An Algorithm for Automated Generation of
Invariants for Loops with Conditionals

Laura Ildikd Kovacs and Tudor Jebelean
Research Institute for Symbolic Computation,
Johannes Kepler University, Linz, Austria,
Institute e—Austria, Timisoara, Romania
Email: {kovacs, jebelegr@risc.uni-linz.ac.at

Abstract—We present an algorithm that generates automati- generation (by recurrence solving) is performed, followed by
cally (algebraic) invariant properties of a loop with conditionals. variable elimination, invariance checking andoBner basis

In the proposed algorithm program analysis is performed in - ompn tation. The automatically obtained invariant relations
order to transform the code into a form for which algebraic . e
are used then in the verification process.

and combinatorial techniques can be applied to obtain invariant
properties. Thes_e invariants are then ysed for verifying partial Il. GENERAL FRAMEWORK
correctness of imperative programs in the Theorema system

(www.theorema.org). The application of the method is demon- A. Working EnvironmentTheorema

strated in few examples. Theoremawww.theorema.org) is a project and a soft-

AMS Subject Classification33F10, 65G20, 68N30, 68Q60, ware system that aims at supporting the entire process of
68W30 . ~ mathematical theory exploration: invention of mathematical
Keywords and phrasesprogram analysis and verification, in- concepts, and invention and verification of algorithms [4]. The

variant generation, theorem proving, symbolic summation) . . .

Theoremasystem is particularly appropriate for functional and

l. INTRODUCTION |mpera?|ve program verification [12], because it dgllvers the

_ _ _ _ proofs in a natural language by using natural style inferences.

The main goal of our work is to develop a suitable imperfhe system is implemented on top of the computer algebra
ative programming language model and to support imperatiggstemMathematica[23], thus it has access to a wealth of

program verification in the automated theorem prover systesBwerful computing and solving algorithms.
TheoremaThe design of a framework for program verification

in an expressive logic likdheoremais driven by two main B Programming Model for Imperative Program Verification
reasons. On the one hand, we want to develop a method taf heorema

generates verification conditions, thus proof obligations, in 1) Abstract Syntax:The basic model of the programming
the Theoremasyntax. This process is based on the tradition&nguage is quite general. We want to be able to represent
method of inductive assertions, introduced by Floyd—Hoare—sequential imperative programming language, in which the
Dijkstra (using the weakest precondition strategy) [9], [11programs are considered as procedures, without return values
[7], combined with a novel method for automated invariardnd with input, output and/or transient parameters. The com-
generation for loops, namely a method based on recurremiands of the programming language are ([12]): assignments,
equation solvers (the Gosper algorithm [10], the technique lolbcks, conditional statements, loops (with optional arguments
generating functions [21], geometric series), variable elimfier loop assertions), procedure calls. Recursivity and mutually
nation and polynomial algebra. On the other hand, we wamtcursive procedure calls are not yet available.

to apply the Theoremaprovers to prove these verification 2) Semantics:We use an axiomatic semantics for the pro-
conditions, producing in this way useful case studies for tlggamming language, by using the so-called Hoare triple [11].

development of the existinheoremaprovers. The Hoare logic rules are defined inweeakest precondition
The current paper extends an earlier conference paper [$8]le[7], [9], and they were already presented in some of our
in a number of respects: previous conference papers (see, e.g. [14]). In this chapter we

e A modest generalization of the programming environmergtate only the semantic rule for the partial correctness of a
A new loop option,Assert , is introduced to allow the userwhile loop, but first let us give three definitions.

in specifying non-algebraic invariants (such as inequalities, Definition 2.1: Algebraic Assertions.

modulo operation, etc.); An assertion isalgebraig iff it is a conjunction of polynomial

e \We treat geometric series recurrences; equalities (polynomials over a ring of numbers, with program
e Most importantly, we are now able to generate polynomiahriable indeterminates).

invariant relations of loops that contain also conditional state- Definition 2.2: Invariants(Inductive Assertions)[9]

ments. This is done by program transformation of loops withn assertionI is an invariant for {P}While[b, c]{@Q} iff it
conditionals into nested loops, and then systematic invariagdtisfies the following conditions:

(2). Initial condition: P = I; be treated with algebraic and combinatorial techniques. Not—

(2). Iterative condition{I A b}c{I}; algebraic invariants, e.g. involving linear inequalities, modulo

(3). Exit condition: (I A —=b) = Q. operations, still have to be given by the users (using the
Definition 2.3: Algebraic Invariants. Assert option).

An assertion/ is analgebraic invariantiff I is an invariant Let us denote byX the set of variables the loop operates on.

and ! is an algebraic assertion. For our technique, we assume that the assignment statements

Now, the semantic rule for thpartial correctness of a while from the body of a loop are polynomial assignments of the

loop is as follows: formz :=p (z € X andp € R[X], R is a ring of numbers),

P IAb= T (IA=b) = Q and they are Go_sper—_summable recurrences, geometric series
. ; or mutual recursive with other assignment statement from the
{P} While[b, c] {Q} loop body. (For example 2.1X = {a,b,d, y}.)
where I’ denotes the computed weakest precondition of tdgorithm for Invariant Generation
loop bodyc with respect to the postconditiods(! is a loop Step 1: Transformation of loops with conditionals into nested

invariant). loops with assignments only (see prop. 3.1);
o _ Step 2: Generation of possible invariants for each system of
C. Verification Environment nested loops by combinatorics and algebra;

The implementation and verification process is done Btep 2.1: Indexing the inner loops;
a prototype verification condition generator for imperativtep 2.2: Statement and variable manipulation for the con-
programs, integrated into the overall framework of fi@e- nected inner loops and recurrence solving for each inner loop;
orema system. The user interface has few simple and istep 2.3: Recurrence-counter elimination;
tuitive commands Frogram, Specification, VCG, Step 3: Build the union of the obtained formulae for the two
Execute). Programs are annotated with pre- and postconested—loop subsystems;
dition, loop invariants and termination terms. For illustratiorStep 4: Check invariance property for generated formulae.
consider the following example: Keep only those that are invariant;

Example 2.1:Wensley's Algorithm for Real Division Step 5: Take the minimal set of the invariant properties, by

using Gbbner basis w.r.t. to the loop variables;

Specification [‘ReDiv", ReDV[] P, | Q, | Tol, T 7], Step 6: The final invariant is the conjunction of the formulae
Pre — (IsReal[P,Q,Tol]) A (Q > P >0) A (Tol >0), from Step 5 and of the non—algebraic assertions (specified by
Post — (P/Q <r+Tol) A (r < P/Q)] the Assert option). .

Program [“ReDiv", ReDV[| P, | Q, | Tol, 1 7], In transfqrmlng the code at step 1, we use the following

transformation rule:
Module [{a,b,d, y}, Proposition 3.1: Transformation Rule for while loops with
a:=0; b:=Q/2; d:=1; y:=0; conditionals
While [d > Tol, {IAbl'} {ZA-D1'}
While[b, While[b,
If [P<a+b, While[b A b1’, c1; ¢2; c4]; While[b A =b1’, c1; 3; c4];
b:=b/2;d:=d/2, While[b A =b1’, c1; e3; c4]] While[b A b1’, c1; ¢2; c4]]
{I N—b} {I N—b}
a:=a+by:=y+d/2;b:=0b/2;d :=d/2]]; ,

I {I} Whileb,cl;IF[bl,c2,c3];c4] {I A—b}

ri=y

The Verification Condition GeneratoVCG takes an an- Where all the loops have the invariahtandb1’ denotes the
notated program with pre- and postcondition, and, workingodified formulabl after the assignement-statement(s)
recursively bottom—up on the program syntax, produces, as Proof: The proof is done by applying the semantic
output, aTheoremdemma containing a collection of formulasrules for while-, conditional- and compositional statements
(i.e. verification conditions) that must be satisfied in order 1d1], [14], together with some reasoning about propositional
ensure the correctness of the program. The automated invarf@fnulae. A step-by-step prof is available in [15]. L]
generation (see section Ill) is performed in this phase. Thed# illustrate now the method by applying it to example 2.1:
verification conditions are then given to the automated theore#tep.1: We obtain two nested-loop subsystems, each with one
provers ofTheoreman order to check whether they hold. Theouter-loop and two inner loops.

obtained proofs are generated using natural style of inferencgtep 2.1:We proceed with simulating the execution of nested
loops by assigning the countgrto the main loop,j; to the
I11. | NFERRINGAUTOMATICALLY VALID INVARIANT first inner loop andj» to the second inner loop.
PROPERTIES Step 2.2:For each nested—loop system, rewrite the recursive
We present our work—in—progress technique for automatadsignments using the proper indexes (loop—counters). For
algebraic invariant generatiorfor loops with conditionals. those variables from the seX’ of loop variables, that do
This is done by transforming the loop by a certain rule (se®t change in the specific part, consider the assignment that
below) into two nested loops. The resulting program can theescribes the constant property of them @.g., := z;, where

x € X). For the inner whiles, by the combinatorial methods fd8tep 4: For the obtained polynomial equations we have to
summation, generate closed forms for the recursive equatiahgck the conditions from definition 2.2. Condition (1) of
[16]. Thus, for the inner loops, by (Gosper and geometritefinition 2.2 holds since the obtained formulae are closed

series) recurrence solving, we obtain: forms generated by recurrence solvers using the initial values
b given by the initial values of the loop variables before the
aj, = 4 Aj = @y T 2% by — gty loop execution. For condition (2) of definition 2.2 one must
bj, = 21’]—11 bj, = gj—; perform an additional checking, since the variable elimination
dj, = ;le dj, = ;l% process may produce. some mFejrmedla.te formglae that are .not
_ ' ds true for each branching condition. This additional check is
Yo = Y Y. = Y tdj — 5, done as follows:

wherea;, b;, d;, y; are the values of, b, d, y before the e Take the sequence of command = cl;c2;c4 and 52 =

first inner loop (i.e. the values from the beginning of the outet; ¢3; c4. S1 and S2 represents one possible loop iteration;

loop). e Consider the assignments 8t and.S2 as rewrite rules, and
Finally, we replace the inner loops with their system o?pply them (separately) on each formula from step 3.

closed forms and the assignments for the non—changed varif a formula remains the same after the applications of the

ables, using that the initial values of the variables of the firggwrite rules ofS1 and.S2, respectively, we can conclude that

inner loop are given by the initial values of the outer loopthe formula holds before and after each iteration of the loop.

variables, the initial values of the variables of the second inn&us this formula represents an invariant property of the loop.

loop are given by the final values of the first inner loop'é\fter performing these steps, the set of invariant formulas has

variables, etc. 6 polynomial equations, namely:
b; — boxd —
aj, = aj+ g (l-g5) b+, 0
bj2 — 2]% —bo*d+b*d0 = 0
diy = it —(a—ag) xd+bx(-2y0+2y) = 0 @)
v = Y+ k(- 55). delvzvo) — gy —dgtsdo+yo—y = 0
a—ag)*d _
Step 2.3: We eliminate the inner-loop counters and j,, % —bo—2dy xdo+yo—y = 0
and obtain the equations between the initial and final values a*xd—ag*xd—2bxy+2%xbxy, = 0.

of the loop variables, after an iteration. Writing respectivel;gtep 5: By application of Gébner basis [3] on (3) W.rt. to X

a, b, d, y instead ofa;,, bj,, dj,, yj, (i-e. final values of o iy ariant property that was generated by our method is:
loop variables), andy, by, do, yo instead ofa;, b;, d;, y;

. N : .) . bo x d _
(i.e. initial values of loop variables) the possible mvanan%H% = 0 Naxd—ao*d—2bodxdy +y+
properties are:

2 % bo * d * yo
do
This relation establishes an invariant property of the loop,

=0.

—b+ % =0 and, by initial values substitution (given by the assignments
axdy—ag*xdyg—2bg*xy—+2bg*xyg = 0 before the outer—loop), we obtain the invariant property:
—bod + bdy = 0 (¢D)] b—f—l*d*Q—O/\a*d d * =

— = — y*xQ =0.
—(a —ag) *d+bx (—2yo + 2y) = 0 2
— 2 + (a—ao-ZQb)*do fu—10 . Step 6: However, some additional invariant property is also

eded to prove (partial) correctness, namegly< P/q <

d N0 < d < 1. This formula, required by condition (3)
efinition 2.2, lies outside of the power of our method (i.e.
it is not algebraic), therefore one has to specify it manually,

For the second block of nested while loops we proceed i
the same manner, and obtain also a set of possible invarigﬁfd
properties. 0

axd—ag*d—2by + 2byo = 0 using theAssert option. The complete invariant will be the
(af;zo)*d by — 2% dal xdo +vo — vy 0 conjunction of the automatically generated invariant by our
—bi boxd — 0 method and the user-asserted one.

do For proving the partial correctness of the program, by call-
axdo—ap*do—2boxy+2bo*yo = 0 () ing vCG(see section II-C), we obtainEheoremdemma that
;b(oj d+bxdo il contains the verification conditions. The proof of this lemma,
%Oy‘)) —dp — dal *do +1yo —y 0 using a specified knowledge base, can be done automatically

by + {a=2bo—do)*do — by the PCS prover of th&heoremasystem [5], which uses

do+yo—y ipe L K
quantifier elimination.
Step 3: Taking the conjunction of the two set of formulas

obtained from the nested loop subsystems, i.e. (1) and (2), we V. RELATED WORK ON INVARIANT GENERATION

obtain a set of possible invariant properties of the while loop There are two main approaches, namely static and dynamic
from the original problem. For this particular example we havechniques for invariant discovery. Thiynamic methoexe-

a system with 12 polynomial equations. cutes a program on a collection of inputs and infers invariants

from captured variable traces [8], [1], [6]. Since our methoderifier a technique for mechanically inferring loop invariants
performs static invariant generation, it is not possible yétat are linear inequalities or non—algebraic; continue our
for us to make comparison with these techniques. Jtagic previous work on generation of termination terms [16].

approachof invariant generation operates on the program text,

not on test runs, therefore has the advantage that the reported

ACKNOWLEDGMENT

properties hold for any program run. There are several researci{he program verification project is supported by BMBWK

directions:
Abstract interpretations, widening and narrowintn [22],

(Austrian Ministry of Education, Science, and Culture),
BMWA (Austrian Ministry of Economy and Work) and by

[2] linear invariants are generated by computing under- aMEC (Romanian Ministry of Education and Research) in
over-approximations of the reachable state set, using refirfBg frame of the e-Austria Timisoara project. Theeorema
widening and narrowing and quantifier elimination. Genergystem is supported by FWF (Austrian National Science
tion of non-linear invariants involving multiplication becomegoundation) — SFB project F1302.

difficult with these methods. Our method, with restriction to

certain classes of recurrences and algebraic properties, can

generate invariants involving multiplications. (!

Using Gibner basis As an alternative to the iterative
strategy are the approaches from [20], [18], [19], namely &!
method built upon polynomial ideal theory, by @hner bases
computation, in order to generate polynomial imvariants bygz]
using: numerical constraint solvers [20]; fixed point compu-
tation [19]; weakest precondition computation of a genericf4
polynomial relation [18]. So far, the usage of these methods
has been limited to linear invariants, and they need to fix
apriori the degree of a generic polynomial template, which i)
not the case in our technique. Moreover, as our recent practida]
experiments show, we are able also to obtain non—polynomial
invariant properties (e.g. factorial or exponential expressionspﬂ

V. FURTHER EXAMPLES]

We have tested our algorithm with a number of exampleﬁ)]
(see e.g. [15]). For instance, in the casd-efmat’s algorithm
for integer factorizatior{13] the generated invariant is« NV +
dxr+2%u—u?—2xv+v? = 0; for LCM computatior{7] the
obtained invariant is.xz +v*y —2*xaxb = 0; for Extended [11]
Euclid Algorithm[13] the generated invariant property(i@o*
s—qgxr=1)A(b=gxx+sxy)AN(a=pxx+r*xy)A(z=
axs—bxr)A(y=bxp—axq)); for a nested loop-system,
such asManna’s Hardware Integer division algorithm [17][13]
the algorithm succeeds with the generated invariant propePt4
(@2 y3 —y2 =0) A (xl xy3 = y3 * (yl + a2 * y4) for the
loop with two conditionals, whereas for the loops with onlyt]
assignments the generated invariant2s« y3 — y2 = 0.

(20]

(12]

VI. CONCLUSIONS ANDFUTURE WORK (el
Combined with a practically oriented version of the them
oretical frame of Hoare—logicTheoremaprovides readable [18]
arguments for the correctness of programs, as well as useful
hints for debugging. Moreover, it is apparent that the u&agl
of program transformation, algebraic and combinatorial tech-
niques (summation methods, variable elimination, polynomi&fl
algebra) is a promising approach to analysis of loops, hamely
for generation of (algebraic) invariants. [21]
Regarding the verifier and the programming language, our
; i ; . ' 122

work plans in the near future are following: enrich the mvanarg%
generation technique with treatment of other type of recur-
rences and solving techniques; develop and integrate in tRd

REFERENCES

J. H. Andrews. Testing Using Log File Analysis: Tools, Methods
and Issues. In3th Annual Int. Conference on Automated Software
Engineering (ASE’98)1998.

S. Bensalem, Y. Lakhnech, and H. Saidi. Powerful Techniques for
the Automatic Generation of Invariants. 8tatic Analysis Symposiyum
volume 1102 ofLNCS pages 323-335, 1996.

B. Buchberger. Groebner-Bases: An Algorithmic Method in Polynomial
Ideal Theory. InMultidimensional Systems Theory - Progress, Directions
and Open Problems in Multidimensional Systepages 184-232, 1985.

] B. Buchberger. Symbolic Computation: Computer Algebra and Logic.

In Frontiers of Combining Systemeolume 3 of Applied Logic Series
pages 193-219, 1996.

B. Buchberger. The PCS Prover in Theorema. Rroceedings of
EUROCAST 20012001. Lecture Notes in Computer Science 2178.

J. E. Cook and A. L. Wolf. Discovering Models of Software Processes
from Event-Based DataACM Transactions on Software Engineering
and Methodology7(3):215-249, 1998.

E. W. Dijkstra. A Discipline of Programming1976.

M. D. Ernst et al. Dynamically Discovering Likely Program Invari-
ants to Support Program Evaluation. Technical report, University of
Washington, 2000.

R. W. Floyd. Assigning Meanings to Programs. Pnoc. Symphosia in
Applied Mathematics 19ages 19-37, 1967.

R. W. Gosper. Decision Procedures for Indefinite Hypergeometric
Summation. Proc. of the National Academy of Science, USA(5-
6):40-42, 1978.

C. A. R. Hoare. An Axiomatic Basis for Computer Programming.
Comm. ACM 12, 19609.

T. Jebelean, L. Kovacs, and N. Popov. Large Experimental Program
Verification in the Theorema System. Rroceedings ISOLA 2004,
Cyprus pages 92-99, 2004.

D. E. Knuth. The Art of Computer Programmingolume 2. 1969.

L. Kovacs. Program Verification using Hoare Logi2003. Computer
Aided Verification of Information Systems (CAVIS-04), Timisoara,
Romania.

L. Kovacs. Using Combinatorial and Algebraic Techniques for Auto-
matic Generation of Loop Invariants. Technical Report 05-09, RISC-
Linz, Austria, 2005.

L. Kovacs and T. Jebelean. Automated Generation of Loop Invarinats
by Recurrence Solving iTheorema In Proc. of SYNASC'Q4pages
451-464, Romania, 2004.

1 Z. Manna. Mathematical Theory of Computatiod974.

M. Mller-Olm and H. Seidl. Computing polynomial program invariants.
Information Processing Letter®1(5):233—-244, 2004.

E. Rodriguez-Carbonell and D. Kapur. Automatic Generation of Poly-
nomial Loop Invariants: Algebraic Foundations. Pnoc. of ISSAC’04
pages 266-273, Spain, 2004.

S. Sankaranaryanan, B.S. Henry, and Z. Manna. Nonlinear Loop
Invariant Generation using Groebner Bases. A@M Principles of
Programming Languages (POPL’'Q4ltaly, 2004.

R. P. Stanley. Differentiably finite power serieEuropean Journal of
Combinatorics 1(2):175-188, 1980.

A. Tiwari, H. Ruess, H. Saidi, and N. Shankar. A Technique for Invariant
Generation. INTACAS 2001volume 2031 ofLNCS pages 113-127,
2001.

S. Wolfram. The Mathematica Book, 3rd ed996.

