (3)
where the coefficient vector α =

[
a b c d e f

]t
.

f(x, y,α) = ax2 + bxy + cy2 + dx+ ey + f = 0 (3)

The 2D curve fit to the (x, y) data is taken as the zero-
set of the implicit function, i.e., all (x, y) locations where
f(p,α) = 0. As in [19], we minimize the squared algebraic
distance between the implicit function and the data which is
an approximation of the Euclidean distance (for details see
discussion in [21]).

The fitting approaches in [19] and [20] focus on fit-
ting ellipses to data which is accomplished by forcing the
quadratic discriminant J(α) to be a positive number, i.e.,

J(α) = 4ac − b2 = 1 = 4

∣∣∣∣ a b
2

b
2 c

∣∣∣∣. Since the zero-

set of f(p,α) remains unchanged when the coefficients are
scaled by a constant, i.e., f(p,α) = 0 = f(p, kα) for all
scalars k, the particular value we constrain J(α) to have is
unimportant.

In general, we wish to fit a pair of intersecting lines to
the data. Yet, implementation of such a fitting method re-
quires enforcing non-linear (cubic) constraints on the val-
ues of the polynomial coefficients. Instead, our method
fits a hyperbolic curve which requires a quadratic constraint
on the polynomial coefficients, a problem that can be ex-
plicitly solved. However, to fit hyperbolic curves we must
change the sign of the quadratic discriminant constraint:
J(α) = 4ac− b2 = −1.

Algebraic curve fitting is accomplished by defining a
monomial matrix, M, where the ith row of the matrix, mi,
consists of the quadratic monomials computed from one of
the edge positions in D weighted by the value of the edge
magnitude at that image position (see equations (4) and (5)).

mi =
∥∥∥Ê(xi, yi)

∥∥∥2 [
x2

i xiyi y2
i xi yi 1

]
(4)

M =
[

mt
1 mt

2 mt
3 . . . mt

Nw

]t
(5)

The design matrix, C, is used to constrain the coeffi-
cients such that the fit is a hyperbolic curve. Given only this
constraint, it is theoretically possible that the algebraic fit
could be two intersecting lines; yet, this solution is very un-
likely to occur due to noise, and, as one will see as we pro-
ceed, these instances do not adversely effect the proposed
algorithm.

C =

⎡
⎢⎢⎢⎢⎢⎣

0 0 −2 0 0 0
0 1 0 0 0 0
−2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ (6)

The constrained fitting problem is then solved by intro-
ducing a Lagrange multiplier as shown in (7).(

MtM− λC)
α = 0 (7)

The solution to (7) is taken as the eigenvector associated
with the smallest eigenvalue of (MtM)

−1
C which we de-

note as α, the coefficients of the hyperbolic curve that min-
imizes the squared algebraic distance. For integer edge co-
ordinates, degenerate edge structures such as horizontal and
vertical lines and perfect cross junction can generate numer-
ical instability in the fit. This is avoided by adding a minute
(1E-4) amount of random noise to integer edge locations.

2.3. Computing corner location and local shape

The designed corner detector seeks to find image regions
where two linear contours intersect. Our shape model for
these linear contours are the asymptotes of a hyperbolic al-
gebraic curve fit to the edge image data. The coefficients
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of these lines are an explicit function of the hyperbolic co-
efficients that can be computed directly from the coeffi-
cients. This may be accomplished by bringing the fit poly-
nomial into standard position, i.e., Euclidean transforming
the equation (3) such that f(x

′

, y
′

,α
′

) = a
′

x
′2 + c

′

y
′2 +

d
′

x
′

+ e
′

y
′

+ f
′

= 0 such that a′ > 0 (this implies c
′

< 0).
The Euclidean rotation may be found by diagonalizing the
matrix of quadratic coefficients, i.e., rotating by −θ as de-
fined in equation (8), and the Euclidean translation may be
found by completing the square (see [22] for details). The
asymptotic lines v1,v2 are represented in parametric form
as li = βvi + c where c is the (x, y) position of the corner
location and vi is a 2D unit vector in the direction of the
asymptotic line (i = 1, 2). Note that the estimated corner
position, s, is taken as the position in the image where the
asymptotic lines intersect. Explicit equations for s, v1, and
v2 are provided below in terms of the coefficients of the fit
hyperbolic function.[

x

y

]
=

[
cos θ sin θ
− sin θ cos θ

] [
x′

y′

]
where

cot(2θ) =
c− a
b

(8)

the corner location s is:

s = (− d′

2a′
,− e′

2c′
) (9)

where

a′ = a cos 2θ − b sin θ cos θ + c sin2 θ, d′ = d cos θ − e sin θ

c′ = a sin2 θ + b sin θ cos θ + c cos2 θ, e′ = d sin θ + e cos θ

f ′ = f

and the directions of the asymptotes is:

v1,2 =

[
cos θ sin θ
− sin θ cos θ

] [ √
a

′

±√−c′
]

(10)

Since these parameters are explicit functions of the hy-
perbolic parameters, estimating the shape model from the
coefficients requires very little computation. Using the
computed asymptotes, the Euclidean distance is computed
for each point that corresponds to the distance between that
point and the closest point on the shape model. This value
can be obtained quickly using the equations of the lines l1
and l2 mentioned above. As an optional step, we can re-
estimate both the corner location and asymptote directions
by discarding outliers, i.e., discard those (x, y) edge points
that lie far from the fit shape model, for the results presented
in this paper we discard edge pixels whose Euclidean dis-
tance is larger than 1 pixel. Figure (1) shows results that
arise when fitting within small windows of the image, and
Figure (2) shows a global result for the same image.

Figure 2: An example of corners detected using our algo-
rithm

2.4. Compute corner features

Interest points are detected based on a feature vector hav-
ing four components φ =

[
ε λ Δ ψ

]t
. A brief ex-

planation of each component follows: (i) ε, the average Eu-
clidean distance between the edge points and the closest line
from the shape model, (ii) λ, the proportion of inliers asso-
ciated with each linear model, (iii)Δ, an algebraic shape pa-
rameter (see equation (11)), and (iv) ψ, is the angle between
the two line models. All of these features may be computed
quickly given from the hyperbolic coefficients and the pair
of lines from the shape model.

A value proportional to the angle between the lines of

the shape model is computed as ψ = tan−1
(

v2

v1

)
. Both

ε and λ are easily computed by matching the edge points
from the curve fitting with the lines l1 and l2 of the shape
model. Specifically, for each candidate corner, the edge
points are divided into two sets based on their proximity
to the two lines present in the shape model. Let set L1 be
the set of points associated with line l1 and L2 be the set of
points associated with line l2. Then ε = Σi∈L1

d(l1,pi) +

Σi∈L2
d(l2,pi) where pi =

[
xi yi

]t
is an edge point in

the vicinity of the shape model and λ = card(L1)
card(L1)+card(L2)

where card(S) denotes the cardinality, i.e., the number of
elements in the set S. Finally, Δ is computed from the co-
efficients of the hyperbolic algebraic curve as indicated in
equation (11).

Δ(α) =

∣∣∣∣∣∣
a b

2
d
2

b
2 c f

2
d
2

f
2 g

∣∣∣∣∣∣ (11)

2.5. Identify the set of salient image features

Recognition of corners in this 4-dimensional feature
space, for expediency, is performed by simple threshold-
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Figure 3: The criterion required for a feature correspon-
dence between image O1 (on left) and image Oi (on right)
as defined in [25] is shown in green. Our proposed evalua-
tion requires symmetry and uniqueness when matching fea-
tures between images (in red and green), i.e., if Tpi → pj

then T−1pj → pi.

ing on the parameter vectors of the candidate corners. Our
thresholds for corner recognition is specified as a collec-
tion of real-intervals that bound each of the vector com-
ponents of φ as follows: ε < 0.5, 0.3 < λ < 0.7,
−10−6 < Δ < 10−6, 0.2rad < ψ < 1.3rad. For our ex-
periments, we found that recognition of structure by simple
thresholding is sufficient and provides has the benefit of low
computational cost. However other applications might ap-
ply more sophisticated clustering and classification methods
to identify salient feature which we expect would improve
these results.

Results from algebraic geometry state if Δ(α) < 0 and
J(α) < 0, then the quadratic curve must be a real-valued
hyperbola [23] and the quadratic curve is a pair of real-
valued intersecting lines iff Δ(α) = 0. Hence, small values
of Δ(α) and ε correspond to curves that are “close” to a
pair of intersecting lines in terms of their algebraic coeffi-
cients and fit the image edge pattern well. Note that, as an
eigenvector, our coefficient vector is unit length, i.e., ‖α‖ =
1, which makes the determinant of the coefficients,Δ(α),
small (typically on the order of 10−5 or smaller). The re-
sulting set of candidate corners is then reduced by applying
fast non-minimum suppression as suggested in [24] on the
corners in terms of their Δ(α) values in aW ×W window.
Results for the algorithm are shown in Figure (2).

3. Evaluation Method

As others have in the past, we wish to compare our
feature detection algorithm against some popular existing
approaches. When examining the various approaches for
evaluating feature detection algorithms, we considered the
extensive work on the topic by Mikolajczyk and Schmid
[26, 25, 27, 28]. However, recent work in their comparative
analysis [29, 25, 27] has concentrated on similarity metrics
for blob detection. Since our method returns interest points
from images, we initially adopted the repeatability rate, R,

(a) (b)

(c) (d)

Figure 4: (a-d) show examples from a standard set of test
images from [25]. These images were used to evaluate our
detector and compare it against several other approaches
(see Figure ()).

metric suggested in [26] which measures the consistency of
interest point detections under of different varieties of im-
age variations, e.g., illumination, affine projection, etc. In
[26], the repeatability rate for a pair of images (I1, I2) hav-
ing (n1, n2) interest points each and a known relative affine
transformation T is provided in equation (12)

R(I1, I2,T) =
# correspondences

min(n1, n2)
(12)

where two interest points, s1 = [x1, y1]
t ∈ I1 and s2 =

[x2, y2]
t ∈ I2 are said to correspond iff dist(Ts1, s2) < r0

where r0 is a pre-defined threshold. In other words, the
affine-transformed position of the interest point in I1 is
within a radius r0 of any corner in image I2. Given the
number of shape constraints enforced with our detection
scheme, the method tends to provide a small number of
detected features. However, these features satisfy a num-
ber of significantly distinct characteristics; hence we have
found that the computation of these features is repeatable
for our test images. The authors of [26] acknowledge that
the measure (12) tends to favor methods that produce large
numbers of corners such as the Harris detector which can
(and often does) generate many thousands of detected in-
terest points. In light of our highly constrained interest
point detector, we made a small modification to the re-
peatability rate by adding a second requirement: Two in-
terest points, s1 = [x1, y1]

t ∈ I1 and s2 = [x2, y2]
t ∈ I2

are said to correspond iff minsi∈I2
dist(Ts1, si) = s2 and

dist(Ts1, s2) < r0 and minsi∈I1
dist(si,T

−1s2) = s1

and dist(s1,T
−1s2) < r0 . This criterion requires that

corresponding feature points be nearest neighbors to each
other under forward and inverse transformation and that
their point-to-point distance be less than r0 (see Figure (3)).
Algorithms evaluated in this paper were performed with a
value r0 = 5.

The computational speed of our algorithm was compared
against two other methods: edge linking [17] and the Harris
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(a) (b)

(c) (d)

Figure 5: (a-d) show pairs of graphs. For each pair, the left graph shows the repeatability rate between images that have
increasingly different content over a set of 6 images (see Figure (4) for details) and the right shows the number of interest
points detected in each image. Results for seven different methods are shown, our method (IPFIT) is shown in red (see §3 for
details).

corner detector [2]. The results of our tests are provided
in the table below that shows the average run time for each
of these methods for the image data sets shown in Figure
4(a-left), (b-right), (c-left) and (d-left).

Method Harris Edge-Linking Hyperbola Fitting

Avg. Run Time (sec) 3.70 3.98 2.68

These times were recorded for implementations of these
three algorithms in Matlab using code provided by the Mat-
lab central file repository for Harris detector, code provided
by authors of [17] for edge-linking and our implementation
of corner detection. Tests were run on a desktop computer
with an Intel Core2 Quad (Q9950) CPU and 8GB of system
memory available.

4. Discussion

Implementations for the Harris-Laplacian, Hessian-
Laplacian, DoG, LoG were obtained from [30] and imple-
mentation of the SIFT and FAST algorithms were provided
by code available at the authors websites [13, 14]. One can
see that, while our method does not always outperform oth-
ers, it consistently places among the top two methods. We
feel that such results show promise for the application of
this feature detector for images containing man-made struc-
tures. Notable high-points in the performance of this algo-
rithm are the results in Figure (5 a,b) obtained for the data

sets shown in Figure (4 a,b) which exhibit a large amount
of structure and many linear contours which are incremen-
tally blurred (a) and have decreasing amounts of illumina-
tion (b). Lower performance is observed in Figure (5 c,d)
obtained for the data sets shown in Figure (4 c,d) which
exhibit changes in orientation and scale respectively. For
data set (c), one can expect lower performance since this is
a natural scene that exhibits contours that are rarely linear.
Results for data set (d) are somewhat surprising given that
our method does not currently include any modifications to
cope with scale variation. A partial explanation of this un-
expectedly high performance is that the overlapping region
between the different scales is small and contains few cor-
ners from our method Figure (5 d-right) which artificially
inflates the number of matches. Also, many structural edges
have scale larger than our 13x13 window in both images
which accounts for many correct matches.

5. Conclusion

A new method for corner extraction from images has
been proposed that models corners as the intersection of
two linear contours within a local region of the image. The
method fits hyperbolic implicit polynomial curves to pat-
terns of edge points within small local regions of the im-
age. The asymptotes of the hyperbolic curve are used as
a shape model for the linear contours in the image. Their
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equations and that of their intersection point, i.e., the cor-
ner, may be computed explicitly from the coefficients of
the fit hyperbolic curve. Four features are extracted from
the shape model that include the angle between the lines,
their goodness-of-fit to the edge points, the distribution of
edge points along each line and a similarity measure that
expresses the distance between the fit hyperbolic curve and
a quadratic curve defined to be the intersection of two real
lines. Fast classification of significant image features is ac-
complished using a set of defined thresholds in the feature
space. The proposed method competes with many of the
most popular region-based interest point detectors with no
affine- or scale-invariance built-in. Given the simplicity of
implementation, we feel this is an interesting result that sug-
gests edge-base detectors such as this are perhaps preferable
for structured scenes where regions are typically not radi-
ally symmetric and have non-homogeneous intensities, e.g.,
windows of a building. In terms of computational speed our
method was found to be faster than two other edge-based
corner detectors: edge linking and the classic Harris corner
detector. Programming implementation variations for other
methods in this paper prevented the compilation of equi-
table performance evaluations for all of the methods dis-
cussed in this paper. We propose a modified version of the
repeatability rate for which our detector performs well, es-
pecially for structural scenes, where relatively stable and
accurate matches have been observed. Compelling future
modifications to this algorithm include incorporating a re-
gion with the detected feature points and the inclusion of
scale invariance using LoG or DoG concepts as others have
done for the Harris detector.
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