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Abstract— We present an algorithm that generates automati-
cally (algebraic) invariant properties of a loop with conditionals.
In the proposed algorithm program analysis is performed in
order to transform the code into a form for which algebraic
and combinatorial techniques can be applied to obtain invariant
properties. These invariants are then used for verifying partial
correctness of imperative programs in the Theorema system
(www.theorema.org). The application of the method is demon-
strated in few examples.
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I. I NTRODUCTION

The main goal of our work is to develop a suitable imper-
ative programming language model and to support imperative
program verification in the automated theorem prover system
Theorema. The design of a framework for program verification
in an expressive logic likeTheoremais driven by two main
reasons. On the one hand, we want to develop a method that
generates verification conditions, thus proof obligations, in
the Theoremasyntax. This process is based on the traditional
method of inductive assertions, introduced by Floyd–Hoare–
Dijkstra (using the weakest precondition strategy) [9], [11],
[7], combined with a novel method for automated invariant
generation for loops, namely a method based on recurrence
equation solvers (the Gosper algorithm [10], the technique of
generating functions [21], geometric series), variable elimi-
nation and polynomial algebra. On the other hand, we want
to apply the Theoremaprovers to prove these verification
conditions, producing in this way useful case studies for the
development of the existingTheoremaprovers.

The current paper extends an earlier conference paper [16]
in a number of respects:
• A modest generalization of the programming environment.
A new loop option,Assert , is introduced to allow the user
in specifying non-algebraic invariants (such as inequalities,
modulo operation, etc.);
• We treat geometric series recurrences;
• Most importantly, we are now able to generate polynomial
invariant relations of loops that contain also conditional state-
ments. This is done by program transformation of loops with
conditionals into nested loops, and then systematic invariant

generation (by recurrence solving) is performed, followed by
variable elimination, invariance checking and Gröbner basis
computation. The automatically obtained invariant relations
are used then in the verification process.

II. GENERAL FRAMEWORK

A. Working Environment:Theorema

Theorema(www.theorema.org ) is a project and a soft-
ware system that aims at supporting the entire process of
mathematical theory exploration: invention of mathematical
concepts, and invention and verification of algorithms [4]. The
Theoremasystem is particularly appropriate for functional and
imperative program verification [12], because it delivers the
proofs in a natural language by using natural style inferences.
The system is implemented on top of the computer algebra
systemMathematica[23], thus it has access to a wealth of
powerful computing and solving algorithms.

B. Programming Model for Imperative Program Verification
in Theorema

1) Abstract Syntax:The basic model of the programming
language is quite general. We want to be able to represent
a sequential imperative programming language, in which the
programs are considered as procedures, without return values
and with input, output and/or transient parameters. The com-
mands of the programming language are ([12]): assignments,
blocks, conditional statements, loops (with optional arguments
for loop assertions), procedure calls. Recursivity and mutually
recursive procedure calls are not yet available.

2) Semantics:We use an axiomatic semantics for the pro-
gramming language, by using the so-called Hoare triple [11].
The Hoare logic rules are defined in aweakest precondition
style [7], [9], and they were already presented in some of our
previous conference papers (see, e.g. [14]). In this chapter we
state only the semantic rule for the partial correctness of a
while loop, but first let us give three definitions.

Definition 2.1: Algebraic Assertions.
An assertion isalgebraic, iff it is a conjunction of polynomial
equalities (polynomials over a ring of numbers, with program
variable indeterminates).

Definition 2.2: Invariants(Inductive Assertions)[9]
An assertionI is an invariant for {P}While[b, c]{Q} iff it
satisfies the following conditions:



(1). Initial condition:P ⇒ I;
(2). Iterative condition:{I ∧ b}c{I};
(3). Exit condition:(I ∧ ¬b) ⇒ Q.

Definition 2.3: Algebraic Invariants.
An assertionI is an algebraic invariantiff I is an invariant
andI is an algebraic assertion.
Now, the semantic rule for thepartial correctness of a while
loop is as follows:

P ⇒ I I ∧ b ⇒ I ′ (I ∧ ¬b) ⇒ Q

{P} While[b, c] {Q}
,

where I ′ denotes the computed weakest precondition of the
loop bodyc with respect to the postconditionsI (I is a loop
invariant).

C. Verification Environment

The implementation and verification process is done in
a prototype verification condition generator for imperative
programs, integrated into the overall framework of theThe-
orema system. The user interface has few simple and in-
tuitive commands (Program, Specification, VCG,
Execute ). Programs are annotated with pre- and postcon-
dition, loop invariants and termination terms. For illustration,
consider the following example:

Example 2.1:Wensley’s Algorithm for Real Division

Specification [“ReDiv”, ReDiv[↓ P, ↓ Q, ↓ Tol, ↑ r],
Pre → (IsReal[P,Q, Tol]) ∧ (Q > P ≥ 0) ∧ (Tol ≥ 0),
Post → (P/Q < r + Tol) ∧ (r ≤ P/Q)]

Program [“ReDiv”, ReDiv[↓ P, ↓ Q, ↓ Tol, ↑ r],
Module [{a, b, d, y},

a := 0; b := Q/2; d := 1; y := 0;
While [d ≥ Tol,

If [P < a + b,

b := b/2; d := d/2,

a := a + b; y := y + d/2; b := b/2; d := d/2]];
r := y]]

The Verification Condition Generator(VCG) takes an an-
notated program with pre- and postcondition, and, working
recursively bottom–up on the program syntax, produces, as
output, aTheoremalemma containing a collection of formulas
(i.e. verification conditions) that must be satisfied in order to
ensure the correctness of the program. The automated invariant
generation (see section III) is performed in this phase. These
verification conditions are then given to the automated theorem
provers ofTheoremain order to check whether they hold. The
obtained proofs are generated using natural style of inferences.

III. I NFERRINGAUTOMATICALLY VALID INVARIANT

PROPERTIES

We present our work–in–progress technique for automated
algebraic invariant generationfor loops with conditionals.
This is done by transforming the loop by a certain rule (see
below) into two nested loops. The resulting program can then

be treated with algebraic and combinatorial techniques. Not–
algebraic invariants, e.g. involving linear inequalities, modulo
operations, still have to be given by the users (using the
Assert option).

Let us denote byX the set of variables the loop operates on.
For our technique, we assume that the assignment statements
from the body of a loop are polynomial assignments of the
form x := p ( x ∈ X andp ∈ <[X], < is a ring of numbers),
and they are Gosper-summable recurrences, geometric series
or mutual recursive with other assignment statement from the
loop body. (For example 2.1,X = {a, b, d, y}.)
Algorithm for Invariant Generation
Step 1: Transformation of loops with conditionals into nested
loops with assignments only (see prop. 3.1);
Step 2: Generation of possible invariants for each system of
nested loops by combinatorics and algebra;
Step 2.1: Indexing the inner loops;
Step 2.2: Statement and variable manipulation for the con-
nected inner loops and recurrence solving for each inner loop;
Step 2.3: Recurrence-counter elimination;
Step 3: Build the union of the obtained formulae for the two
nested–loop subsystems;
Step 4: Check invariance property for generated formulae.
Keep only those that are invariant;
Step 5: Take the minimal set of the invariant properties, by
using Gr̈obner basis w.r.t. to the loop variables;
Step 6: The final invariant is the conjunction of the formulae
from Step 5 and of the non–algebraic assertions (specified by
the Assert option).

In transforming the code at step 1, we use the following
transformation rule:

Proposition 3.1:Transformation Rule for while loops with
conditionals

{I ∧ b1′} {I ∧ ¬b1′}
While[b, While[b,

While[b ∧ b1′, c1; c2; c4]; While[b ∧ ¬b1′, c1; c3; c4];
While[b ∧ ¬b1′, c1; c3; c4]] While[b ∧ b1′, c1; c2; c4]]

{I ∧ ¬b} {I ∧ ¬b}
{I} While[b, c1; IF [b1, c2, c3]; c4] {I ∧ ¬b}

,

where all the loops have the invariantI, andb1′ denotes the
modified formulab1 after the assignement-statement(s)c1.

Proof: The proof is done by applying the semantic
rules for while-, conditional- and compositional statements
[11], [14], together with some reasoning about propositional
formulae. A step-by-step prof is available in [15].
We illustrate now the method by applying it to example 2.1:
Step.1:We obtain two nested-loop subsystems, each with one
outer-loop and two inner loops.
Step 2.1:We proceed with simulating the execution of nested
loops by assigning the counterj to the main loop,j1 to the
first inner loop andj2 to the second inner loop.
Step 2.2:For each nested–loop system, rewrite the recursive
assignments using the proper indexes (loop–counters). For
those variables from the setX of loop variables, that do
not change in the specific part, consider the assignment that
describes the constant property of them (i.e.xj+1 := xj , where



x ∈ X). For the inner whiles, by the combinatorial methods for
summation, generate closed forms for the recursive equations
[16]. Thus, for the inner loops, by (Gosper and geometric
series) recurrence solving, we obtain:

aj1 = aj

bj1 = bj

2j1

dj1 = dj

2j1

yj1 = yj

aj2 = aj1 + 2 ∗ bj1 −
bj1

2j2−1

bj2 = bj1
2j2

dj2 = dj1
2j2

yj2 = yj1 + dj1 −
dj1
2j2 ,

whereaj , bj , dj , yj are the values ofa, b, d, y before the
first inner loop (i.e. the values from the beginning of the outer
loop).

Finally, we replace the inner loops with their system of
closed forms and the assignments for the non–changed vari-
ables, using that the initial values of the variables of the first
inner loop are given by the initial values of the outer loop’s
variables, the initial values of the variables of the second inner
loop are given by the final values of the first inner loop’s
variables, etc.

aj2 = aj + bj

2j1−1

(
1− 1

2j2

)
bj2 = bj

2j1+j2

dj2 = dj

2j1+j2

yj2 = yj + dj

2j1

(
1− 1

2j2

)
.

Step 2.3: We eliminate the inner-loop countersj1 and j2,
and obtain the equations between the initial and final values
of the loop variables, after an iteration. Writing respectively,
a, b, d, y instead ofaj2 , bj2 , dj2 , yj2 (i.e. final values of
loop variables), anda0, b0, d0, y0 instead ofaj , bj , dj , yj

(i.e. initial values of loop variables) the possible invariant
properties are:

−b + b0∗d
d0

= 0
a ∗ d0 − a0 ∗ d0 − 2b0 ∗ y + 2b0 ∗ y0 = 0
−b0d + bd0 = 0
−(a− a0) ∗ d + b ∗ (−2y0 + 2y) = 0

−2b0 + (a−a0+2b)∗d0
d + y − y0 = 0.

(1)

For the second block of nested while loops we proceed in
the same manner, and obtain also a set of possible invariant
properties.

a ∗ d− a0 ∗ d− 2by + 2by0 = 0
(a−a0)∗d

d0
− b0 − 2 ∗ d−1

0 ∗ d0 + y0 − y = 0
−b + b0∗d

d0
= 0

a ∗ d0 − a0 ∗ d0 − 2b0 ∗ y + 2b0 ∗ y0 = 0
−b0 ∗ d + b ∗ d0 = 0
d∗(y−y0)

d0
− d0 − d−1

0 ∗ d0 + y0 − y = 0

2b0 + (a−2b0−a0)∗d0
d0+y0−y = 0.

(2)

Step 3: Taking the conjunction of the two set of formulas
obtained from the nested loop subsystems, i.e. (1) and (2), we
obtain a set of possible invariant properties of the while loop
from the original problem. For this particular example we have
a system with 12 polynomial equations.

Step 4: For the obtained polynomial equations we have to
check the conditions from definition 2.2. Condition (1) of
definition 2.2 holds since the obtained formulae are closed
forms generated by recurrence solvers using the initial values
given by the initial values of the loop variables before the
loop execution. For condition (2) of definition 2.2 one must
perform an additional checking, since the variable elimination
process may produce some intermediate formulae that are not
true for each branching condition. This additional check is
done as follows:
• Take the sequence of commandS1 = c1; c2; c4 and S2 =
c1; c3; c4. S1 andS2 represents one possible loop iteration;
• Consider the assignments ofS1 andS2 as rewrite rules, and
apply them (separately) on each formula from step 3.
• If a formula remains the same after the applications of the
rewrite rules ofS1 andS2, respectively, we can conclude that
the formula holds before and after each iteration of the loop.
Thus this formula represents an invariant property of the loop.
After performing these steps, the set of invariant formulas has
6 polynomial equations, namely:

−b + b0∗d
d0

= 0
−b0 ∗ d + b ∗ d0 = 0
−(a− a0) ∗ d + b ∗ (−2y0 + 2y) = 0
d∗(y−y0)

d0
− d0 − d−1

0 ∗ d0 + y0 − y = 0
(a−a0)∗d

d0
− b0 − 2d−1

0 ∗ d0 + y0 − y = 0
a ∗ d− a0 ∗ d− 2b ∗ y + 2 ∗ b ∗ y0 = 0.

(3)

Step 5:By application of Gr̈obner basis [3] on (3) w.r.t. to X,
the invariant property that was generated by our method is:

−b+
b0 ∗ d

d0
= 0 ∧a∗d−a0∗d−2b0∗d∗d−1

0 ∗y+
2 ∗ b0 ∗ d ∗ y0

d0
= 0.

This relation establishes an invariant property of the loop,
and, by initial values substitution (given by the assignments
before the outer–loop), we obtain the invariant property:

−b +
1

2
∗ d ∗Q = 0 ∧ a ∗ d− d ∗ y ∗Q = 0.

Step 6: However, some additional invariant property is also
needed to prove (partial) correctness, namely:y ≤ P/q <
y + d ∧ 0 < d ≤ 1. This formula, required by condition (3)
of definition 2.2, lies outside of the power of our method (i.e.
it is not algebraic), therefore one has to specify it manually,
using theAssert option. The complete invariant will be the
conjunction of the automatically generated invariant by our
method and the user-asserted one.

For proving the partial correctness of the program, by call-
ing VCG(see section II-C), we obtain aTheoremalemma that
contains the verification conditions. The proof of this lemma,
using a specified knowledge base, can be done automatically
by the PCS prover of theTheoremasystem [5], which uses
quantifier elimination.

IV. RELATED WORK ON INVARIANT GENERATION

There are two main approaches, namely static and dynamic
techniques for invariant discovery. Thedynamic methodexe-
cutes a program on a collection of inputs and infers invariants



from captured variable traces [8], [1], [6]. Since our method
performs static invariant generation, it is not possible yet
for us to make comparison with these techniques. Thestatic
approachof invariant generation operates on the program text,
not on test runs, therefore has the advantage that the reported
properties hold for any program run. There are several research
directions:
Abstract interpretations, widening and narrowing. In [22],
[2] linear invariants are generated by computing under- and
over-approximations of the reachable state set, using refined
widening and narrowing and quantifier elimination. Genera-
tion of non–linear invariants involving multiplication becomes
difficult with these methods. Our method, with restriction to
certain classes of recurrences and algebraic properties, can
generate invariants involving multiplications.

Using Gr̈obner basis. As an alternative to the iterative
strategy are the approaches from [20], [18], [19], namely a
method built upon polynomial ideal theory, by Gröbner bases
computation, in order to generate polynomial imvariants by
using: numerical constraint solvers [20]; fixed point compu-
tation [19]; weakest precondition computation of a generic
polynomial relation [18]. So far, the usage of these methods
has been limited to linear invariants, and they need to fix
apriori the degree of a generic polynomial template, which is
not the case in our technique. Moreover, as our recent practical
experiments show, we are able also to obtain non–polynomial
invariant properties (e.g. factorial or exponential expressions).

V. FURTHER EXAMPLES

We have tested our algorithm with a number of examples
(see e.g. [15]). For instance, in the case ofFermat’s algorithm
for integer factorization[13] the generated invariant is4∗N +
4∗r+2∗u−u2−2∗v+v2 = 0; for LCM computation[7] the
obtained invariant isu ∗x+ v ∗ y− 2 ∗a ∗ b = 0; for Extended
Euclid Algorithm[13] the generated invariant property is

(
(p∗

s− q ∗ r = 1)∧ (b = q ∗x+ s ∗ y)∧ (a = p ∗x+ r ∗ y)∧ (x =
a ∗ s− b ∗ r)∧ (y = b ∗ p− a ∗ q)

)
; for a nested loop-system,

such asManna’s Hardware Integer division algorithm [17],
the algorithm succeeds with the generated invariant property
(x2 ∗ y3 − y2 = 0) ∧ (x1 ∗ y3 = y3 ∗ (y1 + x2 ∗ y4) for the
loop with two conditionals, whereas for the loops with only
assignments the generated invariant isx2 ∗ y3− y2 = 0.

VI. CONCLUSIONS ANDFUTURE WORK

Combined with a practically oriented version of the the-
oretical frame of Hoare–logic,Theoremaprovides readable
arguments for the correctness of programs, as well as useful
hints for debugging. Moreover, it is apparent that the use
of program transformation, algebraic and combinatorial tech-
niques (summation methods, variable elimination, polynomial
algebra) is a promising approach to analysis of loops, namely
for generation of (algebraic) invariants.

Regarding the verifier and the programming language, our
work plans in the near future are following: enrich the invariant
generation technique with treatment of other type of recur-
rences and solving techniques; develop and integrate in the

verifier a technique for mechanically inferring loop invariants
that are linear inequalities or non–algebraic; continue our
previous work on generation of termination terms [16].
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