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SUMMARY

This paper presents an algebraic multigrid method for the e�cient solution of the linear system arising
from a �nite element discretization of variational problems in H0(curl;�). The �nite element spaces
are generated by N�ed�elec’s edge elements.
A coarsening technique is presented, which allows the construction of suitable coarse �nite ele-

ment spaces, corresponding transfer operators and appropriate smoothers. The prolongation operator is
designed such that coarse grid kernel functions of the curl-operator are mapped to �ne grid kernel
functions. Furthermore, coarse grid kernel functions are ‘discrete’ gradients. The smoothers proposed
by Hiptmair and Arnold, Falk and Winther are directly used in the algebraic framework.
Numerical studies are presented for 3D problems to show the high e�ciency of the proposed

technique. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Numerical simulations based on 3D Maxwell’s equations are important tools for many ap-
plications in science and engineering. E�cient algorithms enable large-scale computations on
nowadays midrange computers. This paper is concerned with the development of an e�cient
iterative solver for the linear system of equations

Ke
huh= fh (1)

arising from the discretization of Maxwell’s equation with N�ed�elec’s edge elements [1] (further
referred to as edge elements) for variational problems in the function space H0(curl;�). In
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224 S. REITZINGER AND J. SCH �OBERL

particular we consider the linear, magnetostatic case of Maxwell’s equations. In Equation (1),
Ke

h ∈RNe
h ×Ne

h is a symmetric and positive de�nite (SPD) sparse matrix, fh ∈RNe
h the right-

hand side, and uh ∈RNe
h the solution vector. The superscript ‘e’ is used for edge quantities,

and the subscript ‘h’ indicates the maximal mesh-width parameter. To achieve the desired
accuracy, the number Ne

h of unknowns may become very large for 3D problems as h tends to
zero. Additionally, the system matrix Ke

h is usually very ill conditioned, which is the reason
for exhibiting slow convergence of standard iterative solution methods. Consequently, the
construction of e�cient and robust preconditioning techniques for (1) is an important aspect
of the �nite element (FE) method.
For the design of multilevel methods for the linear system (1), the Helmholtz decom-

position of the vector �eld into a solenoidal and a gradient �eld is the key point. Espe-
cially, the rotation free functions need special treatment in the smoother. This idea lead a
geometric multilevel method which was discussed by Hiptmair in Reference [2] the �rst
time and a di�erent multigrid approach is due to Arnold et al. [3]. Many references are
found in Reference [4]. For numerical results using geometric multigrid methods we refer to
References [4–6].
Geometric multigrid methods come along with the requirement of hierarchical FE-meshes,

which are not always available. On the other hand, the coarse grid might be too large to
be solved e�ciently by a classical direct or iterative method. In such cases, an algebraic
multigrid (AMG) method provides a way out. The AMG approach requires (in contrast to
geometric multigrid) only a single grid information, i.e. at least the system matrix Ke

h and the
right-hand side fh. In order to perform a multigrid cycle (see Reference [7]) a matrix hierarchy
(coarse grid operators), corresponding transfer operators and appropriate smoothers have to
be de�ned properly. The crucial point of the setup process consists in the de�nition of the
prolongation operators, since they have to be designed with pure algebraic knowledge. Once
the prolongation operator is assembled the coarse grid operator is computed by Galerkin’s
method.
A proper construction of an AMG method for (1) requires a careful treatment of all multi-

grid components. In spite of the fact that the FE-matrix Ke
h is SPD, the classical approaches

of References [8–15] and variants of them fail for problem (1) at hand. All these methods
are designed for SPD problems which either stem from FE-discretizations of H 1(�)-elliptic
problems, or need beside the SPD property special characteristics of the system matrix (e.g.
M-matrix property). A �rst AMG approach to solve (1) can be found in Reference [16] by
Beck. The key idea there is to split an H0(curl;�) function into an (H 1(�))3 function and a
gradient function, and apply classical AMG for all components. In this way an appropriate
preconditioner was constructed for (1).
Though our AMG method is exclusively used as a preconditioner in the preconditioned

conjugate gradient method, it could be used as a solver too. Since we assume to have access
to a single grid information, we extend the classical concept of AMG in a very natural way.
An auxiliary matrix is introduced that is given on the �nest grid by an FE-discretization of
the potential equation, or by a simple nodal distance matrix. This auxiliary matrix allows
us to construct prolongation operators which preserve the discrete kernel. This is essential
for multigrid methods since the smoother can hardly reduce the smooth error components
e�ciently. Thus, the coarse grid correction must reduce these error components. Moreover,
we are able to assemble appropriate smoothers for the considered problem class with the aid
of the auxiliary matrix.
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AN ALGEBRAIC MULTIGRID METHOD 225

The remainder of the paper is organized as follows. In Section 2 we de�ne the problem
class to be considered. In addition, the FE-discretization is speci�ed. Section 3 introduces the
main components of an AMG method. Further we propose a generalization of standard AMG
methods. Numerical studies are presented in Section 4 showing the e�ciency of the proposed
technique. Finally, further remarks are given and conclusions are drawn.

2. PROBLEM FORMULATION

Let us consider the linear, magnetostatic special case of the Maxwell equations (e.g. see
Reference [17]), namely

B=curl u; H= �B; curlH=J

where u is the vector potential, B is the magnetic induction, H is the magnetic �eld strength
and J is the given current density. The coe�cient � is bounded from below and from above.
We pose the equations on the bounded, polyhedral domain �⊂R3, and close them, e.g. with
the boundary conditions B · n=0 on the boundary 9�. We use Coulomb gauging div u=0 to
select a unique vector potential.
The variational form is a saddle point problem [18]. It is posed on the spaces

V :=H0(curl;�)= {v∈ (L2(�))3 | curl v∈ (L2(�))3 and v× n=0 on 9�} (2)

equipped with its canonical norm

‖v‖V=(‖v‖20 + ‖curl v‖20)1=2

with ‖ · ‖0 the usual L2(�) norm and the Sobolev space

Q=H 1
0 (�)

We search for u∈V and ’∈Q which ful�ll

∫
�
� curl u · curl v dx +

∫
�
v · grad’ dx=

∫
�
J · v dx ∀v∈V (3)

∫
�
u · grad  dx=0 ∀ ∈Q (4)

To apply the abstract theory of Brezzi and Fortin [19, Chapter 2], several conditions are
necessary. First, continuity of the bilinear forms and the linear form are obvious, also the
LBB condition is easily seen. The kernel ellipticity, i.e.

�‖u‖2V6
∫
�
�|curl u|2 dx ∀u∈V s:t: div u=0 (5)

is non-trivial, and follows from [20, Section 1:a]. This proves a unique solution, and, further-
more the stability estimate

‖u‖V6�−1‖J‖0 (6)

Copyright ? 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:223–238



226 S. REITZINGER AND J. SCH �OBERL

[19, Proposition 1:3]. By physical reasons, the right-hand side has vanishing divergence in the
sense of ∫

�
J · grad  dx=0 ∀ ∈Q

Thus, using the trial function v=grad’ (which is in V) for Equation (3) gives ’=0.
Instead of dealing with the saddle point problem, we prefer to solve a regularized elliptic

problem, namely,

�nd u� ∈V: a�(u�; v)=
∫
�
J · v dx ∀v∈V (7)

with the bilinear form

a�(u; v) :=
∫
�
� curl u · curl v+ �u · v dx

Here, �¿0 is a small regularization parameter. The following lemma establishes convergence
as �→ 0:

Lemma 2.1. Let u and u� be the solutions of (3) and (7), respectively. Then the error
estimate

‖u − u�‖V6��−1‖u‖0
is valid, where � is the constant from Equation (5).

Proof
By choosing trial functions v=grad  in Equation (7), we observe that also u� ful�lls∫

�
u� · grad  dx=0 ∀ ∈Q

i.e. div u�=0. Subtracting Equation (7) from (3) leads to the error equation

a�(u − u�; v)=�(u; v)0 ∀v∈V
Since div (u� − u)=0, ellipticity (5) applies. Together with the choice v= u − u� we obtain

�‖u − u�‖2V6a�(u − u�; u − u�)=�(u; u − u�)06�‖u‖0‖u − u�‖0
Dividing by �‖u − u�‖V gives the result.
We want to emphasize, that only if robust solvers with respect to �→ 0 are applied,

the regularized method is e�cient. The geometric multigrid methods by Hiptmair [2] and
Arnold et al. [3] are robust, so is the proposed AMG method.

The FE-discretization is based on the regular partitioning �h of the domain � into tetrahedral
elements {T} in the sense of Reference [21]. Canonical �nite elements for the approximation
of H (curl;�) are the one by N�ed�elec [21]. The lowest order of the family are known as edge
elements. For each element T , the space

Vh; T = {(a+ b×x)|T | a; b∈R3}

Copyright ? 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:223–238
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is de�ned and we set

Vh= {v∈H (curl;�) | v|T ∈Vh; T}⊂V
The integrals of the tangential components along edges give the proper degrees of free-
dom. The edge elements have the property that the tangential component is continuous while
the normal component is free to jump across elements, i.e. an edge element discretization
is H0(curl;�)-conform. The �nite element space Qh ⊂Q is based on the standard, linear
Lagrangian (nodal) elements.
For the multigrid methods, two properties are essential [2, 3]. One is (a part of) the complete

sequence property, namely,

gradQ=V0 := {v∈V: curl v=0}
and its discrete counterpart for the above choice of elements

gradQh=V0h := {vh ∈Vh: curl vh=0}
The other is the commuting diagram property I eh grad =grad I

n
h , for the canonical edge and

nodal interpolation operators I eh and I n
h :

Q∩C1
grad−→ V∩C� I n

h

� I eh

Qh
grad−→ Vh

Our AMG approach is motivated by these two properties, too.
Later on, we will use the notation of the FE-isomorphisms

Ge
h : Vh →Vh and Gn

h : Qh →Qh

with Vh=RNe
h and Qh=RN n

h .
The discrete kernel of the curl-operator is de�ned by

V0h= {vh ∈Vh | curlGe
hvh=0}=gradh Qh (8)

with the discrete gradient operator gradh :Qh →V0h

gradh qh=(G
e
h)

−1 gradGn
h qh ∀qh ∈Qh (9)

3. CONSTRUCTION OF AN AMG METHOD

In order to solve Equation (1) by means of a multigrid cycle several constituents have to
be de�ned properly. For further discussion the basic ingredients for an AMG method are
discussed by a two grid method, for which the indices h and H are related to the �ne and
coarse grid quantities, respectively.
According to geometric multigrid methods the e�cient interplay of smoother and coarse

grid correction is again the key idea for an AMG method. The main di�erence to geometric
multigrid methods is the missing grid hierarchy. In order to come along with that de�ciency
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a coarsening strategy is introduced which decreases the number of degrees of freedom on
the �ne level. Most coarsening techniques are based on the matrix graph, see e.g. References
[8, 9, 12, 13, 15]. Once the coarsening is done the prolongation operator

Pe
h :VH �→ Vh

is constructed. We assume on Pe
h full-rank and dim(VH )¡dim(Vh), with VH the coarse space.

For the required restriction operator, the transposed of Pe
h is taken. The next step is to construct

the coarse grid operator by

Ke
H =(P

e
h )
TKe

hP
e
h

A recursive application of this process leads immediately a matrix hierarchy with correspond-
ing transfer operators. If an appropriate smoothing operator is de�ned, then a usual multigrid
cycle can be assembled, see Algorithm 1.

Algorithm 1. V(�F ; �B)-cycle: MG(u‘; f‘; ‘)
if ‘=COARSELEVEL then

u‘=(Ke
‘)

−1f‘ with a direct solver
else
Smooth �F times on Ke

‘u‘= f‘
Calculate the defect d‘= f‘ − Ke

‘u‘
Restrict the defect to the next coarser level ‘+ 1: d‘+1 = (Pe

‘ )
Td‘

Set s‘+1 ≡ 0
Apply MG(s‘+1; d‘+1; ‘+ 1)
Prolongate the correction s‘=Pe

‘ s‘+1
Update the solution u‘= u‘ + s‘
Smooth �B times on Ke

‘u‘= f‘
end if

3.1. The construction of ‘Virtual’ FE-meshes

Standard AMG methods are not reasonable for our problem class, therefore we suggest the
following strategy.

• Identify connected pairs of nodes with the connecting edge, i.e. set up a ‘node-to-edge’
map.

• Perform a coarsening technique such that the ‘node to edge’ map hands over to the
coarse level.

• De�ne a prolongation operator compatible with the Helmholtz decomposition.
• Calculate the coarse grid matrix by Galerkin’s method.
• Take an appropriate smoother for the considered problem class.

A pivotal point is the construction of the ‘node-to-edge’ map to be able to construct an
appropriate prolongation operator and smoother for Ke

h . Since we are concerned with an FE-
discretization, a feasible ‘node-to-edge’ map is given by an auxiliary matrix Kn

h ∈RN n
h ×N n

h ,
which provides the opportunity to be interpreted as a ‘virtual’ FE-mesh in the following way:
The diagonal entry (Kn

h )ii is related to the grid point i and a non-zero entry (K
n
h )ij , i 	= j, is re-

lated to an edge (i; j). The set of grid points on the �ne level h is given by !n
h = {1; 2; : : : ; N n

h },
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AN ALGEBRAIC MULTIGRID METHOD 229

Figure 1. Detail view of a �ne and coarse ‘virtual’ FE-mesh.

with cardinality card(!n
h)=N n

h . Consequently, the ‘virtual’ FE-mesh provides a ‘node-to-edge’
map in a natural way. For instance, such auxiliary matrix Kn

h is assembled from an FE-
discretization of a potential equation with linear, nodal FE-functions.
Now, we are able to de�ne the following relations on a pure algebraic level:

!e
h = {(i; j) | |(Kn

h )ij | 	=0; i 	= j}
card(!e

h) =Ne
h

N i
h = { j∈!n

h | |(Kn
h )ij | 	=0; i 	= j}

T i
h = {(i; j) | j∈Ni

h}

which are related to the set of edges, the number of edges, the set of neighbours around a
node i∈!n

h , and the set of edges belonging to a node i∈!n
h , respectively. In an analogous

way, the above relations are de�ned on the coarse grid H for a given matrix Kn
H .

The next step consists in a standard coarsening on Kn
h . Motivated from an FE-grid (see

Figure 1), a ‘virtual’ FE-grid can be split into coarse grid nodes !n
C and �ne grid nodes !n

F ,
i.e.

!n
h =!n

C ∪!n
F ; !n

C ∩!n
F = ∅

such that there are (almost) no direct connections between any two coarse grid nodes and
the resulting number of coarse grid nodes is as large as possible. The coarse grid is de�ned
by identifying each coarse grid node j∈!n

C with an index k ∈!n
H . This is expressed by the

index map ind(·) as
!n

H = ind(!
n
C)

Remarks
(1) The coarse grid selection can be done by several di�erent coarsening strategies (see

References [8, 12, 14, 15]). On the one hand, a pure matrix graph-based method can be used

Copyright ? 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:223–238
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or on the other, a coarsening method depending on the matrix entries. The latter case has
chances to detect parameter jumps and anisotropies.
(2) With Galerkin’s method, we compute a coarse grid matrix Kn

H , which can be related to
a ‘virtual’ FE-mesh and consequently, Kn

H gives rise to a ‘node-to-edge’ map on the coarse
grid. The resulting coarse edges on the ‘virtual’ coarse grid are degrees of freedom on that.
(3) As we will see later, the smoothing operators [3, 2] can be easily assembled via the

auxiliary matrix.

A ‘useful’ set of coarse grid edges !e
H can be constructed if we invest in a special pro-

longation operator Pn
h : QH →Qh for the auxiliary matrix Kn

h . The prolongation operator P
n
h is

constructed such that each �ne grid variable prolongates exactly from one coarse grid vari-
able. We extend the index map ind :!n

C →!n
H de�ned above onto the whole �ne space !n

h
by assigning the coarse grid index of the representative of the cluster

ind :!n
h →!n

H

A consequence is that ind(i)= ind(j) if and only if i; j∈!n
h prolongate from the same coarse

grid variable. We de�ne an agglomerate I ih of a grid point i∈!n
h by

I ih= { j∈!n
h | ind(j)= ind(i)}⊂Ni

h

and the set of coarse grid nodes can be written as

!n
H = {ind(i) | i∈!n

h}

The prolongation operator Pn
h has only 0 and 1 entries by construction, i.e.

(Pn
h )ij =pn

ij =
{
1 i∈!n

h; j= ind(i)
0 otherwise

(10)

The coarse grid matrix Kn
H calculated by Galerkin’s method (Kn

H =(P
n
h )

TKn
h P

n
h ) which is

equivalent to the formula

(Kn
H )kl=

∑
i∈I k̃h

∑
j∈I l̃h

pn
ik · (Kn

h )ij ·pn
il (11)

with k= ind(k̃); l= ind(l̃), and k̃ ; l̃∈!n
H . K

n
H has useful properties, because of the prolongation

operator de�ned in Equation (10). This is the content of the next lemma.

Lemma 3.1. Let k̃ ; l̃∈!n
C , k̃ 	= l̃ and k= ind(k̃)∈!n

H , l= ind(l̃)∈!n
H . Further let Kn

h stems
from an FE-discretization of a potential equation with linear nodal FE-functions and let Pn

h

be de�ned by Equation (10). Kn
H =(P

n
h )

TKn
h P

n
h . If for all i∈ I k̃h and for all j∈ I l̃h

(Kn
h )ij=0

then

(Kn
H )kl=0

Copyright ? 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:223–238
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Figure 2. ‘Virtual’ FE-mesh with a feasible agglomeration.

Proof
The proof follows immediately by using Equation (11).

Remarks
(1) The essence of Lemma 3.1 is that a coarse grid edge exists only if there is at least one

�ne edge connecting the agglomerates I ih and I jh (i 	= j), i.e.

∃r ∈ I ih; ∃s∈ I jh such that (r; s)∈!e
h

(see Figure 2).
(2) The constructed coarse matrix Kn

H gives rise to a virtual FE-mesh with nodes !n
H and

edges !e
H .

(3) A decrease of edges in the coarsening process is not proved in general, but heuristically
a decrease is given, if the average number of non-zero entries of Kn

h grows not too fast.

3.2. The construction of coarse FE-spaces

The construction of the prolongation operator Pe
h :VH →Vh, Pe

h ∈RN e
h ×N e

H , is delicate because
of the kernel of the curl-operator. Thus, the challenge is to cope with the kernel of the
curl-operator, because the smooth error components can hardly be reduced by the smoother.
Consequently, if we do not care about the kernel the optimal convergence rate of the multigrid
method is destroyed in general.
Subsequently, we de�ne the prolongation operator for the system matrix and after that we

show that the prolongation operator is appropriate for the considered problem class. Pe
h is

Copyright ? 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:223–238



232 S. REITZINGER AND J. SCH �OBERL

de�ned for a �ne grid edge i=(i1; i2)∈!e
h and a coarse grid edge j=(j1; j2)∈!e

H as

(Pe
h )ij=




1 if j=(ind(i1); ind(i2))

−1 if j=(ind(i2); ind(i1))

0 otherwise

(12)

by assuming a positive orientation of an edge j=(j1; j2) from j1 to j2 if j1¡j2. The con-
structed prolongation operator Pe

h has full-rank, because the coarse grid edges prolongate to
N e

H distinct �ne grid edges by construction. Moreover, the prolongation operator is only able
to prolongate constants exactly, i.e. optimal convergence rates cannot be expected.
Next we note that the operator gradh :Qh →Vh de�ned in Equation (9) has the representation

(with i=(i1; i2)∈!e
h and qh ∈Qh)

(gradh qh)i= qh; i2 − qh; i1 (13)

This can be seen by evaluating Equation (9) for a qh ∈Qh and using the facts that Qh is
piecewise linear FE-space and the degree of freedom of the edge element discretization is the
path integral on the edge (i1; i2). In analogy, we de�ne gradH :QH →VH on the coarse level.
Since we use a Galerkin approach, the coarse grid kernel is a subspace of the �ne grid kernel,
namely,

V0H = {vH ∈VH |Pe
h vH ∈V0h} (14)

with V0h de�ned in Equation (8) and VH =RN e
H . The crux is that Pe

h prolongates discrete
gradients of the coarse space to discrete gradients of the �ne space, which is shown in the
next two lemmas.

Lemma 3.2. For qH ∈QH there holds

Pe
h gradH qH =gradh P

n
h qH (15)

This means the commuting diagram

QH
gradH−→ VH� Pn

h

� Pe
h

Qh
gradh−→ Vh

is valid.

Proof
We consider the edge i=(i1; i2)∈!e

h. We have to distinguish two cases. First, let us assume
the edge is inside one agglomerate, i.e. ind(i1)= ind(i2). Then both sides of Equation (15)
vanish. The left-hand side vanishes by de�nition of the prolongation operator Pe

h , the right-
hand side vanishes since (Pn

h qH )i1 = (P
n
h qH )i2 .

Now, we assume that ind(i1) 	= ind(i2). Thus, there exists a coarse grid edge j=(j1; j2) such
that either j1 = ind(i1), j2 = ind(i2) or j1 = ind(i2); j2 = ind(i1). In both cases there
holds (gradH qH )j= ± (qH; j1 − qH; j2). The sign in the prolongation compensates, such that
(Pe

h gradH qH )i= qH; ind(i1) − qH; ind(i2). Evaluating (gradh P
n
h qH )i gives the same result.

Copyright ? 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:223–238
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Figure 3. Detail view of a virtual FE-mesh.

Lemma 3.3. The coarse grid kernel functions are exactly gradient functions, i.e. there holds

V0H =gradH QH (16)

Proof
First, we show the inclusion gradH QH ⊂V0H . We �x a qH ∈QH and de�ne vH =
gradH qH . Using Lemma 3:2 we obtain

Pe
h vH =Pe

h gradH qH =gradh P
n
h qH

From gradh Qh=V0h there follows Pe
h vH ∈V0h, and from de�nition (14) of V0H there follows

vH ∈V0H .
Now, we verify V0H ⊂ gradH QH . Therefore, we �x a vH ∈V0H . Since the kernels are nested,

vh=Pe
h vH is in V0h, and thus there exists a qh ∈Qh such that

vh=gradh qh

By the de�nition of the prolongation Pe
h , the values of vh inside an agglomerate vanish,

i.e. (vh)i=0 for i=(i1; i2) and ind(i1)= ind(i2). Since (vh)i= qh; i1 − qh; i2 , the potential qh is
constant inside an agglomerate. Thus there exists a qH ∈QH such that qh=Pn

h qH . Combining
the steps and using Lemma 3:2 we obtain

vh=Pe
h vH =gradh qh=gradh P

n
h qH =Pe

h gradH qH

Since Pe
h has full rank, we can conclude that vH =gradH qH .

3.3. The smoothing operator

To complete the ingredients for an AMG method for edge element FE-discretizations, we
need an appropriate smoother. We consider two di�erent types of smoothers for Ke

h . The �rst
one was suggested in Reference [3] by Arnold et al. This is a block Gau�-Seidel where all
edges are smoothed simultaneously which belong to T i

h for all i∈!n
h (see Figure 3).

Copyright ? 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:223–238
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Another kind of smoother was suggested in Reference [2] by Hiptmair. A mathematical
equivalent formulation is outlined in Algorithm 2. Therein the vector ge; ih ∈Vh is de�ned by

ge; ih =gradh g
n; i
h =




1; j¡i (i; j)∈T i
h

−1; j¿i (i; j)∈T i
h

0; otherwise

Algorithm 2. Hybrid smoother of Hiptmair: Smooth(Ke
h ,uh; fh)

Perform a Gau�-Seidel sweep on Ke
h

i.e. GS(Ke
h ; fh; uh)

Update the solution uh
for all i∈!n

h do

uh= uh +
(ge; ih )

T(fh − Ke
h uh)

(ge; ih )TK
e
h g

e; i
h

·ge; ih

end for

with the vector gn; ih ∈Qh, (gn; ih )j= �ij.
Now, the ‘setup process’ (see Algorithm 3) can be de�ned, where in Algorithm 3 the

parameter COARSEGRID is an appropriately value for which a factorization is applicable in
a reasonable CPU-time, and COARSELEVEL stores the number of levels which has been
used.
Algorithm 3. Setup process for edge element AMG: Setup(Ke

‘ ; K
n
‘ ; ‘)

if card(!e
‘)¿COARSEGRID then

Split !n
‘ into disjoint sets !n

C and !n
F

Set !n
‘+1 =!n

C
De�ne the interpolation operator Pn

‘
Calculate the coarse grid matrix Kn

‘+1 by the Galerkin method
Kn

‘+1 = (P
n
‘ )

TKn
‘ P

n
‘

De�ne the interpolation operator Pe
‘

Calculate the coarse grid matrix Ke
‘+1 by the Galerkin method

Ke
‘+1 = (P

e
‘ )

TKe
‘ P

e
‘

De�ne the index set for the block-smoother

Setup(Ke
‘+1; K

n
‘+1; ‘+ 1)

else
Perform a factorization of Ke

‘
COARSELEVEL= ‘

end if

4. NUMERICAL STUDIES

The proposed AMG technique is used as a preconditioner for the preconditioned conjugate
gradient (PCG) method (see References [22, 23]). All calculations were done on an SGI
Octane, 300 MHz, workstation.
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Figure 4. Comparison of di�erent solvers.

First, we show that all ingredients of the proposed AMG method for edge elements are
necessary. Let the domain � be the unit cube and let us assume homogeneous Dirichlet
boundary conditions on 9�. We solve a linear system with N e

h =4184 unknowns arising for a
parameter setting of �=1 and �=10−4 in �. The results are depict in Figure 4. It can be seen
that the standard AMG, which was constructed for H 1(�)-elliptic problems fails as well as
the incomplete Cholesky preconditioner in the sense of robustness. An interesting observation
is that an AMG method with the ‘correct’ prolongation operator (de�ned in Section 3), but
with a point Gau�–Seidel smoother fails as well.
The domain of the second example is given by �= ��1 ∪ ��2 ∪�3 with �1 = (−0:5 + 0:5)3,

�2 = (−1+1)3 \ ��1 and �3 = (−5+5)3 \ ( ��1 ∪ ��2). We use the parameter setting �1 = 1; �2 =
10−3, �3 = 1 for the corresponding domains �1; �2 and �3, respectively, and set the arti�cial
conductivity �= � · 10−6. The right-hand side is de�ned by f=(0; 0; 1)T in ��1 and zero else.
Again we assume homogeneous Dirichlet boundary conditions on 9�. The following short
cuts are used:

• ‘setup’: CPU-time of the setup process in seconds,
• ‘solver’: CPU-time for the iterations of the PCG method in seconds,
• ‘solution’: overall CPU-time, i.e. setup and solver, in seconds,
• ‘iteration’: number of iterations in the PCG method,
• ‘level’: number of generated levels in the AMG method, i.e. COARSEGRID6500.

The iteration was stopped if an error reduction in the Ke
hC

−1
h K e

h -energy norm by a factor
of 10−6 had been achieved, where C−1

h denotes the preconditioner. The subsequent example
is calculated with the proposed AMG method for edge elements constructed in the previous
sections. First of all, the number of edges and nodes of the �ne grid are given in Table I.
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Table I. Number of edges and nodes on the �nest level and
number of generated levels.

N e
h N n

h level

2473 333 2
19174 2871 3
151260 22045 5

Table II. Smoother of Arnold et al.

N e
h setup (s) solver (s) solution (s) iteration

2473 0.28 0.31 0.59 8
0.32 0.60 8

19174 1.34 5.01 6.35 12
4.91 6.25 11

151260 10.52 80.51 91.03 22
75.50 86.02 18

Table III. Smoother of Hiptmair.

N e
h setup (s) solver (s) solution (s) iteration

2473 0.23 0.50 0.73 12
0.51 0.74 12

19174 0.95 8.85 9.80 18
7.94 8.89 16

151260 7.23 142.7 149.9 35
126.7 133.9 27

In addition, the number of constructed levels is included therein. The intrinsic results of the
AMG method are given in Table II for the smoothing iteration of Arnold et al. and in
Table III for the smoother of Hiptmair. Every row of Tables II and III consists of two
sub-rows. The �rst one is directed to a V (2; 2)-cycle and the second one to a generalized
V-cycle with 2‘ smoothing steps on level ‘. In both cases, a slight increase in the number of
iterations can be detected with respect to the number of unknowns. This is an e�ect of the
designed prolongation operator, since it su�er from the poor approximation property. As it
can be expected the generalized V-cycle performs better for both smoothers compared to the
V(2,2)-cycle. Actually there are no big di�erences between the di�erent cycles with respect
to CPU-time. The overall computation time is better with the smoother of Arnold et al. than
with the smoother of Hiptmair for the considered example.
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Table IV. Number of iterations for di�erent values of � and
mesh sizes.

N e
h 10−4 10−6 10−8

2473 8 8 7
19174 13 12 11
151260 24 22 20

Next, we consider di�erent values of the arti�cial conductivity � and the corresponding
number of iterations, see Table IV. These computations are done with the smoother of Arnold
et al. As expected, the number of iterations stays constant with respect to �, whereas the
number of iterations grows slightly with the mesh size.

5. CONCLUSIONS AND FURTHER REMARKS

A new AMG approach was proposed for the solution of H0(curl;�)-conforming FE-discreti-
zation with edge elements. Therefore, a coarsening technique based on an auxiliary matrix was
introduced in order to setup a proper prolongation operator and an appropriate smoother for
the system matrix. The numerical studies show the independence of the method of parameter
jumps and the arti�cial conductivity, but the number of required PCG iterations slightly depend
on the mesh size. Nevertheless it performs much better than standard preconditioners (i.e.
incomplete Cholesky preconditioner). An improvement of the proposed prolongation operator
is under current research, in order to get better convergence rates.
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