
An Algorithm and Hardware Architecture for Integrated
Modular Division and Multiplication in GF (p) and GF (2n)

Lo’ai A. Tawalbeh and Alexandre F. Tenca
School of Electrical Engineering and Computer Science,

Oregon State University, USA
email: tawalbeh,tenca@ece.orst.edu

Abstract

This paper presents an algorithm and architecture that integrates modular division and
multiplication in both GF (p) and GF (2n) fields (Unified). The algorithm is based on the
Extended Binary GCD algorithm for modular division and on the Montgomery’s method
for modular multiplication. For the division operation, the proposed algorithm uses a
counter to keep track of the difference between two field elements and this way eliminate
the need for comparisons which are usually expensive and time-consuming. The proposed
architecture efficiently supports all the operations in the algorithm and uses carry-save
unified adders for reduced critical path delay, making the proposed architecture faster than
other previously proposed designs. Experimental results using synthesis for AMI 0.5µm
CMOS technology are shown and compared with other dividers and multipliers.

1. Introduction

Given the increasing demand for secure communications, cryptographic algorithms will
be embedded in almost every application involving exchange of information.

Modular arithmetic operations such as division and multiplication over finite fields
(mostly GF (p) and GF (2n)), are widely used in several cryptographic applications. In
general, public-key cryptographic algorithms requires a huge amount of computations,
therefore, there is an increasing demand for dedicated hardware to accelerate these com-
putations. An algorithm and hardware implementation that is able to compute modular
division and multiplication in both GF (p) and GF (2n) is definitely advantageous.

The modular multiplication operation with a large modulus is very important in many
public-key cryptosystems. Montgomery multiplication algorithm [11] is an efficient way to
compute modular multiplication. Authors in [5] proposed a unified algorithm to compute
Montgomery multiplication in both GF (p) and GF (2n). On the other hand, modular
division and modular inverse are time consuming operations and they cannot be avoided
completely in practical applications. For instance, they are used in decryption of ElGamal
[7] public-key cryptosystem. Researchers have claimed that a gain in performance can be
obtained when they are implemented in hardware [1, 6].

The Unified modular Division/Multiplication Algorithm (UDMA) proposed in this
work computes modular division and Montgomery multiplication in both GF (p) and
GF (2n) fields. The UDMA is based on the Extended Binary GCD algorithm [2, 12] for

modular division and on the Montgomery’s method for modular multiplication. For the
division operation, the proposed algorithm uses a counter to keep track of the difference
between integers in GF (p) or polynomial degrees in GF (2n), reducing the complexity of
each algorithm iteration by eliminating the need for comparisons of field elements. Other
modular division (inverse) algorithms have integer and polynomial degree comparisons
[6, 8, 9] as part of their control flow.

The hardware architecture for the unified divider/multiplier that implements the UDMA
efficiently supports all the computations in the algorithm and uses Carry Save represen-
tation so that all additions and subtractions are done in constant time, independent of
the operands precision.

The following Section presents some general concepts and mathematical notation used
in this paper. The Unified modular Division/Multiplication Algorithm (UDMA) is pro-
posed in Section 3. The overall organization of the hardware design that implements the
UDMA and its main functional blocks are shown and described in detail in Section 4.
Experimental results are shown in Section 5, followed by conclusions in Section 6.

2. General Concepts and Notation

The element Y (x) ∈ GF (2n) is a polynomial of degree less than n and has coefficients
in GF (2). In this paper, we consider polynomial basis for the elements of GF (2n). On
the other hand, the element Y ∈ GF (p) is an integer in the set {1,..., p− 1}, where p is a
n-bit prime modulus in the range 2n−1 < p < 2n. Elements in both fields are represented
as bit vectors. For simplicity Y (x) is denoted as Y in the algorithm description.

The addition in GF (2n) is a polynomial addition, which is done as a bitwise logic ex-
clusive OR operation between the two bit vectors being added. An irreducible polynomial
p(x) of degree n is used to reduce intermediate results in GF (2n). On the other hand,
the addition of elements in a prime field is a conventional integer addition with modulo
reduction (mod p).
• Extended Binary GCD Algorithm for Modular Division in GF (p) and GF (2n): Ex-

tended Binary GCD algorithm is an efficient way to compute modular division (inversion)
[2, 12, 10]. A unified division algorithm based on the Extended Binary GCD algorithm
was presented in [2]. The algorithm computes the modular division in either GF (p) or
GF (2n) fields for inputs X, Y, p and Field. The computation Z = X

Y mod p is performed
when Field = GF (p), and Z(x) = X(x)

Y (x) mod p(x) is done when Field = GF (2n). In
both cases, Y 6= 0. The modular inverse can be obtained by forcing X = 1. Notice that
the division or inverse takes the same amount of time.
• Unified Montgomery Modular Multiplication Algorithm: Montgomery introduced an

efficient algorithm to calculate modular multiplication [11]. A Montgomery algorithm
to handle multiplication in GF (p) and GF (2n) finite fields was introduced in [5]. The
Montgomery multiplication algorithm generates the product of two n-bit integers X and
Y in modulo p as: MM(X,Y) = XY r−1 mod p, where r = 2n for 2n−1 < p < 2n. The
modulus p and the constant r must be relatively prime. This condition is easily satisfied
when p is odd. The Montgomery image of an integer a, represented as ā, can be obtained
by multiplying it by the constant r and reducing it modulo p: ā = ar mod p.

3. Unified Algorithm for Modular Division and Montgomery
Modular Multiplication.

The Unified modular Division/Multiplication Algorithm (UDMA) is stated as follows:

Function: Modular Division and Multiplication in GF (p) and GF (2n)
Inputs: 0 ≤ X < p, 0 < Y < p, 2n−1 < p < 2n, Field, Op, n
Output: Z = XY 2−n mod p when Op = mult, Z = X

Y
mod p when Op = div.

Algorithm:
C = Y .

IF Op = mult THEN /* Multiplication Mode */
D = 0, U = 0, W = X, δ = n

ELSE /* Division Mode */
D = p, U = X, W = 0, δ = 0

END IF;
WHILE [(C 6= 0 AND Op = div) OR (δ 6= 0 AND Op = mult)]

IF c0 = 0 THEN
C := C À 1
δ := δ − 1 /* Integer Operation */

ELSE
k = 1
IF (Op = div) THEN

IF δ < 0 THEN C ⇔ D, U ⇔ W , δ := −δ END IF; /* Swapping */
IF((C + D) mod 4 6= 0 AND Field = GF (p)) THEN k = −1
ELSE δ := δ − 1 END IF;

ELSE /* Op = mult */
δ := δ − 1

END IF;
C := (C + k ∗D) À 1, U := (U + k ∗W)

END IF;
U := (U + u0 ∗ p) À 1

END WHILE;
IF Op = div THEN Z := W
ELSE Z := U
END IF;

To the best of our knowledge, this is the first algorithm that integrates the computation
of modular division and Montgomery modular multiplication in both GF (p) and GF (2n).
The UDMA mode of operation is controlled by input Op (div or mult), and the finite
field is controlled by the input Field (GF (p) or GF (2n)). For simplicity, the polynomials
X(x), Y (x), and p(x) are denoted as X, Y , and p, respectively, which correspond to the
bit-vector representation of these polynomials.

Most of the arithmetic operations in the algorithm are common to both modes of
operation. The initialization of variables depends on the operation. For a given field, all
the additions/subtractions are done in the field, besides the arithmetic operations on δ
(subtractions and change of sign) which are always integer operations.

The algorithm integrates the Extended Binary GCD algorithm and the Montgomery
multiplication algorithm and it was verified using Maple. To compute Montgomery mul-
tiplication using an n-bit modulus p, UDMA performs n iterations. The counter δ is
initialized with value n, and in each iteration it is decremented by one. The variables
used in the algorithm are initialized as: C = Y , D = 0, U = 0, and W = X. The result
is ready (Z = U) when δ = 0. The partial product U is reduced mod p in each iteration.
In both fields, while multiplying, addition is used in the operations that update C and
D (k = 1). The À operator indicates a 1-bit right shift operation.

The UDMA computes modular division using the same structure used by the Extended
Binary GCD Algorithm for modular division [2]. The variables are initialized as: C = Y ,
D = p, U = X, W = 0, and δ = 0. If the division is computed in GF (p), UDMA tests
the least significant two bits of C and D ((C + D) mod 4 6= 0) to conditionally subtracts
C from D (set k = −1). Otherwise, C is always added to D in both fields. The division
is completed when C = 0, and the final result is available in W . More details about the
operation of the UDMA are presented in the following Section.

4. Overall Hardware System Architecture

Figure 1 shows the top level architecture of the Unified Modular Divider/Multiplier
(call it UMDM) that implements the UDMA. The main functional blocks are Register
File (RF), Datapath, and Control. More details about these blocks are provided next.

Control

UMDM DatapathRegister File (RF)

out1

src1 src2

Load

input
(X,Y,P)

in dst

out2 B

2 vectors

2n

333

Y
n

Op
Field

n

(2 vectors)

2n

(2 vectors)

Load

A
(2 vectors)

2n

Sum / Carry

2n

Figure 1. Top level hardware architecture of the unified modular divider/multiplier
(UMDM).

4.1. Register File

The register file has five registers (R1 to R5). Since the computations are done in
Carry-Save form, each intermediate variable (C,U,D,W) is represented in two vectors
(sum,carry). So, the registers inside the register file are designed to store two n-bit vectors.
In other words, the ith register Ri is represented as Ri = (sum, carry) = (Ris,Ric).

The register file has one input, and two output ports. The Control block provides the
register file with the signals necessary to perform reading/writing operations. The 3-bit
signal dst determines the destination register to be written. The signals src1, src2 (3-bits
each), specify the registers to be read at output ports out1, out2, respectively.

4.2. UDMA Datapath

The n-bit datapath implementing the UDMA is shown in Figure 2. Each “while
iteration” of the algorithm is implemented in 1 clock cycle for multiplication mode, and

in 3 clock cycles for division if C is odd, and 2 clock cycles if C is even, as explained later.

Unified Carry-Save Adder1 with Complement (UCSA1)
C inFSEL complementer

As Ac Bs Bc

NEG

N

a b c

Y

control

LoadY

shiftY

 0 (c)

Yshifter

Unified Carry-Save Adder2 (UCSA2) C inFSEL

Sum Carry

sel_zero
 0 LSBit of U (u)

AND

result_shifter sh shift

Figure 2. Unified datapath of the modular divider/multiplier (UMDM datapath).

The proposed datapath has two inputs represented in carry-save form as A=(As,Ac)
and B=(Bs,Bc) which receive their values from the register file ports (out1, out2), respec-
tively. The main components of the datapath are two (3-2) Unified Carry-Save Adders
(UCSAs) which are similar in complexity to full-adders [5]. The unified adders can per-
form bit addition with or without carry depending on the input FSEL (Field Select).

The unified adder may be used to implement a redundant or non-redundant adder.The
use of non-redundant form of the operands and results reduces the register area but
increases the addition time (because of carry propagation).We decided to use Carry Save
adders to make the addition time constant and independent of the operand’s precision.

4.2.1. Unified Carry-Save Adders: The first adder in the datapath is a Unified
Carry-Save Adder with complement (UCSA1). Figure 4.a shows the bit slice diagram for
this adder and Figure 4.b shows the connection of n slices to form an n-bit adder. The
UCSA1 outputs are: (sum, carry) = a+b+c when NEG = Cin = 0, and (sum, carry) =
a + b− c when NEG = Cin = 1. Addition and subtraction in GF (2n) are the same.

b0 c0a0 b1 c1a1 bn-1 cn-1an-1

NEG
FSELFSELFSEL

UCSA1

1-bit

UCSA1

1-bit

UCSA1

1-bit

(b) n-bit adder

C in

carry 0sum 0carry 1sum 1carry n-1sum n-1carry n

b
a

FSEL

carry

sum

NEG
c

 (a) bit slice

Figure 3. Unified carry-save adder with complement (UCSA1) for 1-bit and n-bit
precision.

As we can see from Figure 3, the change of sign operation inside the UCSA1 is done
in parallel with the addition operation, and so, it does not add to the critical path.

The AND gate shown at the top of UCSA2 in Figure 2 is used to select between the
value 0 or the modulus p depending wether U is even or odd (this is determined by testing
u0), respectively. The input signal sel zero when asserted forces the third input of the
UCSA2 to zero.

The delay of the UMDM datapath (tdatapath) is determined by the delay of the two
UCSAs, the delay of the AND gate between them, and the delay of the result shifter
which has a delay of 2-input multiplexer (tMUX ' tXOR). By integrating the AND gate
with the second adder (shown in dashed box in Figure 2), its delay will not add to the
path delay. Knowing that each UCSA has a delay of a full adder (tFA = 2tXOR), we get:

tdatapath = tUSCA1 + tUCSA2 + tresult shifter = 4tXOR + tMUX = 5tXOR

The Yshifter shown in Figure 2 is a shift register used to implement the operation
(C >> 1) only in the multiplication mode. It is loaded with the input Y (multiplier)
when laodY = 1. When shiftY = 1, C is shifted right by 1-bit (remember that C = Y).
The least significant bit of the shifted C goes to the control section to be tested (c0 = 0).

The datapath outputs (Sum, Carry) are shifted right 1-bit by correct wiring using the
result shifter at the output of the UCSA2. This module is implemented as two 2-input
multiplexers with select line shift. When shift = 1, the shifted outputs are selected.

4.3. Control Block

This section describes the Control block and the system operation during division and
multiplication modes and the design techniques used to implement the proposed UMDM.

When Load = 1, the registers inside the register file are initialized (by the user) with
the inputs X,Y , and p depending on the operation to be performed by the algorithm.

While the algorithm is in division mode, the test C 6= 0 must be done. The vector C is
in Carry Save form. Simulation results show that C = 4 or −4 at the end of computation.
If more iterations than required are performed, the result is still correct. In the proposed
UMDM design, the test C 6= 0 is replaced by testing the bit vector C for specific values
(4 or -4), and no need to compare all the bits of C with zero.

4.3.1. Multiplication Mode: The proposed multiplier/divider performs 1 iteration
of the algorithm in each clock cycle when computing Montgomery multiplication in both
fields. Only three registers are used. Table 1 shows the loading phase for multiplication
and division (initialization of the intermediate variables) as described by the algorithm.

Table 2 shows the operation of the unified divider/mulitplier when performing Mont-
gomery multiplication in GF (p) or GF (2n). It shows the main control signals applied to
the register file and the datapath to compute multiplication. The values of the signals
which are not mentioned in the Table are equal to zero. Depending on C (even or odd), a
different set of signals are used. The Table also shows the interpretation of these signals
on the datapath, and the corresponding operation in the UDMA. When c0 = 1, two
additions (U := (U +k ∗W) and U := (U +u0 ∗p) >> 1) are performed by the datapath.

The variable C is shifted right one bit using the Y shifter in every cycle (shiftY ← 1).
The counter δ is initialized with n to indicate the number of iterations. Since δ is decre-

Table 1. Load phase for multiplication and division
Multiplication Division

Variables/parameters Loading the RF Variables/parameters Loading the RF
represented by R R ← (Rs, Rc) represented by R R ← (Rs, Rc)

W and p R1 ← (X, p) W R1 ← (X, 0)
U R2 ← (0, 0) U R2 ← (0, 0)
p R3 ← (0, p) D R3 ← (p, 0)

Variable Loading the Shifter C R4 ← (Y, 0)
C YShifter ← (Y) p R5 ← (0, p)

Table 2. The operation of the UMDM during Montgomery multiplication
c0 = 0 (then) c0 = 1 (else)

Control Datapath Control Datapath
Signals Interpretation Signals Interpretation
src1 ← (010) (As,Ac) ← (Us,Uc) src1 ← (010) (As, Ac) ← (Us, Uc)
src2 ← (011) (Bs, Bc) ← (0, p) src2 ← (001) (Bs, Bc) ← (X, p)
dst ← (010) store the result in U dst ← (010) store the result in U
shiftY ← 1 C >> 1 shiftY ← 1 C >> 1
shift ← 1 the result >> 1 shift ← 1 the result >> 1
dec delta ← 1 δ = δ − 1 dec delta ← 1 δ = δ − 1
Computes: U := (U + u0 ∗ p) >> 1 U := (U + k ∗W), U := (U + u0 ∗ p) >> 1

mented by one in each iteration (dec delta = 1), the computation ends when δ = 0, and
the result can be read form R2.

4.3.2. Division Mode: Each modular division iteration in the proposed UMDM
architecture requires 2 clock cycles if C is even and 3 clock cycles if C is odd in both
fields. The initialization of variables was shown in Table 1.

Let us assume that the algorithm is computing modular division in GF (p). Tables 3
and 4 show the control signals during division when C is even and odd, respectively.
Table 3 shows when δ is positive, the expression U := (U + u0 ∗ p) >> 1 is computed in
the first clock cycle. C is shifted right by 1-bit (C >> 1) in the second cycle in order to
enable the test for c0 = 0 which decides on the control signals of the next iteration.

Table 3. The UMDM operation during computing division when c0 = 0
c0 = 0 (then)

State1: Original State2: Swapped
Clock Control Datapath Control Datapath
Cycle Signals Interpretation Signals Interpretation
cycle 1 src1 ← (001) (As,Ac) ← (Us,Uc) src1 ← (010) (As,Ac) ← (Ws, Wc)

src2 ← (101) (Bs, Bc) ← (0, p) src2 ← (101) (Bs, Bc) ← (0, p)
dst ← (001) store result in R1(U) dst ← (010) store result in R2(W)
shift ← 1 result >> 1 shift ← 1 result >> 1

U := (U + u0 ∗ p) >> 1 is computed
cycle 2 src1 ← (100) (As,Ac) ← (Cs, Cc) src1 ← (011) (As,Ac) ← (Ds, Dc)

sel zero ← 1 (Bs, Bc) ← (0, 0) sel zero ← 1 (Bs, Bc) ← (0, 0)
dst ← (100) store result in R4(C) dst ← (011) store result in R3(D)
shift ← 1 result >> 1 shift ← 1 result >> 1
dec delta ← 1 δ = δ − 1 dec delta ← 1 δ = δ − 1

C := (C) >> 1 is computed

Table 4. The UMDM operation during division when c0 = 1
c0 = 1 (else)

State1: Original State2: Swapped
Clock Control Datapath Control Datapath
Cycle Signals Interpretation Signals Interpretation
cycle 1 src1 ← (001) (As, Ac) ← (Us, Uc) src1 ← (010) (As,Ac) ← (Ws, Wc)

src2 ← (010) (Bs, Bc) ← (Ws, Wc) src2 ← (001) (Bs, Bc) ← (Us, Uc)
dst ← (001) store result in R1(U) dst ← (010) store result in R2(W)
shift ← 0 result is not shifted shift ← 0 result is not shifted
dec delta ← ∗, *=1 when TEST = 0, otherwise *=0. (δ = δ − 1)

U := (U + k ∗W) is computed
cycle 2 src1 ← (001) (As, Ac) ← (Us, Uc) src1 ← (010) (As,Ac) ← (Ws, Wc)

src2 ← (101) (Bs, Bc) ← (0, p) src2 ← (101) (Bs, Bc) ← (0, p)
dst ← (001) store result in R1(U) dst ← (010) store result in R2(W)
shift ← 1 result >> 1 shift ← 1 result >> 1
negate delta ← ∗, *=1 when δ < 0, otherwise *=0. (δ = −δ)

U := (U + u0 ∗ p) >> 1 is computed
cycle 3 src1 ← (100) (As, Ac) ← (Cs, Cc) src1 ← (011) (As,Ac) ← (Ds, Dc)

src2 ← (011) (Bs, Bc) ← (Ds, Dc) src2 ← (100) (Bs, Bc) ← (Cs,Cc)
dst ← (100) store result in R4(C) dst ← (011) store result in R3(D)
shift ← 1 result >> 1 shift ← 1 result >> 1

C := (C + k ∗D) >> 1 is computed

The Control during division has two major ”states”: Original (not swapped) and
Swapped. The control goes back and forth between these states only when c0 = 1 and
δ < 0. The sign of δ is made positive (δ = −δ) when this condition happens (realized by
the control signal negate delta as shown in Table 4). When the control state is Original,
the variables W,U,D, C are read from the registers R1, R2, R3, R4, respectively. Also, the
updated values of these variables are written to the above registers in the same order.
When the control state is Swapped, the sources for the variables W and U are reversed
(W is read from R2 and U from R1). Same thing applies for C and D (C is read from
R3 and D from R4). The same approach is used for writing to these variables. This way,
the swap operation is realized by reading from/writing to the correct register.

The value of k ∈ {-1,1} is determined by the control section depending on the result
of the test ((C + D) mod 4 6= 0 AND Field = GF (p)), which is denoted by (TEST)
in Table 4. In the case k = −1, negative D and negative W are obtained by setting
N = 1. Since the TEST is done on the least two significant bits of C and D, it can be
implemented using a two-level gate network.

If the algorithm is computing the modular division in GF (2n), the same procedure
described above is followed, except that the TEST is not applicable (Field = GF (2n)).
For both fields, the computation is completed when C = 0, and the result is Z = W .

5. Experimental Results and Comparisons

This section has two categories of experimental results: (a) number of iterations ob-
tained from a Maple model and (b) the critical path delay results obtained by synthesis
of the VHDL description of the algorithm.

5.1. The Number of Iterations

Maple was used to describe the proposed algorithm (Alg1 = UDMA) and the unified
Montgomery inverse algorithm presented in [6] (Alg2). At least 100 random samples were
used to verify each algorithm operation and obtain statistics.

The other division (inversion) algorithm being compared is the unified Montgomery
inverse algorithm presented in [6] (Alg2). For consistency, no multiple-word calculation
is considered here. For an n−bit input Y , Alg2 computes Z = Y −12k, where n ≤ k ≤ 2n
is the number of algorithm iterations. A correction step is needed to get the inverse in
the Montgomery domain (Y −12n) or in the integer domain (Y −1). Therefore, the total
number of iterations required to compute the inverse in Montgomery domain is 2k − n.
To compute the modular inverse in the integer domain it needs 2k iterations.

Number comparisons were used in Alg2 to compare the size of the bit vectors that
represent elements in the field (the same way it was done in [1, 8, 9]) instead of the counter
(δ) used in our algorithm. The comparison limits a fast hardware implementation.

Figure 4 shows the number of iterations as a function of operand size required by
Alg1 (UDMA) and Alg2 to compute the integer modular inverse (division) in GF (p) and
GF (2n). The size of the operands is in the range (160 to 512) bits. From figure 4, we
can see that Alg1 executes in about 25% less iterations than Alg2 when computing the
inverse in the integer domain for GF (p). For GF (2n), Alg1 has about 40% less iterations
than Alg2 when computing the inverse in the integer domain. Notice that the number of
iterations for Alg1 in both fields increase linearly with the operand precision.

0

200

400

600

800

1000

1200

1400

1600

1800

0 100 200 300 400 500 600

Operand size (bits)

Ite
ra

tio
ns

Alg1 GF(p)
Alg2 GF(p)
Alg1 GF(2^n)
Alg2 GF(2^n)

Figure 4. The number of iterations as a function of operand size required by Alg1
(UDMA) and Alg2 (presented in [6]) to compute the modular inverse in GF (p) and
GF (2n)

J. Goodman et al. presented in [8] a public-key processor that implements operations
required for Elliptic Curve Cryptography (ECC) including modular inverse in GF (2n)
only. It is stated in [8] that the inversion in GF (2n) takes on average 3.3 cycles for
each bit. Alg1 needs a maximum of 2 iterations/bit and on average 1.5 iterations/bit
to compute the modular inverse in GF (2n). The UMDM architecture performs each
iteration of Alg1 in 2.5 clock cycles on average. Therefore, the GF (2n) inversion by
Alg1 takes on average 1.5 × 2.5 = 3.75 cycles for each bit. But on the other hand,
the critical path delay (clock period) of the datapath of the processor presented in [8]
(call it tGµP) is the delay of 2 full adders (tFA) and 2 levels of muxes and an AND gate

(tGµP = 2tFA +2tmux +tAND), compared to a critical path delay of only 2 full adders and
1 level of muxes for the UMDM datapath proposed in this work (tUMDM = 2tFA + tmux).
The critical path delay will affect the total computational time as will be seen later.

Alg1 computes Montgomery modular multiplication in n cycles, which is consistent
with several other designs [5, 8, 11].

5.2. Synthesis Results

The experimental data presented in this section were generated using Mentor Graphics
CAD tools. The target technology was set to AMI05 fast auto (0.5 µm CMOS with
hierarchy preserved) provided in the ASIC Design Kit from the same company[3].

The UMDM architecture was described in VHDL and simulated in ModelSim for func-
tional correctness. It was synthesized using Leonardo tool for the mentioned technology.

Figure 5 shows the critical path delays (in nano-seconds) of the UMDM for the precision
range (160-512) bits. The Figure shows that the delay increases with the number of bits
and it saturates at higher precision. This indicates that the critical path delay (clock
period) of the UMDM became independent of the operands size at high precisions.

12

13

0 100 200 300 400 500 600

Operand size (bits)

T
im

e
(n

an
o

se
co

nd
s)

Figure 5. The critical path delay of the UMDM in nano-seconds (operand size from
160-512 bits).

The public-key processor presented in [8] (GµP) runs at clock rate of 50 MHz (clock
period = 20 nsec), and it is considered a good representative of this class of hardware
designs. The divider/multiplier proposed in this work has a maximum clock period of
12.8 nsec at 512-bit operand size, which is about 1.6 times faster than GµP . Also, as
mentioned before, the GµP takes 3.3 cycles/bit to perform a modular inverse in GF (2n)
and this design takes 3.75 cycles/bit. Let the total average computation time of a given
design Tdesign:

Tdesign = (cycles/bit) ∗ n ∗ clock period

where n is the operand size in bits. At n = 512-bits, the total computation time of
GµP (TGµP) is: TGµP = 3.3 ∗ 512 ∗ 20 × 10−9 = 33.79µsec and the total computation
time for this design (TUMDM) is: TUMDM = 3.75 ∗ 512 ∗ 12.8 × 10−9 = 24.57µsec. By
comparing TGµP and TUMDM , we find that the UMDM proposed in this paper computes
division in 33.79−24.57

33.79 = 27.3% less total computation time than the GµP .
On the other side, the area for the UMDM design was extracted from the experimental

data as: AUMDM = 236.12 ∗ n + 180 = O(n) gates.

The architecture presented in [4] is dedicated to GF (2n) only, and it uses degree
comparisons of the field polynomials. The design has an area complexity of O(n) too.

6. Conclusion

In this work we present a Unified modular Division/Multiplication Algorithm (UDMA)
and its corresponding architecture. The algorithm is a based on the Binary GCD algo-
rithm for modular division in both fields, and on the Montgomery modular multiplication
algorithm. The UDMA computes the division in either GF (p) or GF (2n) fields in an ef-
ficient way when compared with other algorithms. It uses a counter to keep track of the
difference between the values of elements in the field, reducing the complexity of each
iteration and making it faster than the iteration of other algorithms that use element
comparisons. When compared with Montgomery multipliers, the proposed algorithm has
the same number of iterations and complexity.

The Unified Divider/Multiplier module that implements the algorithm efficiently sup-
ports all its operations and uses carry-save unified adders for reduced critical path delay.

Experimental results show that the computation time of the proposed solution is com-
petitive with other dedicated (limited) solutions and the cost in area paid to have the
integration of division and multiplication is not high. Multiplication is done almost as
fast as in a dedicated multiplier with the added functionality of division and the flexibility
to choose the required finite field.

Acknowledgements This work was supported by the NSF CAREER grant CCR-
0093434 and by the Jordan University of Science and Technology (JUST).

References

[1] A. A. Gutub, A. F. Tenca, E. Savas and C. K. Koc . Scalable and unified hardware to compute
montgomery inverse in gf(p) and gf(2n). In Proc. CHES 2002, pages 484–499.

[2] A. F. Tenca and L. A. Tawalbeh. An Algorithm for Unified Modular Division in GF (p) and GF (2n)
Suitable for Cryptographic Hardware. IEE Electronics Letters, 40(5):304–306, March 2004.

[3] ASIC Design Kit. Mentor Graphics Co. http://www.mentor.com
/partners/hep/AsicDesignKit/dsheet/ami05databook.html.

[4] A. D. Daneshbeh and M. A. Hasan. A Unidirectional Bit Serial Architecture for Double-Bases
Division over GF (2m). In IEEE 16th Symposium on Computer Arithmetic.

[5] E. Savas, A. F. Tenca and Ç. K. Koç. A scalable and unified multiplier architecture for finite fields
GF (p) and GF (2m). In Proc. CHES 2000, pages 281–296.

[6] E. Savas and C. K. Koc. Architectures for unified field inversion with applications in elliptic curve
cryptography. In The 9th IEEE international conference on Electronic, Circuits and systems, 2002.

[7] T. ElGamal. A public key cryptosystem and signiture scheme based on discrete logarithms. IEEE
Trans. - Information Theory, IT-31(4):469–472, July 1998.

[8] J. Goodman and A. P. Chandrakasan. An energy-efficient reconfigurable public-key cryptography
processor. IEEE Journal of solid-state circuits, 36(11):1808–1820, November 2001.

[9] J. Wolkerstorfer. Dual-field arithmetic unit for gf(p) and gf(2n). In CHES 2002, pages 500–514.

[10] D. Knuth. The Art of Computer Programming, Volume 2, Seminumerical Algorithms. 3rd edition,
1998.

[11] P. L. Montgomery. Modular multiplication without trial division. Mathematics of Computation,
44(170):519–521, April 1985.

[12] N. Takagi. A VLSI Algorithm for Modular Division Based on the Binary GCD algorithm. IEICE
Trans. fundamentals, E81-A(5):724–728, May 1998.

