

An algebraic semantics of basic message sequence charts

Citation for published version (APA):
Mauw, S., & Reniers, M. A. (1994). An algebraic semantics of basic message sequence charts. (Computing
science notes; Vol. 9417). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1994

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. Aug. 2022

https://research.tue.nl/en/publications/91231b2d-ebbe-4b1e-a366-f2a8d487eedc

Eindhoven University of Technology

Department of Mathematics and Computing Science

An Algebraic Semantics of Basic Message
Sequence Charts

by

S. Mauw and M.A. Reniers

Computing Science Note 94/t 7
Eindhoven, April 1994

94/17

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author.

Copies can be ordered from:
Mrs. M. Philips
Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
ISSN 0926-4515

All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M.van Hee.

An Algebraic Semantics of Basic Message
Sequence Charts
S. MAUW AND M. A. RENIERS

Dept. of Afathemaiics and Computing ScierJCe, Eindhoven University 0/ Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands.

e-mail: sjouke@win.tue.nl.michelr@win.tue.nl

Message Sequence Charts are a widely used technique for the visualization of the
communications between system components. We present a formal semantics of
Basic Message Sequence Charts, exploiting techniques from process algebra. This
senlanties is based Oil the semantics of the full language as being proposed for
standardization in the Iuternational TelecOlmnUllicatioll Union.

1. INTRODUCTION

Message Sequence Charts are a graphical language,
being standardized by t.he ITU-TS (t.he Telecommu
nication Standardization section of t.he lnt,emat,jonal
Telecommunication Union, t.he former CClTT), for t.he
description of the int.eractions between ent.it.ies. lTV
recommendation Z.120 (CCI92) cont.ains t.he synt.ax and
an informal explanation of the semant.ics. The current.
goal in the process of standardizat.ion is t.he definit.ion
of a formal semantics of the langua.ge. The need for a
formal semantics became evident since even experts in
the field of Message Sequence Chart.s could not always
agree on the interpretation of specific features, Furt.her
more validation of comput.er tools for Message Sequence
Charts only makes sense if an exact. meaning is avail
able. Finally a formal semantics will help to harmonize
the use of Message Sequence Chart.s.

There exist several at,tempt.s t.owards slich a forlllol
semantics. We ment.ion approaches based on automat.on
theory (LL94), Pet.ri net theory (GGR93) and 011 pro
cess algebra (dM93, MvWW93). None of t.hese papers
contain a formal semant.ics of the complete language.
Although all approaches have their advant.ages and dis
advantages, it has been decided by t.he standardization
committee to use process algebra for t,he formal defini
tion. The semantics in this paper is based on a complet.e
algebraic semantics of Message Sequence Chart.s, which
is the proposal for Z.120. VVe will not present. t,he com
plete semantics here, but, we rest.rict us t.o t.he core of
the Message Sequence Chart.s language, which \ve will
call Basic Message Sequence Chart.s.

This work is related t.o the formal semant.ics of Int.er
workings (MvWW93). A difference is t.hat. we will con
sider asynchronous communication whereas t.he t.heory
of Interworkings only contains synchronous communi
cation. Furthermore, Message Sequence Chart.s and In
terworkings have a different. approach wit.h respect. t.o

their textual represent.ation. Interworkings are event
orient,ed, which means that an Interworking is a list of
communicat.ions and other events, whereas Message Se
quence Charts are instance oriented. This means that
a lVIessage Sequence Chart, is described by giving the
behavior of every instance in separation.

The formal semantics presented is based on the al
gebraic theory of process description ACP (Algebra of
Communicat.ing Processes) (BW90). ACP is an al
gebraic t.heory in many ways related to the algebraic
process t.heories CCS (Calculus of Communicating Sys
tems) (MiIBO) and CSP (Communicating Sequential
Processes) (Hoa85). This process algebra is a useful
framework for the description of the formal semantics
of Ivlessage Sequence Charts since all features incorpo
rat.ed in t.he theory of Message Sequence Charts are re
lat.ed t.o topics already studied in process algebra such
as t.he st.ate operator and the global renaming oper
at.or. Since we consider asynchronous communication
and since Message Sequence Charts may be "empty",
we usc PA[, i.e. ACP without communication and with
t.he empty process (BW90).

This paper is structured in the following way. First
we will int.roduce Basic Message Sequence Charts. After
that, we define t.he algebraic t.heory we use as a frame
work and t.he algebraic features specifically needed for
Basic IVIessage Sequence Charts. Next we will define the
semantic function which maps Basic Message Sequence
Chart.s int.o process t.erms and we will give an opera
t,jonal semant.ics. Finally we will prove a representation
t.heorem which shows t.he relation between the instance
orient.ed notation and an event oriented notation.

2. DASIC MESSAGE SEQUENCE CHARTS

2.1. Introduction

Message Sequence Charts provide a graphical notation
for t.he int.eraction between syst.em components. Their

2 S. MAUW AND M. A. RENIERS

main application, in addition to SDL (CCISS), is in the
area of telecommunication systems. Their usc, however,
is not restricted to the SDL methodology or to telecom
munication environments.

A Message Sequence Chart is not a description of
the complete behavior of a system, it merely expresses
one execution trace. A collection of Message Sequence
Charts may be used to give a more detailed specifica
tion of a system. Message Sequence Charts and related
notations, such as Interworkings and Arrow Diagrams
have been applied in systems engineering for quite some
time. They are used in several phases of system de
velopment, such as requirement specificat,ioll, interface
specification, simulation, validation, test case specifica
tion and documentation.

A Message Sequence Chart contains the descript.ion
of the asynchronous communication bet,ween inst.ances.
The complete Message Sequence Chart language, in ad
dition, has primitives for local act.ions, timers (set, reset
and time-out), process creation, process stop and eore
gions. Furthermore sub Message Sequence Charts and
conditions can be used to constrllCt. modular specifica
tions.

For brevity, we restrict ourselves in this paper to
the core language of Message Sequence Chart.s, which
we will call Basic Message Sequence Charts. A Basic
Message Sequence Chart concentrates on COlTllT\llnica
tions and local actions only. These are t.he features
encountered in most languages comparable to Message
Sequence Charts.

2.2. Graphicalllotatioll

A Basic Message Sequence Chart contains a (part.ial)
description of the communication behavior of a num
ber of instances. An instance is an abstract entity of
which one can observe (part of) t.he interaction wit.h
other inst.ances or with t.he environment. The first. Basic
Message Sequence Cha.rt in Figure 1 defines t.he com
municat.ion behavior between instances iI, 12, ;:3 and
i4. An instance is denoted by a vert,ical axis. The t.illle
along each axis runs from top to bot.tom.

A communication between t.wo inst.ances is repre
sented by an arrow which st.arts at. the sending inst.ance
and ends at the receiving instance. In Figure I we con
sider the messages mI, m2, rn3 and m4. Message 1110

is sent to the environment. The behavior of t.he envi
ronment is not specified. For instance i2 we also define
a local action a.

Although the activities along Olle single inst.ance axis
are completely ordered, we will not assllllle a not.ion of
global time. The only dependencies bet.wecn t.he tim
ing of the instances come from the rest.rict.ion t.hat. a
message must have been sent, before it is received. In
Figure 1 this implies for example that. message m3 is
received by i4 only after it has been sent. by i3, and,
consequently, after the recept.ion of 111.2 by 13. Thus 111 1
and m3 are ordered in t.ime, while for m4 and m3 110

msc example I

m3

FIG URE 1. Example Basic Message Sequence Charts

order is specified. The execution ofa local action is only
restricted by the ordering of events on its own instance.
The second Basic Message Sequence Chart in Figure 1
defines the same Basic Message Sequence Chart, but in
an alternative drawing.

msc overtaking

i;m~
E

FIGURE 2. Basic Message Sequence Chart. with overt.aking

Sillce we have asynchronous communication, it would
even be possible to first send m3, then send and receive
m4, and finally receive m3. Another consequence of this
mode of communication is that we allow overtaking of
messages, as expressed in Figure 2.

2.3. Textual notation

Alt.hough the application of Message Sequence Charts is
mainly focussed on the graphical notation, they have a
concrete text.ual synt.ax. This representation was origi
nally int.ended for exchanging Message Sequence Charts
bet.ween comput.er t.ools only, but in this paper we will
use it. for t.he definit.ion of the semantics.

The t.extual representation of a Basic Message Se~
quence Chart. is instance oriented. This means that a
Basic Messa.ge Sequence Chart is defined by specifying
the behavior of a.ll instances. A message output is de
noted by "out ml to i2;)) and a message input by "in
ml from il;)). The Basic Message Sequence Charts of
Figure 1 have t.he following textual representation.

msc examplel;
instance il;

out mO to env;
out ml to i2;
in m4 from i2;

endinstance;
instance i2;

in ml from i1;

AN ALGEBRAIC SEMANTICS OF BASIC MESSAGE SEQUENCE CHARTS 3

out rn2 to i3;
action a;
out m4 to i1;

endinstance~

instance i3;
in rn2 from i2;
out m3 to i4;

endinstance;
instance i4;

in m3 from i3;
endinstance;

endmsc;

The grammar defining the syntax of textual BilSic
Message Sequence Charts is given in Table 1. The nOil

terminals <mscid>, <iid>, <mid> and <aid> represent
identifiers. The symbol <> denotes t.he empty st,ring.
The following identifiers are reserved keywords: action,
endinstance, endmsc, env, from, in, instance, mse,
out and to.

<msc>

<mse body>

<inst def>

<inst body>

<event>

mse <mscid>;
<mse body> endmsc;
<> I
<inst def> <mse body>
instance <iid>;
<inst body> end instance;
<> I
<event> <inst body>
in <mid> from <iid>j
in <mid> from env;

out <mid> to <iid>;
out <mid> to any;
action <aid>;

TABLE 1. The concrete textual syntax of Basic l'vlessage Se~

quence Charts

The language generated by a llontel'l1linal X in t.he
grammar of Table 1 will be denot.ed by [(X).

We formulate two static requiremcnts for Ba..;;ic rvres
sage Sequence Charts. The first is that, an iust,allce may
be declared only once. The second is that every message
identifier occurs exactly once in an ollt,put action and
once in a matching input action, or in case of a com
munication with the environment a mcssage identifier
occurs only once.

3. PROCESS ALGEBRA P A,

3.1. Introduction

The process algebra PAl'" is an algebraic t.heory for t.he
description of process behavior (BK84, BWtJO). Such
an algebraic theory is given by a signature defining t,he
processes and a set of equations defining the eqm'llity
relation on these processes. 1n Subsection 3.2. we will

give the signature EpA .. and the set of equations EpA ..

will be given in Subsection 3.3.
PAl'" is parameterized with the set of atomic actions.

In the following section we will instantiate this set of
atomic actions and extend the theory.

The signature of PAl'" specifies the constant and func
tion symbols that may be used in describing processes.
Also variables from some set V may be used in process
descriptions.

3.2. The signature of P A,

Before we turn to the signature of PAt" we will define the
terms associated to a signature E and a set of variables
V. A signature E is a set of constant and function
symbols. For every function symbol in the signature its
arity is specified.

DEFINITION 3.1. Let E be a signature and let V be a
set of variables. Terms over signature E with variables
from V are defined inductively by

J. v E V is a term
2. if c E :E is a constant symbol, then c is a term
3. if fEE is an n-ary (n 2: 1) function symbol and

tl, ... J tn are terms, then J(tl, ... , tn) is a term

The set of all t.erms over a signature L with variables
from V is denot.ed by T(E, V). A term t E T(E, V) is
called a closed t.erm if t does not contain variables. The
set of all closed terms over a signature E is denoted by
T(I:).

Now we are ready to turn to the signature EpA. of
PAl'"' The signat.ure Ep Ae consists of

1. t.he special constant.s 6 and €

2. the set of unspecified constants A
3. the unary operator V
4. the binary operat.ors +, ., II and lL

The special const,ant 6 denotes the process that has
st.opped execut.ing actions and cannot proceed. This
const.ant. is called deadlock. The special constant € de
liotes the process that. is only capable of terminating
successfully. It. is called the empty process.

The element.s of the set of unspecified constants A are
called atomic actions. These are the smallest processes
in t.he description. This set is considered a parameter
of (,he theory. We will specify this set as soon as we
consider an application of the theory.

The binary operators + and· are called the alterna
tive and sequential composition. The alternative compo
sit,ion of the processes x and y is the process that either
execut.es process x or y but. not both. The sequential
composit.ion of t.he processes x and y is the process that
first. execut.es process x, and upon completion thereof
sta.rt.s wit,h t.he execution of process y.

The binary operat.or II is called the free merge. The
free merge of the processes x and y is the process that

4 S. MAUW AND M. A. R.ENIERS

executes the processes x and y in parallel. For a fi
nite set D = {d,,···, dn }, the not.ation II dED p(d) is
an abbreviation for P(d,) II ... II P(dn). If D = 0 then
IIdEDP(d) = E. For the definition of the merge we use
two auxiliary operators. The termination operator V
applied to a process x signals whet.her or not. the pro
cess x has an option to terminate immediately. The bi
nary operator lL is called the left merge. The left, merge
of the processes x and y is the process that first has
to execute an atomic action from process X, and upon
completion thereof executes the remainder of process x
and process y in parallel.

3.3. The equations of P A,

The set of equations EpA~ of PA£" specifies which pro
cesses are considered equal. An equation is of t.he form

t, = t" where t"t2 E T(EpA" V). For a E AU {o}
and X, y, z E V, the equations of P Ae are given in the
Table 2.

x+y _ y+x
(x+y)+z = x+(y+z)
x+x = x
(x+y).z = x·z+y·z
(x·y)·z = x·(y·z)
x+6 = x
6· x 6
X'c x
[. X :::: X

xlly = xlLy+ylLx+J(")'J(y)
ell x = 6
a . xlLy = a· (x II y)
(x+y)lLz = xlLz+YlLz

J(E) = E
J(a·x) = 6
J(x + y) = J(x) + J(y)

TABLE 2. Axioms of PA,

Al
A2
A3
A4
A5
A6
A7
AS
An

TMI
TM2
TM3
TM4

TEl
TE2
TE3

Axioms AI-A9 are well known. The axioms 'TE1~
TE3 express that a process x has an opt.ion t.o terminate
immediately if J(x) = E, and that. J(x) = 0 otherwise.
In itself the termination operator is not very int.eresting,
but in defining the free merge we need this operator to
express the case in which bot.h processes 3; and yare
incapable of executing an at.omic action. Axiom TMI
expresses that the free merge of t.he two processes x
and y is their interleaving. This is expressed in t.he
three summands. The first two state t,hat ;1: and y may
start executing. The t.hird smnmalld expresses t.hat, if
both x and y have an opt.ion to terminat.e, their merge
has this option too.

LEMMA 3.1. Forx,y,ZET(E pA ,) andaEAU{8}

1.xIlE=x

2. xlly= Yllx
3. (xlly)llz = xll(yllz)
4. alLx=ax

Proof. See (BW90). •
We can use this lemma to derive the following exam

ple.

all(b+E) =
all (b + E) + (b + E)lL a + J(a)J(b + E) =
arb + c) + blL a + Ell a + 6(6 + E) =
a(b+E)+ba+6+6=
a(b+E)+ba

4. A PROCESS ALGEBRA FOR BASIC
MESSAGE SEQUENCE CHARTS

In t.his sect.ion we will extend the process algebra PAc to
a process algebra P ABM se. We do this by specifying
t.he set of at.omic actions A and by introducing the aux
iliary operator AM.

4.1. Specifying the atonlic actions

In dealing with Basic Message Sequence Charts we
encount.er a number of significantly different atomic
actions. These are, wit.h their representations in
PABMse:

1. the execution of an action aid by instance i:
aCl.ion(i, aid)

2. t.he sending of a message m by instance s to instance
r: out(S,1',1U)

3. the sending of a message m by instance s to the
environment: ou.t(s, env, m)

4. the receiving of a message m by instance r from in
st.ance s: in(s,1',m.)

5. the receiving of a message m by instance r from the
environment.; in(env, 1', m)

In Table 3 the sets of atomic actions are given. We
use II D for .c«iid», AID for .c«aid» and MID for
.c«rnid».

Aa = {action(i,aid) liE IID,aid E AID}
Aa = {o1l1(s,r,m)ls,rEIID,mEMID}
A; {in(s,7',m)ls,rEIID,mEMID}
A, {out(s,env,m) Is E IID,m E MID}

U{in(env,r,m) IrE IID,m E MID}
A An U Aa U A; U A,

TABLE 3. The at.omicactionsof PABMSC

AN ALGEBRAIC SEMANTICS OF BASIC MESSAGE SEQUENCE CHARTS 5

4.2. The state operator >'M
A Basic Message Sequence Chart specifies a (finite)
number of instances that communicate by sending and
receiving messages. A message is divided into two parts:
a message output and a message input. The correspon
dence between message outputs and message inputs has
to be defined uniquely by message name iclent,ification.

A message input may not be executed before the COI'

responding message output has been executed. \Ve in
troduce an operator AM that enables only those exe
cution paths that respect the above constraint. The
operator AM is an instance of the state operator as call
be found in (BW90). This operator remembers all mes
sage outputs that have been executed in a set /\1 and
only allows a message input if its corresponding mcssage
output is in that set.

For all M <;; A o, X,y E V, a E A, i,j E C«iid»,
and mE £«mid», we define the st.ate operat.or AM in
Table 4.

AM (c) c
AM(c) = 6
AM(6) 6
AM(a. x) a· AM(X)
AM(Out(i,j,m) ·x) =

out(i,j, m). AMU{ou'('.i.m)j(x)
AM(in(i,j,m) .x) =

in(i,j, m). AM\{ou'(i';.m)} (x)
AM(in(i,j,m). x) = 6
AM(X + y) = AM(X) + A,,(1/)

if Ai - 0
if M -# 0

if a '¢ Au U Ai

if out(i,j, 111) E M
if out(i, j, m) '¢ M

TABLE 4. Axioms for t.he stat.e operat.or AM

Note that the state operator AM can be eliminated
from every closed PABMBe term, This lJ1eans t.hat
we have not introduced new processes. Furthermore
we have not introduced new identities between existing
processes, thus P ABM Be is a conservative ext.ension of
PA,.

5. THE SEMANTICS OF BASIC MESSAGE
SEQUENCE CHARTS

5.1. Introduction

In this section we will define a semant,ic fUIlct.ion 5 that
associates to every Basic Message Sequence Chart in
textual format a closed P ABM se t.erm. An example of
this const.ruction is given in subsection 5.3. Before we
give the definition of this semant.ic function we need t.o
explain some auxiliary functions. The powerset of a set
S is denoted by IP(S).

The function

Instances; C«msc» ~ IP(C«inst def»)

that associates to a Basic Message Sequence Cha.rt t.he

set containing all instance definitions of the instances
defined in the chart, is defined by

Instances(mse <mseid>j <mse body> endmse;)
Instancesbody«mse body»

where the function

[ustanceS'ody ; C«msc body» -> IP(C«inst det»)

is defined by

I nstanceS'ody (<» = 0
I nstanceSbody «inst def> <mse body» =

{<inst det>} U InstanceS'ody «mse body»

Next we define the following two functions

Name; C«inst def» -> C«iid»
Body; C(<inst det» -> C(<inst body»

These funct,ions associate to an instance definition its
na.me and body.

N a.me(instance <iid>;
<inst body> endinstance;)

Body(instance <iid>;
<inst bOdy> endinstanee;)

5.2. The senlalltic function

<iid>

<inst body>

The general idea is that the semantics of a Basic Mes
sa.ge Sequence Chart is the free merge of the seman
t.ics of it.s constituent instances. By this construction
we enable all interleavings of t.he message outputs and
message inputs. However, a message input can only
be performed after its corresponding message output.
In order t,o rule out all interleavings where a message
out.put is preceded by the corresponding message input
we use the state operator AM, We define the function
S : .c«msc» -> T(EpABMSC) by

S[mscl = A0 (II idef E/n,tan",(m,,) S.n,,[idefl)

The semant.ic function Sin$t : £(<inst def» ---j.

T("E.p A BMse) is defined to express the semantics of one
inst.ance ill scparation. In the textual representation of
an inst.ance t.he at,omic actions are specified in the or
der t.hey are t.o be executed, thus the semantics of an
inst.ance definit,ion is the sequential composition of its
actions.

S;",[idef] = S':,~;'(idef) [Body(idef)]

where for i E C(<iid» the function

Siody ; £«inst body» -> T(EpABMSC)

is defined by

S!.ody[<>] = €

S~ody[<event><inst body>] =
S~vmt[<event>]. Stody[<inst body>]

6 S. MAUW AND M. A. RENIERS

and for every i E £(<Ed» the fllnction

S!vent : C«event» T(:EPABMSC)

is defined by

~vent[in <mid> from <iid>;] =
in«iid>, i, <mid»

S!vent[in <mid> from anv j] = inC env, i, <mid»
S!vent[out <mid> to <iid>;] =

out (i, <iid>, <mid»
S!vent[out <mid> to env;] = out(i,env,<mid»
S!vent[action <aid>;] = act£on(i,<aid»

Note that application of the st,ate opera.tor gives the
possibility that the semantics of a Basic Message Se
quence Chart contains a deadlock. This can be int,er
preted as the fact that every execution trace cont.ains
an input before the corresponding out.put.

5.3. An example

We consider the Basic Message Sequence Chart from
Figure 3. It consists of three inst.ances which exchange
two messages.

msc exam ple3

-
FIGURE 3. Example Basic Message Sequence Chart

msc example3;
instance a;

out k to b;
out 1 to c;

endinstance)
instance b;

in k from a;
endinstance;
instance c;

in 1 from a;
endinstance;

endmsc;

The interpretat.ion of this Basic Mess~.ge Sequence
Chart is that along inst.ance a. the ordering of t.he Olltput,
of messages k and I is fixed and furt.hermore t,hat. t.he
output of message k comes before the input. of message /..~
and, likewise, that the out.put, of message I comes before
the input of message l. These are t.he only rest.rictions
that apply.

When using t.he textual synta.x, the Basic .Message
Sequence Chart. is represented by describing t.he behav
ior of every instance in separation. After applying t.he
semantic function Sin$t to these inst.ances we obt.ain

5;",,[0] = out(a, b, k)· out(a,c, i)
5;"" [b] = in(a, b, k)
5;",,[c] = in(o, c, i)

The first st.ep in deriving the expression which we aim
at is putting the instances a, band C in parallel.

After some calculations, we arrive at the following nor
malized expression.

olll(a, b, k) .(in(a, b, k)· (out(a, c, i). in(a, c, i)
+in(a,c,l)· out(a,c,i)
)

+oul(a, c, i).(in(a, b, k). in(a, c, i)
+in(a, c, i) . in(a, b, k)
)

+in(a, c, i) . (in(a, b, k) . out(a, c, i)
+out(a, c, i). in(a, b, k)
)

)
+in(a, b, k) . (olll(a, b, k)· (in(a, c, i). out(a, c, i)

+out(a, c, i) . in(a, c, i)
)

+in(a, c, i)· out(a, b, k). out(a, c, i)
)

+io(o, c, i)· (0111(0, b, k)· (io(a, b, k). out(a, c, i)
+out(a, c, i). in(a, b, k)
)

+in(a, b, k)· out(a, b, k). out(a, c, i)
)

This expression clearly shows execution traces which
are not. desirable, such as in(a, b, k) . out(a, b, k) .
in{a, c,l). out{a, c,/). These traces can be removed by
applying the state operator A0 to this expression. This
results in

0111(0, b, k).(in(a, b, k). out(a, c, i). in(a, c, i)
+01l1(a, c, i). (in(a, b, k)· in(a, c, l)

+in(a, c, l). in(a, b, k)
)

6. STRUCTURAL OPERATIONAL SEMAN·
TICS

In t,his section we define a structural operational se
mant,icB of Basic Message Sequence Charts in the style
of Plot.kin (Plo83). For this purpose we define action
rela.tions on closed P ABM Be terms. Then we give a
gra.ph model for the theory P ABM se.

6.1. Action relations for PABMSC

On the set of PABMSC terms we define a predicate!~
T{EpABMSC) and binary relations ~ ~ T{EpABMSC) X

T{EpABMSC) for every a. E A. These predicates are de~

AN ALGEBRAIC SEMANTICS OF BASIC MESSAGE SEQUENCE CHARTS 7

fined by means of inference rules, which have the fol
lowing form.

PI,··· ,Pn
q

This expression means that for every inst.ant.iation
of variables in PI, .. "Po, q we can conclude q from
PI J ••• 1 Po· If q is a tautology, we omit PI, ... , Pn and
the horizontal bar.

The intuitive idea of the predicate L is as follows: It
denotes that t has an option to terminate immediat.ely,
i.e. € is a summand of t. For X, y E T(EpABMEC)' and
M <;; Ao, the predicate L is defined in Table 5.

xL yJ
(x + y) L

xL y L
(x· y) L (x+1I)L

xL
(v(x)) L

xL 1IL
(x II 11) L

xL

TABLE 5. The predicat.e 1

The intuitive idea of the binary operator a is as
follows: t ~ s denotes that the process t. can exeell j,e
the atomic action a and after this execut.ion step t.he
resulting process is s. For X, x' J y, y' E T(EpABMSC)'
a E A, M <;; Ao, i,j E .c«iid», and mE .c«mid»,
the binary relations ~ are defined in Table 6.

We will illustrate the use of these action relat.ions
with an example. Consider the following expression.

A0(out(a, b, k) II inCa, b, k))

out(a,b,k)
We have out(a, b, k) --+ [, so we can derive

. out(a,b,k).
out(a, b, k) II mea, b, k) -+ 0 II "'(0, b, k). Frolll this
we can conclude

,10 (out(a, b, k) II inC a, b, k)("~b,k)
A{ou,(a,b,k)}(o II inCa, b, k))

N h · (b k)in(o,b,k) d ext we ave In a, " --+ c, an

011 inCa, b, kt(~,k)o II [. Thus we have

we can derive

In order to see that this expression has t.he possibilit.y
to terminate, we derive 6 L and thus (0 II 0) I, so

Finally we conclude t.hat the given process
,10 (out(a, b, k) II iura, b, k)) can first execute ou/.(a, b, k),
then execute in(a,b,k) and finally terminate. Note t.hat.
this is the only execution sequence t.hat can be derived
from the inference rules.

6.2. Graph model for PABMSC

We will present a model for the theory PABMSC . This
model is a graph model, a set of process graphs modulo
bisimulation, that provides a visualization of the action
relations from the previous subsection.

A process graph is a finite acyclic graph in which the
edges are labeled with an atomic action, and in which
every node may have a label L. This label L indicates
whet,her or not the state represented by the node has
an option to terminat.e immediately. In every process
graph there is one special node, the root node.

Two process graphs will be identified if they are
bisimilar. Two graphs are bisimilar if there is a bisim
ulat.ion which relates the root nodes. A bisimulation is
a. binary relation R, satisfying:

• if R(p, q) and P~P', then there is a q' such that q~q'
and R(p', q')

• if R(p, q) and q~q/, then there is a pi such that p~pl
and R(r!, q')

• if R(p,q) then pL if and only ifqL.

THEOREM 6.1. Bisimulation lS a congruence for
the signature of PABMse .

Proof. The action rules fit into the syntactical for
mat t.hat is called the path format. As a consequence
bisimulation is a congruence for the function symbols
for which the adion rules are defined. We refer to
(DY93, GY92) for both the syntactical format and the
congruence theorem. •

Every operat.or in t.he signature of PABMse can be
interpreted in t.he graph model. Without proof we
sl,ate t.hat P ABM se is a complete axiomatization of the
gmph model.

To every closed process expression we can associate a
process graph llsing the action relations for PABMse.

We will give the process graph for the example of the
semantics in Figure 4.

in(a,b,k)

oUI(a,c,l)

oUI(a,b,k)

oUI(a,c,l)

in(a,c,l)

in(a,c,l)

~'k) «
FIGURE 4. Process graph

8 s. MAUW AND M. A. RENIERS

a a _ [

x ~ x'

x+y ~ X,

x ~ Xl

agAoUAi , x ~ X'

AM(X) ~ AM (x')

lJ ~ y'

X+y ~ y'

y ~ y'

xlly ~ xiiv'

Qut(i,j,m)
X ---+ X'

a
X -

a
x·y -

a
X -

xliy
a -

(x')

X' xl, y
a y' -

X, .y

X,

X, liy

out(i,j,m)EM

a y' x·y -
in(i,j,m)

,x - X'

(x')

TABLE 6. The act.ion relations ~

7. A CHARACTERIZATION THEOREM

In this section we will relate our semantics for instance
oriented Message Sequence Charts to the event oriented
semantics from (dM93, MvWW93). To this end we will
show that a Basic Message Sequence Chart can be rep
resented by a single trace.

First we will define three funct.ions and a predicate
on processes. These arc the alphabet. function 0', which
determines the atomic act.ions involved in a process, t.he
function £[(for I ~ A) which rellames t.he atomic ac
tions that arc in the set I into £ and the function i.7'
which determines the collection of complet,ed traces of
a process. The predicate df det.ermines whet.her a pro
cess is free of deadlocks. For x and 11 arbit.rary processes
and a E A, we give the axioms for those functions in
Table 7. Note that the predicate J: # 8 can be defined
easily.

a(o) - 0
a(8) = 0
a(a·x) = {a}Ua(x)
a(x + y) - a(x) U a(y) -

fI(") = f
"I(8) = 8
[I(a ·x) = a· "I(X) if a ~ I
"I(a· x) = "I (x) if a E I
"I(X + y) = "I (X) + [I(Y)
tr([) _ {o}
tr(8) = {8}
tr(a.x) = {a.tltEt,·(x)}
tr(x+y) = tr(x)Utl'(Y) if x # 8 II Y # 8
df(f)
,df(8)
df(a. x) = df(x)
df(x + y) = df(x) II df(y) ifJ, # 6 II !I # 8

TABLE 7. Axioms for a, q, tr, and dJ

First observe the following general properties.

LF;MMA 7.1. Forx,y E T(I;PABMSC)' M ~ Ao and
leA

1. df(y) II a(y) ~ I ~ [I(X II y) "I(X)
2. a(x)nI=0 ~ [I(X)=X
3. V'E'e(x) [I(t) E tr("I(x))
4. df(>",(x)) ~ tr(AM(x)) ~ tr(x)

Proof. For 2, 3 and 4 we use induction on the struc
t.lIre e, a . x, x + y, whereas for 1 we use induction on
the structure €, EkEK ak . Xk, :Ek€K ak . Xk + e. •

LEMMA 7.2. For i E £«inst def»

tr(S;n,,[i]) = {S;n,,[i]}

Proof. This follows immediately from the construc-
tion of the semantic function. •

In t.he following lemmas and theorems we will use,
for i E £(<inst def», a(i) as an abbreviation of
t:t(S;" .• ,[i]) and Inst for Instances(msc) where msc is
clear frol11 the context. First we consider traces from
l!jEJn.dSin.~t[j] which do not meet the restriction on
t.he order of inputs and corresponding outputs. Using
such a trace we can reconstruct the behavior of every
single instance and, therefore, we can reconstruct the
complete Basic Message Sequence Chart as described in
Theorem 7.4. Theorem 7.5 states that this also holds for
the rest.ricted t.races from S[msc]. So a Basic Message
Sequence Chart can be represented either by a collec
tion of inst.ances (the instance oriented approach) or by
a single trace (the event. oriented approach).

LEMMA 7.3. For msc E £«msc» and i E Inst

V'E'e(II. S <OJ) CA\a(i)(t) = Sin,,[i]
JEln.t ",.IU

Proof. Let t E tr (1IiEln" Sin,,[j]).
Then by applying Lemma 7.1.3 we have: CA\a(i)(t) E

I,. ([A\au) (1IiEfn" Sin,,[jD)).
We calculate

AN ALGEBRAIC SEMANTICS OF BASIC MESSAGE SEQUENCE CHARTS 9

''Ala(') (II jEin,' Sin,,[j])
{ Lemma 7.1.1 }
cA \n(;) (S'n,' [i])
{ Lemma 7.1.2 }
S'n,,[i]

So, from Lemma 7.2, we may conclude t.hat. CA\n(i)(I) =
S,."[i]. •

THEOREM 7.4. For msc E C«msc»

If'E'r(II iEl .. ,s,.,,[il) S[msc] = "0 (II iEbu' CA\a(;)(I))

Proof This follows from Lemma 7.3 and t.he defini-
tion of the semantic function S. •

THEOREM 7.5. For msc E C«msc» such thai
df(S[msc])

If'E'r(S[mu]) S[msc] = "0 (II ;0", [A\n(i)(I))

Proof This theorem follows immediately from
Lemma 7.1.4 and Theorem 7.4. •

Theorem 7.5 expresses that, in principle, one could
choose an event oriented textual representation for Ba
sic Message Sequence Charts. The Basic l\:fessage Se
quence Chart. from Figure 3 may look like

mse example3;
out k from a to bi

out 1 from a to c;
in 1 from a to c;
in k from a to b;

endmsc;

8. CONCLUSION

The definition of a formal semantics of Basic Message
Sequence Charts based on process algebra as present.ed
in this paper has turned out to be a very natural and
successful met.hod. We used the instance oriented syn
t.ax to derive a compositional semantics and indicated
that. this yields a semantics which is equivalent t.o the
approach based on sequencing for an event oriellt.ed syn
t.ax (dM93, MvWW93).

The development. of the semantics for the complete
Message Sequence Charts language follows the senne
line, applying more elaborate const.ructs from process
algebra for features such as sub Message Sequence
Charts and process creation.

The algebraic approach towards the definition of the
formal semantics of Message Sequence Charts enables
the use of term-rewriting systems for t,he rapid proto
typing of specifications (MW93).

Acknowledgelnents

We would like to thank Jos Baet,en, Jan Hergst.ra,
Ekkart Rudolph and Chris Verhoef for their useful COIll

ments and suggest.ions for improvements.

REFERENCES

BK84: J.A. Bergstra and J.W. Klop. Process algebra for
synchronous communication. Information fj Control,
60:109-137, 1984.

BV93: J.C.M. Baeten and C. Verhoef. A congruence the
orem for structured operational semantics with predi
cates. In E. Best, editor, CONCUR'93, Lecture Notes
in Computer Science 715, 1993.

BW90: J.C.M. Baeten and W.P. Weijland. Process Algebra.
Cambridge Tracts in Theoretical Computer Science 18.
Cambridge University Press, 1990.

CCI88: CCITT. CCITT Recommendation Z.100: Speci
fication arId Description Language (SDL). CCITT,
Geneva, 1988.

CCI92: CCITT. CCITT Recommendation Z.120: Message
Sequence Chart (MSC). CCrTT, Geneva, 1992.

dM93: J. de Man. Towards a formal semantics of Message
Sequence Charts. In O. Frergemand and A. Sarma, ed
it.ors, SDL '93 Using Objects, Proceedings of the Sixth
SDL Fornm, Darmstadt, 1993. Elsevier Science Pub
lishers B. V.

GGR,93: J. Grabowski, P. Graubmann, and E. Rudolph.
Towards a pet.ri net based semantics definition for Mes
sage Sequence Charts. In O. Frergemand and A. Sarma,
edit.ors, SDL'93 Using Objects, Proceedings of the Sixth
SDL Forum, Darmstadt, 1993. Elsevier Science Pub
lishers B. V.

GV92: J.F. Groote and F.W. Vaandrager. Structured op
erat.ional semantics and bisimulation as a congruence.
InJonnalioll and Computation, 100:202-260, 1992.

I-Ioa.85: C.A.R. Hoare. Communicating Sequential Pro-
cesses. Prentice-Hall, 1985.

LL94: P.B. Ladkin and S. Leue. What do Message Sequence

Chart.s mean? In R.L. Tenney, P.D. Amer, and M.
U yar, editors, Formal Description Techniques, VI, IFIP
Transact.ions C, Proceedings of the Sixth International
Conference on Formal Description Techniques. North
Holland, 1994.

Mi180: R. Milner. A Calculus of Communicating Systems.
Lect.lIre Notes in Computer Science 92. Springer-Verlag,
1980.

MvvV\V!J3: S. Manw, M. vall Wijk, and T. Winter. A
formal semantics of synchronous Interworkings. In
O. F~rgema.nd and A. Sarma, editors, SDL '93 Using
Objects, Proceedings of the Sixth SDL Forum, Darm
st.adt, 1993, Elsevier Science Publishers B.V.

~.JW93: S. Manw and T. Winter. A prototype toolset
for Interworkings. Philips Telecommunication Review,
51(3):41-45, December 1993.

P1083: G.D. Plotkin. An operational semantics for CSP. In
Proceedings of the Conference on the Formal Descrip
tion oj Prog"omming Concepts, volume 2, Garmisch,
1983.

Computing Science Notes

In this series appeared:

91/01 D. Alstein

91/02 R.P. Nederpelt
H.C.M. de Swart

91/03 J.P. Katoen
L.A.M. Schoenmakers

91/04 E. v.d. Sluis
A.F. v.d. Stappen

91/05 D. de Reus

91/06 K.M. van Hee

91/07 E.Poll

91/08 H. Schepers

91/09 W.M.P.v.d.Aalst

91/10 R.C.Backhouse
PJ. de Bruin
P. Hoogendijk
G. Malcolm
E. Voermans
J. v.d. Woude

91111 R.C. Backhouse
PJ. de Bruin
G.Malcolm
E.Voermans
J. van der Woude

91/12 E. van der Sluis

91/13 F. Rietman

91/14 P. Lemmens

91/15 A.T.M. Aerts
K.M. van Hee

91116 A.J.J.M. Marcelis

Department of Mathematics and Computing Science
Eindhoven University of Technology

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems, p. 14.

Implication. A survey of the different logical analyses
"if...,then ... ", p. 26.

Parallel Programs for the Recognition of P-invariant
Segments, p. 16.

Performance Analysis of VLSI Programs, p. 31.

An Implementation Model for GOOD, p. 18.

SPECIFICATIEMETHODEN, een overl.icht, p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping, p. 49.

Terminology and Paradigms for Fault Tolerance, p. 25.

Interval Timed Petri Nets and their analysis, p.53.

POL YNOMIAL RELATORS, p. 52.

Relational Catamorphism, p. 31.

A parallel local search algorithm for the travelling
salesman problem, p. 12.

A note on Extensionality, p. 21.

The PDB Hypennedia Package. Why and how it was
built, p. 63.

Eldorado: Architecture of a Functional Database
Management System, p. 19.

An example of proving attribute grammars correct:
the representation of arithmetical expressions by DAGs,
p. 25.

91/17 A.T.M. Aerts
P.M.E. de Bra
K.M. van Hee

91/18 Rik van Geldrop

91/19 Erik Poll

91/20 A.E. Eiben
R.V. Schuwer

91/21 J. Coenen
W.-P. de Roever
J.Zwiers

91/22 G. Wolf

91/23 K.M. van Hec
L.J. Somers
M. Voorhoeve

91/24 A.T.M. Aerts
D. de Reus

91/25 P. Zhou
J. Hooman
R. Kuiper

91/26 P. de Bra
G.J. Houben
J. Paredaens

91/27 F. de Boer
C. Palamidessi

91/28 F. de Boer

91/29 H. Ten Eikelder
R. van Gcldrop

91/30 J. c'M. Baeten
F.W. Vaandrager

91/31 H. ten Eikelder

91/32 P. Struik

91/33 W. v.d. Aalst

91/34 J. Coenen

Transforming Functional Database Schemes to Relational
Representations. p. 21.

Transformational Query Solving. p. 35.

Some categorical properties for a model for second order
lambda calculus with subtyping. p. 21.

Knowledge Base Systems. a Formal Model. p. 21.

Asscrtional Data Reification proors: Survey and
Perspective. p. 18.

Schedule Management: an Object Oriented Approach. p.
26.

Z and high level Petri nets. p. 16.

FOImal semantics ror BRM with examples. p. 25.

A compositional proof system ror real-time systems based
on explicit clock temporal logic: soundness and complete
ness. p. 52.

The GOOD based hypertext reference model. p. 12.

Embedding as a tool for language comparison: On the
CSP hierarchy. p. 17.

A compositional proof system for dynamic proces
creation, p. 24.

Correctness or Acceptor Schemes for Regular Languages.
p. 31.

An Algebra for Process Creation, p. 29.

Some algorithms to decide the equivalence of recursive
types. p. 26.

Techniques for designing eflicient parallel programs. p.
14.

The modelling and analysis or queueing systems with
QNM-ExSpcct. p. 23.

Specifying fault tolerant programs in deontic logic.
p. 15.

91/35 F.S. de Boer
J.W. Klop
C. Palamidessi

92/01 J. Coenen
J. Zwiers
W.-P. de Roever

92/02 J. Coenen
J. Hooman

92/03 J.C.M. Baeten
J.A. Bergstra

92/04 J.P.H.W.v.d.Eijnde

92/05 J.P.H. W. v.d.Eijnde

92/06 J.C.M. Baeten
J.A. Bergstra

92/07 R.P. Nederpell

92/08 R.P. Nederpell
F. Kamareddine

92/09 R.C. Baekhouse

92/10 P.M.P. Rambags

92/11 R.c. Backhouse
J.S.C.P.v.d.Woude

92/12 F. Kamareddine

92/13 F. Kamareddinc

92/14 J.C.M. Baeten

92/15 F. Kamareddine

92/16 R.R. Seljee

92/17 W.M.P. van der Aalst

92/18 R.Nederpell
F. Kamareddine

92/19 J.C.M.Baeten
J.A.Bergstra
S.A.Smolka

92/20 F. Kamarcddine

Asynchronous communication in process algebra, p. 20.

A note on compositional refinement, p. 27.

A compositional semantics for fault tolerant real-time
systems, p. 18.

Real space process algebra, p. 42.

Program derivation in acyclic graphs and related
problems, p. 90.

Conservative fixpoint functions on a graph, p. 25.

Discrete time process algebra, pAS.

The fine-structure of lambda calculus, p. II O.

On stepwise explicit substitution, p. 30.

Calculating the Warshall/FIoyd path algorithm, p. 14.

Composition and decomposition in a CPN model, p. 55.

Demonic operators and monOlype factors, p. 29.

Set theory and nominalisation, Part I, p.26.

Set theory and nominalisation, Part II, p.22.

The tOlal order assumption, p. 10.

A system at the cross-roads of functional and logic
programming, p.36.

Integrity checking in deductive databases; an exposition,
p.32.

Interval timed coloured Petri nets and their analysis, p.
20.

A unified approach to Type Theory through a refined
lambda-calculus, p. 30.

Axiomatizing Probabilistic Processes:
ACP with Generative Probabilities, p. 36.

Are Types for Natural Language? P. 32.

92/21 F.Kamareddine

92/22 R. Nederpell
F.Kamareddine

92/23 F.Kamareddinc
E.Klein

92/24 M.Codish
D.Dams
Eyal Yardcni

92/25 E.Poll

92/26 T.H.W.Beelen
W.J.J.Stut
P.A.C. Verkoulen

92/27 B. Watson
G. Zwaan

93/01 R. van Gcldrop

93/02 T. Verhoeff

93/03 T. VerhoelT

93/04 E. H.L. Aarts
J.H.M. Korst
P.J. Zwietering

93/05 J.C.M. Baetcn
C. Verhoef

93/06 J.P. Veltkamp

93/07 P.O. Moerland

93/08 J. Verhoosel

93/09 K.M. van Hee

93/10 K.M. van Hec

93/11 K.M. van Hee

93/12 K.M. van Hec

93/13 K.M. van Hee

Non well-foundedness and type freeness can unify the
interpretation of functional application, p. 16.

A useful lambda notation, p. 17.

Nominalization, Predication and Type Containment, p. 40.

Bottum-up Abstract Interpretation of Logic Programs,
p. 33.

A Programming Logic for Fro, p. 15.

A modelling method using MOVIE and SimCon/ExSpect,
p. 15.

A taxonomy of keyword pattern matching algorithms,
p. 50.

Deriving the Aho-Corasick algorithms: a easc study into
the synergy of programming methods, p. 36.

A continuous version of the Prisoner's Dilemma, p. 17

Quicksort for linked lists, p. 8.

Deterministic and randomized local search, p. 78.

A congrucnce theorem for structured operational
semantics with predicates, p. 18.

On the unavoidability of metastable behaviour, p. 29

Exercises in Multiprogramming, p. 97

A FOlmal Deterministic Scheduling Model for Hard Real
Time Executions in DEDOS, p. 32.

Systems Engineering: a Formal Approach
Part I: System Concepts, p. 72.

Systems Engineering: a Formal Approach
Part II: Frameworks, p. 44.

Systems Engineering: a Formal Approach
Part III: Modeling Methods, p. 101.

Systems Engineering: a Formal Approach
Part IV: Analysis Methods, p. 63.

Systems Engineering: a Formal Approach
Part V: Specification Language, p. 89.

93/14 J.C.M. Baeten
J.A. Bergstra

93/15 J.C.M. Baeten
J.A. Bergstra
R.N. Bol

93/16 H. Schepers
J. Hooman

93/17 D. Alstein
P. van der Stok

93/18 C. Verhoef

93/19 G-J. Houbcn

93/20 F.S. de Boer

93/21 M. Codish
D. Dams
G. File
M. Bruynooghe

93/22 E. Poll

93/23 E. de Kogel

93/24 E. Poll and Paula Severi

93/25 H. Schepers and R. Gerth

93/26 W.M.P. van der Aalst

93/27 T. Kloks and D. Kratsch

93/28 F. Kamareddinc and
R. Nederpclt

93/29 R. Post and P. De Bra

93/30 J. Dcogun
T. Kloks
D. Kratsch
H. MulIer

93/31 W. Korver

93/32 H. ten Eikelder and
H. van Geldrop

On Sequential Composition, Action Prefixes and
Process Prefix, p. 21.

A Real-Time Process Logic, p. 31.

A Trace-Based Compositional Proof Theory for
Fault Tolerant Distributed Systems, p. 27

Hard Real-Time Reliable Multicast in the DEDOS system,
p. 19.

A congruence theorem for structured operationaJ
semantics with predicates and negative premises, p. 22.

The Design of '10 Online Help Facility for ExSpect, p.21.

A Process Algebra of Concurrent Constraint Program
ming, p. 15.

Freeness Analysis for Logic Programs - And Correct
ness?, p. 24.

A Typechecker for Bijective Pure Type Systems, p. 28.

Relational Algebra and Equational Proofs, p. 23.

Pure Type Systems with Definitions, p. 38.

A Compositional Proof Theory for Fault Tolerant Real
Time Distributed Systems, p. 31.

Multi-dimensional Petri nets, p. 25.

Finding all minimal separators of a graph, p. I I.

A Semantics for a fine A-calculus with de Bruijn indices,
p. 49.

GOLD, a Graph Oriented Language for Databases, p. 42.

On Vertex Ranking for Pennutation and Other Graphs,
p. II.

Derivation of delay insensitive and speed independent
CMOS circuits, using directed commands and
production rule sets, p. 40.

On the Correctness of some Algorithms to generate Finite
Automata f()f Regular Expressions, p. 17.

93/33

93/34

93/35

93/36

93/37

93/38

93/39

93/40

93/41

L. Loyens and 1. Moonen

1.C.M. Baeten and
1.A. Bergstra

W. Ferrer and
P. Severi

1.C.M. Baeten and
1.A. Bergstra

1. Brunekreef
1-P. Katoen
R. Koymans
S. Mauw

C. Verhoef

W.P.M. Nuijten
E.H.L. Aarts
D.A.A. van Erp Taalman Kip
K.M. van Hee

P. D. V. van der Stok
M.M.M.P.1. Claessen
D. Alstein

A. Bijlsma

93/42 P.M.P. Rambags

93/43 B.W. Watson

93/44 B.W. Watson

93/45 E.1. Luit
1.M.M. Martin

93/46 T. Kloks
D. KraLSch
1. Spinrad

93/47 W. v.d. Aalst
P. De Bra
G.l. Houben
Y. Komatzky

93/48 R. Gerth

ILlAS, a sequential language for parallel matrix
computations, p. 20.

Real Time Process Algebra with Infinitesimals, p.39.

Abstract Reduction and Topology, p. 28.

Non Interleaving Process Algebra, p. 17.

Design and Analysis of
Dynamic Leader Election Protocols
in Broadcast Networks, p. 73.

A general conservative extension theorem in process
algebra, p. 17.

Job Shop Scheduling by Constraint Satisfaction, p. 22.

A Hierarchical Membership Protocol for Synchronous
Distributed Systems, p. 43.

Temporal operators viewed as predicate transformers,
p. 1 I.

Automatic Verification of Regular Protocols in PIT NeLS,
p. 23.

A taxomomy of finite automata construction algorithms,
p. 87.

A taxonomy of finite automata minimization algorithms,
p.23.

A precise clock synchronization protocol,p.

Trcewidth and Patwidth of Cocomparability graphs of
Bounded Dimension, p. 14.

Browsing Semantics in the "Tower" Model, p. 19.

Verifying Sequentially Consistent Memory using Interface
Relincment, p. 20.

94/01 P. America
M. van dcr Kammen
R.P. Nederpelt
O.S. van Roosmalen
H.C.M. de Swart

94/02 F. Kamareddine
R.P. Nederpelt

94/03 L.B. Hartman
K.M. van Hee

94/04 J.C.M. Baeten
J.A. Bergstra

94/05 P. Zhou
J. Hooman

94/06 T. Basten
T. Kunz
J. Black
M. Coffin
D. Taylor

94/07 K.R. Apt
R. Bol

94/08 O.S. van Roosmalcn

94/09 J.C.M. Bactcn
J.A. Bergstra

94/10 T. verhoefI'

94/11 J. Peleska
C. Huizing
C. Petersohn

94/12 T. Kloks
D. Kratsch
H. Miiller

94/13 R. Seljee

94/14 W. Peremans

94/15 RJ .M. Vaessens
E. H.L. Aarts
J.K. Lenstra

94/16 R.C. Backhousc
H. Doornbos

The objcct-oriented paradigm, p. 28.

Canonical typing and O-conversion, p. 51.

Application of Marcov Decision Processe to Search
Problems, p. 21.

Graph Isomorphism Models for Non Interleaving Process
Algebra, p. 18.

Formal Specification and Compositional Verification of
an Atomic Broadcast Protocol, p. 22.

Time and the Order of Ahstract Events in Distributed
Computations, p. 29.

Logic Programming and Negation: A Survey, p. 62.

A Hierarchical Diagrammatic Representation of Class
Structure, p. 22.

Process Algebra with Partial Choice, p. 16.

The testing Paradigm Applied to Network Structure.
p. 31.

A Comparison of Ward & Mellor's Transformation
Schema with State- & Activitycharts, p. 30.

Dominoes, p. 14.

A New Method for Integrity Constraint checking in
Deductivc Databases, p. 34.

Ups and Downs of Type Theory, p. 9.

Job Shop Scheduling by Local Search, p. 21.

Mathematical Induction Made Calculational, p. 36.

	1. Introduction
	2. Basic message sequence charts
	2.1 Introduction
	2.2 Graphical notation
	2.3 Textual notation
	3. Process algebra PAe
	3.1 Introduction
	3.2 The signature of PAe
	3.3 The equations of PAe
	4. A process algebra for basic message sequence charts
	4.1 Specifying the atomic actions
	4.2 The state operator lambda-m
	5. The semantics of basic message sequence charts
	5.1 Introduction
	5.2 The semantic function
	5.3 An example
	6. Structural operational semantics
	6.1 Action relations for PA-bmsc
	6.2 Grapgh model for PA-bmsc
	7. A characterization theorem
	8. Conclusion
	Acknowledgements
	References

