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An algorithm for associating the features of two images

GUY L.SCOTT anp H. CHRISTOPHER LONGUET-HIGGINSt
Department of Engincering Science, University of Oxford, Oxford 0X1 3PJ, U.K.

SUMMARY

In this paper we describe an algorithm that operates on the distances between features in the two related
images and delivers a set of correspondences between them. The algorithm maximizes the inner product
of two matrices, one of which is the desired ‘pairing matrix’ and the other a ‘proximity matrix’ with
elements exp (—7;;/20%), where 7, is the distance between two features, one in each image, and ¢ is an
adjustable scale parameter. The output of the algorithm may be compared with the movements that
people perceive when viewing two images in quick succession, and it is found that an increase in o affects
the computed correspondences in much the same way as an increase in interstimulus interval alters the
perceived displacements. Provided that o is not too small the algorithm will recover the feature mappings
that result from image translation, expansion or shear deformation — transformations of common
occurrence in image sequences — even when the displacements of individual features depart slightly from

the general trend.

1. INTRODUCTION

A central problem in the theory of vision (Wertheimer
1912; Marr 1976; Ullman 1979) is that of establishing
a correspondence between the features of two related
images such as the members of a stereo pair or
successive frames in a motion sequence. If an individual
feature is sufficiently distinctive, there may be no
problem in tracking it through a sequence of images,
but when the features are small and unstructured a
conflict arises between two principles, both of them
soundly based in visual experience. The first principle
requires that — other things being equal (not an easy
condition to define) — a match across a shorter distance
is to be favoured. This ‘principle of proximity’ is
sufficiently influential in human vision to disrupt the
perception of global rigidity in, for example, Ullman’s
“broken wheel’ demonstration (Ullman 1979). How-
ever, it is no solution to the correspondence problem
simply to associate each point in one image with its
nearest neighbour in the other. A little doodling will
reveal that this usually gives rise to many-tc-one
correspondences between features, and to results that
differ according to which is chosen as the ‘reference’
image.

To account for the movements that people perceive
when related patterns are viewed in quick succession,
one must suppose the principle of proximity to operate
within the limits imposed by a ‘principle of exclusion’,
that militates against many-to-one feature corres-
pondences. In figure 1 the lines linking the circles and
the crosses indicate the ‘coherent’ displacements
generally perceived when the two patterns are shown
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alternately as a ‘movie’. This one-to-one mapping is
quite different from the 4:1 and 1:4 ‘nearest neigh-
bour’ mappings implied by the principle of proximity
taken on its own.

Here we propose a simple algorithm that incor-
porates both the principle of proximity and the
principle of exclusion. Qur algorithm resembles Ull-
man’s minimal mapping theory in maximizing the
inner product of a given matrix G and a pairing matrix
P; but whereas Ullman introduces the exclusion
principle as an explicit constraint in a linear pro-
gramming exercise, we find it to emerge naturally from
the requirement that the rows of P (possibly fewer than
the columns) be mutually orthogonal. In brief, our
pairing matrix P is that orthogonal matrix that
maximizes the inner product P:G, where G is a matrix
of ‘proximities’ between the features in one image and
those in the other. Once P has been computed, the
feature correspondences follow immediately.
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Figure 1. An example of the sort of  coherent’ movement that
is generally perceived when the inter-stimulus interval is not
too short.
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2. THE ALGORITHM

Let 7 and J be two related images, containing m and
n features respectively. We regard the images as lying
in the same plane, so that there is a well-defined
distance r; between feature I, (1= 1,2,...,m) and
feature J; (= 1,2,...,n). In our diagrams the features
I; are represented by crosses and the J; by circles. We
assume, without loss of generality, that m < n.

The first stage in our algorithm is to represent the
‘proximities’ between features in [ and features in ./ by
a rectangular m x # matrix G with elements

Gy = exp (—ry/20%),

where o is an appropriate unit of distance. The
Gaussian form of G;; has various useful properties.
First, it is analytic not only in the distance r;; but also
in the coordinates of the points /; and .J. Secondly, it is
provably positive definite (see Appendix 1) when the
two images are identical, a fact that has useful
implications for the study of its analytic behaviour.
Thirdly, the distance o provides a convenient variable
with which to study the difference between ‘large’ and
‘small’ displacements; and finally, G,; decreases mono-
tonically with distance, from 1 for neighbouring points
to O for points that are a long way apart. (In Ullman’s
theory the nearest analogue to G, is his ‘cost’ function
¢(v), a monotonically increasing function of distance.)

The next stage in our algorithm is to submit the
proximity matrix G to singular-value decomposition
(see, for example, Strang 1988) ; that is, we express it as
a product of the form

G = TDU,

where T and U are orthogonal matrices of dimension
m and n respectively, and D is a non-negative diagonal
matrix. (Opinions differ as to the neatest way of
representing the singular-value decomposition of a
rectangular matrix. Here we take D to be a matrix of
the same shape as G, satisfying the constraints D, = 0
(¢ #7), D,; > 0. It is possible for one or more of the
singular values D, to vanish, but we ignore such cases
for the time being. Finally, if m is less than =, only the
first m rows of the matrix U have any significance; the
others play no part in the singular value decomposition
of G, or in our computations.)

Finally, we convert the matrix D into another mx n
matrix E by replacing every diagonal element D, by
the number 1, and obtain another ‘orthogonal’ matrix

P=TEU

of the same shape as the original proximity matrix G.
(Here and later the term ‘orthogonal’ is extended to
rectangular m X n matrices whose rows are mutually
orthogonal even though their columns are not.)

The rows of P, like those of G, index the features in
the first image, and its columns those in the second.
The element F}; indicates the extent of pairing between
features /; and J. If B, is the greatest element in row {
but not the greatest in column j, then we may regard
I; as competing unsuccessfully for partnership with Jj;
similar remarks apply if B, is the greatest element in its
column but not in its row. But if £, is both the greatest
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element in its row and the greatest element in its
column then we regard those two features as being in
1:1 correspondence with one another; such corres-
pondences are those implied by the full lines in the
figures we shall soon encounter.

3. AN EXTREMUM PRINCIPLE

We now show that the orthogonal matrix P obtained
in the manner described is the one that ‘ correlates best’
with G, in the sense of maximizing the inner product

P:G=2X,2,P,G, = trace (PTG),

where PT denotes the transpose of P.

Let I denote any orthogonal m x n matrix. Then,
because all the diagonal elements of D are non-
negative, trace (F”D) attains its maximum value when
F is the unit matrix E defined earlier. To proceed we
note that

D=TTGU"

and use the fact that the trace of a product of matrices
is invariant under a cyclic permutation of its factors.
Writing

trace (F™D) = trace (FTTTGUT)
= trace (UTFTTTG) = trace (Q7G),

where @ is defined as
Q= TFU,

we infer that the orthogonal (mxn) matrix @ that
maximizes trace (@7G) is none other than the matrix

P=TEU.

It is illuminating to see what happens when the
algorithm is applied to the special case in which the
second image is identical with the first. The proximity
matrix G will then be square, symmetric and positive
definite: square because the two sets of features are
equal in number; symmetric because the distance
between features /; and J; equals the distance between
features Z, and J;; and positive definite because of the
Gaussian form of its elements (see Appendix 1). As a
result, the orthogonal matrices 7'and U in the singular-
value decomposition of G will be mutually inverse,
each being the transpose of the other, and the pairing
matrix P reduces to the unit matrix £

P=TEU=TU=E,

in which every non-zero element is both the greatest in
its row and the greatest in its column.

As the two images begin to depart from one another,
the proximity matrix G ceases to be fully symmetric,
and the off-diagonal elements of P acquire non-zero
values; but the divergence between the images has to
be quite substantial before the originally diagonal
character of P, and the implied 1:1 correspondence
between their features, is totally obliterated.

The pairing matrix P incorporates the principle of
exclusion by virtue of its orthogonality. (Theoretical
chemists may detect echoes of the Pauli exclusion
principle, and its application to electron orbitals.) The
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fact that the squares of the elements in each row of P
must add up to 1 implies that a given feature , cannot
be strongly associated with more than one feature J,,
though it may be weakly associated with several; the
mutual orthogonality of the rows tends to keep different
features in the first image from becoming closely
associated with the same feature in the second image.

Before reporting some of our computational experi-
ments with the algorithm we should discuss the
probability that one or more of the elements D, the
singular values of G, is equal to zero. This happens
when, for example, the features I, and 7, lie at opposite
corners of a square, and the features J; and J, occupy
the other two corners. Then all the elements of G are
equal, by symmetry, to some number o, and its
singular-value decomposition yields a D matrix with
diagonal elements 2« and 0, and 7 and U matrices that
are mutual inverses. But now there is no constraint
involving the second row of U or the second column of
T; the elements of either can be reversed in sign
without affecting the magnitude of P:G = trace
(TTGUT™). The result is an ambiguity in the form of P;
it might be either
1 0 or 0 1
01 1 0’
matrices that represent the mappings associated with
the two pairs of opposite sides of the square. A slight
shortening of either pair of edges results, not un-
naturally, in one of these mappings being preferred to
the other.

Although in the above case P:G is maximized by
either of two permutation matrices, this is not
necessarily true of image pairs that hover between two
alternative mappings. If, for example, the circles and
the crosses comprise the two triangles of a regular
hexagram, P is uniquely determined by the maxi-
mization of P:G; the alternative pairings arise from
the high symmetry of P itself

oo ol Wi
WL Lo|= oD
ol oo ol

which permits two distinct optimal mappings: rotation
of either triangle through +m/3.

4, COMPUTATIONAL RESULTS

Figures 2-8 illustrate the performance of the
algorithm on various pairs of images. The crosses mark
the positions of features in the first image, the circles
those in the second. A full line joining a cross and a
circle indicates a pair of features for which £, is the
greatest element in both its row and its column; a
dotted line indicates that one or other of the two
features is more strongly associated with a third. The
value of ¢ is indicated by the line segment at the foot
of each diagram. In most of the diagrams the two
images comprised equal numbers of features, but in
some of the runs a few extra features, indicated by filled
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Figure 2. (a) Result of applying our algorithm to Ternus’s
configuration with ‘long-range’ ¢. (6} Result of applying our
algorithm to Ternus’s configuration with ‘short-range’ o.
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Figure 3. (a) Pure translation with no noise or ‘rogue’ points,
and with a value of & comparable to the displacement. (b) As
(a), but with shorter-range o. The flow is beginning to break
up in the centre, but is not totally disrupted.

squares, were added to the first image, to see how much
disruption they created.

Figure 24, b shows how the algorithm responds to
the well-known ‘Ternus configuration’, given two
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slightly different values of o. With ¢ equal to the
separation between the images, P takes the form

0.614
0.580

~—0.580
0.814

implying the 1:1 correspondence between crosses and
circles illustrated in figure 24; but with half this value
of o the principle of proximity defeats the principle of
exclusion; the form of P

0.261
0.965

—0.965
0.261

implies that the right-hand cross is paired with the left-
hand circle, the other two features remaining ‘celibate’.
There is a close analogy with movement perception.
When the circles and the crosses are presented to
human observers in quick succession, the perceived
motion undergoes an analogous transition from a
‘neighbour mode’ to a ‘coherent mode’ as the inter-
stimulus interval is increased (Ternus 1926; Ullman
1979). Ullman attributes such perceptual transitions to
the ‘affinities between basic elements’ becoming more
uniform in strength as the inter-stimulus interval is
increased ; this is exactly the effect of an increase in ¢
on the elements of the proximity matrix G.

Figures 34, 44, 5 and 6 show that with a sufficiently
large value of o the algorithm succeeds in recovering
the 1:1 correspondences created by a translation, a
shear deformation, an expansion and a combination of
all three. Figure 34 shows the disruption to figure 34
that results from taking too small a value for ¢. Figure
45 shows the effect of adding ten rogue points to the
second image in figure 4a (the pattern of circles).
Figure 7 shows that our algorithm is not very successful
in correlating a pair of patterns related by a rotation;
‘wagon-wheeling’ starts to occur at some angle of
rotation irrespective of the value of ¢. Finally, figure 8
shows the correspondences that it finds between two
frames from a real-world image sequence, when the
features are ‘corners’ that have been identified in both
frames. They are all veridical.

5. IMAGES RELATED BY AFFINE
TRANSFORMATIONS

In several of the examples we have described, and
others too numerous to mention, the circles were
derived from the crosses by an affine transformation
not involving rotation, and in every case our algorithm
(supplied with a sufficiently large value of o), succeeds
in finding the feature correspondences created by this
transformation. Because successive images in a se-
quence will often be connected by transformations that
are affine or nearly so, this property is one to be
welcomed, if not positively required, in a satisfactory
correspondence algorithm. The following argument is
intended to explain why the algorithm performs so well
in this respect.

The first stage in the argument is to show that if one
set of points in a plane is mapped into another by a
translation, an expansion or a shear deformation, then
this 1:1 mapping minimizes the sum of the squares of
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(a)

Figure 4. (a) The pattern of circles is generated from the
(random) pattern of crosses by a shear deformation. (b) As
figure 44, except that ten rogue points (solid squares) have
been added to the second image (circles).

the distances between corresponding points in the two
sets. In the second stage we explain why, with a large
enough value of o, the mapping found by our algorithm
possesses this particular property.

It may be helpful to introduce the first stage by
considering the simple case in which the circles (at s,)
are derived from the crosses (at ;) by a pure translation
t:

s, =r,+t

We proceed to show that any other 1:1 mapping
results in a greater value for the sum

X(r,

_si’) 2;
where " denotes the new partner of the point i.
Because (17,2°,...) must be a permutation of

(1,2,...), and the general permutation is a product
of independent cyclic permutations, we consider the
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Figure 5. The pattern of circles is generated from the
(random) pattern of crosses by a pure expansion.

Figure 6. An arbitrary combination of translation, expansion
and shear deformation. The algorithm discovers all the
matches specified by this transformation, although this
requires the crossing of arcs in several instances.

simplest non-trivial case (1’ =2,2"= 3,3 =1). The
aim is then to show that

(rl—s2)2+(7'2~s3)2+(r3-—s1)2
> ("1_31)2"‘(7'2_32)2"‘(7‘3'—83)2
i.e. that
2[r (s, —8,) +7a(s,—8;) +73(s53—s5,)] > 0.

The latter inequality follows directly from the fact that
$;—s8, =7, —7r,, etc. and the fact that

2 2 2
(ry—7y)"F (ry—ry)"+ (r3—7r)" > 0.
Next we turn to the general affine transformation
s;=Ar+t,

in which A is a second-rank tensor and # (as before) is
a translation vector. In Cartesian components this
transformation takes the form

X =ax;+by,+e,  y; = cx,+dy,+f,

and may be seen to comprise —loosely speaking —a
translation (e,f), an expansion (a+d)/2, two com-
ponents of shear, (a—d)/2 and (b+¢)/2, and a rotation
(b—¢)/2. The first component of shear is mirror-
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Figure 7. A random pattern of crosses subjected to a finite
rotation. This is the most troublesome of the affine
transformations, both for the algorithm and for people.
‘Wagon-wheeling’ starts to occur at a critical angle of
rotation, regardless of the value of o.

symmetric about the x and y axes, and the other, of
magnitude b, is antisymmetric about those axes. (These
symmetries have nothing to do, of course, with the
symmetry or lack of symmetry of A about its diagonal.)

At this point we restrict the tensor A to being both
symmetric and positive definite, a property that ensures
the positivity of the product »-A-# for every non-null
vector #. Necessary and sufficient conditions for this are
that

a>0,d>0,ad>bc and b=c.

The last of these conditions precludes A from having
any rotational component; the other conditions ensure
that the transformation from circles to crosses never
reverses the sense of a triangle of features. To complete
the first stage in the argument we need to show that if
the circles and the crosses are related by such a
transformation, then any other pairing between them
increases the sum of the squares of the distances
between paired points. The algebra is much the same
as before: one must show, for example, that

2[r (s1—8;y) +1y(s,—8;3) +73(53—5,)] > 0.

Setting s; = A-r,+¢, and using the fact that »,-A-r; =
r,-A-r;, we obtain the obviously positive expression

(ry—ry) A (ry—ry) + (ry—7ry) A (ry—7y)
+(rg—r) A (ry—ry),

and the above assertion follows.

The second stage in the argument is less rigorous.
Returning to G, we note that if ¢ is large, then every
element of G is close to 1, so that G is close to being a
symmetric matrix. For such matrices, as shown earlier,
the matrix P is the unit matrix; so P = E is at least an
approximate solution of the problem of maximizing
P:G. But for a matrix G consisting entirely of Is, P: G
is equally well maximized by any other matrix P
having a single ! in each row and in each column; so
in this ‘zeroth’ approximation there is nothing to
choose between FE and these other permutation
matrices, and we must go to the next approximation
for further enlightenment. In this approximation we
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Figure 8. The performance of the algorithm as applied to two
frames of a real-world image sequence. The correspondences
are all veridical.

expand each Gaussian element in powers of (1/0?),
obtaining, to the first order in (1/c?%),

G, =1—r5/20%

The problem of finding the permutation matrix P that
maximizes P:G is now the problem of finding the 1:1
mapping from ¢ to js that minimizes the sum of the
squared distances 7;; between the members of each pair.
But if the posntlons of the circles and the crosses are
indeed connected by an affine transformation with a
positive definite tensor component, then the mapping
between them does indeed minimize the sum of the
squares of the distances. So at last we can see why, first
of all, the P matrix delivered by our algorithm
approximates to a permutation matrix; and secondly,
why the permutation represented by the matrix
faithfully recovers the 1:1 mapping originally induced
by the affine transformation.

6. DISCUSSION

In its classical formulation the correspondence
problem has to do with human vision, and the
parameters that describe motion perception. But it is
also a problem for computer vision engineers, and this
is how we have chosen to address it. In the cir-
cumstances it is reassuring to find that our own
solution to the problem has a certain similarity to
Ullman’s minimal mapping scheme, a theory that
accounts for so many observations in the area of
motion perception. There are, however, important
differences.

Like us, Ullman aims to extremize the inner product
of two matrices: one having to do with ‘affinities’ — or
‘costs’ — and the other a matrix of correspondences. He
has much to say about such measures, though he does
not explicitly consider the Gaussian proximity matrix,
devoting much of his discussion to a cost measure that
is linear in the separation. This leads him to minimize,
where possible, the sum of the first powers of the
distances between corresponding points, rather than
the sum of their squares, which we find to be
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automatically minimized by a very general subset of
the affine group.

Be that as it may, we attach more importance to the
constraints to be placed on the form of the pairing
matrix P. In our case the method of construction of P
ensures its orthogonality; this tends to result in 1:1
mappings but does allow, in certain situations, what
amount to ‘splits’ and ‘fusions’, without legislating for
them in advance.

As for the relative merits of the two schemes, Ullman
attaches considerable weight to the biological plausi-
bility of his minimal mapping theory, while our
algorithm, in its formal simplicity, is perhaps better
suited to be a useful component of a computer vision
system.
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APPENDIX 1

Asstated above, the proximity matrix G;; = exp (—77,/20”)
has the useful property of making G positive definite when its
two subscripts run over the same n locations. To see why this
is so, we consider for simplicity the one-dimensional case in
which =1 and ;= |x,—x]|. A necessary and sufficient
condition for G to be positive definite is that for all real non-
null vectors (f;, ..., f,) =f, say, the quadratic form fGf” be
positive. Given such a vector we introduce the distribution

Slx) =X, f,8(x—x,),

where 8 is the Dirac delta function, and its Fourier transform

gy =/ (1/2m) X, fexp (—ikx,),

and evaluate in two different ways the expression

(1/2m) fdx fdx fdk fdk’ ) exp (thx)

x exp ( "2/2) exp (—ik'x’) gH (k)

in which each integral runs from —oo to + 0. Integration
over £ and £’ first, and then over x and ', gives the above-
mentioned quadratic form; integration over x and x” first,
and afterwards over £, yields the alternative expression

fd/fg(k) exp (—4%/2) g'(k),

which may be rewritten in the self-evidently positive form

ﬁg(@ exp (—k*/4)1? dk.

The extension to two dimensions (or more) is quite
straightforward.
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