Tôhoku Math. Journ. 33 (1981), 421-428.

AN ALGEBRAIC THEORY OF LANDAU-KOLMOGOROV INEQUALITIES*

TOSIO KATO AND ICHIRO SATAKE

(Received February 10, 1981)

1. Introduction. This paper is concerned with the so-called Landau-Kolmogorov (or Hardy-Littlewood) inequalities

(1.1) $||T^k u|| \leq M_{n,k} ||T^n u||^{k/n} ||u||^{1-k/n}$ (0 < k < n),

for linear dissipative operators T in a Hilbert space \mathscr{H} . (T is dissipative if $\operatorname{Re}(Tu, u) \leq 0$ for all $u \in \mathscr{D}(T)$ (domain of T). See Chernoff [1] for a survey of the inequalities for more general operators.) In [1] it was shown that the constants $M_{n,k}$ for the special operator T = D = d/dt in $\mathscr{H} = L^2(0, \infty)$ are universal, strengthening older results due to Ljubič [2], Kupcov [3], and Kato [4]. A similar result was recently published by Kwong and Zettl [5]. For related results under somewhat different assumptions, see Protter [6].

Chernoff's proof of (1.1) is extremely simple and elegant, but it is transcendental in the sense that a large "model space" is used. The proof by Kwong-Zettl is relatively elementary but appears more complicated. Here we present a "finite" proof based on an elementary polynomial identity. A merit of this method is that it leads to a simple necessary and sufficient condition for the equality to hold in (1.1), generalizing a condition given in [4] (which is in turn a generalization of the one due to Hardy and Littlewood [7]). It is also shown that the constants $M_{n,k}$ have interesting algebraic properties; they are algebraic units except for certain simple factors, a well-known fact for small values of n (see [5]).

Our main results are summarized in

THEOREM. Let n, k be integers such that 0 < k < n. There exist real algebraic integers c, a_j $(j = 1, 2, \dots, n - 1)$, and $a_{ij} = a_{ji}$ $(i, j = 0, 1, \dots, n - 1)$, depending on n and k, with the following properties.

(i) c is an algebraic unit, with $0 < c < c_{\scriptscriptstyle 0} = (k/n)^{-k/n}(1-k/n)^{k/n-1}.$

(ii) All the zeros of the polynomial $1 + a_1x + \cdots + a_{n-1}x^{n-1} + x^n$ have negative real part (so that $a_j \ge 0$).

^{*} This work was partially supported by NSF Grants MCS-79-02578 and 79-06626.

(iii) The $n \times n$ symmetric matrix (a_{ij}) is positive semi-definite, but not strictly positive-definite.

(iv) For any linear dissipative operator T in any Hilbert space \mathcal{H} , one has

$$|| T^{k}u || \leq (c_{0}/c)^{1/2} || T^{n}u ||^{k/n} || u ||^{1-k/n}$$
 for $u \in \mathscr{D}(T)$.

(v) Equality holds in (iv) if and only if there is a real number s > 0 such that

$$u + a_1 sTu + \cdots + a_{n-1} s^{n-1} T^{n-1} u + s^n T^n u = 0$$
,
 $\sum_{i,j=0}^{n-1} a_{ij} s^{i+j} ((T^{i+1}u, T^j u) + (T^i u, T^{j+1}u)) = 0$.

(vi) The factor $(c_0/c)^{1/2}$ in (iv) is the best possible, with the equality attained by the differential operator T = D = d/dt in $\mathscr{H} = L^2(0, \infty)$ for certain $u \in \mathscr{S}[0, \infty)$ (the Schwartz space).

2. The inequality. In this section, we prove the theorem except for the algebraic properties of the numbers c, a_j, a_{ij} .

In what follows n and k are fixed. We introduce a polynomial

(2.1)
$$p_c(x, y) = 1 - cx^k y^k + x^n y^n$$
,

where c is a real parameter and x, y are noncommuting indeterminates.

LEMMA 2.1. If $c < c_0$ (see the Theorem), there is a unique real polynomial $f_c(x)$ such that (the a_j depend on c)

(2.2)
$$f_c(x) = 1 + a_1 x + \cdots + a_{n-1} x^{n-1} + x^n,$$

(2.3) all the zeros of f_c have negative real part,

$$(2.4) p_c(x, -x) = f_c(x)f_c(-x) \ .$$

PROOF. It is easy to see that if $c < c_0$, $p_c(x, -x)$ has no zeros on the imaginary axis. Since these zeros are symmetrically distributed with respect to the real and imaginary axes, $p_c(x, -x)$ admits a unique factorization of the form (2.4) with all the zeros of f_c having negative real part.

LEMMA 2.2. Set

$$(2.5) g_c(x, y) = f_c(x)f_c(y) - p_c(x, y) .$$

Then there is a real symmetric matrix (a_{ij}) , $i, j = 0, \dots, n-1$, depending on c, such that

(2.6)
$$g_{c}(x, y) = \sum_{i,j=0}^{n-1} a_{ij} x^{i} (x + y) y^{j}.$$

PROOF. In the proof one may assume that x and y commute, since x's stand to the left of y's in each term in (2.5) and (2.6). Then (2.6) follows by long division by x + y because $g_c(x, -x) = 0$ by (2.4). The symmetry of (a_{ij}) follows from that of $g_c(x, y)$ in x, y.

LEMMA 2.3. Let \mathscr{H} be a Hilbert space. Given any n + 1 vectors u_0, u_1, \dots, u_n of \mathscr{H} , one has (2.7) $||u_0||^2 - c ||u_k||^2 + ||u_n||^2 = ||u_0 + a_1u_1 + \dots + a_{n-1}u_{n-1} + u_n||^2 - \sum_{i=n}^{n-1} a_{ij}((u_{i+1}, u_j) + (u_i, u_{j+1}))$.

PROOF. One may assume, without loss of generality, that \mathscr{H} has dimension n+1 and u_0, \dots, u_n form a basis of \mathscr{H} . Define a linear operator T on \mathscr{H} by $Tu_j = u_{j+1}$ for $j = 0, 1, \dots, n-1$ and $Tu_n = 0$, so that $T^ju_0 = u_j, 0 \leq j \leq n$. Then (2.7) may be written

$$(p_c(T^*, T)u_0, u_0) = (f_c(T^*)f_c(T)u_0, u_0) - (g_c(T^*, T)u_0, u_0)$$

But this is true because of the identity (2.5).

LEMMA 2.4. For any $u \in H^{n}(0, \infty)$ (the Sobolev space), one has (2.8) $||u||^{2} - c ||D^{k}u||^{2} + ||D^{n}u||^{2} = ||f_{c}(D)u||^{2} + \sum_{i,i=0}^{n-1} a_{ij}D^{i}u(0)\overline{D^{j}u(0)}$,

where D = d/dt and || || denotes the $L^2(0, \infty)$ -norm.

PROOF. Apply Lemma 2.3 with $\mathscr{H} = L^2(0, \infty)$, $u_j = D^j u$, noting that $(D^{i+1}u, D^j u) + (D^i u, D^{j+1}u) = -D^i u(0)\overline{D^j u(0)}$.

LEMMA 2.5. Suppose the matrix (a_{ij}) is positive semi-definite. For any dissipative operator T in any Hilbert space, one has

(2.9)
$$c \parallel T^k u \parallel^2 \leq \parallel u \parallel^2 + \parallel T^n u \parallel^2$$

$$(2.10) c || T^{k}u ||^{2} \leq c_{0} || T^{n}u ||^{2k/n} || u ||^{2(1-k/n)} for \quad u \in \mathscr{D}(T^{n})$$

PROOF. If T is dissipative, the (Hermitian) matrix with elements $(T^{i+1}u, T^{j}u) + (T^{i}u, T^{j+1}u)$ is negative semi-definite. Thus we see that the right member of (2.7) is nonnegative if $u_{j} = T^{j}u$. (The second term in (2.7) is nonnegative, being the trace of the product of two positive semi-definite matrices.) This proves (2.9). Then (2.10) follows by replacing T with sT and optimizing in s > 0.

LEMMA 2.6. Suppose (a_{ij}) is not (strictly) positive-definite. Then there is $u \in \mathscr{S}[0, \infty), u \neq 0$, such that

(2.11)
$$c ||D^k u||^2 \ge ||u||^2 + ||D^n u||^2.$$

Note that D is dissipative in $L^2(0, \infty)$.

PROOF. There is a nontrivial real *n*-vector (s_0, \dots, s_{n-1}) such that $\sum a_{ij}s_is_j \leq 0$. Solve the *n*-th order differential equation $f_c(D)u = 0$ on $[0, \infty)$, with the initial conditions $D^ju(0) = s_j, j = 0, \dots, n-1$. The solution *u* exists, is nontrivial, and belongs to $\mathscr{S}[0, \infty)$ because all the zeros of f_c have negative real part. Thus (2.11) follows from (2.8), of which the right member is nonpositive.

LEMMA 2.7. There is a unique positive number $\gamma < c_0$ such that (a_{ij}) is (strictly) positive-definite if and only if $c < \gamma$. (a_{ij}) is positive semidefinite for $c = \gamma$.

PROOF. Let Γ be the set of all $c < c_0$ such that (a_{ij}) is positive definite. Γ is not empty, since Lemma 2.6 shows that c = 0 belongs to Γ . In view of Lemmas 2.5, 2.6, it is obvious that Γ is an open interval of the form $(-\infty, \gamma)$. It remains to show that $\gamma < c_0$. Otherwise, one would have, on letting $c \to c_0$ in (2.10),

$$||T^{k}u||^{2} \leq ||T^{n}u||^{2k/n} ||u||^{2(1-k/n)} \qquad (u \in \mathscr{D}(T^{n}))$$

for any dissipative operator T in any Hilbert space \mathcal{H} . But this is not true, as is seen from the example

$$\mathscr{H}=C^{2}$$
 , $T=-egin{pmatrix}1&2\0&1\end{pmatrix}$, $u=egin{pmatrix}0\1\end{pmatrix}$, $||\,T^{j}u\,||^{2}=1+4j^{2}$,

because $1 + 4k^2 > (1 + 4n^2)^{k/n}$.

PROOF OF THE THEOREM (up to the algebraic properties of c, a_i , a_{ij}). It suffices to set $c = \gamma$ and take the corresponding values of a_j and a_{ij} .

3. The integrality. In this section, we prove that the a_i , a_{ij} determined above are algebraic integers and c is an algebraic unit. We put $a_0 = a_n = 1$ and $a_i = 0$ for i < 0 or i > n. From (2.1), (2.2), (2.4), one obtains

$$1-(-1)^k c x^{2k}+(-1)^n x^{2n}=\left(\sum_{i=0}^n a_i x^i
ight)\!\left(\sum_{i=0}^n (-1)^i a_i x^i
ight)$$
 ,

which gives the relation:

(3.1)
$$\sum_{i=0}^{n} (-1)^{i} a_{i} a_{j-i} = \begin{cases} 1 & \text{if } j = 0\\ (-1)^{k+1} c & \text{if } j = 2k\\ (-1)^{n} & \text{if } j = 2n\\ 0 & \text{otherwise} \end{cases}.$$

For j = 2l $(1 \le l \le n-1)$, this can be rewritten as

(3.2)
$$\delta_{k,l}c + a_l^2 = 2\sum_{i=1}^{\infty} (-1)^{i+1} a_{l-i} a_{l+i}$$

(All other relations in (3.1) are trivial.) From (2.1) \sim (2.5), one has

$$\sum_{i,j=0}^{n-1} a_{ij} x^i (x+y) y^j = \sum_{1 \leq i+j \leq 2n-1} a_i a_j x^i y^j + c x^k y^k$$
 ,

which gives, for $0 \leq i \leq n-1$,

$$a_{i,0} = a_{0,i} = a_{i+1}$$
 , $a_{i,n-1} = a_{n-1,i} = a_i$

and, for $i, j = 1, \dots, n-1$,

(3.3)
$$a_{i-1,j} + a_{i,j-1} = \begin{cases} a_k^2 + c & \text{if } i = j = k \\ a_i a_j & \text{otherwise} \end{cases}$$

Let A denote the $n \times n$ matrix (a_{ij}) and set

$$oldsymbol{a}_i = egin{bmatrix} a_{1-i} \ dots \ a_{n-i} \end{bmatrix} \ (i \in oldsymbol{Z}) \ , \qquad A_j = egin{bmatrix} a_{0,j-1} \ dots \ a_{0,j-1} \ dots \ a_{n-1,j-1} \end{bmatrix} \ (1 \leq j \leq n) \ ,$$

 $(a_i = 0 ext{ for } i > n ext{ or } i < 1 - n); A_j ext{ is the } j ext{-th column vector of the matrix } A.$

LEMMA 3.1. One has

(3.4)
$$\sum_{i=0}^{n} (-1)^{i} a_{i} a_{i-j} = e_{-j} + (-1)^{k+1} c e_{2k-j} + (-1)^{n} e_{2n-j},$$

where e_l denotes the l-th (standard) unit vector in \mathbb{R}^n and we set $e_l = 0$ if $l \leq 0$ or l > n.

 $\leq j \leq k$,

 $+1 \leq j \leq n$.

This follows from (3.1).

LEMMA 3.2. One has

$$(3.5) A_{j} = \begin{cases} \sum_{i=0}^{j-1} (-1)^{i-j+1} a_{i} a_{i-j+1} & for \quad 1\\ \\ \sum_{i=j}^{n} (-1)^{i-j} a_{i} a_{i-j+1} & for \quad k \end{cases}$$

PROOF. Set

$$P = \begin{bmatrix} 0 & 0 \\ 1 & \cdot \\ \cdot & \cdot \\ 0 & 1 & 0 \end{bmatrix}, \quad P^* = \begin{bmatrix} 0 & 1 & 0 \\ \cdot & \cdot \\ 0 & \cdot & 0 \\ \cdot & \cdot \\ 0 & \cdot & 0 \end{bmatrix}$$

Then, by the definition, one has $a_{i+1} = P^i a_1$, $a_{-i} = P^{*i} a_0$ for i > 0. From (3.3) one has

$$A_{j} + PA_{j+1} = a_{j}a_{1}$$
 , $P^{*}A_{j} + A_{j+1} = a_{j}a_{0}$

for $1 \leq j \leq n-1$, $j \neq k$. We prove (3.5) for $1 \leq j \leq k$ by induction on j. For j = 1, $A_1 = a_0$ is trivial. Assuming the validity of (3.5) for j (<k), one has

$$A_{j+1} = a_j a_0 - P^* A_j = a_j a_0 - \sum_{i=0}^{j-1} (-1)^{i-j+1} a_i a_{i-j} = \sum_{i=0}^j (-1)^{i-j} a_i a_{i-j}$$
 ,

which proves (3.5) for j + 1. The case $k + 1 \leq j \leq n$ can be treated similarly, starting from the case j = n, where (3.5) reduces to $A_n = a_1$. q.e.d.

(In view of Lemma 3.1, we see that both expressions in (3.5) are valid for all j, $1 \leq j \leq n$, if one replaces $a_k a_{k-j+1}$ by $a_k a_{k-j+1} + c e_{2k-j+1}$.)

Now from our choice of c (Lemma 2.7) we have

(3.6)
$$\det(A) = 0$$
.

We will show that the relations (3.2), (3.4), (3.6) imply the integrality of the a_i 's. It is known that, under these conditions, the a_i 's are algebraic. (See the remark below.) Let K be an algebraic number field of finite degree containing all a_i $(1 \le i \le n-1)$ and let \mathfrak{p} be any prime ideal in K. Put

$${m
u}_{_0} = \mathop{\mathrm{Min}}\limits_{_{0 \leq i \leq n}} {m
u}_{_{\mathfrak{p}}}(a_i)$$
 ,

where ν_{ν} denotes the (exponential) valuation defined by \mathfrak{p} .

LEMMA 3.3. If $\nu_0 < 0$, one has $\nu_{\nu}(a_k) = \nu_0$ and $\nu_{\nu}(a_l) > \nu_0$ for $l \neq k$.

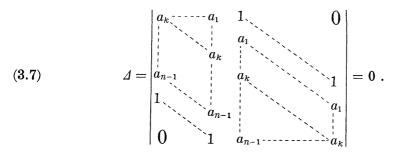
PROOF. Let $I_0 = \{i \mid \nu_{\nu}(a_i) = \nu_0, i \neq k\}$. Suppose $\nu_0 < 0$ and $I_0 \neq \emptyset$. Then there exists either a maximal element l in I with k < l < n or a minimal element l in I_0 with 0 < l < k. In (3.2) one has for any i > 0

$$u_{\mathfrak{p}}(2a_{l-i}a_{l+i})=
u_{\mathfrak{p}}(2)+
u_{\mathfrak{p}}(a_{l-i})+
u_{\mathfrak{p}}(a_{l+i})\geqq 2
u_{\mathfrak{0}}=
u_{\mathfrak{p}}(a_{l}^{2})\;.$$

Hence there must be at least one i > 0 such that $\nu_{\nu}(a_{l-i}) = \nu_{\nu}(a_{l+i}) = \nu_{0}$. If l > k (resp. < k), then l + i (resp. l - i) $\in I_{0}$, which is absurd. q.e.d.

Now we prove that a_1, \dots, a_{n-1} are algebraic integers and c is an algebraic unit. By (3.6) the vectors A_1, \dots, A_n are linearly dependent. By Lemma 3.2, this is equivalent to saying that the a_i $(1 - k \leq i \leq n - k)$ are linearly dependent. Thus one has

LANDAU-KOLMOGOROV INEQUALITIES



Suppose $\nu_0 < 0$. Then, by Lemma 3.3, one has

$$a_k^{-n} \varDelta \equiv \begin{vmatrix} 1 & 0 \\ \cdot & \cdot \\ 0 & 1 \end{vmatrix} \equiv 1 \pmod{\mathfrak{p}},$$

which is absurd. Thus one should have $\nu_0 \ge 0$ for all prime ideals \mathfrak{p} in K. This proves that a_1, \dots, a_{n-1} are integral. By (3.1), (3.5), c and a_{ij} are also integral.

REMARK. By a similar argument, one can show that, for any generalized valuation ϕ (with values in a linearly ordered abelian group) of any field containing a_1, \dots, a_{n-1} , one has $\phi(a_i) \ge 0$. This proves that the a_i are algebraic.

Next, we prove that c is a unit. Since the constant c is unchanged if we replace k by n - k, we may assume that $k \leq n/2$. By Lemma 3.1, one has for $1 \leq j \leq k$

$$(*)$$
 $\sum_{i=0}^{n} (-1)^{i} a_{i} a_{j-k+i} = (-1)^{k+i} c e_{j+k}$,

$$(**) \qquad \qquad \sum_{i=1}^{j} (-1)^{n-j+i} a_{n-j+i} a_{-n+i} = (-1)^{n} e_{j}$$

Applying $(-1)^{n-k}cP^k$ on (**) and adding it to (*), one obtains

$$(3.8) \qquad \sum_{i=0}^{n-j} (-1)^i a_i a_{j-k+i} + \sum_{i=1}^j (-1)^{n-j+i} a_{n-j+i} a_{n-k+i} = 0 \quad (1 \le j \le k) ,$$

where $a'_{n-k+i} = a_{n-k+i} + (-1)^{n-k} c P^k a_{-n+i}$. Since a_{1-k}, \dots, a_{n-k} are linearly dependent, this implies that $a_1, \dots, a_{n-k}, a'_{n-k+1}, \dots, a'_n$ are also linearly dependent. From $|a_1, \dots, a_{n-k}, a'_{n-k+1}, \dots, a'_n| = 0$, one obtains a relation of the form

$$cg(c, a_1, \cdots, a_{n-1}) + 1 = 0$$
,

where g is a polynomial with coefficients in Z. Hence c^{-1} is integral, and so c is an algebraic unit.

T. KATO AND I. SATAKE

References

- P. R. CHERNOFF, Optimal Landau-Kolmogorov inequalities for dissipative operators in Hilbert and Banach spaces, Advances in Math. 34 (1979), 137-144.
- [2] JU. I. LJUBIČ, On inequalities between the powers of a linear operator, Izv. Akad. Nauk SSSR Ser. Mat. 24 (1960), 825-864; Amer. Math. Soc. Transl. 40 (1964), 39-84.
- [3] N. P. KUPCOV, Kolmogorov estimates for derivatives in $L_2(0, \infty)$, Proc. Steklov Inst. Math. 138 (1975), 101-125 (English Transl.).
- [4] T. KATO, On an inequality of Hardy, Littlewood, and Polya, Advances in Math. 7 (1971), 217-218.
- [5] M. K. KWONG AND A. ZETTL, Norm inequalities for dissipative operators on inner product spaces, Houston J. Math. 5 (1979), 543-557.
- [6] M. H. PROTTER, Inequalities for powers of unbounded operators, Manuscripta Mathematica 28 (1979), 71-79.
- [7] G. H. HARDY AND J. E. LITTLEWOOD, Some integral inequalities connected with the calculus of variations, Quart. J. Math. Oxford 3 (1932), 241-252.

AND

DEPARTMENT OF MATHEMATICS UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA 94720 U.S.A. Mathematical Institute Tôhoku University Sendai, 980 Japan