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We consider the problem of approximating Pareto surfaces of convex multicriteria optimization problems by
a discrete set of points and their convex combinations. Finding the scalarization parameters that optimally

limit the approximation error when generating a single Pareto optimal solution is a nonconvex optimization
problem. This problem can be solved by enumerative techniques but at a cost that increases exponentially with
the number of objectives. We present an algorithm for solving the Pareto surface approximation problem that
is practical with 10 or less conflicting objectives, motivated by an application to radiation therapy optimization.
Our enumerative scheme is, in a sense, dual to a family of previous algorithms. The proposed technique retains
the quality of the best previous algorithm in this class while solving fewer subproblems. A further improvement
is provided by a procedure for discarding subproblems based on reusing information from previous solves.
The combined effect of the enhancements is empirically demonstrated to reduce the computational expense of
solving the Pareto surface approximation problem by orders of magnitude. For problems where the objectives
have positive curvature, an improved bound on the approximation error is demonstrated using transformations
of the initial objectives with strictly increasing and concave functions.
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1. Introduction
Multicriteria optimization (MCO) deals with opti-
mization problems involving multiple mutually con-
flicting objectives (see, e.g., the monographs Miettinen
1999, Ehrgott 2005). Generally, there is no feasible
solution that is optimal with respect to all objec-
tives simultaneously. Instead, a well-balanced trade-
off between objectives is sought within the Pareto
optimal set: the set encompassed by the feasible solu-
tions such that an improvement in one objective can
only be achieved through a sacrifice in another. One
approach to exploring the Pareto optimal set is to pre-
compute a finite number of solutions without human
interaction, and then use a navigation tool to form
convex combinations between discrete solutions in
real time (see Monz et al. 2008, Eskelinen et al. 2010).
This technique is by design restricted to problems
with convex constraints.

We are particularly interested in an application of
the described technique to treatment planning for
intensity-modulated radiation therapy (IMRT). There
is a rich literature of methods that recognize IMRT
planning as an MCO problem (see, e.g., Cotrutz et al.

2001; Küfer et al. 2003; Lahanas et al. 2003; Craft et al.
2005, 2007). Clinical evaluations have demonstrated
that such methods have the potential of improv-
ing both manual planning time and treatment qual-
ity (Thieke et al. 2007, Hong et al. 2008, Craft et al.
2012). In view of this application, we limit ourselves
to generating Pareto optimal points by replacing the
vector-valued objective function of the initial problem
with a weighted sum of its components. This method
is extensively used throughout the field of MCO and
is the de facto standard for IMRT optimization (Hunt
et al. 2002, Ahnesjö et al. 2006). We further limit our-
selves to consider convex objectives, so that the Pareto
optimal set forms a connected surface in the boundary
of a convex set (Romeijn et al. 2004). For a description
of convex criteria that are commonly used in IMRT
planning together with nonconvex criteria that can be
reformulated as convex (see Romeijn et al. 2004).

Within this context, we consider the problem of
generating a discrete set of Pareto optimal solutions
so that their convex combinations are a representa-
tive approximation of the Pareto surface. The majority
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of methods for this problem use polyhedral approx-
imations of the Pareto surface to ensure an even
spread of points over this set (see, e.g., the review
by Ruzika and Wiecek 2005). Such methods can be
broadly classified as inner approximation methods
(Chernykh 1995, Schandl et al. 2002, Craft 2010); outer
approximation methods (Benson 1998), and sandwich
methods (Solanki et al. 1993, Klamroth et al. 2003,
Craft et al. 2006, Rennen et al. 2011, Shao and Ehrgott
2008b, Ehrgott et al. 2011). In inner approximation
methods, the lower boundary of the convex hull of the
current set of Pareto optimal points is used to approx-
imate the Pareto surface from within. Outer approxi-
mation methods instead find supporting hyperplanes
to the Pareto surface and construct an approxima-
tion by taking the intersection of halfspaces associated
with these hyperplanes. Sandwich methods make
combined use of these two techniques, thereby enclos-
ing the Pareto surface in a hypervolume between two
converging approximations. Of related interest is also
a technique for obtaining a Pareto set representation
by approximating the nondominated set of its dual
problem. This approach has been demonstrated for
multiobjective linear programs in an outer approxi-
mation version (Ehrgott et al. 2012) and a sandwich
approximation version (Shao and Ehrgott 2008a).

In this paper, we focus on sandwich algorithms
because the maximum distance between the inner
and outer approximation can be used to steer gener-
ation of new points toward parts of the Pareto sur-
face that currently lack accurate representation, and to
provide an upper bound on the approximation error.
This property makes sandwich algorithms favorable
for large-scale problems where the computational cost
of each optimization limits the number of Pareto opti-
mal solutions that are practically computable.

The computational expense of a sandwich algorithm
increases exponentially with the number of objectives.
This behavior is due to what is called the curse of
dimensionality: in direct sampling of a distribution of
data, the number of samples required to maintain a
given level of accuracy increases exponentially with
the number of variables (Bellman 1961). As a con-
sequence applications with more than six objectives
have, to the best of our knowledge, previously not
been reported. The number of objectives commonly
encountered in IMRT planning, on the other hand,
range to about 10 (Craft and Bortfeld 2008, Spalke et al.
2009). Current practice for high-dimensional cases is to
sample weights uniformly at random. This technique
is well known to be inadequate for generating an even
distribution of points from all parts of the Pareto sur-
face (Das and Dennis 1997).

Motivated by these shortcomings, we develop
methods for making sandwich algorithms tractable to
a wider range of problem formulations. We devote

particular attention to the mathematical programming
and computational geometry aspects of the problem.
For many problems within these two fields the pri-
mal and dual formulations have equivalent complex-
ity. However, as noted by Bremner et al. (1998, p. 2)
with respect to polytope duality: “For a particular
class of polytopes and a fixed algorithm, one trans-
formation may be much easier than its dual.” Argu-
ing that this is the case for sandwich algorithms, we
give an algorithm that in a sense is dual to a fam-
ily of previous algorithms in the literature. Our main
contribution is a scheme that retains the quality of
the best previous algorithm while achieving a more
benign ratio between computational effort and prob-
lem dimension. The presented algorithm also gen-
eralizes sandwich algorithms to be compatible with
cone-based preference models (see, e.g., Engau 2009,
Hunt and Wiecek 2003, Monz 2006). Ordering cones
have proven useful in multicriteria IMRT planning for
excluding parts of the Pareto surface that are known
a priori not to be of interest (Serna et al. 2009).

2. Preliminaries
2.1. Notation and Terminology
We denote by e the vector of ones with its dimen-
sion defined by its context. We treat sets of points
and matrices interchangeably when convenient; the
rows of the matrix are the elements of the corre-
sponding set. The shorthand 4 · 5+ is used to denote
max8·109. We denote the optimal value of an opti-
mization problem P by optval4P5. For a function f
and a subset S of its domain, we denote by f 4S5 the
image 8f 4s52 s ∈ S9. For a set S, we denote by conv4S5
its convex hull. For two sets S1 and S2, we denote
by S1 + S2 their Minkowski sum. Minkowski addition
between a set S and a singleton set 8s9 is denoted by
S + s. A hyperplane 8z2 aT z = b9 with nonzero nor-
mal a and offset b is denoted by H4a1 b5. With each
hyperplane, we associate a closed positive, a closed
negative, an open positive, and an open negative
halfspace, defined by substituting, respectively, “≥,”
“≤,” “>,” and “<” for the equality in the hyperplane
equation. The k-dimensional intersection between a
polyhedron and one of its supporting hyperplanes is
called a k-face. A 0-face is called a vertex, a 1-face
an edge, an 4n − 25-face a ridge, and an 4n − 15-face
a facet. Unless otherwise stated, a normal vector to a
polyhedral face is assumed to be oriented inward.

2.2. Problem Formulation
We consider multiobjective optimization problems of
the form

4MOP5
minimize

x
f 4x5= 4f14x5 · · · fn4x55

T

subject to x ∈X = 8x2 c4x5≤ 091
(1)
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involving n ≥ 2 objective functions fi2 �
m → � to be

minimized over a feasible region X ⊆�m defined by a
vector c2 �m → �k of constraint functions. We denote
by Z the image of the feasible region under the objec-
tive function mapping, i.e., Z = f 4X5. We refer to
the m-dimensional space of which X is a subset as
the decision space and to the n-dimensional space of
which Z is a subset as the objective space. Through-
out, the feasible region X is assumed to be nonempty,
and the functions f and c are assumed to be con-
vex and bounded on X. The feasible region is a con-
vex set because sublevel sets of convex functions are
convex. Because f and X are convex, MOP is a convex
optimization problem.

2.3. Notion of Optimality
The solution set to MOP is the set of nondominated
feasible points. Dominance relations between points
in objective space are defined with respect to the par-
tial order induced by some ordering cone C, which
we require to be closed, pointed (C ∩ 4−C5 ⊆ 809),
and convex.

Definition 2.1 (Nondominance). Let x∗ be feasible
to MOP. Then, x∗ is nondominated if there exists no
x in X such that f 4x∗5 ∈ f 4x5+C \ 809.

To easily distinguish between decision space and
objective space we refer to a nondominated solution
x∗ as efficient whereas the corresponding objective
vector f 4x∗5 is called Pareto optimal. We refer to the
set of all efficient solutions as the efficient set and to
the set of all Pareto optimal objective vectors as the
Pareto set.

We restrict ourselves to consider polyhedral order-
ing cones generated by some matrix Q, i.e., C = 8Q�:
�≥ 09. Instead of specifying Q directly, we prefer to
use the set of admissible trade-off rates between objec-
tives, which is the dual cone C∗ = 8z: yT z≥ 0, ∀y ∈C9.
Let T be the symmetric n×n matrix with unit diag-
onal and nonnegative off-diagonal elements tij such
that the reciprocal of tij is the maximum acceptable
increase in fi for a unit decrease in fj . Then, C∗ is the
polyhedral cone generated by T , and C is the dual
cone to C∗, i.e., C = 8z: Tz≥ 09, here using that C =C∗∗

by convexity and closedness of C (Stoer and Witz-
gall 1970, p. 53). By construction, C∗ ⊆ �n

+
, so that

�n
+

⊆C (Stoer and Witzgall 1970, p. 56). Taking T and
Q to be the identity matrix, so that C =C∗ =�n

+
, gives

dominance in the conventional Pareto sense.

2.4. The Weighting Method
Computing a Pareto optimal point typically involves
reformulating the initial vector-valued problem to a
parameter-dependent scalar problem. We restrict our-
selves to consider scalarization using the weighting

method, where an n-vector w of weights such that
w ∈C∗ is introduced to yield the single-objective opti-
mization problem

4SUM4w55
minimize

x
wT f 4x5

subject to x ∈X0

This is a convex optimization problem because C∗ ⊆

�n
+

and nonnegative linear combinations preserve
convexity. The vector w is throughout assumed to be
normalized so that eTw = 1.

Problems MOP and SUM4w5 are related as fol-
lows. Sufficient conditions for a point x∗ to be an
efficient solution to MOP is that x∗ is an optimal
solution to SUM4w5 for some w in C∗ such that w> 0
(Miettinen 1999, Theorem 3.1.2), or that x∗ is a
unique optimal solution to SUM4w5 for some w in C∗

(Miettinen 1999, Theorem 3.1.3). A sufficient condition
for uniqueness is that all objectives are strictly con-
vex. Any x∗ that is optimal to SUM4w5 for some w in
C∗ defines a hyperplane H4w1f 4x∗55 that supports the
feasible objective space Z at f 4x∗5. To see this, observe
that f 4x∗5 ∈Z ∩H4w1f 4x∗55 and that the intersection
between Z and the open negative halfspace associated
with H4w1f 4x∗55 is empty, or otherwise x∗ would not
be optimal to SUM4w5. A necessary condition for a
point x∗ to be an efficient solution to MOP is, by con-
vexity, that there exists w in C∗ such that x∗ is an
optimal solution to SUM4w5 (Miettinen 1999, Theo-
rem 3.1.4). Finding any point on the Pareto surface
consequently decomposes to solving SUM4w5 with
w being normal to the Pareto surface at the sought-
after point.

3. The Sandwich Algorithm
3.1. The Algorithmic Idea
A generic sandwich algorithm based on the weighting
method is stated in Algorithm 3.1, and schematically
illustrated for a bi-objective problem in Figure 1. This
algorithm generates a set of points such that their con-
vex hull constitutes an approximation of the efficient
set with approximation error below some � > 0. The
computational goal is to construct the approximation
with as few solves as possible. The algorithm avoids
assessing the quality of the approximation of the effi-
cient set in the typically high-dimensional decision
space by a mapping to objective space. The result-
ing image is evaluated with respect to its approx-
imation of the Pareto surface. An upper bound on
the approximation error is calculated as the distance
between polyhedral inner and outer approximations
of the Pareto surface. The weighting vector in the
next weighted-sum problem to be solved is the nor-
mal to the inner approximation at the point where the
upper bound is attained. This choice corresponds to
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f1 f1 f1

f 2 f 2 f 2

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3

Figure 1 First Three Iterations of the Sandwich Algorithm Applied to a Bi-Objective Program
Notes. The points indicate Pareto optimal objective vectors. The Pareto surface is enclosed in the shaded region between the inner and outer approximations.

the greedy strategy of maximizing the decrease in the
approximation error.

The first two steps in Algorithm 3.1 normalize the
range of each objective function to avoid bias toward
objectives of large magnitude. We use the pragmatic
approach of normalizing each objective function with
respect to its minimum and maximum value during
the n initial solves of SUM4w5.

Algorithm 3.1 (The Sandwich Algorithm)
for i = 11 0 0 0 1n do

solve SUM4ti5 with i being the ith extreme ray
of C∗;

normalize f to 60117n;
solve SUM4w5 with w = 41/n5e;
construct inner and outer approximations Zin and
Zout of the Pareto surface;

while not converged do
compute an upper bound on the approximation

error;
if the upper bound is below � then

converged; continue;
solve SUM4w5 with w normal to Zin where the

upper bound is attained;
update Zin and Zout;

end

3.2. Relation to Previous Work
Sandwich algorithms originate from methods for
approximating univariate convex functions by piece-
wise linear and continuous upper and lower approx-
imations (see, e.g., Fruhwirth et al. 1989, Rote 1992).
Such methods partition the real line into contiguous
intervals by iteratively evaluating the function and its
derivative. A function evaluation is performed at each
iteration to partition the interval with greatest approx-
imation error into two subintervals, thereby improv-
ing the overall error measure. Different implementa-
tions of this scheme can be categorized according to
partitioning rule (see, e.g., the review by Rote 1992).
Two notable examples are the maximum error rule
and the chord rule. The maximum error rule adds a

new point with abscissa equal to that of the vertex
of its lower bounding approximation, see Figure 2(a).
With the chord rule, a new point is added with tan-
gent equal to the slope of the upper bounding approx-
imation, see Figure 2(b).

For the problem of approximating a Pareto sur-
face, the analog of a partitioning rule is a method for
generating scalar subproblems. A general-dimensional
analog of the maximum error rule is provided
by Benson’s outer approximation algorithm (Benson
1998). This method has been extended to a sandwich
technique for multiobjective linear programs by Shao
and Ehrgott (2008b), and further generalized to the
convex nonlinear case by Ehrgott et al. (2011). Here,
a reference point is first selected in the interior of the
feasible region in objective space. Pareto optimal objec-
tive vectors are then generated at the intersection of
the Pareto surface and a line segment with endpoints
defined by the reference point and a vertex of the outer
approximation. This step requires solving scalar prob-
lems with the initial objectives posed as constraints
and an auxiliary variable as objective.

In this paper, we focus on a general-dimensional
analog of the chord rule because this leads to scalari-
zation using the weighting method. General-dimen-
sional sandwich algorithms based on the weighting

x

f(
x

)

f(
x

)

(a) The maximum error rule

x

(b) The chord rule

Figure 2 Two Partitioning Rules for Approximation of a Convex
Univariate Function by Piecewise Linear Upper and Lower
Bounds

Note. The partitioning point is indicated in white.
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method have previously been suggested by Solanki
et al. (1993), Craft et al. (2006), and Rennen et al.
(2011), where the last two can be viewed as enhanced
versions of the preceding one(s). A complicating issue
for this class of methods is the fact that a vector nor-
mal to the convex hull of a discrete set of Pareto opti-
mal points can have negative components in dimen-
sions beyond two. Hence, if such a normal vector is
used directly as a weighting vector in SUM4w5, this
vector may lie outside C∗, and the resulting optimal
solution may thus not be efficient to MOP. The algo-
rithm of Solanki et al. (1993) handles this compli-
cation by introducing bounds on the allowed devia-
tion from the Pareto surface. In the algorithm of Craft
et al. (2006), a heuristic method is instead used to
transform mixed normals into nonnegative ones, to
make better use of each optimization. The algorithm
of Rennen et al. (2011) avoids mixed normals alto-
gether by augmenting the convex hull representation
of the inner approximation through setwise summa-
tion with the nonnegative orthant. Any normal to the
resulting polyhedron is nonnegative (Rennen et al.
2011, Lemma 2).

For the univariate case, the maximum error rule
and the chord rule have been shown by Rote (1992)
to be theoretically equivalent under geometric duality
of convex functions. This equivalence does not extend
to the general-dimensional case because although the
chord rule is invariant to affine transformations, the
maximum error rule becomes biased by its refer-
ence point (Rote 1992). The methods also differ in
their practical implementations. Rote notes that the
introduction of additional constraints necessitated by
the maximum error rule may destroy some inherent
structure of the initial problem such as the constraint
structure of a maximum flow problem.

In Rennen et al. (2011), the algorithms of Solanki
et al. (1993), Craft et al. (2006), and Rennen et al. (2011)
are empirically evaluated on a suite of test problems.
This study indicates that the algorithm of Rennen
et al. (2011) generates well-distributed points on the
Pareto surface and provides a corresponding rapid
improvement in bound on the approximation error,
whereas this is generally not the case for the algo-
rithms of Solanki et al. (1993) and Craft et al. (2006).
Based on these findings, we use the algorithm of
Rennen et al. (2011) as a single benchmark to the algo-
rithm proposed in this paper, both in the theoretical
exposition and the numerical experiments.

3.3. Polyhedral Approximations
The key result that makes construction of polyhedral
approximations of the Pareto surface possible is that
the set Z+ =Z+C is a convex set whenever MOP is a
convex problem. This result is a generalization of the
result that a function is convex if and only if its epi-
graph is a convex set to the case of epigraphs induced

by convex cones (Pennanen and Eckstein 1997). Other
proofs of this result for the special case C =�n

+
can be

found in Romeijn et al. (2004), and Craft (2010). Con-
vexity of Z+ implies that the convex hull of any dis-
crete set of points in Z+ is an inner approximation of
this set, and that the intersection of any set of closed
positive halfspaces associated with supporting hyper-
planes to Z+ an outer approximation. In particular,
polyhedral approximations of Z+ can be constructed
as follows.

Definition 3.1 (Inner and Outer Approxima-
tions). Let D be a discrete set of points that are
efficient to MOP and optimal to SUM4w5 with
re-BBB spect to some set W of weighting vec-
tors in C∗. Then, Zin = 8P T�+QT�2 �1�≥ 01 eT�= 19,
where P = f 4D5, is an inner approximation of Z+, and
Zout = 8z2 Wz≥ r9, where r is the vector of pairwise
scalar products between the rows of P and the rows
of W , an outer approximation of Z+, in the sense that
Zin ⊆Z+ ⊆Zout.

3.4. Quantifying the Approximation Error
Quality measures of discrete representations of the
Pareto set have been reviewed by Sayin (2000). The
definition we give quantifies the coverage of the
Pareto set in terms of a relaxation of the nondomi-
nance criterion.

Definition 3.2 (Approximation Error). Let D be
a discrete set of feasible points to MOP. Then, the
approximation error of D is the minimum � such that
for any efficient x∗, there exists x in conv4D5 such that
f 4x∗5 ∈ f 4x5+ 4C − �e5.

Unfortunately, explicit knowledge of the Pareto set
is required to compute this quantity. Because the entire
Pareto set is unknown in general, we work with the
upper bound on the approximation error provided by
the minimum � such that Zout ⊆ 4Zin − �e5. This upper
bound is equivalent to the Hausdorff distance

dHaus4Zin1Zout5= max
z∈Zout

min
z′∈Zin

d4z1 z′51

with respect to the one-sided distance function

d4z1 z′5= max
i=11 0001n

4z′

i − zi5+0

Computing dHaus4Zin1Zout5 requires solving the linear
bilevel program

maximize
z























minimize
�1�1�

�

subject to �e ≥ P T�+QT�− z1
eT�= 11
�1�1�≥ 00























(2)

subject to Wz≥ r0
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Linear bilevel problems have been shown to be
NP-hard and inapproximable within any constant fac-
tor in polynomial time (Dempe 2002, Theorem 3.12).
Problems within this class may be exactly solvable by
enumerative techniques in moderate problem dimen-
sions, whereas finding the optimum to large-scale
instances is in general not tractable.

4. The Vertex Enumerative Algorithm
4.1. Solution by Enumerating the Vertices of the

Outer Approximation
We propose to solve (2) by enumerating the extreme
points of its feasible region and solving a linear
programming subproblem for each extreme point
found. The extreme points of the outer approxima-
tion are its finitely many vertices. Validity of the
proposed method relies on a combination of well-
known results. For completeness, we summarize these
in Proposition 4.1. A proof is given in §6 under more
general conditions.

Proposition 4.1. An optimal solution to the bilevel
program (2) occurs at a vertex of the polyhedron defined
by the constraints of its outer level program.

As a direct consequence of Proposition 4.1, the opti-
mal value of (2) is given by maxv∈V optval4PLP4v55,
where V denotes the set of vertices of the outer
approximation and where

minimize
�1�1�

� (3a)

4PLP4v55 subject to �e ≥ P T�+QT�− v1 (3b)

eT�= 11 (3c)

�1�1�≥ 00 (3d)

We postpone for the moment how to enumerate the
vertices of Zout and first discuss some properties of
the above linear program.

4.2. Identifying the Next Weighting Vector
Having solved all instances of (3), we turn to identi-
fying the weighting vector of the next weighted-sum
problem that is to be solved. Similar lines of reason-
ing have previously been applied to a related prob-
lem by Craft (2010). The linear programming dual to
PLP4v5 is

maximize
�1�

�− vT� (4a)

4DLP4v55 subject to P� ≥ �e1 (4b)

Q� ≥ 01 (4c)

eT� ≤ 11 (4d)

� ≥ 00 (4e)

It is straightforward to verify that PLP4v5 is fea-
sible and its objective value bounded from below.
Therefore, DLP4v5 is feasible and its objective value
is bounded from above. Moreover, for any primal-
dual optimal solution 4�1�1�1�1�5 to PLP4v5 and
DLP4v5 that is associated with some v in V such that
optval4PLP4v55 > 0, � lies in C∗ and is normal to the
inner approximation at y = P T�+QT�. This claim is
made precise in Proposition 4.2. The next weighting
vector is thus the vector of optimal dual variables � to
the instance of DLP4v5 with maximum optimal value.

Proposition 4.2. Let 4�1�1�1�1�5 denote a primal-
dual optimal solution to PLP4v5 and DLP4v5 defined by
some vertex v in V such that � > 0. Then, the hyperplane
H4�1�5 supports Zin at y = P T�+QT� and has normal
vector � in C∗ \ 809.

Proof. Feasibility and boundedness of PLP4v5
and DLP4v5 by strong duality for linear program-
ming imply that optval4PLP4v55= optval4DLP4v55, or
equivalently

� = �− vT�0 (5)

This result, the assumption that � > 0, (4b), and (4e)
together imply that � 6= 0. The set H4�1�5 thus forms
a hyperplane in objective space with normal � in
C∗ \ 809 by feasibility with respect to (4c). To show
that H4�1�5 supports Zin at y, it remains to show
that Zin is entirely contained in the closed positive
halfspace associated with H4�1�5 and that y is con-
tained in H4�1�5. Take any ȳ in Zin parametrized by
some �̄ and �̄ that are feasible to (3), i.e., ȳ = P T �̄+

QT �̄. Then,

�T ȳ =�T 4P T �̄+QT �̄5≥�T P T �̄≥ ��̄T e = �1 (6)

by (4c), (3d), (4b), and (3c), which yields the first part
of the statement. Forming the scalar product between
� and y gives

�T y = �T 4P T�+QT�5≤�T 4�e+ v5

≤ �+�T v = �1 (7)

by (3b), (4d), and (5). Inserting y in (6) gives that
�T y ≥ �. Therefore, all inequalities in (7) are tight and
y ∈H4�1�5. �

4.3. Reducing the Number of Subproblems to
be Solved

The number of linear programming subproblems of
the form (3) that needs to be solved to compute the
optimal value of (2) can be reduced by bounding
from above the optimal value of some of the sub-
problems. Consider a sequence of solves of PLP4v5
over v in V and let �∗ denote the maximum opti-
mal value obtained. Then, any vertex v̄ in V that
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is optimal to (2) must satisfy optval4PLP4v̄55 ≥ �∗.
Therefore, for any vertex v in V and scalar � such that
optval4PLP4v55≤ �≤ �∗, the instance PLP4v5 need not
be solved. An upper bound on the optimal value of
an instance of (3) is provided by the following result.

Proposition 4.3. For an iteration of the sandwich
algorithm, let Zout = 8z2 Wz≥ r9 denote the outer approx-
imation, V its vertex set, and PLP4v5 an instance of (3)
defined by some v in V . Let also the corresponding notation
with superscript “+” apply to the subsequent iteration.
Then, for any v in V +, it holds that

optval4PLP+4v55

≤

{

optval4PLP4v55 if v ∈ V

max
v̄∈E

optval4PLP4v̄55 otherwise1 (8)

where E is the extreme point set of the unique edge of Zout
that contains v.

Proof. First suppose that v ∈ V and let 4�1�1�5 be
an optimal solution to PLP4v5. Then, 4�1 4�T 05T 1�5
is feasible to PLP+4v5 with objective value
optval4PLP4v55. Hence, the if clause in (8) follows.
Suppose that v 6∈ V . Because v ∈ V +, the system
W+v ≥ r+ is satisfied with equality in exactly n
linearly independent rows. Similarly, v 6∈ V and
Z+

out ⊆ Zout implies that the system Wv ≥ r is satisfied
with equality in at most n − 1 linearly independent
rows. Because W+ is W augmented with one addi-
tional row, the system W+v ≥ r+ is satisfied with
equality in exactly n − 1 linearly independent rows.
The point v is thus contained in an edge of Zout.
By an argument analogous to that in the proof of
Proposition 6.1, the maximum optimal value of the
inner level linear program in (2) taken over all points
in this edge occurs at one of its extreme points, which
yields the otherwise clause in (8). �

4.4. Enumerating the Vertices of the
Outer Approximation

We enumerate the vertices of the outer approxi-
mation by representing this set as a polytope and
converting its halfspace representation to a vertex rep-
resentation. To perform the latter of these two steps,
we use the fact that vertex enumeration is equiv-
alent to a convex hull problem under polar dual-
ity between points and hyperplanes defined by a
reciprocation H4a1 b5 7→ 4a1/b · · ·an/b5

T about the unit
sphere (Preparata and Shamos 1985). We first define
a duality relation between polytopes and then outline
the vertex enumerative scheme.

Definition 4.1 (Polytope Duality). Let A be a
polytope that contains the origin in its strict interior.
Then, the polytope A∗ = 8z2 yT z ≤ 11 ∀y ∈ A9 is the
polar dual of A.

Polar duality defines a bijection between the facets
of a polytope and the vertices of its dual. This cor-
respondence is inclusion reversing in the sense that
two facets incident on a common ridge uniquely
correspond to two vertices contained in a common
edge (Grünbaum 2003, Theorem 3.4.4). Polar dual-
ity is moreover a reflexive transformation, so that
twice dualizing a polytope gives back the initial poly-
tope (Grünbaum 2003, Theorem 3.4.9).

We use the above theory to enumerate the ver-
tices of the outer approximation with the following
steps: (i) augment the outer approximation with n
sufficiently large upper bounds so that the resulting
set is closed and bounded; (ii) identify a point in
the interior of the resulting primal polytope, e.g., the
arithmetic mean of the vertices of the inner approx-
imation; (iii) translate the coordinate system so that
this point is the origin; (iv) dualize the outward ori-
ented bounding hyperplanes of the primal polytope;
(v) solve for the convex hull of the resulting points,
thus obtaining a halfspace representation of the dual
polytope; (vi) dualize the facet-inducing hyperplanes
of the dual polytope; (vii) translate the resulting
points back into the initial coordinate system; and
(viii) remove any point that satisfies any of the auxil-
iary upper bounds with equality. The resulting set of
points forms the vertices of the outer approximation.

4.5. Performing the Polyhedral Computations
Online

The problem in step (v) in §4.4 is the online convex
hull problem: we are given points one at a time and
after receiving each point, we are to compute the con-
vex hull of the points received so far. The variant of
this problem in which all input points are known in
advance is called the offline convex hull problem.

We solve the online convex hull problem by main-
taining a graph representation of the current convex
hull with facets as nodes and ridges between adja-
cent facets as edges. We make the mild assumption
that the vertices of the dual polytope are nondegen-
erate, i.e., no 4n+ 15-tuple of points lie in a common
hyperplane. By this assumption, any facet of the dual
polytope is an 4n − 15-simplex incident on exactly n
ridges, and dually, exactly n edges of the primal poly-
tope are incident on any common vertex (Grünbaum
2003). Nondegeneracy can be simulated using stan-
dard perturbation techniques (see, e.g., Edelsbrunner
1987, p. 185).

The facet graph is updated using a beneath-and-
beyond step (see, e.g., Preparata and Shamos 1985,
Edelsbrunner 1987). In brief, one such step processes
a new point by partitioning the facets of the current
convex hull into disjoint sets of visible and obscured
facets. A facet is visible if it contains the new point
in its associated open negative halfspace. Obscured
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facets are defined conversely. One visible facet is first
identified. Remaining visible facets are then found by
a depth-first search through adjacent visible facets,
using the fact that the set of visible facets forms a
connected subgraph. A cone of new facets is created
from the new point to all ridges on which one visible
and one obscured facet are incident. The visible facets
are finally deleted.

Efficiently identifying the first visible facet is non-
trivial in the general online version of the convex hull
problem. However, because the vertex v of the outer
approximation that, in a given iteration, was found to
be most distant from the inner approximation cannot
be a vertex of the outer approximation in the sub-
sequent iteration, a visible facet for our problem is
immediately available as the facet dual to v. With an
online convex hull algorithm, p iterations of the sand-
wich algorithm requires p beneath-and-beyond steps.
The straightforward solution of calling an offline algo-
rithm in every iteration requires

∑p

k=1 k = p4p + 15/2
beneath-and-beyond steps.

The upper-bounding technique of §4.3 can be incor-
porated with the described convex hull method as fol-
lows. With each facet of the dual polytope that is dual
to a vertex v of the outer approximation, we attach
the current best upper bound on optval4PLP4v55. This
upper bound is updated whenever PLP4v5 is solved.
At the creation of a new facet, its upper bound is
initialized as the maximum over the upper bounds
attached to any of the two facets incident on the ridge
that induces the new facet. Validity of this update
rule follows from the observation that the ridge is
dual to an edge of the outer approximation defined
in Proposition 4.3 by the incidence-reversing property
of polytope duality.

5. Comparison with the Facet
Enumerative Algorithm

5.1. Solution by Enumerating the Facets of the
Inner Approximation

Problem (2) is in the algorithm of Rennen et al.
(2011) solved by enumerating the facet-inducing
hyperplanes of the inner approximation. Let F denote
the set of facet-inducing hyperplanes of Zin and take
any hyperplane H4�1�5 in F . Then, if � and � in (2)
are restricted to values such that P T�+QT� ∈H4�1�5
and the normal � is normalized so that eT� = 1, the
optimal value function of the inner level linear pro-
gram in (2) decomposes by algebraic manipulations
into � − �T z. The optimal value of (2) is thus given
by maxH4�1�5∈F optval4LP4�1�55, where

4LP4�1�55
maximize

z
�−�T z

subject to Wz≥ r0
(9)

The normal � of the hyperplane at which the max-
imum is attained is taken as weighting vector in
the next iteration of the sandwich algorithm. The set
F is determined by computing the convex hull of
the union of P and the set 8p + �q: p ∈ P , q ∈Q9,
where � > 0 is a sufficiently large scalar. The facet
enumerative algorithm can be enhanced with an
upper-bounding procedure completely analogous to
that outlined for the vertex enumerative algorithm.

5.2. Correspondence Between Algorithms
The vertex enumerative algorithm and the facet enu-
merative algorithm are both methods for removing
the nonlinearity of (2) by replacing a variable with
a fixed value. The two resulting linear programming
subproblems (4) and (9) both geometrically corre-
spond to maximizing the projective distance between
a hyperplane and a point, subject to the constraints
that the point is contained in the outer approximation
and that the hyperplane contains the inner approxi-
mation in its positive halfspace. The hyperplane con-
stitutes the free variable in (4) whereas the point is the
free variable in (9). These two problems are essentially
equivalent under point-hyperplane duality. We there-
fore prefer to view the vertex enumerative algorithm
and the facet enumerative algorithm as a primal-dual
pair of methods. To further illustrate this duality rela-
tion, we re-examine the example shown in Figure 1 in
a dual space defined by reciprocation about an inte-
rior point of the inner approximation, see Figure 3.
From this viewpoint, the vertex enumerative algo-
rithm proceeds by enumerating the facets of the inner
polyhedron, just as the facet enumerative algorithm
does in primal space. Note though that the vertex
enumerative algorithm is not the facet enumerative
algorithm applied in dual space, because polar dual-
ity is a nonlinear mapping.

It may be observed that the hyperplane H4�1�5
considered in (9) induces an 4n− 15-face of the inner
approximation, whereas the corresponding hyper-
plane considered in (4) induces a general k-face. The
dimensionality k here depends on the choice of linear
programming algorithm used to solve (4). For a sim-
plex method that converges to vertex solutions, the
solution to (4) satisfies n of the components of (4b)
and (4c) with equality, and therefore, k = n − 1.
If instead using an interior point method that con-
verges to the analytic center of the optimal face, the
number of binding constraints and hence the dimen-
sionality k may be lower. For a given pair of inner and
outer approximations, the vertex enumerative and the
facet enumerative approaches thus provide an iden-
tical upper bound on the approximation error, but
the weighting vector returned by the two approaches
need not be equal.
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p 2
/f 2

p 2
/f 2

p 2
/f 2

p1/f1 p1/f1 p1/f1

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3

Figure 3 The Polar Dual of the Pareto Surface Approximation Shown in Figure 1
Notes. Polar duality is defined by a reciprocation about a circle with center point p contained in the interior of the inner approximation. Vertices corresponding
to edges of the inner approximation are indicated in black. Vertices corresponding to edges of the outer approximation are indicated in white.

5.3. Computational Complexity
Disregarding an inevitable solve of a SUM4w5 prob-
lem, the computational cost of an iteration of the
vertex enumerative algorithm consists of the cost of
enumerating the vertices of the outer approximation
and the cost of solving (2) by a sequence of linear pro-
gramming subproblems. These two costs are directly
proportional to the number of visible facets of the
dual polytope (Edelsbrunner 1987) and the number
of subproblems of the form (3) that are solved. Both
are bounded from above by the number of facets
of the dual polytope. A tight upper bound on the
number of facets of a convex hull of k points in
an n-dimensional Euclidean space has been proved
by McMullen (1970), namely,

�4k1n5=







k−

⌊

n+ 1
2

⌋

k−n







+







k−

⌊

n+ 2
2

⌋

k−n







0

Then, because the dual polytope in the kth iteration
of the vertex enumerative scheme is the convex hull
of 2n + k + 1 points, the total cost for p iterations is
bounded by

2n+p+1
∑

k=2n+1

O
(

�4k1n5
)

≤O
(

p�42n+ p+ 11n5
)

0 (10)

In the kth iteration of the facet enumerative scheme,
the polytope representation of the inner approxima-
tion is the convex hull of 4k+154n+15 points. By anal-
ogous reasoning, its total cost for p iterations is thus
bounded by

n+p+1
∑

k=n+1

O
(

�44k+ 154n+ 151n5
)

≤O
(

p�44p+ 154n+ 151n5
)

0 (11)

Figure 4 illustrates the worst-case complexity of the
vertex enumerative scheme and the facet enumerative
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Vertex enum.
25 iterations
50 iterations
100 iterations

Figure 4 Upper Bound on Number of Beneath-and-Beyond Steps
and Number of Linear Programming Solves as a Function
of Number of Objectives and Total Number of Iterations
of the Sandwich Algorithm

scheme according to (10) and (11), respectively, as
a function of n and at various fixed number of
iterations p.

6. Sandwich Approximations Under
Monotonic Transformations

Sandwich approximations under transformations
with strictly increasing functions have been studied in
the univariate case by Siem et al. (2008). The benefit of
this technique is twofold: it allows for tighter bounds
on the approximation error, and it extends the appli-
cability of sandwich methods to problems with non-
convex objectives. Generalization of this technique to
the n-dimensional case has been provided by Rennen
et al. (2011). For completeness, we outline how mono-
tonic transformations can be utilized in combination
with the vertex enumerative approach taken in this
paper.

Dispense with the convexity assumption on f and
consider a strictly increasing function h2 �n →�n such
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that h � f is convex. Then, the transformed problem

minimize
x

h � f 4x5=
(

h1 � f14x5 · · ·hn � fn4x5
)T

subject to x ∈X =
{

x2 c4x5≤ 0
}

1
(12)

is a convex multiobjective program of the same
form as problem (1). Let the notation of §§2
and 3 with accent “∧” apply to problem (12), e.g.,
Ẑ = h4f 4X55. Let also the superscript “−1” denote sets
under the inverse transformation h−12 �n → �n, e.g.,
Ẑ−1

+
= h−14Ẑ+5. Note that h−1 always exists because

h is strictly increasing. Then, by strict monotonic-
ity of h, the efficient sets of (1) and (12) coincide,
so that Z+ = Ẑ−1

+
, and the inverse images Ẑ−1

in and
Ẑ−1

out are inner and outer approximations of Z+, i.e.,
Ẑ−1

in ⊆Z+ ⊆ Ẑ−1
out. This result is proven in Rennen et al.

(2011, Proposition 5). The set Z+ may consequently be
approximated by applying the sandwich method in
transformed objective space.

Now suppose that f is convex and that h is a
strictly increasing and concave function such that h�f
is convex. Then, h−1 is convex, and it holds that

Zin ⊆ Ẑ−1
in ⊆Z+ ⊆ Ẑ−1

out ⊆Zout0

Proof of this claim is provided in Rennen et al. (2011,
Propositions 6 and 7). The distance dHaus4Ẑ

−1
in 1 Ẑ−1

out5 is
thus a tighter bound on the current approximation
error than our previous bound dHaus4Zin1Zout5, as illus-
trated for a bi-objective program in Figure 5.

Calculating the improved upper bound amounts to
solving the nonlinear bilevel program

maximize
z































minimize
�1�1�

�

subject to �e ≥ h−14P̂ T�5

+QT�− z1

eT�= 11
�1�1�≥ 00































(13a)

subject to Ŵh4z5≥ r̂ 0 (13b)

f1 f1 f1

f 2 f 2h 2
�f

2

h1 � f1 h1 � f1 h1 � f1

h 2
�f

2

h 2
�f

2

f 2

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3

Figure 5 First Three Iterations of the Sandwich Algorithm Applied to a Bi-Objective Program Under a Transformation with a Concave and Strictly
Increasing Function h

Notes. The discrete points indicate Pareto optimal objective vectors. The Pareto surface is enclosed in the shaded region between the inner and outer approx-
imations. The insert depicts the Pareto surface approximation in the transformed objective space.

The inner level program is a convex optimization
problem because h−1 is convex and the sublevel
set of any convex function is convex. The feasible
region of the outer level program is a convex set
because h is concave and the superlevel set of any
concave function is convex. Similar to problem (2),
problem (13) thus corresponds to maximizing a con-
vex function over a convex set. The vertex enumer-
ative approach is however not directly applicable
to this problem because its feasible region is not
polyhedral.

To make the vertex enumerative algorithm valid
for (13), we replace the nonlinear constraints of the
outer level program with a system of linear inequal-
ities defined by a first-order Taylor series expansion
of (13b) about some set of points that satisfy at least
one row of this system with equality. Let ŵT

j denote
the jth row in Ŵ and r̂j the jth element in r̂ . Then, the
linearized constraints are given by the union of linear
inequalities of the form

ŵT
j

(

h4p5+ïh4p5T 4z− p5
)

≥ r̂j1 (14)

over all active constraints j at all points p considered
during the linearization. Denote the linearized outer
approximation by Ẑ−1

out. Then, if assuming that the lin-
earization is performed about at least all points in
h4P5, it holds that Ẑ−1

out ⊆Zout.
By convexity of the feasible region of (13), the lin-

earization results in a relaxation of this problem, thus
making the optimal value of the relaxed program
an upper bound on the optimal value of (13). The
relaxed problem is a convex maximization problem
over a polyhedral set that can be solved using a
direct analogue of the vertex enumerative algorithm
for (2). In this case, the subproblems are nonlinear
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programs of the form

minimize
�1�1�

� (15a)

subject to �e ≥ h−14P̂ T�5+QT�− v1 (15b)

eT�= 11 (15c)

�1�1�≥ 01 (15d)

defined over all vertices v of Ẑ−1
out. To prove validity

of the vertex enumerative approach in this setting, we
show that the algorithm correctly solves the relaxation
of (13), and that the Karush-Kuhn-Tucker (KKT) mul-
tipliers associated with (15b) define a valid weighting
vector. These two results are summarized by the fol-
lowing two propositions.

Proposition 6.1. An optimal solution of the relaxed
bilevel program obtained by substituting the lineariza-
tion (14) for the constraints of the outer level program
in (13) occurs at a vertex of the polyhedron defined by the
linearized constraints.

Proof. The optimal value function g2 �n →� of the
inner level program in (13) is given by

g4z5= min
�1�≥0
eT �=1

d
(

h−14P̂ T�5+QT�1z
)

0

The argument in the above minimization is jointly
convex in �, �, and z because h−1 is convex, because
composition with affine functions preserves convex-
ity, and because the pointwise maximum of any num-
ber of convex functions is convex. Minimization of
the form

g4�5= inf
x∈S

g4x1�51

is convex in � whenever g is jointly convex in x and �,
g is bounded from below on S, and S is nonempty and
convex (Fiacco and Kyparisis 1986, Proposition 2.1).
By a change of sign in the objective function, prob-
lem (13) thus amounts to minimizing a concave func-
tion over a convex set. Because every global and
local minimum value of a concave function is either
attained at an extreme point of its feasible domain
or the function is unbounded from below on a fea-
sible ray (Rockafellar 1970, Theorem 32.3), the proof
reduces to showing that the objective value of (13)
is nonincreasing on any ray in the polyhedron Ẑ−1

out
defined by the linearized constraints. Let 4W̄ 1 r̄5 be a
matrix-vector pair such that Ẑ−1

out = 8W̄ z ≥ r̄ 9. Let also
z̄ and p̄ be vectors such that 8z̄+�p̄2 �≥ 09 is a ray in
Ẑ−1

out (i.e., z̄ ∈ Ẑ−1
out, p̄ 6= 0, and W̄ p̄ ≥ 0) and let 4�1�1�5

be an optimal solution to the inner level linear pro-
gram in (13) with respect to z = z̄. Then, because
Ẑ−1

out ⊆ Zout, every row vector in W̄ lies in C∗, so that
p̄ ∈ C. Therefore, there exists �̄ ≥ 0 such that p̄ = Q�̄.

For such �̄, 4�1�1� + ��̄5 is a feasible point with
objective value � to the inner level linear program
in (13) with respect to z= z̄+�p̄. The objective value
of (13) at any point on the ray is thus bounded from
above by the objective value in the point z̄ from which
the ray emanates, and the proof is complete. �

Note that we have not used strict monotonicity of
h−1 in the above proof. The proof for Proposition 4.1
thus follows as a corollary by specializing h to the
identity function.

We now turn to showing that the KKT multi-
pliers associated with (15b) define a normal to the
inner approximation at the point where the maximum
approximation error is attained.

Proposition 6.2. Let 4�∗1�∗1�∗5 such that �∗ > 0
denote an optimal solution to (15). Let also �∗ and �∗

denote KKT multipliers at 4�∗1�∗1�∗5 associated with the
constraints (15b) and (15c), respectively. Then, the hyper-
plane H4�∗1�∗5 supports Ẑ−1

in at y = h−14P̂ T�∗5+QT�∗

and has normal vector �∗ in C∗ \ 809.

Proof. Slater’s condition (see, e.g., Boyd and
Vandenberghe 2004, p. 226) is satisfied by strict
feasibility and convexity of (15). Therefore, strong
duality holds for problem (15) and its Lagrange dual
problem. A primal-dual optimal solution to this pair
of problems is under strong duality exactly char-
acterized by the KKT conditions (see, e.g., Boyd
and Vandenberghe 2004, pp. 243–244). The KKT con-
ditions for (15) are identical with the correspond-
ing conditions for a linearization of this problem of
the form

minimize
�1�1�

�

subject to �e ≥ h−14P̂ T�∗5+ïh−14P̂ T�∗5T

· P̂ T 4�−�∗5+QT�− v1
eT�= 11
�1�1�≥ 00

(16)

By linearity, strong duality holds for this problem and
its dual. The pair 4�∗1�∗5 is thus an optimal solution
to both the Lagrange dual problem to (15) and the lin-
ear programming dual of (16). The problem (16) can
be put in the form of problem (3) by the substitution

P = ïh−14P̂ T�∗5T P̂ T 1 (17)

and a translation of the coordinates in objective space
according to

z̄= z+ïh−14P̂ T�∗5T P̂ T�∗
−h−14P̂ T�∗51 (18)

where z denotes an initial coordinate and z̄ its trans-
lated counterpart.

By Proposition 4.1, the pair 4�∗1�∗5 defines a hyper-
plane H4�∗1�∗5 with normal in C∗ \ 809 that supports
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the linearized inner approximation at ȳ = P T�∗ +

QT�∗. Reversing the translation (18) and inserting (17)
gives a point y = h−14P̂ T�∗5+QT�∗. Because H4�∗1�∗5
supports a linearization of Ẑ−1

in , the statement follows
by convexity of this set. �

7. Numerical Results
7.1. Test Problems
We evaluate the proposed algorithm with respect to
three test problems. All problems are scalable in the
number of objectives and can be made to comply with
the assumptions stated in §2.2 by introducing some
sufficiently large upper bounds on the variables.

Problem 7.1. This is a randomly generated exten-
sion of test case 1 in Rennen et al. (2011) of the form

minimize
x

4x1 · · ·xn5
T

subject to
∑

j 6=i

4xj − aj5
2
− xi ≤ 01 i = 11 0 0 0 1n1

where a is an n-vector of integers drawn uniformly
at random from 811 0 0 0 1n9. No bounds on the trade-
off rate between objectives were imposed for this
problem.

Problem 7.2. This problem is of the form

minimize
x

(

x2
1 · · ·x2

n

)T

subject to
n
∑

i=1

(

xi − 41 + �5
)2

≤ 11

for some small constant � > 0. Alongside this
problem, we also introduce the function h4x5 =

4
√
x1 · · ·

√
xn5

T , so that a transformation h � f results
in a problem with linear objectives. No bounds on
the trade-off rate between objectives were imposed for
this problem.

Problem 7.3. This is an example of an IMRT
optimization problem for a head and neck can-
cer case. Data for this problem was exported from
the RayStation treatment planning system (RaySearch
Laboratories, Stockholm, Sweden). The goal of IMRT
is to deliver a highly conformal radiation dose to the
tumor volume (see, e.g., Romeijn et al. 2008, Ehrgott
et al. 2008, Ahnesjö et al. 2006). Target coverage must
be traded against the sparing of radiosensitive organs
in its vicinity. We consider the problem of optimiz-
ing incident energy fluence. This problem was posed
of the form of (1) by assigning objectives and con-
straints to each anatomical structure. All objective and
constraint functions were constructed as one-sided
quadratic penalties of the deviations in voxel dose
from a reference dose level, as made explicit in the

appendix. A bound tij = 10−2 on the trade-off rate
between all pairs of objectives 4i1 j5 was introduced
to focus on the high-curvature region of the Pareto
surface.

7.2. Computational Cost
The computational cost of the vertex enumerative
algorithm and the facet enumerative algorithm was
evaluated numerically with respect to Problems 7.1
and 7.3. We report the results of applying these
two algorithms, in conjunction with, and without,
the proposed upper-bounding procedure (abbrevi-
ated by the prefix “online”). Both algorithms were
implemented in C++ using identical linear algebra
routines and interfaced with Matlab. Quadratic pro-
grams, quadratically constrained linear programs, and
quadratically constrained quadratic programs were
solved using CPLEX 10.2 (ILOG, Sunnyvale, Cali-
fornia) with default settings. Linear programs were
solved using the primal simplex method built into
SNOPT 7.2 (Stanford Business Software, Inc., Stanford,
California), with problems sorted in descending order
with respect to available upper bounds. These solves
are amenable to parallelization, but for ease of com-
parison, all computations were run under 64-bit Linux
on a single Intel Xeon 3 GHz processor core with
hyperthreading disabled and with 32 GB of memory. A
timeout of three hours was set for all processes, which
kept overall running time reasonable.

The convex hull representation of the inner approx-
imation was empirically observed to be a degenerate
polytope, manifesting as multiple faces induced by
near-identical hyperplanes. Because multiple solves
over such hyperplanes do not contribute considerably
to the solution of (2), any hyperplane identified as a
duplicate within a tolerance of 10−5 was disregarded.

For each problem and algorithm we report number
of beneath-and-beyond steps, number of linear pro-
gramming solves, and CPU time, summed over
50 iterations of the sandwich algorithm. In addition,
we report the upper bound dHaus4Zin1Zout5 on the
approximation error as a function of iteration num-
ber. The numerical results for Problems 7.1 and 7.3 are
summarized in Figures 6 and 7, respectively. We stress
that our research implementation is not optimized for
speed and the reported running times are for compar-
ative purposes only.

The depicted results show that the vertex and the
facet enumerative scheme are equivalent in terms
of approximation quality. In terms of computational
load, the combined effect of the vertex enumerative
scheme and the proposed upper-bounding procedure
results in an improvement that increases with prob-
lem dimension. For the two studied problems, the pro-
posed enhancements translate into a reduction in the
number of linear programming solves by one order
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Figure 6 Numerical Results for 50 Iterations of the Sandwich Algorithm Applied to Problem 7.1: (a) Pareto Surface Representation at n = 3;
(b) Upper Bound on the Approximation Error as a Function of Number of Objectives n, with the Lowermost Curve Corresponding to n = 2
and the Uppermost Curve Corresponding to n = 14; (c) Total Number of Beneath-and-Beyond steps vs. n; (d) Total Number of Linear
Programming Solves vs.Surfaces n; (e) Total CPU Time vs. n

of magnitude for dimensions beyond two, and by
two orders of magnitude for dimensions beyond five.
Correspondingly, the number of dimensions tractable
at computational times within the order of minutes
increases from about 6 to 11.

7.3. Approximation Quality
The quality of the Pareto surface approximation gen-
erated by a sandwich method was evaluated with
respect to Problems 7.1 and 7.2. For Problem 7.1,
we report the current bound on the approximation
error given by dHaus4Zin1Zout5. We also report the
exact approximation error according to Definition 3.
Because all objectives are linear, this quantity coin-
cides with the distance dHaus4Zin1Z+5. The correspond-
ing values are reported for Problem 7.2. The exact
approximation error for this problem is given by the
distance dHaus4Ẑ

−1
in 1Z+5, because the composition h � f

is linear and h is the inverse of f on the domain
�n

++
. We also report the improved upper bound given

by the distance dHaus4Ẑ
−1
in 1 Ẑ−1

out5. The system (13b) was
linearized about all points in P ∪ V 4Ẑout5

−1, where
V 4Ẑout5

−1 denotes the image of the vertex set of Ẑout
under the inverse transformation h−1. The numerical

results for Problems 7.1 and 7.2 are summarized in
Figures 8 and 9, respectively.

We can make several observations based on the
depicted results. The distance dHaus4Zin1Zout5 is a
rather pessimistic bound on the actual approxima-
tion error for the two studied problems, increasingly
so with increasing problem dimension. The discrep-
ancy between the actual approximation error and
its bounds stems from nonlinearity of Problems 7.1
and 7.2. For multiobjective linear problems, the set
Z+ is polyhedral and the bound dHaus4Zin1Zout5 hence
tight. Figure 9 demonstrates that positive curvature
in the objectives can be partially compensated for
by applying a concave transformation. The result-
ing improved bound is however not tight, both due
to nonlinearity in the constraints of Problem 7.2
and the relaxation of the outer approximation into a
polyhedral set.

8. Summary and Discussion
We have proposed a sandwich algorithm for approxi-
mating Pareto surfaces of convex multiobjective opti-
mization problems based on enumerating the vertices
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Figure 7 Numerical Results for 50 Iterations of the Sandwich Algorithm Applied to Problem 7.3: (a) Pareto Surface Representation at n = 3;
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of an outer polyhedral approximation of the Pareto
surface. Additionally, an upper-bounding procedure
was presented to reduce the number of subprob-
lems required to solve the nonconvex optimization
problem of calculating an upper bound on the cur-
rent approximation error. This technique was made
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Figure 8 Numerical Results for the Sandwich Algorithm Applied to Problem 7.1: Upper Bounds on the Approximation Error vs. Iteration Number

possible by implementing the polyhedral computa-
tions in an online fashion.

The proposed vertex enumerative method was con-
trasted to the previously suggested facet enumerative
algorithm of Rennen et al. (2011). These two algo-
rithms are both exact methods for maximizing the
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Figure 9 Numerical Results for the Sandwich Algorithm Applied to Problem 7.2: Upper Bounds on the Approximation Error vs. Iteration Number

improvement in the approximation error when gen-
erating a single Pareto optimal solution. As a result,
the two methods are equivalent in terms of qual-
ity of output, as was verified experimentally. The
vertex enumerative scheme was shown to provide
an improvement in both worst-case complexity and
practical performance of the sandwich algorithm. This
improvement can be attributed to the fact that the
vertex enumerative approach handles the normal vec-
tors of the inner approximation—which is the more
structurally complex polyhedron of the inner and
outer approximations—as free variables in the linear
programming subproblems. In the facet enumerative
approach, these normal vectors are instead explic-
itly stated in the subproblem, leading to more costly
polyhedral computations and a larger number of
subproblems.

We also studied a previously described technique
for yielding tighter bounds on the approximation
error by concave transformations of the initial objec-
tives. The vertex enumerative algorithm was shown
to be compatible with this technique under a relax-
ation of the outer approximation into a polyhedral
set. The resulting approximation scheme was demon-
strated numerically to improve on the bound on the
approximation error for the current Pareto surface
representation.

With respect to the wider family of convex Pareto
surface approximations techniques, the method devel-
oped in this paper falls within a class of methods
that generalizes the chord rule for approximating con-
vex univariate functions. Although previous methods
within this class use halfspace representations of the
inner and outer approximations, in resemblance with
inner approximation methods, the proposed method
instead uses vertex descriptions of these two poly-
hedrons, similar to previous outer approximation
methods. Halfspace and vertex representations are
equivalent under point-hyperplane duality. We there-
fore view the proposed technique as a natural dual to
the previous algorithms in this class.

We conclude by summarizing the implications for
the IMRT application. There is yet no widely accepted
consensus on acceptable computational time for gen-
erating a discrete representation of the Pareto sur-
face for this application. However, judging by a recent
clinical evaluation (Craft et al. 2012) where total plan-
ning time was on the order of 10 minutes, running
times that exceed much beyond the order of minutes
appear unrealistic. In view of the numerical results for
the enhancements proposed in this paper, it appears
practical to solve the Pareto surface approximation
problem for up to about 10 objectives. This limit coin-
cides with the range of problem formulations com-
monly encountered in IMRT planning. We therefore
envisage that sandwich algorithms will allow for bet-
ter resolved models of the viable treatment options
in the form of more accurately represented Pareto
surfaces throughout the spectrum of problem formu-
lations encountered in IMRT optimization.
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Appendix. Formulation of Problem 7.3
The patient volume was discretized into 5 × 5 × 5 mm3 vol-
ume elements (voxels) and the beam planes into 1 × 1 cm2

surface elements (bixels). Dose kernels for five coplanar
photon beams at equispaced gantry angles were computed
using a pencil beam convolution technique based on singu-
lar value decomposition, similar to Bortfeld et al. (1993). The
problem was posed of the form of (1) by taking the elements
of x to be the energy fluence per bixel and introducing a
nonnegativity bound x ≥ 0. All objectives and constraints
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were modeled by minimum dose or maximum dose func-
tions. A maximum dose function is defined as

f 4x5=
∑

i∈V

ãvi4p
T
i x− dref52

+1 (19)

where V indexes the voxels included in the anatomical
structure to which the function is assigned, ãvi denotes the
relative volume of the ith voxel, and pi is a pencil beam
kernel such that pTi x is the planned dose in the ith voxel.
Reversing the sign of the two terms in the argument of the
plus function in (19) gives a minimum dose function.

The target structure was assigned with a minimum
dose objective and a maximum dose objective, both
with dref = 70 Gy, and a minimum dose constraint with
dref = 63 Gy. A maximum dose objective was introduced
with dref = 0 Gy for each healthy structure contained in
the projection of the target volume onto the beam planes.
The resulting number of objectives was 15. A constraint on
global maximum dose at dref = 77 Gy was introduced by
sampling 2 % of all voxels in the patient volume uniformly
at random, so to keep running times reasonable. The prob-
lem was posed as an inequality constrained quadratic pro-
gram with 5,416 variables and 6,937 linear constraints by
introducing auxiliary variables (see Carlsson et al. 2006).
Scaling in the number of objectives was performed by
aggregating positively correlated objectives. Each objective
was first optimized individually. Objectives for healthy
structures were then aggregated into composite functions
being the direct sum of all constituent functions by itera-
tively grouping together the two objectives showing max-
imum degree of monotone association, as determined by
Spearman rank correlation (see, e.g., Kendall 1962).
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